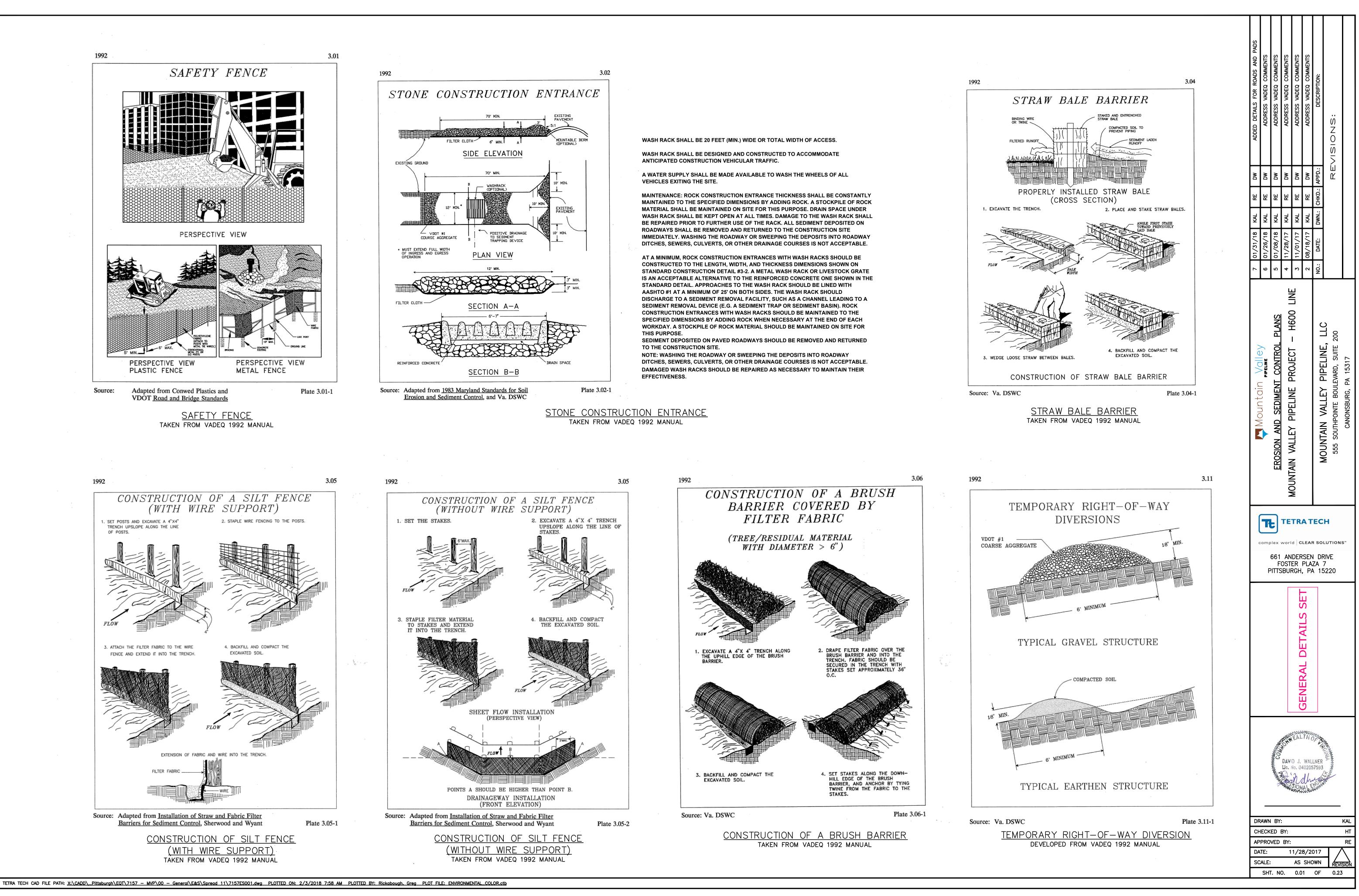

By virtue of this seal and signature, all supporting documents included in this package are accurate and support the design presented herein.

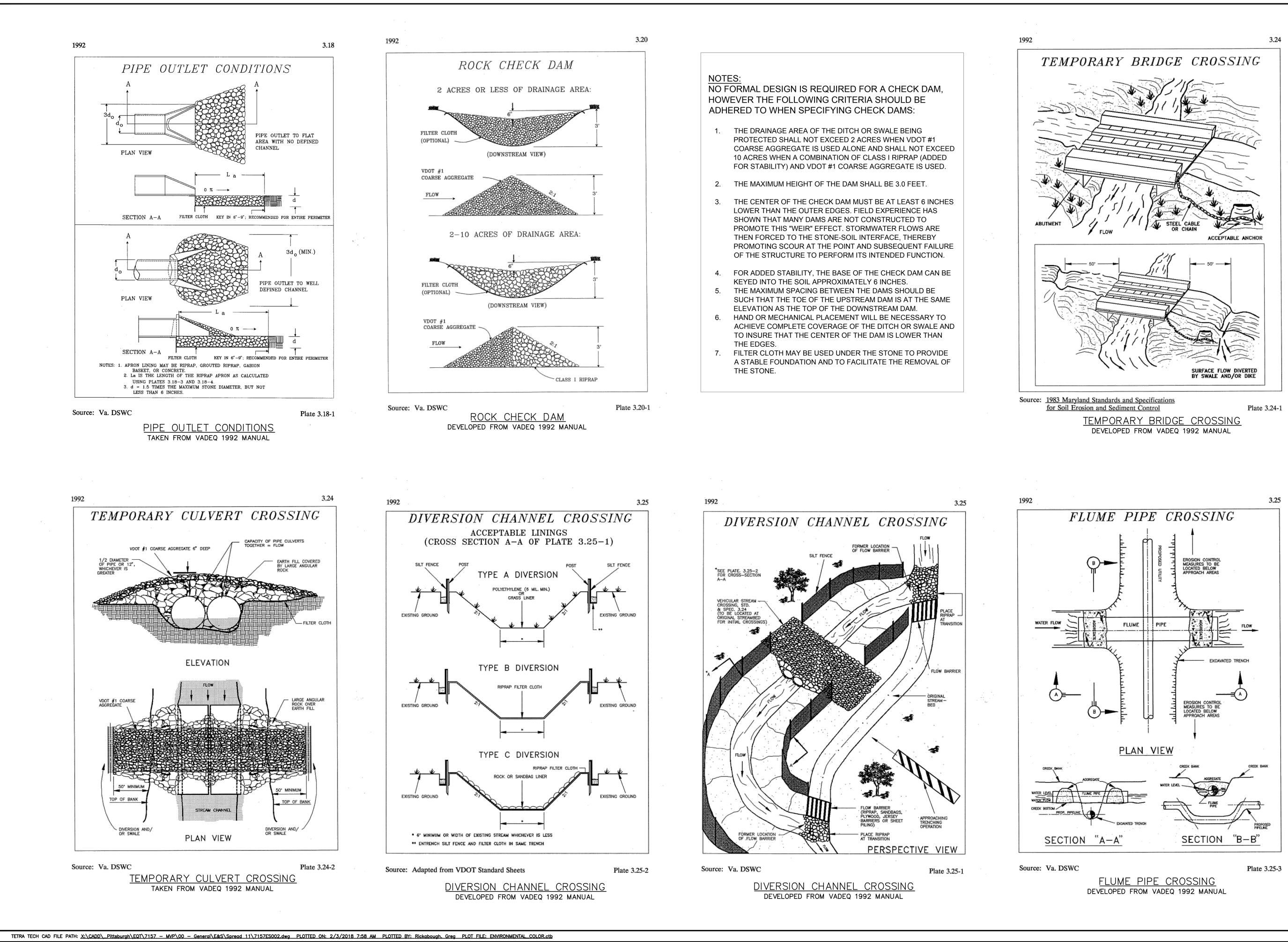
MOUNTAIN VALLEY PIPELINE, LLC EROSION & SEDIMENT CONTROL PLAN

MVP PIPELINE PROJECT FRANKLIN COUNTY TO PITTSYLVANIA COUNTY **SPREAD 11**

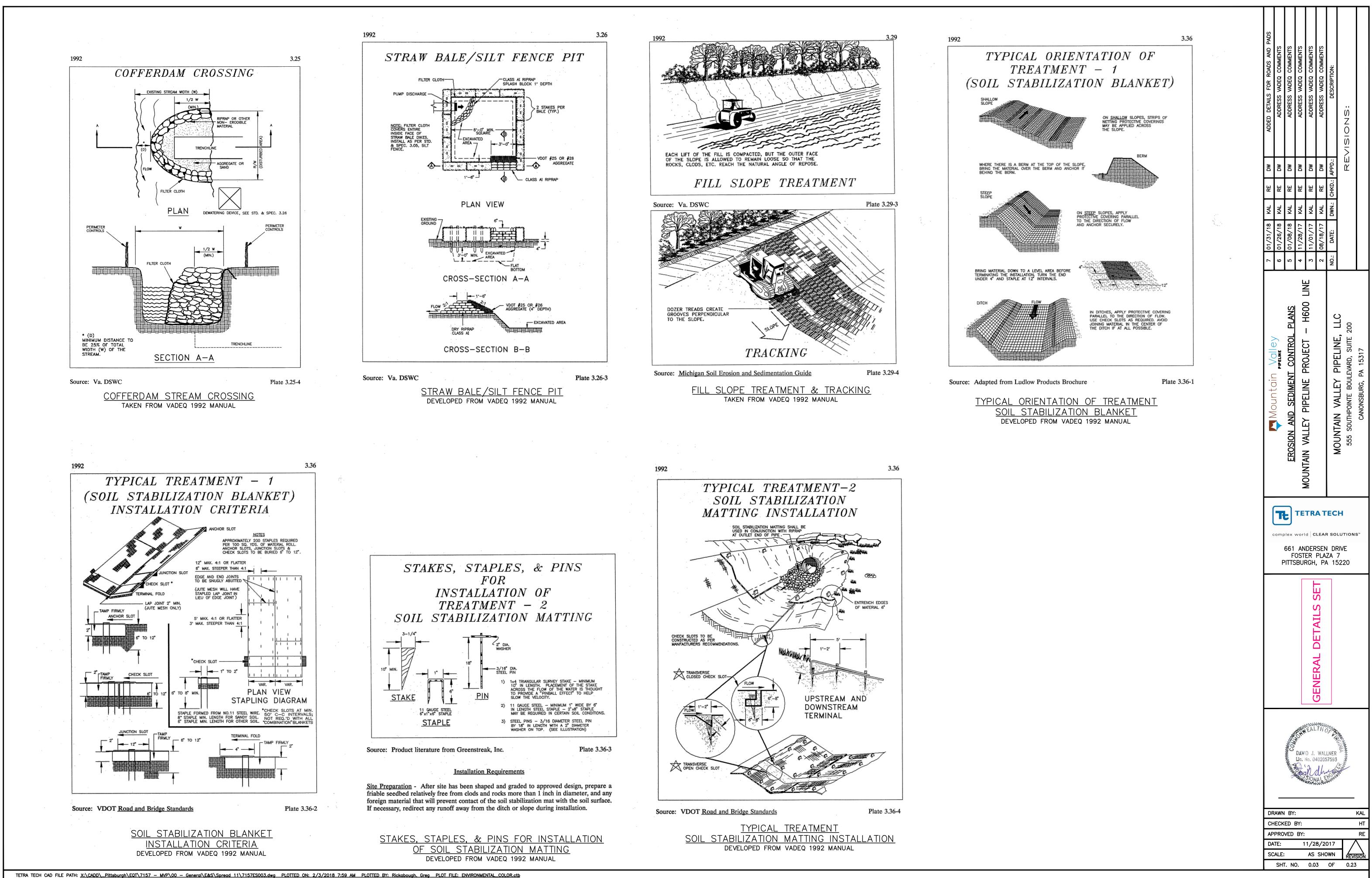
	DRAWING INDEX
SHEET No.	DRAWING TITLE
	GENERAL SET
0.00	COVER SHEET
0.01 TO 0.21	EROSION AND SEDIMENT CONTROL DETAILS
0.22 TO 0.23	GENERAL NOTES AND LEGEND
	SPREAD 11
15.00A	VARIANCE AND EXEMPTION REQUESTS
15.01–15.03	KEY PLAN
15.04EX TO 15.93EX	EXISTING CONDITIONS
15.04ES TO 15.99ES	EROSION & SEDIMENT CONTROL PLANS
15.04PC TO 15.93PC	POST CONSTRUCTION STORMWATER AND RESTORATION PLANS

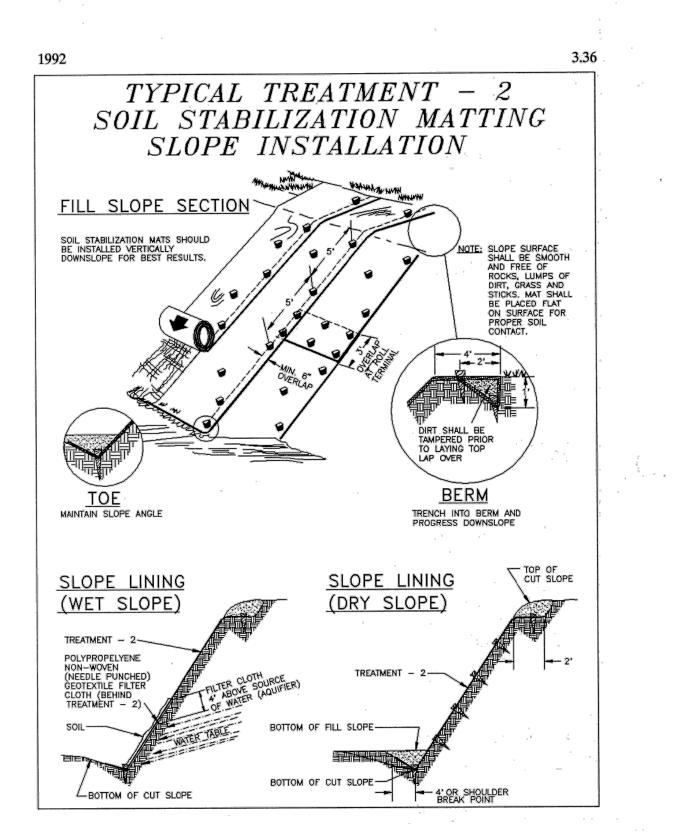
CONTRACTOR IS RESPONSIBLE TO IDENTIFY ALL UTILITIES. THE UTILITY LINES SHOWN ON THE PLAN ARE FOR INFORMATIONAL PURPOSES ONLY AND DO NOT REPRESENT SURVEYED LINE INFORMATION.


MVP PIPELINE PROJECT GILES COUNTY, VIRGINIA TO PITTSYLVANIA COUNTY, VIRGINIA

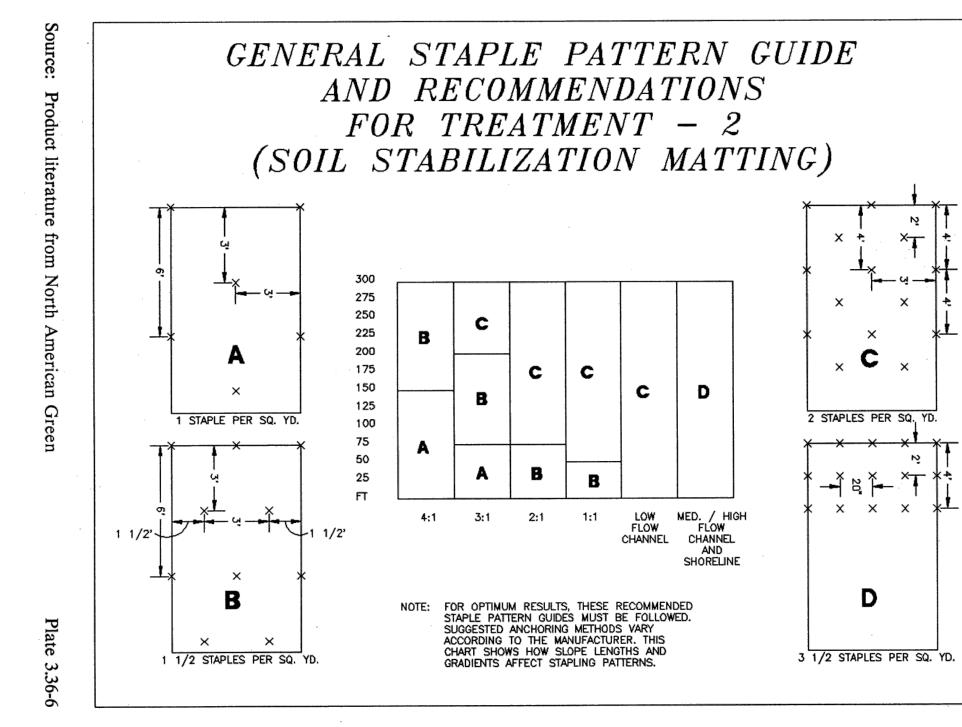


THREE DAYS BEFORE YOU DIG


CALL VA ONE CALL SYSTEM TOLL FREE 811 OR 1-800-552-7001


ADDED DETAILS FOR ROADS AND PADS	ADDRESS VADEQ COMMENTS	ADDRESS VADEQ COMMENTS	ADDRESS VADEQ COMMENTS	ADDRESS VADEQ COMMENTS	ADDRESS VADEQ COMMENTS	DESCRIPTION:		
).:	REVISIONS:	
M	MD	MD	MD	MQ	MQ	CHKD.: APPD.:	Ľ	
L RE	L RE	L RE	L RE	L RE	L RE	DWN.: CHK		
18 KAL	18 KAL	18 KAL	17 KAL	17 KAL	17 KAL			
01/31/18	01/26/18	01/08/18	11/28/17	11/01/11	08/18/17	DATE:		
7	9	5	4	3	2	NO.:		
		EROSION AND SEDIMENT CONTROL PLANS	ו בע הוהבו ואוב ההס וב	MUUNIAIN VALLET PIPELINE PROJECT - NOUU LINE			555 SOUTHPOINTE BOULEVARD, SUITE 200	CANONSBURG, PA 15317
		EROSIO					555 555 C	
		661 F	TE worl AN OST	TR. a c IDER ER	SEN PLA	EC so DF ZA	H LUTION: RIVE	S™
	comp	661 F	TE worl AN OST	TR a c IDER ER RGH	LEAF SEN PLA	EC so DF ZA		S™
	comp	661 F	AN OST BUI		SEN PLAN DI LIN CITATIN DI LIN CITATINI DI LINI CITATINI DI LINI DI LINI DI LINI CITATINI DI LINI DI LI CITATINI DI LI CITATINI DI LI CITATINI DI LIN	EC A SO A 19 LNER	H LUTION RIVE 7 5220	S™
DF	comp		AN OST BUF			EC A SO A 19 LNER	H LUTION RIVE 7 5220	s [™]

ADDED DETAILS FOR ROADS AND PADS	ADDRESS VADEQ COMMENTS	ADDRESS VADEQ COMMENTS	ADDRESS VADEQ COMMENTS	ADDRESS VADEQ COMMENTS	ADDRESS VADEQ COMMENTS	DESCRIPTION:	REVISIONS:	
7 01/31/18 KAL RE DW	6 01/26/18 KAL RE DW	5 01/08/18 KAL RE DW	4 11/28/17 KAL RE DW	3 11/01/17 KAL RE DW	2 08/18/17 KAL RE DW	NO.: DATE: DWN.: CHKD.: APPD.:	Ш Ш	
(661 F	TE worl AN OST	DER ER	SEN PLA	IDF ZA 🕽	H LUTION: RIVE	canonSBURG, PA 15317
Í	+	1115	SBOI			A 15		
					GENERAL DE LAILS SE I			
СН	AWN	BY	Lic.	D J.			A Standard Sta	KAL HT RE

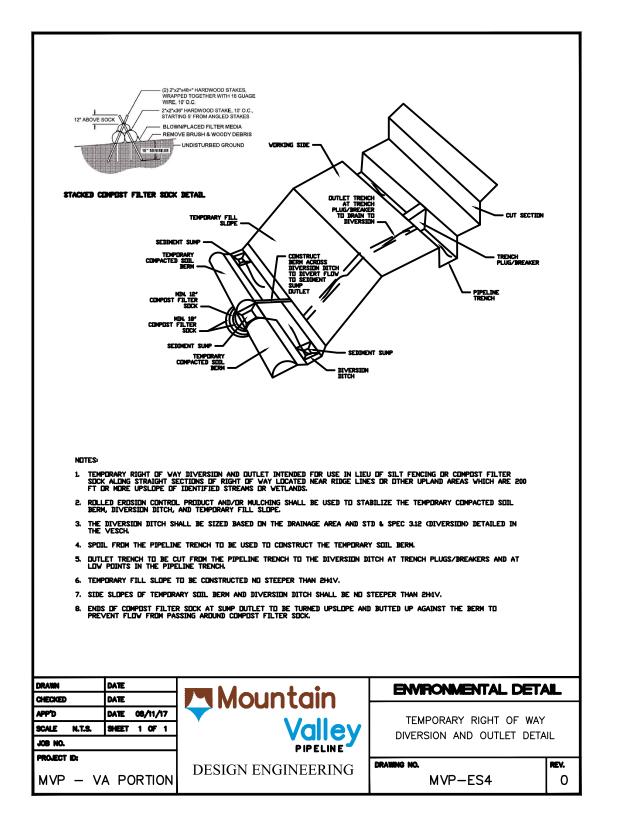


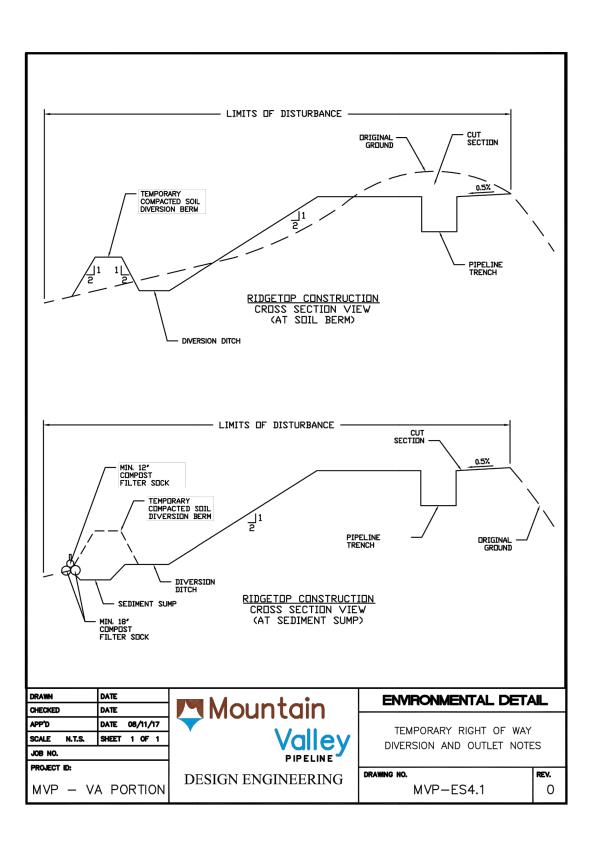
Source: VDOT Road and Bridge Standards

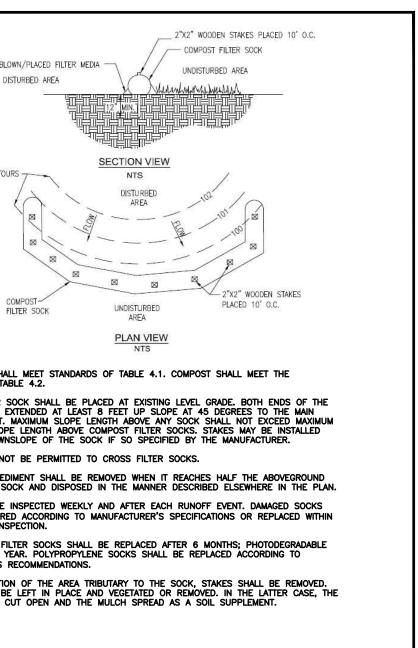
Plate 3.36-5

SOIL STABILIZATION MATTING SLOPE

NOTE: FOR LANDS ON THE JEFFERSON NATIONAL FOREST, IF THE USE OF STABILIZATION NETTING IS REQUIRED/PERMITTED, WILDLIFE FRIENDLY GEOTEXTILES MUST BE USED. THESE PRODUCTS MUST EITHER NOT CONTAIN NETTING, OR NETTING MUST BE MADE OF 100% BIODEGRADABLE NON-PLASTIC MATERIALS SUCH AS JUTE, SISAL, OR COIR FIBER. PLASTIC NETTING (SUCH AS POLYPROPYLENE, NYLON, POLYETHYLENE, AND POLYESTER), EVEN IF ADVERTISED AS BIODEGRADABLE, IS NOT ACCEPTED ALTERNATIVE. ANY NETTING USED MUST ALSO HAVE A LOOSE-WEAVE DESIGN WITH MOVABLE JOINTS BETWEEN HORIZONTAL AND VERTICAL TWINES TO REDUCE THE CHANCE FOR WILDLIFE ENTANGLEMENT, INJURY, OR DEATH. (CA COASTAL COMMISSION, 2012)

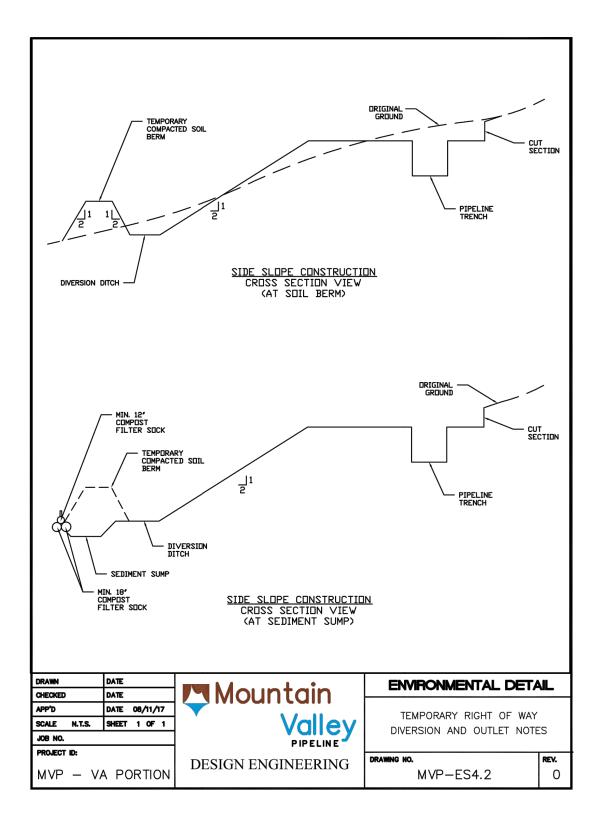

GENERAL STAPLE PATTERN GUIDE & RECOMMENDATIONS FOR TREATMENT DEVELOPED FROM VADEQ 1992 MANUAL

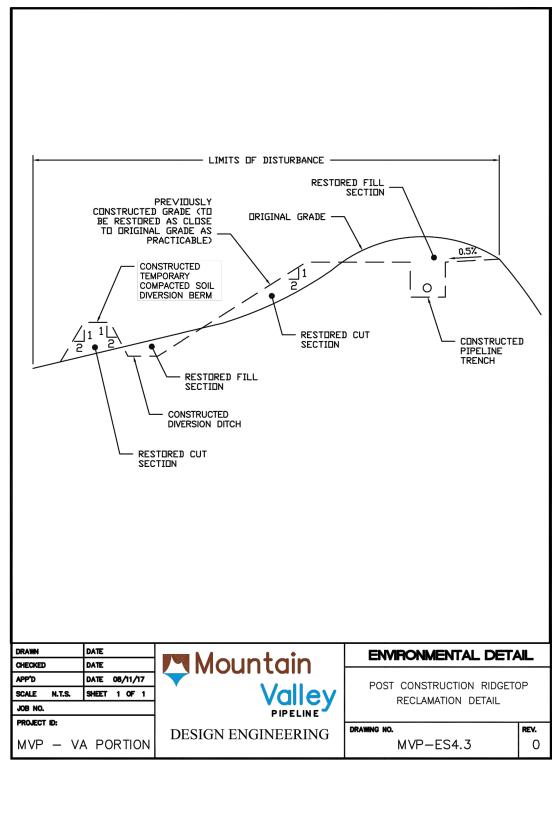

III - 368


 N Z O W	PD.: DESCRIPTION: REVISIONS:	DESCRIPTION:	ADDRESS VADEQ COMMENTS	ADDRESS VADEQ COMMENTS	ADDRESS VADEQ COMMENTS	ADDRESS VADEQ COMMENTS	ADDRESS VADEQ COMMENTS	ADDED DETAILS FOR ROADS AND PADS
	NO.: DATE: DWN.: CHKD.: APPD.: REVI	DATE: DWN.: CHKD.:	2 08/18/17 KAL RE DW	3 11/01/17 KAL RE DW	4 11/28/17 KAL RE DW	5 01/08/18 KAL RE DW	6 01/26/18 KAL RE DW	7 01/31/18 KAL RE DW
rions" E	MOUNTAIN VALLEY PIPELINE, LLC 555 SOUTHPOINTE BOULEVARD, SUITE 200 725 SOUTHPOINTE BOULEVARD, SUITE 200	TEC AR SC N D AZA	CLEA RSEI PLA	IDEF ER RGH	TE worl AN OST	661 F(((
	NER 7593	ULLNER D5759: VIC	WAL	EAL	A			
KAL HT RE REVISION 0.23		2017 łown		1/2	BY: BY:	BY: ED E VED	ECK	CH AP DA

1992 ω w

))	DATE DATE 08/11/17 SHEET 1 OF 1		Valle		PUMPED WATER			APP'D	DATE 08/11/17	
	DATE						1			
			untain			/iii / iii	4	CHECKED	DATE	1 🔼 Ma
	DATE				ONMENTAL D		1	DRAWN	DATE	
NO	T RESUME UNTIL THE P	ROBLEM IS CORRECT	ED.							
WH	HICHEVER IS LESS. PUMF .TER BAGS SHALL BE IN:	' INTAKES SHALL BE SPECTED DAILY, IF AI	FLOATING AND SCREENE NY PROBLEM IS DETECTE	D.		•			MESH SHALL BE	
			AN 750 GPM OR ½ THE		BY THE MANUFACTURER				UPON STABILIZATIO	
	E PUMP DISCHARGE HOS	E SHALL BE INSERT	ED INTO THE BAGS IN T PE IS RECOMMENDED FOR	HE MANNER SPECIFIED	BY THE MANUFACTURE	R			MANUFACTURER'S	RECOMMENDATIO
ST	REAMS IN STATE AND FE EA IS NOT AVAILABLE.	DERAL FORESTS, WIT	HIN 50 FEET OF ANY RI	ECEIVING SURFACE WAT	ER OR WHERE GRASSY				BIODEGRADABLE FI SOCKS AFTER 1 Y	EAR. POLYPROP
SO	ick shall be installed	BELOW BAGS LOCAT	D FOR MOST INSTALLATION TED IN TMDL WATERSHED	IS, CLASS V AND VI TR	ROUT STREAMS AND				24 HOURS OF INS	
TH	AN 5%. FOR SLOPES EX PLACED UNDER THE BA	CEEDING 5%, CLEAN	ROCK OR OTHER NON-	ERODIBLE AND NON-PO	OLLUTING MATERIAL MAY	1			SOCKS SHALL BE SHALL BE REPAIR	ED ACCORDING 1
ARI	EAS. WHERE THIS IS NO PLACED ON FILTER STO	T POSSIBLE, A GEOT INE TO INCREASE DIS	(GRASSY) AREA, AND DIS EXTILE UNDERLAYMENT A SCHARGE CAPACITY. BAGS	ND FLOW PATH SHALL S SHALL NOT BE PLACI	BE PROVIDED. BAGS M ED ON SLOPES GREATE	R			HEIGHT OF THE S	OCK AND DISPO
									ACCUMULATED SEE	
PR	OVIDED, FILTER BAGS SH	IALL BE REPLACED V	WHEN THEY BECOME ½ F THAT HAVE FAILED OR A /ITH LIFTING STRAPS ALR	FULL OF SEDIMENT, SP.	ARE BAGS SHALL BE	PS			TRAFFIC SHALL NO	
A :	SUITABLE MEANS OF ACC	cessing the bag wi	TH MACHINERY REQUIRED) FOR DISPOSAL PURP	oses shall be				PERMISSIBLE SLOF	
	AOS %	Retained	ASTM D-4751	80 Sieve					SOCK SHALL BE E SOCK ALIGNMENT.	MAXIMUM SLOPE
		sistance	ASTM D-4355	70%					COMPOST FILTER	
		cture n Burst	ASTM D-4833 ASTM D-3786	110 lb 350 psi					STANDARDS OF TA	BLE 4.2.
		Tensile	ASTM D-4632	205 lb					SOCK FABRIC SHA	
		/idth Strength	ASTM D-4884	60 lb/in						
					ard					
		perty /idth Strength	Test Method	Minimum Standa 60 lb/in	ard					
ទា	TITCHED "J" TYPE SEAMS. ILTER BAGS SHALL BE MAI	THEY SHALL BE CAPA DE FROM WOVEN GEOT	BLE OF TRAPPING PARTICI	LES LARGER THAN 150 I FOLLOWING STANDARDS:	MICRONS. HIGH VOLUME				I	FILTER SOCK
L	OW VOLUME FILTER BAGS	SHALL BE MADE FROM	NON-WOVEN GEOTEXTILE	MATERIAL SEWN WITH H	IIGH STRENGTH, DOUBLE					COMPOST
										>
				INTAKE HOSE						×
	WELL VE	CETATED, GRASSY AREA		A VOV						× / -
		ATTI	FILTER BAG	The second						1.
				A- DANPS						$\left \right $
		Ц		EAVY DUTY LIFTING STRAPS (RECOMMENDED)						AN
		+-		AVY DUTY LICTIMO STOLOG					EXISTING CONTOU	JRS 7
				PUMP – Intake ho	ise _}					
					Ŧ					
			ILTER BAGS	Jac Law	e.					Ū
					¢					
									D	ISTURBED AREA
		(XXXX VX							BL	OWN/PLACED FILTE
			WELL VEGE	TATED, GRASSY AREA						
			1.915				-	_		

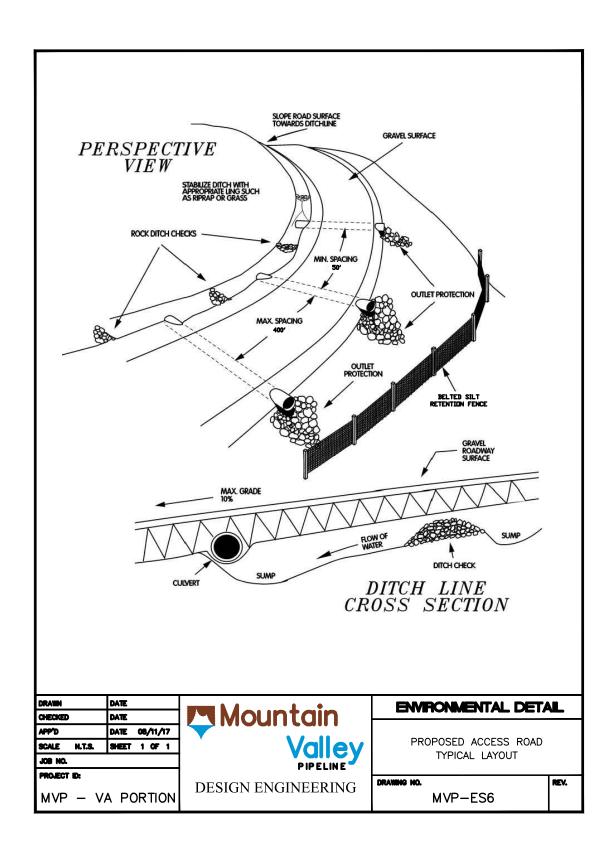


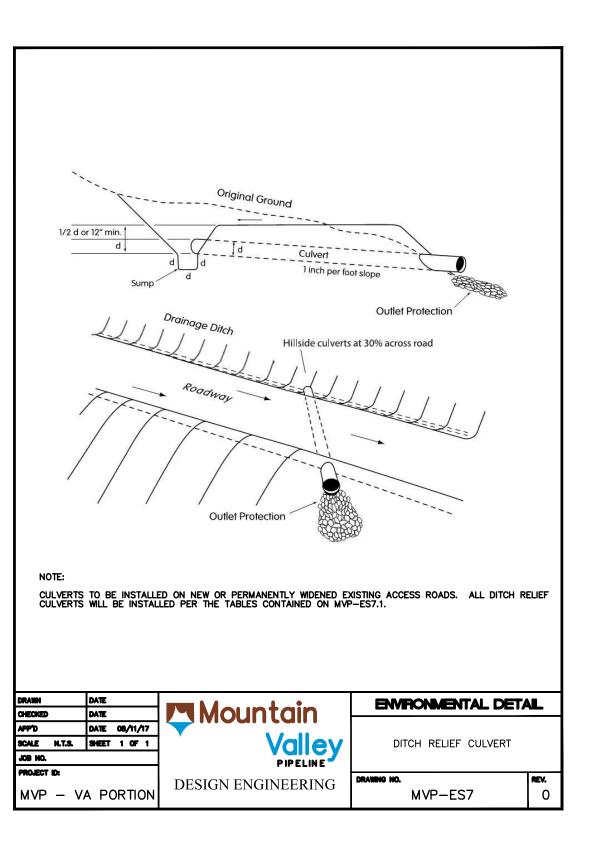

Mountain	ENVIRONMENTAL DETAIL				
	COMPOST FILTER SOCK				
DESIGN ENGINEERING	DRAWING NO.	REV.			
	MVP-ES3	0			

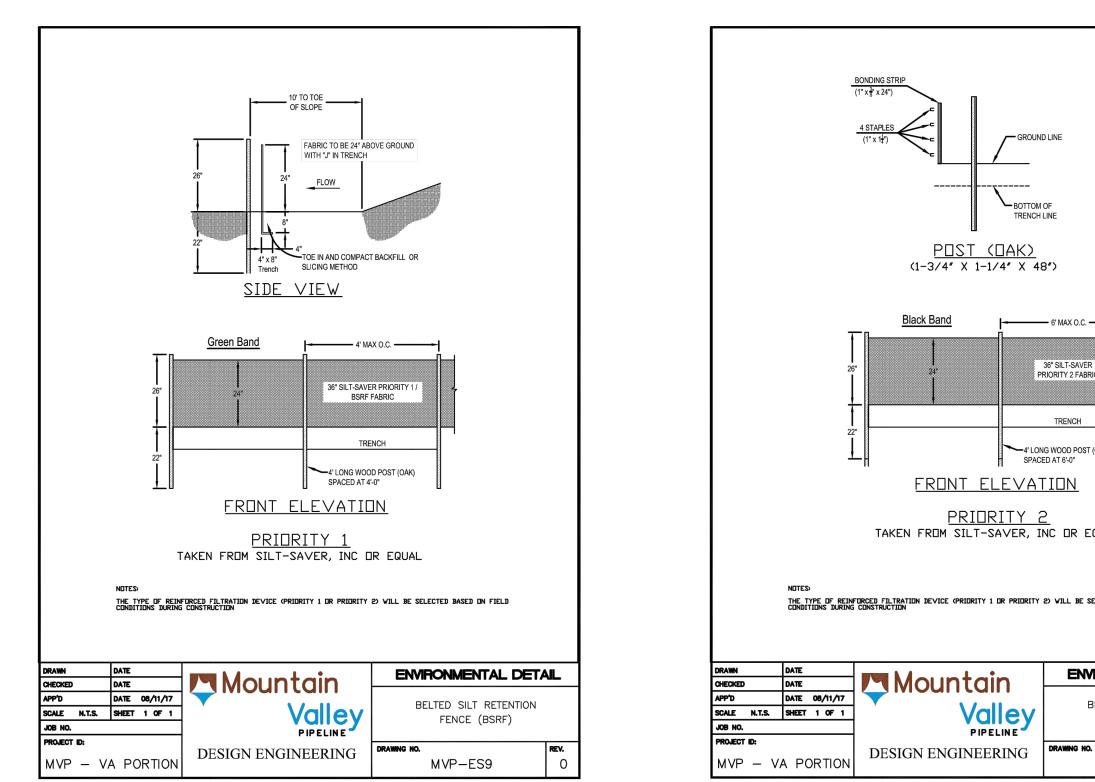
				BLE 4.1					
		Compo	st Sock Fabric	Minimum Sp	ecifications				
Materi	ial Type	3 mil HDPE	5 míl HDPE	5 mil HDPE	Multi-Filament Polypropylene (MFPP)	Heavy Duty Multi-Filament Polypropylene (HDMFPP)			
Mat	terial	Photo-	Photo-	Bio-	Photo-	Photo-			
	teristics	degradable	degradable	degradable	degradable	degradable			
Charac		468.4445.6	12"	12"	12"	12"			
		12"	18"	18"	18"	18"			
Sock Di	iameters	18"	24"	24"	24"	24"			
		10	32"	32"	32"	32"			
Mesh O	noning	3/8"	3/8"	3/8"	3/8"	1/8"			
	nsile	ە بد	5/0	ەرد	0,0	1/0			
			26 pci	26 nci	A4 pci	202.04			
	ength wielet		26 psi	26 psi	44 psi	202 psi			
Stabi Orig Strengt	aviolet ility % ginal th (ASTM 155)	23% at 1000 hr.	23% at 1000 hr.		100% at 1000 hr.	100% at 1000 hr.			
Func	imum tional gevity	6 months	9 months	6 months	1 year	2 years			
		Two-ply systems							
			100 p	ly systems	HDPE biaxial ne	⊇ †			
					Continuously wo				
	Inner Co	ntainment Ne	etting		ision-welded jun				
					X 3/4" Max. apert				
					osite Polypropyle				
	Outer	Filtration Me	esh	(Woven layer and non-woven fleece mechanically fused via needle punch) 3/16" Max. aperture size					
Soc	k fabrics	composed of	burlan may be	e used on pro	iects lasting 6 mg	onths or less			
		composed of burlap may be used on projects lasting 6 months or less.							
			TA	BLE 4.2					
				t Standards					
	Organi	c Matter Cont	-		- 100% (dry weigl	ht basis)			
		ganic Portion	.ciit		ibrous and elong				
	UIĮ	pH		<u>г</u>	5.5 - 8.0	,u.c.u			
	Mai	sture Conten	+	<u> </u>	35% - 55%				
		article Size	ι	000	55% - 55% 6 pass through 1"	screen			
		Salt Concentr	ation		[™] pass through 1 /m (mmhos/cm)				
	Soluple	San Concentr	auon	5.0 05,	(mininos/cm)				
DATE DATE		МРЛ	ount	ain	ENVIR	ONMENTAL			
	16/11/17 10F1				сон	MPOST FILTER TABLES			
		DESIG	N ENGIN	FERING	DRAWING NO.				

Slope Percent	
2 (or less)	
2 (01 less) 5	ŀ
10	
15	
20	F
25	
30	
35	
40	
45	
50	

DRAWN CHECKED	DATE	Mountain	ENVIRONMENTAL DETA		
APP'D SCALE N.T.S.	DATE 08/11/17 SHEET 1 OF 1	Valley	COMPOST FILTER SOCK TABLES		
JOB NO. PROJECT ID:		PIPELINE	DRAWING NO.	REV.	
MVP - V	A PORTION	DESIGN ENGINEERING	MVP-ES3.2	0	


ADDED DETAILS FOR ROADS AND PADS	ADDRESS VADEQ COMMENTS	ADDRESS VADEQ COMMENTS	ADDRESS VADEQ COMMENTS	ADDRESS VADEQ COMMENTS	ADDRESS VADEQ COMMENTS	DESCRIPTION:	REVISIONS:	
DW	DW	DW	DW	DW	DW	D.: APPD.:	REV	
L RE	LRE	L RE	L RE	L RE	L RE	N.: CHKD.:		
/18 KAL	/18 KAL	/18 KAL	17 KAL	17 KAL	/17 KAL	: DWN.:		
01/31/18	01/26/18	01/08/18	11/28/17	11/01/17	08/18/17	DATE:		
2	9	5	4	3	2	NO.:		
		EROSION AND SEDIMENT CONTROL PLANS		MOUNIAIN VALLET FIFELINE FROJEUT - ROUU LINE			555 SOUTHPOINTE BOULEVARD, SUITE 200	CANONSBURG, PA 15317
c		661 F	AN OST	⊣∣c DER ER	LEAI SEN PLA	r so I DF ZA	lution RIVE	S™
					GENERAL DE LAILS SEI			
		Contraction COLUMN		D J. No. O.		LNER 57593	AND OWNA A STAT	
с⊦	IECK	ED VED	BY:					KAL HT RE


AS SHOWN SHT. NO. 0.05 OF 0.23


SCALE:

	Maxim um Slope L	ength for Compost.	Filter Sock in Feet	
	oped from Filtrex x Sedin ence. Refer to manufa		-	
8 in	12 in	<mark>18</mark> in	24 in	32 in
600	750	1000	1300	1650
400	500	550	650	750
200	250	300	400	500
140	170	200	325	450
100	125	140	260	400
80	100	110	200	275
60	75	90	130	200
60	75	80	115	150
60	75	80	100	125
40	50	60	80	<mark>1</mark> 00
40	50	55	65	75

MAXIMUM SLOPE LENGTH ABOVE COMPOST FILTER SOCK AND RECOMMENDED DIAMETER

WIN CKEI	D	DATE DATE DATE 08/	11/17	Μοι	unto	ıin ⊢	ENVIRONMEN	
WN							ENVIRONMEN	
						•		
*CI	ulvert spa	acing may	/ be adjuste	d slightly to	take adva	ntage of natural	drainage courses	
	14		135		10	85	60	35
	12		160	1	30	105	75	45
	10		200	1	60	125	90	55
	8		240	1	95	150	105	65
	6		285	2	30	180	125	75
	4		335	2	75	210	145	85
	2		390	3	15	245	170	95
			0.000		Cu	lvert Spacing Fe	at*	
	Road Gra Percen	244	Gravel, Sandy Gravels, Aggregate Surfacing	Cla	ravels, yey vels	Plastic and Nonplastic Inorganic Clays	Inorganic Silts, Silty or Clayey Sands	Sands, Silt Sands, and Gravelly Sands
		-		-	3	Soil Type in Ditcl	1	
		TABLE 3.4	I - Recomme			ng of Ditch Relie Access Roads	f Culverts (18" dia.	CMP)
	*Culver	rt spacin	g may be a	idjusted sli	ghtly to t	ake advantage	of natural drainag	ge courses
	12		135	12	12	12	12	15
	10		140	12	12	12	12	15
	9	_	145	12	12	12	12	15
	8	_	150	12	12	12	12	15
	7	_	155	12	12	12	12	15
	6		165	12	12	12	15	15
	5	1	180	12	12	15	15	15
	4	_	200	12	15	15	15	18
	3		235	12	15	15	15	18
						15		

PIPELINE

DESIGN ENGINEERING

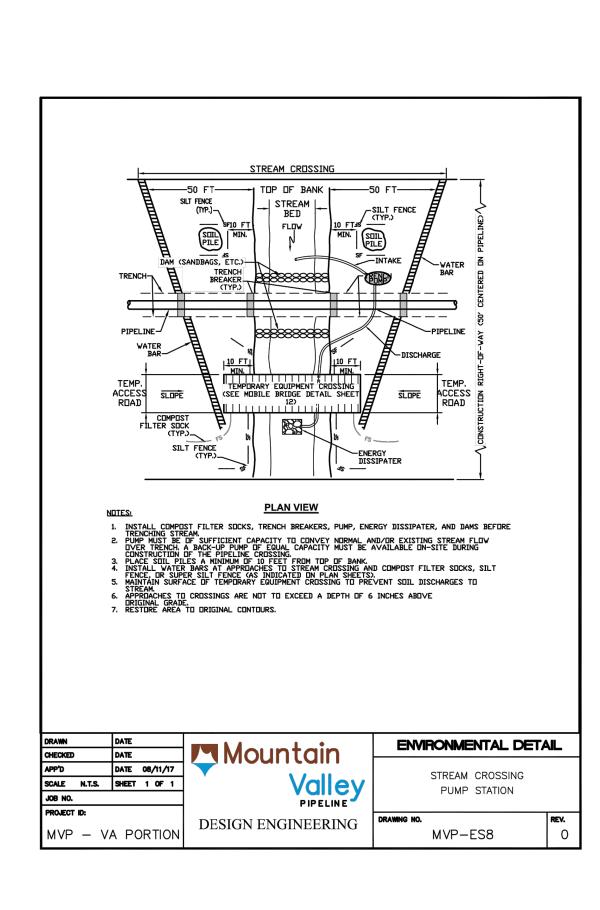
TABLE 3.3- Sizing and Spacing of Ditch Relief Culverts for Temporart Access Roads

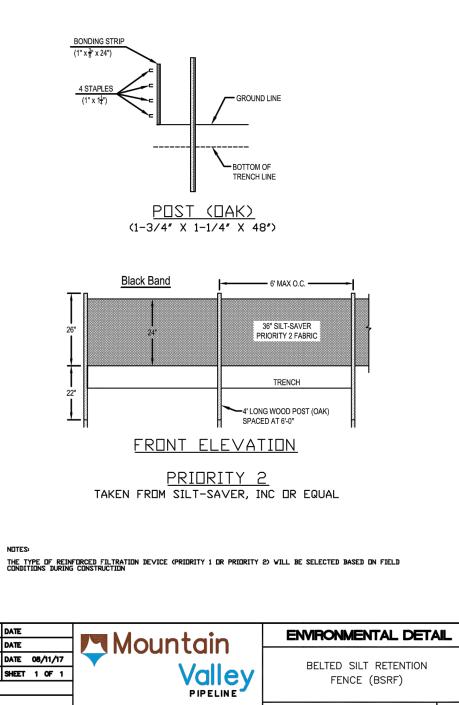
Grade Spaceing* <300 300-400 400-500 500-600 >600

Road Culvert

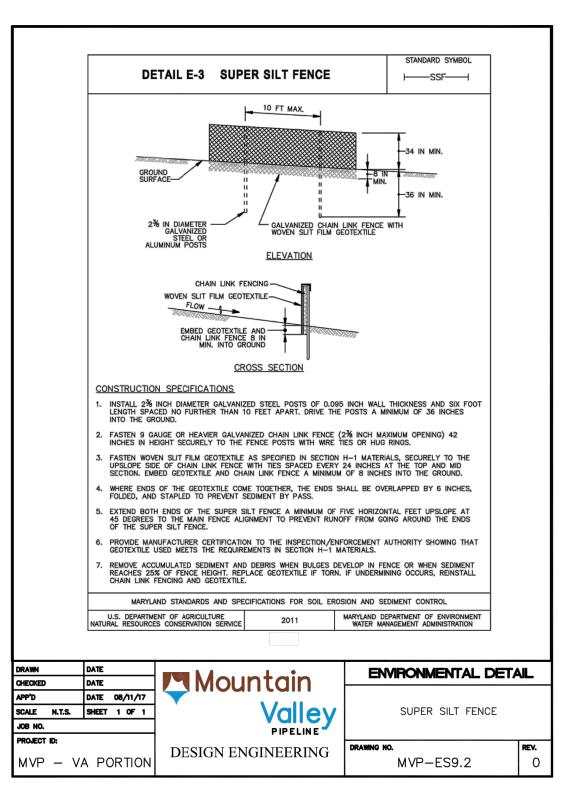
(%)

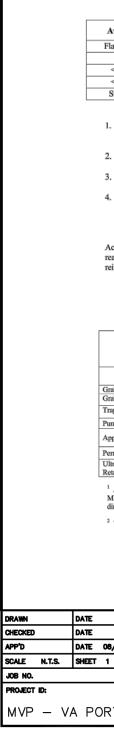
MVP - VA PORTION

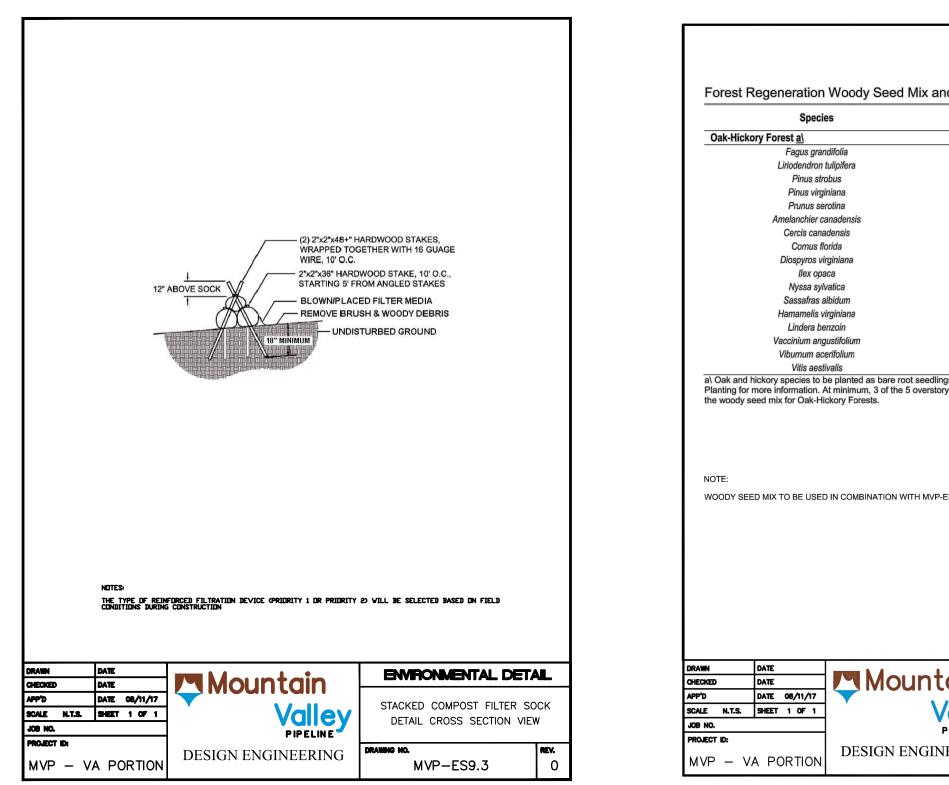

PROJECT ID:


(ft)

Length of Upslope Drainage (ft)


Minimum Culvert Size (in)


MVP-ES7.1


MVP-ES9.1

Maximum Super Site Prease Flatter than 10:1 (0 10%) Unlimited Unlimited 10:1 to 5:1 (10 - 20%) 200 feet 1,000 feet -5:1 to 5:1 (20 - 33%) 150 feet 1,000 feet -5:1 to 5:1 (20 - 33%) 100 feet 500 feet -5:1 to 5:1 (20 - 33%) 100 feet 500 feet -5:1 to 5:1 (20 - 33%) 50 feet 250 feet -3:1 to 2:1 (-23 - 50%) 50 feet 250 feet	Average slope Steepness Slope Length Super Silt Fence Length Flatter than 10:1 (0 - <10%) Unlimited Unlimited 10:1 to 5:1 (0 - 20%) 200 feet 1,500 feet <5:1 to 3:1 (>20 - 33%) 150 feet 1,000 feet <5:1 to 3:1 (>20 - 33%) 100 feet 500 feet Steeper than 2:1 (>50%) 50 feet 250 feet 1. Super silt fence should be placed on the contour. No section of super silt fence is to exceed a grade of 5% for a distance of more than 50 feet. 2. 2. Super silt fence should be used with caution in areas where rocky soils may prevent trenching. 3. 3. The use of super silt fence must conform to the design constraints listed in Table E.3 above. 4. 4. Extend both ends of the silt fence a minimum five (5) feet horizontally upslope at 45 degrees to the main fence alignment to prevent runoff from going around the ends of the silt fence. Maintenance Maintenance Accumulated sediment and debris must be removed when bulges develop in the fence or when sediment reaches 25 percent of the fence height. The geotextile must be replaced if form. If undermining occurs, reinstall chain link fencing and geotextile. WWVEN MWVEN GeoTEXTILE MONOTELALENT GEOTEXTILE	1			Maxi	mum			Maxim	um
I0:1 to 5:1 (10 - 20%) 200 feet 1,500 feet < 51 to 3:1 ($220 - 33\%$) 150 feet 1,000 feet < 31 to 2:1 ($>33 - 50\%$) 100 feet 500 feet Steeper than 2:1 ($>50\%$) 30 feet 250 feet 1. Super silt fence should be placed on the contour. No section of super silt fence is to exceed a grade of 5% for a distance of more than 50 feet. 2 2. Super silt fence should be used with caution in areas where rocky soils may prevent trenching. 3. 3. The use of super silt fence must conform to the design constraints listed in Table E.3 above. 4. 4. Extend both ends of the silt fence a minimum five (5) feet horizontally upslope at 45 degrees to the main fence alignment to prevent runoff from going around the ends of the silt fence. Maintenance Accumulated sediment and debris must be removed when bulges develop in the fence or when sediment reaches 25 percent of the fence height. The geotextile must be replaced if torn. If undermining occurs, reinstall chain link fencing and geotextile. WOVEN WOVEN MONOPENTILE GEOTEXTILE ON MONOPENTILE GEOTEXTILE ON MONOPENTILE ON MONOPENTILE GEOTEXTILE	10:1 to 5:1 (10 - 20%) 200 feet 1,500 feet < 51 to 3:1 (220 - 33%) 150 feet 1,000 feet < 31 to 2:1 (>3 - 50%) 100 feet 500 feet Steeper than 2:1 (>50%) 50 feet 250 feet 1. Super silt fence should be placed on the contour. No section of super silt fence is to exceed a grade of 5% for a distance of more than 50 feet. 2. Super silt fence should be used with caution in areas where rocky soils may prevent trenching. 3. The use of super silt fence must conform to the design constraints listed in Table E.3 above. 4. Extend both ends of the silt fence a minimum five (5) feet horizontally upslope at 45 degrees to the main fence alignment to prevent runoff from going around the ends of the silt fence. Maintenance Accumulated sediment and debris must be removed when bulges develop in the fence or when sediment reaches 25 percent of the fence height. The geotextile must be replaced if torm. If undermining occurs, reinstall chain link fencing and geotextile. WOVEN WOVEN GEOTEXTILE PROPERTY TEST METHOD Maintenance MINIMUM AVERAGE ROLL VALUE [†] PROPERTY TEST METHOD MD Colspan="2">GEOTEXTILE MINIMUM AVERAGE ROLL VALUE [†] GEOTEXTILE PROPERTY<				Slope I	Length		Supe	er Silt Fei	ice Lengfl
<5:1 to 3:1 (>20 - 33%) 150 feet 1,000 feet <3:1 to 2:1 (>33 - 50%) 100 feet 500 feet Steeper than 2:1 (>50%) 50 feet 250 feet 1. Super silt fence should be placed on the contour. No section of super silt fence is to exceed a grade of 5% for a distance of more than 50 feet. 2. 2. Super silt fence should be used with caution in areas where rocky soils may prevent trenching. 3. 3. The use of super silt fence must conform to the design constraints listed in Table E.3 above. 4. 4. Extend both ends of the silt fence a minimum five (5) feet horizontally upslope at 45 degrees to the main fence alignment to prevent runoff from going around the ends of the silt fence. Maintenance Accumulated sediment and debris must be removed when bulges develop in the fence or when sediment reaches 25 percent of the fence height. The geotextile must be replaced if torm. If undermining occurs, reinstall chain link fencing and geotextile. MOVEN MOVEN MONOPERATIENT MONOVEN GEOTEXTLE MINIMUM AVERAGE ROLL VALUE ⁺ MINIMUM AVERAGE ROLL VALUE ⁺ PROPERTY TEST METHOD MD CD MD CD Grab Tensile Strength ASTM D-4632 200 lb 370 lb 250 lb 200 lb Grab Tensile English ASTM D-4633 75 lb 75 lb 100 lb 60 lb	<5:1 to 3:1 (>20 - 33%) 150 feet 1,000 feet <3:1 to 2:1 (>33 - 50%) 100 feet 500 feet Steeper than 2:1 (>50%) 50 feet 250 feet 1. Super silt fence should be placed on the contour. No section of super silt fence is to exceed a grade of 5% for a distance of more than 50 feet. 2. 2. Super silt fence should be used with caution in areas where rocky soils may prevent trenching. 3. 3. The use of super silt fence a minimum five (5) feet horizontally upslope at 45 degrees to the main fence alignment to prevent runoff from going around the ends of the silt fence. Maintenance Accumulated sediment and debris must be removed when bulges develop in the fence or when sediment reaches 25 percent of the fence height. The geotextile must be replaced if torm. If undermining occurs, reinstall chain link fencing and geotextile. WOVEN MOVEN MOVEN MONOPELAMENT MONOVEN GEOTEXTILE GE		-	/						
<3:1 to 2:1 [>33 - 50%) 100 feet 500 feet Steeper than 2:1 (>50%) 50 feet 250 feet 1. Super silt fence should be placed on the contour. No section of super silt fence is to exceed a grade of 5% for a distance of more than 50 feet. 2.50 feet 2. Super silt fence should be used with caution in areas where rocky soils may prevent trenching. 3. The use of super silt fence must conform to the design constraints listed in Table E.3 above. 4. Extend both ends of the silt fence a minimum five (5) feet horizontally upslope at 45 degrees to the main fence alignment to prevent runoff from going around the ends of the silt fence. Maintenance Accumulated sediment and debris must be removed when bulges develop in the fence or when sediment reaches 25 percent of the fence height. The geotextile Fabries WOVEN SUTFILM MONOFILAMENT GEOTEXTILE MINIMUM AVERAGE ROLL VALUE ¹ PROPERTY TEST METHOD MD CD State context con	<3:1 to 2:1 [>33 - 50%) 100 feet 500 feet Steeper than 2:1 (>50%) 50 feet 250 feet 1. Super silt fence should be placed on the contour. No section of super silt fence is to exceed a grade of 5% for a distance of more than 50 feet. 2. 2. Super silt fence should be used with caution in areas where rocky soils may prevent trenching. 3. 3. The use of super silt fence must conform to the design constraints listed in Table E.3 above. 4. Extend both ends of the silt fence a minimum five (5) feet horizontally upslope at 45 degrees to the main fence alignment to prevent runoff from going around the ends of the silt fence. Maintenance Accumulated sediment and debris must be removed when bulges develop in the fence or when sediment reaches 25 percent of the fence height. The geotextile Fabries WOVEN SUPPRINT ROPERTILE WOVEN GEOTEXTILE MINIMUM AVERAGE ROLL VALUE ¹ PROPERTY TEST METHOD MINIMUM AVERAGE ROLL VALUE ¹ PROPERTY TEST METHOD ASTM D-4632 15% 10% 15% 15% 50% 50% GOTEXTILE MINMUM AVERAGE ROLL VALUE ¹ PROPERTY TEST METHOD MD <t< td=""><td></td><td></td><td>·</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			·						
Steeper than 2:1 (>50%) 50 feet 250 feet 1. Super silt fence should be placed on the contour. No section of super silt fence is to exceed a grade of 5% for a distance of more than 50 feet. 2. Super silt fence should be used with caution in areas where rocky soils may prevent trenching. 3. The use of super silt fence must conform to the design constraints listed in Table E.3 above. 4. Extend both ends of the silt fence a minimum five (5) feet horizontally upslope at 45 degrees to the main fence alignment to prevent runoff from going around the ends of the silt fence. <u>Maintenance</u> Accumulated sediment and debris must be removed when bulges develop in the fence or when sediment reaches 25 percent of the fence height. The geotextile must be replaced if torn. If undermining occurs, reinstall chain link fencing and geotextile. <u>WOVEN</u> SUT FILM GEOTEXTILE <u>NONWOVEN</u> GEOTEXTILE <u>NONWOVEN</u>	Steeper than 2:1 (>50%) 50 feet 250 feet 1. Super silt fence should be placed on the contour. No section of super silt fence is to exceed a grade of 5% for a distance of more than 50 feet. 2. Super silt fence should be used with caution in areas where rocky soils may prevent trenching. 3. The use of super silt fence must conform to the design constraints listed in Table E.3 above. 4. Extend both ends of the silt fence a minimum five (5) feet horizontally upslope at 45 degrees to the main fence alignment to prevent runoff from going around the ends of the silt fence. <u>Maintenance</u> Accumulated sediment and debris must be removed when bulges develop in the fence or when sediment reaches 25 percent of the fence height. The geotextile must be replaced if torn. If undermining occurs, reinstall chain link fencing and geotextile. <u>WOVEN</u> SUT FILM <u>MOVEN</u> <u>NONWOVEN</u> <u>ROPERTY</u> TEST METHOD <u>MOVEN</u> <u>NONWOVEN</u> <u>NONWOVEN</u> <u>Start FILM</u> <u>NONWOVEN</u> <u>Start FILM</u> <u>NONWOVEN</u> <u>NONWOVEN</u> <u>NONWOVEN</u> <u>NONWOVEN</u> <u>NONWOVEN</u>									
 5% for a distance of more than 50 feet. Super silt fence should be used with caution in areas where rocky soils may prevent trenching. The use of super silt fence must conform to the design constraints listed in Table E.3 above. Extend both ends of the silt fence a minimum five (5) feet horizontally upslope at 45 degrees to the main fence alignment to prevent runoff from going around the ends of the silt fence. <i>Maintenance</i> Accumulated sediment and debris must be removed when bulges develop in the fence or when sediment reaches 25 percent of the fence height. The goetextile must be replaced if torm. If undermining occurs, reinstall chain link fencing and geotextile. Table H1: Geotextile Fabrics WOVEN WOVEN WOVEN WOVEN MONOVEN COUNTINE ACCUMUATE ACCURATION COUNTINE ACCURATION ACCURATION COUNTINE ACCURATION WOVEN WOVEN MONOVEN MONOVEN COUNTINE ACCURATION ACCURATION COUNTINE ACCURATION ACD MD CD MD 	 5% for a distance of more than 50 feet. Super silt fence should be used with caution in areas where rocky soils may prevent trenching. The use of super silt fence must conform to the design constraints listed in Table E.3 above. Extend both ends of the silt fence a minimum five (5) feet horizontally upslope at 45 degrees to the main fence alignment to prevent runoff from going around the ends of the silt fence. <i>Maintenance</i> Accumulated sediment and debris must be removed when bulges develop in the fence or when sediment reaches 25 percent of the fence height. The gootextile must be replaced if torm. If undermining occurs, reinstall chain link fencing and geotextile. Table H.1: Geotextile Fabrics WOVEN WOVEN WOVEN MONOVEN COUNTINE COUNTINE ACCUMUATE AGE NOT NONNOVEN COUNTINE COUNTINE Table H.1: Geotextile Fabrics WOVEN WOVEN MONOVEN MONOVEN COUNTINE ASTM D-4632 200 HD 200 HD				50 f	feet			250 fe	et
 5% for a distance of more than 50 feet. Super silt fence should be used with caution in areas where rocky soils may prevent trenching. The use of super silt fence must conform to the design constraints listed in Table E.3 above. Extend both ends of the silt fence a minimum five (5) feet horizontally upslope at 45 degrees to the main fence alignment to prevent runoff from going around the ends of the silt fence. <i>Maintenance</i> Accumulated sediment and debris must be removed when bulges develop in the fence or when sediment reaches 25 percent of the fence height. The goetextile must be replaced if torm. If undermining occurs, reinstall chain link fencing and geotextile. Table H1: Geotextile Fabrics WOVEN WOVEN WOVEN WOVEN MONOVEN COUNTINE ACCUMUATE ACCURATION COUNTINE ACCURATION ACCURATION COUNTINE ACCURATION WOVEN WOVEN MONOVEN MONOVEN COUNTINE ACCURATION ACCURATION COUNTINE ACCURATION ACD MD CD MD 	 5% for a distance of more than 50 feet. Super silt fence should be used with caution in areas where rocky soils may prevent trenching. The use of super silt fence must conform to the design constraints listed in Table E.3 above. Extend both ends of the silt fence a minimum five (5) feet horizontally upslope at 45 degrees to the main fence alignment to prevent runoff from going around the ends of the silt fence. <i>Maintenance</i> Accumulated sediment and debris must be removed when bulges develop in the fence or when sediment reaches 25 percent of the fence height. The gootextile must be replaced if torm. If undermining occurs, reinstall chain link fencing and geotextile. Table H.1: Geotextile Fabrics WOVEN WOVEN WOVEN MONOVEN COUNTINE COUNTINE ACCUMUATE AGE NOT NONNOVEN COUNTINE COUNTINE Table H.1: Geotextile Fabrics WOVEN WOVEN MONOVEN MONOVEN COUNTINE ASTM D-4632 200 HD 200 HD									
3. The use of super silt fence must conform to the design constraints listed in Table E.3 above. 4. Extend both ends of the silt fence a minimum five (5) feet horizontally upslope at 45 degrees to the main fence alignment to prevent runoff from going around the ends of the silt fence. <u>Maintenance</u> Accumulated sediment and debris must be removed when bulges develop in the fence or when sediment reaches 25 percent of the fence height. The geotextile must be replaced if torn. If undermining occurs, reinstall chain link fencing and geotextile. Table H:1: Geotextile Fabrics Table H:1: Geotextile Fabrics <u>WOVEN</u> <u>MINIMUM AVERAGE ROLL VALUE</u> ⁱ <u>PROPERTY</u> <u>TEST METHOD</u> <u>MD</u> <u>CD</u> <u>MD</u> <u>ASTM D-4632</u> <u>105%</u> <u>105%</u> <u>50%</u> <u>Trapezoidal Tear Strength</u> <u>ASTM D-4631</u> <u>450 lb</u> <u>900 lb</u> <u>450 lb</u> <u>000 lb</u> <u>000 lb</u> <u>450 lb</u> <u>000 lb</u> <u>000 lb</u> <u>450 lb</u> <u>000 lb</u> <	3. The use of super silt fence must conform to the design constraints listed in Table E.3 above. 4. Extend both ends of the silt fence a minimum five (5) feet horizontally upslope at 45 degrees to the main fence alignment to prevent runoff from going around the ends of the silt fence. <u>Maintenance</u> Accumulated sediment and debris must be removed when bulges develop in the fence or when sediment reaches 25 percent of the fence height. The geotextile must be replaced if torm. If undermining occurs, reinstall chain link fencing and geotextile. Table H:1: Geotextile Fabrics <u>Table H:1: Geotextile Fabrics</u> <u>NONWOVEN GEOTEXTILE</u>					No secti	ion of super	silt fence	is to exce	ed a grade
4. Extend both ends of the silt fence a minimum five (5) feet horizontally upslope at 45 degrees to the main fence alignment to prevent runoff from going around the ends of the silt fence. Maintenance Accumulated sediment and debris must be removed when bulges develop in the fence or when sediment reaches 25 percent of the fence height. The geotextile must be replaced if torn. If undermining occurs, reinstall chain link fencing and geotextile. Table H.1: Geotextile Fabrics MOVEN GEOTEXTILE MOVEN GEOTEXTILE MOVEN GEOTEXTILE MOVEN MOVEN GEOTEXTILE MOVEN MOVEN GEOTEXTILE MOVEN MOVEN GEOTEXTILE GEOTEXTILE MOVEN MOVEN GEOTEXTILE MINIMUM AVERAGE ROLL VALUE ¹ MINIMUM AV	4. Extend both ends of the silt fence a minimum five (5) feet horizontally upslope at 45 degrees to the main fence alignment to prevent runoff from going around the ends of the silt fence. Maintenance Accumulated sediment and debris must be removed when bulges develop in the fence or when sediment reaches 25 percent of the fence height. The geotextile must be replaced if torn. If undermining occurs, reinstall chain link fencing and geotextile. Table H.1: Geotextile Fabrics MOVEN GEOTEXTILE MOVEN GEOTEXTILE MOVEN GEOTEXTILE MOVEN MOVEN GEOTEXTILE MOVEN MOVEN GEOTEXTILE MOVEN MOVEN GEOTEXTILE GEOTEXTILE MONOVEN GEOTEXTILE MINIMUM AVERAGE ROLL VALUE ¹ Grab Tensile Elongation ASTM D-4632 15% 10% 15% 15% 50% 50% Grab Tensile Elongation ASTM D-4632 15% 10% 15% 15% 50% 50% Grab Tensile Elongation ASTM D-4632 15% 10% 10. Is Sieve 70 (U.2.1 mm) QUE ASTM D-4751 U.S. Sieve 70 (U.S. Sieve 70 (U.2.1 mm) Que the feasistance ASTM D-4355 70% strengt	2. Super s	ilt fence sh	ould be used with	a caution	in areas	where rock	y soils m	ay preve	nt trenchir
fence alignment to prevent runoff from going around the ends of the silt fence. <u>Maintenance</u> Accumulated sediment and debris must be removed when bulges develop in the fence or when sediment reaches 25 percent of the fence height. The geotextile must be replaced if torn. If undermining occurs, reinstall chain link fencing and geotextile. Table H.1: Geotextile Fabrics <u>Accumulated sediment and debris must be removed when bulges develop in the fence or when sediment reaches 25 percent of the fence height. The geotextile must be replaced if torn. If undermining occurs, reinstall chain link fencing and geotextile. <u>Table H.1: Geotextile Fabrics</u> <u>NONWOVEN</u> <u>GEOTEXTILE</u> <u>NONWOVEN</u> <u>GEOTEXTILE</u> <u>NONWOVE</u></u>	fence alignment to prevent runoff from going around the ends of the silt fence. <u>Maintenance</u> Accumulated sediment and debris must be removed when bulges develop in the fence or when sediment reaches 25 percent of the fence height. The geotextile must be replaced if torn. If undermining occurs, reinstall chain link fencing and geotextile. Table H.1: Geotextile Fabrics <u>Table H.1: Geotextile Fabrics</u> <u>NONWOVEN</u> <u>GEOTEXTILE</u> <u>NONWOVEN</u> <u>GEOTEXTILE</u> <u>NONWOVEN</u> <u>NONWOVEN</u> <u>NONWOVEN</u> <u>NONWOVEN</u> <u>NONWOVEN</u>	3. The use	e of super s	ilt fence must cor	form to t	he desig	n constrain	ts listed i	n Table I	3.3 above.
Accumulated sediment and debris must be removed when bulges develop in the fence or when sediment reaches 25 percent of the fence height. The geotextile must be replaced if torn. If undermining occurs, reinstall chain link fencing and geotextile. Table H.1: Geotextile Fabrics NONVOVEN WOYEN WOYEN NONVOVEN GEOTEXTILE NONVOVEN GEOTEXTILE NONVOVEN MONOFILAMENT NONVOVEN MINIMUM AVERAGE ROLL VALUE ¹ Grab Tensile Elongation ASTM D-4632 200 lb 370 lb 250 lb 200 lb 200 lb Grab Tensile Elongation ASTM D-4632 15% 10% 15% 50% 50% Trapezoidal Tear Strength ASTM D-6241 450 lb 900 lb 450 lb 480 lb Apparent Opening Size ² ASTM D-4353 70% strength 0.28 see ⁻¹ 1.1 sec ⁻¹ <	Accumulated sediment and debris must be removed when bulges develop in the fence or when sediment reaches 25 percent of the fence height. The geotextile must be replaced if torn. If undermining occurs, reinstall chain link fencing and geotextile. Table H.1: Geotextile Fabrics NONWOVEN WOVEN NONWOVEN GEOTEXTILE NONWOVEN GEOTEXTILE NONWOVEN MWOVEN NONWOVEN GEOTEXTILE NONWOVEN MUNORELAMENT NONWOVEN GEOTEXTILE NONWOVEN MUNOFELAMENT NONWOVEN GEOTEXTILE MUNOFELAM								at 45 deg	rees to the
reaches 25 percent of the fence height. The geotextile must be replaced if torn. If undermining occurs, reinstall chain link fencing and geotextile. Table H.1: Geotextile Fabrics NONWOVEN GEOTEXTILE WOVEN GEOTEXTILE NONWOVEN GEOTEXTILE MONOFILAMENT GEOTEXTILE NONWOVEN GEOTEXTILE MINIMUM AVERAGE ROLL VALUE ¹ PROPERTY TEST METHOD MD CD MD CD Grab Tensile Strength ASTM D-4632 200 lb 200 lb 250 lb 200 lb 200 lb Grab Tensile Elongation ASTM D-4632 15% 10% 15% 50% 50% Trapezoidal Tear Strength ASTM D-4533 75 lb 70 lb 900 lb 450 lb Puncture Strength ASTM D-4511 U.S. Sieve 30 U.S. Sieve 70 U.S. Sieve 70 0.21 mm) Permitivity ASTM D-4355 70% strength 70% strength 70% strength ASTM D-4355 70% strength 70% strength 70% strength 70% strength Iltraviolet Resistance Retained at 500 hours ASTM D-4355 70% strength 70% strength	reaches 25 percent of the fence height. The geotextile must be replaced if torn. If undermining occurs, reinstall chain link fencing and geotextile. Table H.1: Geotextile Fabrics Table H.1: Geotextile Fabrics NONWOVEN GEOTEXTILE WOVEN SLIT FILM GEOTEXTILE NONWOVEN GEOTEXTILE PROPERTY TEST METHOD MD CD MD CD Grab Tensile Strength ASTM D-4632 200 lb 200 lb 370 lb 250 lb 200 lb 200 lb Grab Tensile Strength ASTM D-4632 15% 10% 15% 50% 50% Trapezoidal Tear Strength ASTM D-4533 75 lb 70 lb 900 lb 450 lb Paparent Opening Size ² ASTM D-4751 U.S. Sieve 70 U.S. Sieve 70 U.S. Sieve 70 Q1traviolet Resistance Retained at 500 hours ASTM D-4355 70% strength 70% strength 70% strength ¹ All numeric values except apparent opening size (AOS) represent minimum average roll values (MARV). MARV is calculated as the typical minus two standard deviations. MD is machine direction; CD is cross direction.				Mainte	enance				
reinstall chain link fencing and geotextile. Table H.1: Geotextile Fabrics Table H.1: Geotextile Fabrics MOVEN SLIT FILM GEOTEXTILE MONWOVEN GEOTEXTILE PROPERTY TEST METHOD MD CD MD CD Grab Tensile Strength ASTM D-4632 200 lb 200 lb 370 lb 250 lb 200 lb 200 lb Grab Tensile Elongation ASTM D-4632 15% 10% 15% 50% 50% Trapezoidal Tear Strength ASTM D-4632 15% 10% 15% 50% 50% Apparent Opening Size ² ASTM D-4511 U.S. Sizve 30 U.S. Sizve 70 U.S. Sizve 70 U.S. Sizve 70 Ultraviolet Resistance Retained at 500 hours ASTM D-4355 70% strength 70% strength 70% strength ¹ All numeric values except apparent opening size (AOS) represent minimum average roll values (MARV). MARV is calculated as the typical minus two standard deviations. MD is machine direction; CD is cross direction.	reinstall chain link fencing and geotextile. Table H.1: Geotextile Fabrics Table H.1: Geotextile Fabrics MOVEN SLIT FILM GEOTEXTILE NONWOVEN GEOTEXTILE PROPERTY TEST METHOD MD CD MD CD Grab Tensile Strength ASTM D-4632 200 lb 200 lb 370 lb 250 lb 200 lb 200 lb Grab Tensile Elongation ASTM D-4632 15% 10% 15% 50% 50% Trapecidal Tear Strength ASTM D-4632 15% 10% 15% 50% 50% Apparent Opening Size ² ASTM D-6241 450 lb 900 lb 450 lb 450 lb Apparent Opening Size ² ASTM D-4751 U.S. Sieve 30 U.S. Sieve 70 U.S. Sieve 70 U.S. Sieve 70 Ultraviolet Resistance Retained at 500 hours ASTM D-4355 70% strength 70% strength 70% strength ¹ All numeric values except apparent opening size (AOS) represent minimum average roll values (MARV). MARV is calculated as the typical minus two standard deviations. MD is machine direction; CD is eross direction.									
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$, geolexill	e must de	, replaced II	ionii nu	naermini	is occurs,
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$									
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$									
NONVOVEN GEOTEXTILESLIT FILM GEOTEXTILENONVOVEN GEOTEXTILENONVOVEN GEOTEXTILEPROPERTYTEST METHODMDCDMDCDMDCDGrab Tensile StrengthASTM D-4632200 lb200 lb370 lb250 lb200 lb200 lbGrab Tensile ElongationASTM D-463215%10%15%15%50%50%Trapezoidal Tear StrengthASTM D-453375 lb75 lb100 lb60 lb80 lb80 lbPuncture StrengthASTM D-6241 450 lb900 lb450 lb450 lbApparent Opening Size ² ASTM D-4751U.S. Sieve 30U.S. Sieve 70(0.21 mm)(0.21 mm)PermitivityASTM D-44910.05 sec ³ 0.28 sec ³¹ 1.1 sec ³¹ Ultraviolet Resistance Retained at 500 hoursASTM D-435570% strength70% strength70% strength ¹ All numeric values except apparent opening size (AOS) represent minimum average roll values (MARV). MARV is calculated as the typical minus two standard deviations. MD is machine direction; CD is cross	SLIT FILM GEOTEXTILENONOFILAMENT GEOTEXTILENONVOVEN GEOTEXTILEPROPERTYTEST METHODMDCDMDCDMDCDGrab Tensile StrengthASTM D-4632200 lb200 lb370 lb250 lb200 lb200 lbGrab Tensile ElongationASTM D-463215%10%15%15%50%50%Trapezoidal Tear StrengthASTM D-453375 lb75 lb100 lb60 lb80 lb80 lbPuncture StrengthASTM D-6241 450 lb900 lb450 lb450 lbApparent Opening Size ² ASTM D-4751U.S. Sieve 30U.S. Sieve 70(0.21 mm)(0.21 mm)PermitivityASTM D-44910.05 sec ³¹ 0.28 sec ³¹ 1.1 sec ³¹ Ultraviolet Resistance Retained at 500 hoursASTM D-435570% strength70% strength70% strength ¹ All numeric values except apparent opening size (AOS) represent minimum average roll values (MARV). MARV is calculated as the typical minus two standard deviations. MD is machine direction; CD is cross			Table I	L1: Geote	xtile Fabr	ies			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								NONW	OVEN
Grab Tensile Strength ASTM D-4632 200 lb 200 lb 370 lb 250 lb 200 lb 200 lb Grab Tensile Elongation ASTM D-4632 15% 10% 15% 50% 50% Trapezoidal Tear Strength ASTM D-4632 15% 10% 15% 50% 50% Puncture Strength ASTM D-6241 450 lb 900 lb 60 lb 80 lb 80 lb Apparent Opening Size ² ASTM D-4751 U.S. Sieve 30 U.S. Sieve 70 U.S. Sieve 70 U.S. Sieve 70 Ultraviolet Resistance Retained at 500 hours ASTM D-4491 0.05 sec ⁴ 0.28 sec ²¹ 1.1 sec ⁴ ¹ All numeric values except apparent opening size (AOS) represent minimum average roll values (MARV). MARV is calculated as the typical minus two standard deviations. MD is machine direction; CD is cross										
						XTILE	GEOTE	XTILE	GEOTI	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				GEOTE MD	CD	GEOTE	XTILE JE ROLL V CD	GEOTH VALUE ¹ MD	CD
Puncture Strength ASTM D-6241 450 lb 900 lb 450 lb Apparent Opening Size ² ASTM D-4751 U.S. Sieve 30 (0.59 mm) U.S. Sieve 70 (0.21 mm) U.S. Sieve 70 (0.21 mm) Permittivity ASTM D-4491 0.05 sec ⁻¹ 0.28 sec ⁻¹ 1.1 sec ⁻¹ Ultraviolet Resistance Retained at 500 hours ASTM D-4355 70% strength 70% strength 70% strength ¹ AII numeric values except apparent opening size (AOS) represent minimum average roll values (MARV). MARV is calculated as the typical minus two standard deviations. MD is machine direction; CD is cross direction. CD is cross	Puncture Strength ASTM D-6241 450 lb 900 lb 450 lb Apparent Opening Size ² ASTM D-4751 U.S. Sieve 30 (0.59 mm) U.S. Sieve 70 (0.21 mm) U.S. Sieve 70 (0.21 mm) Permittivity ASTM D-4491 0.05 sec ⁻¹ 0.28 sec ⁻¹ 1.1 sec ⁻¹ Ultraviolet Resistance Retained at 500 hours ASTM D-4355 70% strength 70% strength 70% strength ¹ AII numeric values except apparent opening size (AOS) represent minimum average roll values (MARV). MARV is calculated as the typical minus two standard deviations. MD is machine direction; CD is cross direction. CD is cross	Grab Tensile S	trength	ASTM D-4632	GEOTE MD 200 lb	CD 200 lb	GEOTE JM AVERAG MD 370 lb	XTILE 3E ROLL V CD 250 Ib	GEOTH VALUE ¹ MD 200 lb	CD 200 lb
Apparent Opening Size ASTM D-4/51 (0.59 mm) (0.21 mm) (0.21 mm) Permitivity ASTM D-4491 0.05 sec ⁴ 0.28 sec ⁴ 1.1 sec ⁴ Ultraviolet Resistance Retained at 500 hours ASTM D-4355 70% strength 70% strength 70% strength ¹ All numeric values except apparent opening size (AOS) represent minimum average roll values (MARV). MARV is calculated as the typical minus two standard deviations. MD is machine direction; CD is cross direction.	Apparent Opening Size ASTM D-4/51 (0.59 mm) (0.21 mm) (0.21 mm) Permitivity ASTM D-4491 0.05 sec ⁴ 0.28 sec ⁴ 1.1 sec ⁴ Ultraviolet Resistance Retained at 500 hours ASTM D-4355 70% strength 70% strength 70% strength ¹ All numeric values except apparent opening size (AOS) represent minimum average roll values (MARV). MARV is calculated as the typical minus two standard deviations. MD is machine direction; CD is cross direction. Strong Strength	Grab Tensile S Grab Tensile E	trength longation	ASTM D-4632 ASTM D-4632	GEOTE MD 200 lb 15%	XTILE MINIMU CD 200 lb 10%	GEOTE JM AVERAG MD 370 lb 15%	XTILE 3E ROLL V CD 250 Ib 15%	GEOTH VALUE ¹ MD 200 lb 50%	CD 200 1b 50%
Image: Permittivity ASTM D-4491 0.05 sec ¹ 0.28 sec ² 1.1 sec ⁴ Ultraviolet Resistance Retained at 500 hours ASTM D-4355 70% strength 70% strength 70% strength ¹ All numeric values except apparent opening size (AOS) represent minimum average roll values (MARV). MARV is calculated as the typical minus two standard deviations. MD is machine direction; CD is cross direction. CD is cross	Image: Permittivity ASTM D-4491 0.05 sec ⁻¹ 0.28 sec ⁻¹ 1.1 sec ⁻¹ Ultraviolet Resistance Retained at 500 hours ASTM D-4355 70% strength 70% strength 70% strength ¹ All numeric values except apparent opening size (AOS) represent minimum average roll values (MARV). MARV is calculated as the typical minus two standard deviations. MD is machine direction; CD is cross direction. CD is cross	Grab Tensile S Grab Tensile E Trapezoidal Te	trength longation ar Strength	ASTM D-4632 ASTM D-4632 ASTM D-4533	GEOTE MD 200 lb 15% 75 lb	XTILE MINIMU CD 200 lb 10% 75 lb	GEOTE JM AVERAO MD 370 lb 15% 100 lb	XTILE 3E ROLL V CD 250 lb 15% 60 lb	GEOTH VALUE ¹ MD 200 lb 50% 80 lb	CD 200 lb 50% 80 lb
Ultraviolet Resistance Retained at 500 hours ASTM D-4355 70% strength 70% strength 70% strength ¹ All numeric values except apparent opening size (AOS) represent minimum average roll values (MARV). MARV is calculated as the typical minus two standard deviations. MD is machine direction; CD is cross direction. CD is cross	Ultraviolet Resistance Retained at 500 hours ASTM D-4355 70% strength 70% strength 70% strength ¹ All numeric values except apparent opening size (AOS) represent minimum average roll values (MARV). MARV is calculated as the typical minus two standard deviations. MD is machine direction; CD is cross direction.	Grab Tensile S Grab Tensile E Trapezoidal Te Puncture Strenj	trength longation ar Strength gth	ASTM D-4632 ASTM D-4632 ASTM D-4533 ASTM D-6241	GEOTE MD 200 lb 15% 75 lb 450 U.S. Si	XTILE MINIMU CD 200 lb 10% 75 lb 0 lb ieve 30	GEOTE JM AVERAO MD 370 lb 15% 100 lb 900 U.S. Si	XTILE 3E ROLL V CD 250 lb 15% 60 lb 1b eve 70	GEOTH MD 200 lb 50% 80 lb 450 U.S. S	CD 200 lb 50% 80 lb 0 lb eve 70
¹ All numeric values except apparent opening size (AOS) represent minimum average roll values (MARV). MARV is calculated as the typical minus two standard deviations. MD is machine direction; CD is cross direction.	¹ All numeric values except apparent opening size (AOS) represent minimum average roll values (MARV). MARV is calculated as the typical minus two standard deviations. MD is machine direction; CD is cross direction.	Grab Tensile S Grab Tensile E Trapezoidal Te Puncture Stren Apparent Oper	trength longation ar Strength gth	ASTM D-4632 ASTM D-4632 ASTM D-4533 ASTM D-6241 ASTM D-4751	GEOTE MD 200 lb 15% 75 lb 450 U.S. Si (0.59	XTILE MINIMU CD 200 lb 10% 75 lb 0 lb ieve 30 mm)	GEOTE JM AVERAG MD 370 lb 15% 100 lb 900 U.S. Si (0.21	XTILE 3E ROLL V CD 250 lb 15% 60 lb lb eve 70 mm)	GEOTH VALUE ¹ MD 200 lb 50% 80 lb 450 U.S. S (0.21	CD 200 lb 50% 80 lb 0 lb ieve 70 mm)
² Values for AOS represent the average maximum opening.	² Values for AOS represent the average maximum opening.	Grab Tensile S Grab Tensile E Trapezoidal Te Puncture Stren, Apparent Open Permittivity Ultraviolet Res	trength longation ar Strength gth ing Size ² istance	ASTM D-4632 ASTM D-4632 ASTM D-4533 ASTM D-6241 ASTM D-4751 ASTM D-4491	GEOTE MD 200 lb 15% 75 lb 45(U.S. Si (0.59 0.05	XTILE MINIMU CD 200 lb 10% 75 lb 0 lb ieve 30 mm) sec ⁻¹	GEOTE JM AVERAG MD 370 lb 15% 100 lb 900 U.S. Si (0.21 0.28 :	XTILE 3E ROLL V CD 250 lb 15% 60 lb lb eve 70 mm) sec ⁻¹	GEOTH VALUE ¹ MD 200 lb 50% 80 lb 450 U.S. S (0.21 1.1;	CD 200 lb 50% 80 lb 0 lb eve 70 mm) sec ⁻¹
		Grab Tensile S Grab Tensile E Trapezoidal Te Puncture Stren, Apparent Open Permittivity Ultraviolet Res Retained at 500 ¹ All numerid MARV is cal	trength longation ar Strength gth ing Size ² istance) hours c values exce	ASTM D-4632 ASTM D-4632 ASTM D-4533 ASTM D-6241 ASTM D-4751 ASTM D-4491 ASTM D-4355 pt apparent opening s	GEOTE MD 200 lb 15% 75 lb 45(U.S. Si (0.59 0.05 70% st	XTILE MINIMU CD 200 lb 10% 75 lb 0 lb ieve 30 mm) sec ⁻¹ trength represent 1	GEOTE JM AVERAG MD 370 lb 15% 100 lb 9000 U.S. Si (0.21 0.28 70% st minimum av	XTILE SE ROLL V CD 250 lb 15% 60 lb lb eve 70 mm) sec ⁻¹ rength rength	GEOTH VALUE ¹ MD 200 lb 50% 80 lb 450 U.S. S (0.21 1.1: 70% s alues (MA	CD 200 lb 50% 80 lb) lb ieve 70 mm) sec ⁻¹ rength RV).
		Grab Tensile S Grab Tensile E Trapezoidal Te Puncture Stren, Apparent Oper Permittivity Ultraviolet Res Retained at 500 ¹ All numeric MARV is cal direction.	trength longation ar Strength gth ing Size ² istance 0 hours c values exce culated as the	ASTM D-4632 ASTM D-4632 ASTM D-4533 ASTM D-6241 ASTM D-4751 ASTM D-4751 ASTM D-4491 ASTM D-4355 pt apparent opening s typical minus two st	GEOTE MD 200 lb 15% 75 lb 45(U.S. Si (0.59 0.05 70% st ize (AOS) andard dev	XTILE MINIMU CD 200 lb 10% 75 lb 0 lb ieve 30 mm) sec ⁻¹ trength represent 1 riations. M	GEOTE JM AVERAG MD 370 lb 15% 100 lb 9000 U.S. Si (0.21 0.28 70% st minimum av	XTILE SE ROLL V CD 250 lb 15% 60 lb lb eve 70 mm) sec ⁻¹ rength rength	GEOTH VALUE ¹ MD 200 lb 50% 80 lb 450 U.S. S (0.21 1.1: 70% s alues (MA	CD 200 lb 50% 80 lb) lb ieve 70 mm) sec ⁻¹ rength RV).
		Grab Tensile S Grab Tensile E Trapezoidal Te Puncture Stren, Apparent Oper Permittivity Ultraviolet Res Retained at 500 ¹ All numeric MARV is cal direction.	trength longation ar Strength gth ing Size ² istance 0 hours c values exce culated as the	ASTM D-4632 ASTM D-4632 ASTM D-4533 ASTM D-6241 ASTM D-4751 ASTM D-4751 ASTM D-4491 ASTM D-4355 pt apparent opening s typical minus two st	GEOTE MD 200 lb 15% 75 lb 45(U.S. Si (0.59 0.05 70% st ize (AOS) andard dev	XTILE MINIMU CD 200 lb 10% 75 lb 0 lb ieve 30 mm) sec ⁻¹ trength represent 1 riations. M	GEOTE JM AVERAG MD 370 lb 15% 100 lb 9000 U.S. Si (0.21 0.28 70% st minimum av	XTILE SE ROLL V CD 250 lb 15% 60 lb lb eve 70 mm) sec ⁻¹ rength rength	GEOTH VALUE ¹ MD 200 lb 50% 80 lb 450 U.S. S (0.21 1.1: 70% s alues (MA	CD 200 lb 50% 80 lb) lb ieve 70 mm) sec ⁻¹ rength RV).
		Grab Tensile S Grab Tensile E Trapezoidal Te Puncture Stren, Apparent Oper Permittivity Ultraviolet Res Retained at 500 ¹ All numeric MARV is cal direction.	trength longation ar Strength gth ing Size ² istance 0 hours c values exce culated as the	ASTM D-4632 ASTM D-4632 ASTM D-4533 ASTM D-6241 ASTM D-4751 ASTM D-4751 ASTM D-4491 ASTM D-4355 pt apparent opening s typical minus two st	GEOTE MD 200 lb 15% 75 lb 45(U.S. Si (0.59 0.05 70% st ize (AOS) andard dev	XTILE MINIMU CD 200 lb 10% 75 lb 0 lb ieve 30 mm) sec ⁻¹ trength represent 1 riations. M	GEOTE JM AVERAG MD 370 lb 15% 100 lb 9000 U.S. Si (0.21 0.28 70% st minimum av	XTILE SE ROLL V CD 250 lb 15% 60 lb lb eve 70 mm) sec ⁻¹ rength rength	GEOTH VALUE ¹ MD 200 lb 50% 80 lb 450 U.S. S (0.21 1.1: 70% s alues (MA	CD 200 lb 50% 80 lb) lb ieve 70 mm) sec ⁻¹ rength RV).
		Grab Tensile S Grab Tensile E Trapezoidal Te Puncture Stren, Apparent Oper Permittivity Ultraviolet Res Retained at 500 ¹ All numeric MARV is cal direction.	trength longation ar Strength gth ing Size ² istance 0 hours c values exce culated as the	ASTM D-4632 ASTM D-4632 ASTM D-4533 ASTM D-6241 ASTM D-4751 ASTM D-4751 ASTM D-4491 ASTM D-4355 pt apparent opening s typical minus two st	GEOTE MD 200 lb 15% 75 lb 45(U.S. Si (0.59 0.05 70% st ize (AOS) andard dev	XTILE MINIMU CD 200 lb 10% 75 lb 0 lb ieve 30 mm) sec ⁻¹ trength represent 1 riations. M	GEOTE JM AVERAG MD 370 lb 15% 100 lb 9000 U.S. Si (0.21 0.28 70% st minimum av	XTILE SE ROLL V CD 250 lb 15% 60 lb lb eve 70 mm) sec ⁻¹ rength rength	GEOTH VALUE ¹ MD 200 lb 50% 80 lb 450 U.S. S (0.21 1.1: 70% s alues (MA	XTILE CD 200 lb 50% 80 lb 0 lb leve 70 mm) sec ⁻¹ rength RV).
		Grab Tensile S Grab Tensile E Trapezoidal Te Puncture Stren, Apparent Oper Permittivity Ultraviolet Res Retained at 500 ¹ All numeric MARV is cal direction.	trength longation ar Strength gth ing Size ² istance 0 hours c values exce culated as the AOS represen	ASTM D-4632 ASTM D-4632 ASTM D-4533 ASTM D-6241 ASTM D-4751 ASTM D-4751 ASTM D-4355 pt apparent opening s typical minus two sl at the average maxim	GEOTE MD 200 lb 15% 75 lb 45(U.S. Si (0.59 0.05 70% st ize (AOS) andard dev um openin	XTILE MINIMU CD 200 lb 10% 75 lb 0 lb ieve 30 mm) sec ⁻¹ rength represent riations. N g.	GEOTE JM AVERAG MD 370 lb 15% 100 lb 9000 U.S. Si (0.21 0.28 70% st minimum av	XTILE BE ROLL V CD 250 lb 15% 60 lb lb eve 70 mm) sec ⁻¹ rength erage roll w e direction;	GEOTH VALUE ¹ MD 200 lb 50% 80 lb 45(U.S. S (0.21 1.11 70% si alues (MA ; CD is ero	CD 200 lb 50% 80 lb 10 b sec ⁻¹ rength RV). ss
		Grab Tensile S Grab Tensile E Trapezoidal Te Puncture Stren, Apparent Oper Permittivity Ultraviolet Res Retained at 500 ¹ All numeric MARV is cal direction.	trength longation ar Strength gth ing Size ² istance 0 hours c values exce culated as the AOS represen	ASTM D-4632 ASTM D-4632 ASTM D-4533 ASTM D-6241 ASTM D-4751 ASTM D-4751 ASTM D-4355 pt apparent opening s typical minus two sl at the average maxim	GEOTE MD 200 lb 15% 75 lb 45(U.S. Si (0.59 0.05 70% st ize (AOS) andard dev um openin	XTILE MINIMU CD 200 lb 10% 75 lb 0 lb ieve 30 mm) sec ⁻¹ rength represent riations. N g.	GEOTE JM AVERAG MD 370 lb 15% 100 lb 9000 U.S. Si (0.21 0.28 70% st minimum av	XTILE BE ROLL V CD 250 lb 15% 60 lb lb eve 70 mm) sec ⁻¹ rength erage roll w e direction;	GEOTH VALUE ¹ MD 200 lb 50% 80 lb 45(U.S. S (0.21 1.11 70% si alues (MA ; CD is ero	CD 200 lb 50% 80 lb 10 b sec ⁻¹ rength RV). ss
Mountain	Mountain	Grab Tensile S Grab Tensile E Trapezoidal Te Puncture Stren, Apparent Open Permittivity Ultraviolet Res Retained at 500 ¹ All numerid MARV is cal direction. ² Values for	trength longation ar Strength gth ing Size ² istance 0 hours c values exce culated as the AOS represen	ASTM D-4632 ASTM D-4632 ASTM D-4533 ASTM D-6241 ASTM D-4751 ASTM D-4751 ASTM D-4355 pt apparent opening s typical minus two sl at the average maxim	GEOTE MD 200 lb 15% 75 lb 45(U.S. Si (0.59 0.05 70% st ize (AOS) andard dev um openin	XTILE MINIMU CD 200 lb 10% 75 lb 0 lb ieve 30 mm) sec ⁻¹ rength represent riations. N g.	GEOTE JM AVERAG MD 370 lb 15% 100 lb 9000 U.S. Si (0.21 0.28 70% st minimum av	XTILE BE ROLL V CD 250 lb 15% 60 lb lb eve 70 mm) sec ⁻¹ rength erage roll w e direction;	GEOTH VALUE ¹ MD 200 lb 50% 80 lb 45(U.S. S (0.21 1.11 70% si alues (MA ; CD is ero	CD 200 lb 50% 80 lb 10 b sec ⁻¹ rength RV). ss
		Grab Tensile S Grab Tensile E Trapezoidal Te Puncture Stren, Apparent Open Permittivity Ultraviolet Res Retained at 500 ¹ All numeric MARV is cal direction. ² Values for . 08/11/17	trength longation ar Strength gth ing Size ² istance 0 hours c values exce culated as the AOS represen	ASTM D-4632 ASTM D-4632 ASTM D-4533 ASTM D-6241 ASTM D-4751 ASTM D-4751 ASTM D-4355 pt apparent opening s typical minus two sl at the average maxim	GEOTE MD 200 lb 15% 75 lb 45(U.S. Si (0.59 0.05 70% st ize (AOS) iandard dev um openin	XTILE MINIMU CD 200 lb 10% 75 lb 0 lb ieve 30 mm) sec ⁻¹ trength represent <i>i</i> viations. N g.	GEOTE JM AVERAU MD 370 lb 15% 100 lb 900 U.S. Si (0.21 0.28 70% st minimum ava AD is machin	XTILE BE ROLL V CD 250 lb 15% 60 lb lb eve 70 mm) sec ⁻¹ rength erage roll w e direction;	GEOTH VALUE ¹ MD 200 lb 50% 80 lb 45(U.S. S (0.21 1.11 70% sl (0.21 1.11 70% sl (0.21 1.11 70% sl (0.21 1.11)	CD 200 lb 50% 80 lb 0 lb ieve 70 mm) sec ⁻¹ rength RV). ss
		Grab Tensile S Grab Tensile E Trapezoidal Te Puncture Stren, Apparent Open Permittivity Ultraviolet Res Retained at 500 ¹ All numeric MARV is cal direction. ² Values for . 08/11/17	trength longation ar Strength gth ing Size ² istance 0 hours c values exce culated as the AOS represen	ASTM D-4632 ASTM D-4632 ASTM D-4533 ASTM D-6241 ASTM D-4751 ASTM D-4751 ASTM D-4355 pt apparent opening s typical minus two sl at the average maxim	GEOTE MD 200 lb 15% 75 lb 45(U.S. Si (0.59 0.05 70% st ize (AOS) iandard dev um openin	XTILE MINIMU CD 200 lb 10% 75 lb 0 lb ieve 30 mm) sec ⁻¹ trength represent <i>i</i> viations. N g.	GEOTE JM AVERAU MD 370 lb 15% 100 lb 900 U.S. Si (0.21 0.28 70% st minimum ava AD is machin	XTILE BE ROLL V CD 250 lb 15% 60 lb lb eve 70 mm) sec ⁻¹ rength erage roll w e direction;	GEOTH VALUE ¹ MD 200 lb 50% 80 lb 45(U.S. S (0.21 1.11 70% sl (0.21 1.11 70% sl (0.21 1.11 70% sl (0.21 1.11)	CD 200 lb 50% 80 lb 0 lb ieve 70 mm) sec ⁻¹ rength RV). ss
08/11/17 1 OF 1 UBD/11/17 1 OF 1 UDD/11/17 SUPER SILT FENCE	08/11/17 1 OF 1 UNOUNCOIN Volley PIPELINE SUPER SILT FENCE	Grab Tensile S Grab Tensile E Trapezoidal Te Puncture Stren, Apparent Open Permittivity Ultraviolet Res Retained at 500 ¹ All numeric MARV is cal direction. ² Values for . 08/11/17	trength longation ar Strength gth ing Size ² istance 0 hours c values exce culated as the AOS represen	ASTM D-4632 ASTM D-4632 ASTM D-4533 ASTM D-6241 ASTM D-4751 ASTM D-4751 ASTM D-4355 pt apparent opening s typical minus two sl at the average maxim	GEOTE MD 200 lb 15% 75 lb 45(U.S. Si (0.59 0.05 70% st ize (AOS) iandard dev um openin	XTILE MINIMU CD 200 lb 10% 75 lb 0 lb ieve 30 mm) sec ⁻¹ trength represent <i>i</i> viations. N g.	GEOTE JM AVERAU MD 370 lb 15% 100 lb 900 U.S. Si (0.21 0.28 70% st minimum ava 4D is machin	XTILE FROLL V CD 250 lb 15% 60 lb lb eve 70 mm) sec ⁴ rength rength range roll v. e direction;	GEOTH VALUE ¹ MD 200 lb 50% 80 lb 450 U.S. S (0.21 1.1.1 70% sl alues (MA' ; CD is ero //RON	CD 200 lb 50% 80 lb 0 lb ieve 70 mm) sec ⁻¹ rength RV). ss
	08/11/17 1 OF 1 DESIGN ENGINEERING DRAWING NO.	Grab Tensile S Grab Tensile E Trapezoidal Te Puncture Stren Apparent Open Permittivity Ultraviolet Res Retained at 500 ¹ All numeric MARV is cal direction. ² Values for . 08/11/17 1 OF 1	trength longation ar Strength gth ing Size ² istance b hours cvalues excee culated as the AOS represed	ASTM D-4632 ASTM D-4632 ASTM D-4533 ASTM D-6241 ASTM D-4751 ASTM D-4491 ASTM D-4355 pt apparent opening s typical minus two st at the average maxim	GEOTE MD 200 lb 15% 75 lb 45(U.S. Si (0.59 0.05 70% st úze (AOS) andard dev um openin	XTILE MINIMU CD 200 lb 10% 75 lb 0 lb ieve 30 mm) sec ⁻¹ trength represent 1 riations. M g.	GEOTE JM AVERAU MD 370 lb 15% 100 lb 900 U.S. Si (0.21 0.28 si 70% st minimum ave AD is machin	XTILE FROLL V CD 250 lb 15% 60 lb lb eve 70 mm) sec ⁴ rength rength range roll v. e direction;	GEOTI VALUE ¹ MD 200 lb 50% 80 lb 450 U.S. S (0.21 1.1.1 70% sl alues (MA ; CD is ero A	CD 200 lb 50% 80 lb 1b eve 70 mm) sec ⁻¹ rength RV). ss

Image: Construct of the construction of the constructio									
Image: Second balance Image: Second balance Image: Second balance Image: Second balance Image: Second balance Image: Second balaccccccd balacccccd balance Image: Secon	ADDED DETAILS FOR ROADS AND PADS	ADDRESS VADEQ COMMENTS	ADDRESS VADEQ COMMENTS	ADDRESS VADEQ COMMENTS	ADDRESS VADEQ COMMENTS	ADDRESS VADEQ COMMENTS	DESCRIPTION:	'ISIONS:	
Image: Second House Second	DW	DW	DW	DW	DW	DW	APPD.:	Ч Ч С	
Image: Second point of the second point point point of the second point p	RE	RE	RE	RE	RE	RE	CHKD.:		
	KAL	KAL	KAL	KAL	KAL	KAL	DWN.:		
	/31/18	/26/18	/08/18	/28/17	/01/17	/18/17	DATE:		
CANONSBURG, PA 15217 CANONSBURG, PA 15220 DRAWN BY: CANONSBURG, PA 1520 DRAWN BY: CANONSBURG, PA 150 DRAWN BY: CANONSBURG, PA	7 01/			4 11/	3 11/	2 08/			
Complex world CLEAR SOLUTIONS" Complex world CLEAR SOLUTIONS" 661 ANDERSEN DRIVE FOSTER PLAZA 7 PITTSBURGH, PA 15220 Image: Strength of the streng	-						ž		
			EROSION AND SEDIMENT CONTROL		MOUNIAIN VALLET FIFELINE FROJEUT			555 SOUTHPOINTE BOULEVARD, SUITE 2	CANONSBURG, PA 15317
DRAWN BY: KAL CHECKED BY: RE DATE: 11/28/2017 SCALE: AS SHOWN	α		661 F	worl AN OST	⊣∣c DER ER	LEAF SEN PLA	r so I DF ZA	lution RIVE 7	S™
Lic. No. 0402057593 WWW BY: KAL CHECKED BY: HT APPROVED BY: RE DATE: 11/28/2017 SCALE: AS SHOWN					CENEDAL DETAILS SET	GENERAL DE LAILS SEI			
CHECKED BY: HT APPROVED BY: RE DATE: 11/28/2017 SCALE: AS SHOWN		_	CLARK CONTRACTOR	Lic.	10. 04				
DATE: 11/28/2017 SCALE: AS SHOWN REVISION	СН	IECK	ED	BY:					ΗT
REVISION			vED		1/2	8/2	017	17	RE
								. /	

Wetland	ds Seed Mix a	and Application Rates in Vi	-		
	Species	Common Name	Seeding Rate (Ibs/acre)	pН	Bloom Period (if applicable)
	Alisma subcordatum	Mud Plantain	0.04		
	Carex gynandra	Fringed Sedge	0.10	5.0 - 7.0	Midsummer
	Carex lupulina	Hop Sedge	1.00		May to June
	Carex lurida	Shallow Sedge	3.00	6.2 - 7.0	June to October
	Carex scoparia	Blunt Broom Sedge	1.00	4.9 - 6.8	June to July
	Carex vulpinoidea	Fox Sedge	6.90	4.6 - 6.9	July to August
	Cinna arundinacea	Wood Reedgrass	0.40	6.8 - 8.9	June to August
	Elymus virginicus	Virginia Wildrye	4.00	4.0 - 8.5	August to September
	Juncus effusus	Soft Rush	0.60	5.0 - 7.4	June to October
	Onoclea sensibilis	Sensitive Fern	0.20	5.5 - 7.0	May to June
	Scirpus cyperinus	Woolgrass	0.20		June to October
	Species	Common Name	Seeding Rate (Ibs/acre)	рН	Bloom Period (if applicable)
	Scirpus polyphyllus	Many Leaved Bulrush	0.20	4.8 - 7.2	July to September
	Asclepias incarnata	Swamp Milkweed	0.40		July to August
Ει	upatorium coelestinun	Mistflower	0.10	5.0 - 8.0	June to July
E	upatorium fistulosum	Joe Pye Weed	0.14	5.5 - 7.5	July to October
E	upatorium perfoliatum	Boneset	0.20	4.5 - 7.0	July to September
	Helenium autumnale	Common Sneezeweed	0.10		July to October
Н	leliopsis helianthoides	Oxeye Sunflower	0.40	4.0 - 7.5	August to September
	Ludwigia alternifolia	Seedbox	0.10		July to August
	Mimulus ringens	Square Stemmed Monkeyflower	0.10		August to September
	Verbena hastata	Blue Vervain	0.72		June to September
Ve	rnonia noveboracensi	s New York Ironweed	0.10		June to October
			20.00		
FOLLOWIN	IG RESTORATION A	USED AT A RATE OF 40 LBS/AC FOR ST/ ND TEMPORARY STABILIZATION WITH A IT REESTABLISH THE WETLAND, MVP W E WETLAND.	NNUAL RYEGRASS,	SHOULD TH	E NATIVE SEEDBANK
in Ked	DATE DATE	Mountain	EN	VIRONM	ENTAL DETAIL
)	DATE 08/11/17				D SEED MIX
E N.T.S.	SHEET 1 OF 1		<u>v</u>		ICATION RATES
		PIPELIN	Ĕ Í Í	NIU AFPL	IVATION NATES
NO.					
NO. JECT ID:		DESIGN ENGINEERI) .	REV.

arian (
urian (
rian S					
rian (
rian (
rian S					
rian S					
	Seed Mix and	d Application Rates in Virgi	inia. Seeding Rate		Bloom Period
	Species	Common Name	(lbs/acre)	рН	(if applicable)
-	rostis perennans	Autumn Bentgrass	0.04	5.0 - 7.0	Midsummer
	dropogon gerardii lymus virginicus	Big Bluestem Virginia Wildrye	0.10 1.00	6.2 - 7.0	May to June June to October
	Juncus effusus	Soft Rush	3.00	4.9 - 6.8	June to July
	Juncus tenuis	Path Rush	1.00	4.6 - 6.9	July to August
	icum clandestinum	Deertongue	6.90	6.8 - 8.9	June to August
	rghastrum nutans	Indiangrass	0.40	4.0 - 8.5	August to September
	clepias incarnata naecrista fasciculata	Swamp Milkweed Partridge Pea	4.00 0.60	5.0 - 7.4 5.5 - 7.0	June to October May to June
	taecrista tasciculata torium coelestinum	· · · · · · · · · · · · · · · · · · ·	0.80	0.0 - 7.0	June to October
	atorium fistulosum	Joe Pye Weed	0.20	4.8 - 7.2	July to September
	atorium perfoliatum	Boneset	0.20		July to August
	eum canadense	White Avens	0.40	5.0 - 8.0	June to July
	lenium autumnale	Common Sneezeweed	0.10	5.5 - 7.5	July to October
	opsis helianthoides	Oxeye Sunflower	0.14	4.5 - 7.0	July to September
	lonarda fistulosa nthemum tenuifolium	Wild Bergamot m Slender Mountainmint	0.20 0.10	4.0 - 7.5	July to October August to September
	Rudbeckia hirta	Blackeyed Susan	0.40	4.0-1.0	July to August
	enna hebecarpa	Wild Senna	0.10		August to September
I	/erbena hastata	Blue Vervain	0.10		June to September
Verno	onia noveboracensis	New York Ironweed	0.72		June to October
			20.00		
	RY SEED MIX:				
- 2/15: \$	50/50 MIX ANNUAL	L RYEGRASS (LOLIUM MULTI-FLORUM)	AND WINTER RYE (SI	ECALE CERE	ALE) (50-100 LBS/AC)
6 - 4/30:	ANNUAL RYEGRA	ASS (LOLIUM MULTI-FLORUM) (60-100 LE	BS/AC)		
- 8/31: (GERMAN MILLET (S	SETARIA ITALICA) (50 LBS/AC)			
				Revised	1/24/18
	DATE	Mountain	EN		ENTAL DETAIL
	DATE	Mountair		VIRONME	
	DATE DATE 08/11/17		1		N SEED MIX
.1.5.	DATE	Mountair Vall	1		
4.T.S.	DATE DATE 08/11/17		ey ,	RIPARIAN AND APPLI	N SEED MIX

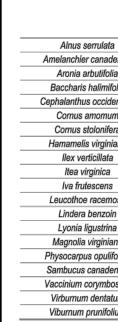
nd Applicatio	on Name	Seeding Rate
		(Ibs/acre)
America	In Beech	0.3
	Poplar	0.3
	e Pine	0.3
	ia Pine	0.3
	Cherry	0.3
	Serviceberry	0.3
	Redbud	0.3
	Dogwood	0.3
5	mmon	0.3
	an Holly	0.3
	Gum	0.3
	safras	0.3
	Hazel	0.3
	ebush	0.3
	Blueberry	0.3
	Viburnum	0.3
maphotoa		010
igs in addition to th		0.3 ction 5.9 Bare Roost Seedling 4 shrub species will comprise
ngs in addition to th ry, 4 of the 7 under	is mix. Refer to Se rstory, and 2 of the	ction 5.9 Bare Roost Seedling 4 shrub species will comprise
ngs in addition to th ry, 4 of the 7 under -ES11.2 UPLAND M	is mix. Refer to Se rstory, and 2 of the EADOW SEED MIX.	ction 5.9 Bare Roost Seedling 4 shrub species will comprise
ngs in addition to th	EADOW SEED MIX.	ction 5.9 Bare Roost Seedling 4 shrub species will comprise

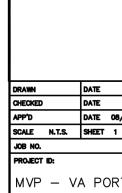
Species	Common Name	Seeding Rate (Ibs/acre)	рН	Bloom Pe (if applica
Elymus virginicus	Virginia Wildrye	4.00	5.0 - 7.4	June to Oc
Schizachyrium scoparium	Little Bluestem	11.68	5.0 - 8.4	July to Oct
Sorghastrum nutans	Indiangrass	1.00	5.0 - 7.8	August to O
Asclepias syriaca	Common Milkweed	0.10		June to Au
Asclepias tuberosa	Butterfly Milkweed	0.10	4.8 - 6.8	June to Au
Chamaecrista fasciculata	Partridge Pea	0.60	5.5 - 7.5	July to Sept
Chamaecrista nictitans	Sensitive Partridge Pea	0.06		June to Oc
Coreopsis lanceolata	Lanceleaf Coreopsis	0.44	6.0 - 7.0	April to J
Eupatorium coelestinum	Mistflower	0.04	5.5 - 7.5	July to Oct
Heliopsis helianthoides	Oxeye Sunflower	0.40		July to Au
Lespedeza virginica	Slender Bushclover	0.10		July to Sept
Liatris graminifolia	Grassleaf Blazing Star	0.10	5.8 - 6.8	August to O
Monarda fistulosa	Wild Bergamot	0.10	6.0 - 8.0	June to Sept
Penstemon laevigatus	Appalachian Beardtongue	0.10		late May to Augus
Pycnanthemum incanum	Hoary Mountainmint,	0.20		May to Ju
Rudbeckia fulgida var. fulgida	Orange Coneflower	0.02	< 6.8	summe
Rudbeckia hirta	Blackeyed Susan	0.04		July to Oct
Species	Common Name	Seeding Rate (Ibs/acre)	рН	Bloom Pe (if applica
Senna hebecarpa	Wild Senna	0.60	6.0 - 7.0	May to J
Solidago juncea	Early Goldenrod	0.10		July to Au
Solidago nemoralis	Gray Goldenrod	0.04		June to J
Tradescantia ohiensis	Ohio Spiderwort	0.04	6.5 - 7.5	August to Sep
Tradescantia virginiana	Virginia Spiderwort	0.10		late April to m
		20.00		

9/1 - 2/15: 50/50 MIX ANNUAL RYEGRASS (LOLIUM MULTI-FLORUM) AND WINTER RYE (SECALE CEREALE) (50-100 LBS/AC) 2/16 - 4/30: ANNUAL RYEGRASS (LOLIUM MULTI-FLORUM) (60-100 LBS/AC)

5/1 - 8/31: GERMAN MILLET (SETARIA ITALICA) (50 LBS/AC)

DRAWN	DATE	Mountain	ENVIRONMENTAL DET	
CHECKED	DATE			
APP'D	DATE 08/11/17		UPLAND MEADOW SEED MIX	
SCALE N.T.S.	SHEET 1 OF 1	' Valley		`
JOB NO.		PIPELINE	AND APPLICATION RATES	
PROJECT ID:		DESIGN ENGINEERING	DRAWING NO.	REV.
MVP - VA	A PORTION	DESIGN ENGINEERING	MVP-ES11.2	0


Autumn Bentgrass Virginia Wildrye Deertongue Little Bluestem Indiangrass Common Milkweed Heath Aster Partridge Pea Lanceleaf Coreopsis Mistflower Oxeye Sunflower Grassleaf Blazing Star Wild Bergamot Hoary Mountainmint Blackeyed Susan Wild Senna Gray Goldenrod Ohio Spiderwort	3.15 9.05 4.50 11.25 14.40 0.09 0.05 0.45 0.45 0.05 0.45 0.09 0.23 0.05 0.45 0.23 0.05 0.45 0.23 0.05 0.23 0.05 0.23 0.05 0.23 0.05 0.05	$\begin{array}{c} 5.5 - 7.5 \\ 5.0 - 7.4 \\ 4.0 - 7.5 \\ 5.0 - 7.4 \\ 5.0 - 7.8 \\ 5.4 - 7.0 \\ 5.5 - 7.5 \\ 6.0 - 7.0 \\ 5.5 - 7.5 \\ 5.8 - 6.8 \\ 6.0 - 8.0 \\ < 6.8 \\ 6.0 - 7.0 \\ 6.5 - 7.5 \end{array}$	Midsummer June to October May to September July to October June to August After fall frost July to September April to July July to October July to August August to October June to September summer May to July July to August August to September
Deertongue Little Bluestem Indiangrass Common Milkweed Heath Aster Partridge Pea Lanceleaf Coreopsis Mistflower Oxeye Sunflower Grassleaf Blazing Star Wild Bergamot Hoary Mountainmint Blackeyed Susan Wild Senna Gray Goldenrod	4.50 11.25 14.40 0.09 0.05 0.45 0.45 0.45 0.05 0.45 0.09 0.23 0.05 0.45 0.23 0.05 0.23 0.05 0.05	4.0 - 7.5 5.0 - 7.4 5.0 - 7.8 5.4 - 7.0 5.5 - 7.5 6.0 - 7.0 5.5 - 7.5 5.8 - 6.8 6.0 - 8.0 < 6.8 6.0 - 7.0	May to September July to October August to October June to August After fall frost July to September April to July July to October July to August August to October June to September summer May to July July to August
Little Bluestem Indiangrass Common Milkweed Heath Aster Partridge Pea Lanceleaf Coreopsis Mistflower Oxeye Sunflower Grassleaf Blazing Star Wild Bergamot Hoary Mountainmint Blackeyed Susan Wild Senna Gray Goldenrod	11.25 14.40 0.09 0.05 0.45 0.45 0.45 0.45 0.09 0.23 0.05 0.45 0.23 0.05 0.23 0.05	5.0 - 7.4 5.0 - 7.8 5.4 - 7.0 5.5 - 7.5 6.0 - 7.0 5.5 - 7.5 5.8 - 6.8 6.0 - 8.0 < 6.8 6.0 - 7.0	July to October August to October June to August After fall frost July to September April to July July to October July to August August to October June to September summer May to July July to August
Indiangrass Common Milkweed Heath Aster Partridge Pea Lanceleaf Coreopsis Mistflower Oxeye Sunflower Grassleaf Blazing Star Wild Bergamot Hoary Mountainmint Blackeyed Susan Wild Senna Gray Goldenrod	14.40 0.09 0.05 0.45 0.45 0.45 0.45 0.09 0.23 0.05 0.45 0.23 0.05 0.05	5.0 - 7.8 5.4 - 7.0 5.5 - 7.5 6.0 - 7.0 5.5 - 7.5 5.8 - 6.8 6.0 - 8.0 < 6.8 6.0 - 7.0	August to October June to August After fall frost July to September April to July July to October July to August August to October June to September summer May to July July to August
Common Milkweed Heath Aster Partridge Pea Lanceleaf Coreopsis Mistflower Oxeye Sunflower Grassleaf Blazing Star Wild Bergamot Hoary Mountainmint Blackeyed Susan Wild Senna Gray Goldenrod	0.09 0.05 0.45 0.05 0.45 0.09 0.23 0.05 0.45 0.23 0.05 0.23 0.05 0.05	5.4 - 7.0 5.5 - 7.5 6.0 - 7.0 5.5 - 7.5 5.8 - 6.8 6.0 - 8.0 < 6.8 6.0 - 7.0	June to August After fall frost July to September April to July July to October July to August August to October June to September summer May to July July to August
Heath Aster Partridge Pea Lanceleaf Coreopsis Mistflower Oxeye Sunflower Grassleaf Blazing Star Wild Bergamot Hoary Mountainmint Blackeyed Susan Wild Senna Gray Goldenrod	0.05 0.45 0.05 0.45 0.09 0.23 0.05 0.45 0.23 0.05 0.05	5.5 - 7.5 6.0 - 7.0 5.5 - 7.5 5.8 - 6.8 6.0 - 8.0 < 6.8 6.0 - 7.0	After fall frost July to September April to July July to October July to August August to October June to September summer May to July July to August
Partridge Pea Lanceleaf Coreopsis Mistflower Oxeye Sunflower Grassleaf Blazing Star Wild Bergamot Hoary Mountainmint Blackeyed Susan Wild Senna Gray Goldenrod	0.45 0.45 0.05 0.45 0.09 0.23 0.05 0.45 0.23 0.05 0.05	5.5 - 7.5 6.0 - 7.0 5.5 - 7.5 5.8 - 6.8 6.0 - 8.0 < 6.8 6.0 - 7.0	July to September April to July July to October July to August August to October June to September summer May to July July to August
Lancelear Coreopsis Mistflower Oxeye Sunflower Grassleaf Blazing Star Wild Bergamot Hoary Mountainmint Blackeyed Susan Wild Senna Gray Goldenrod	0.45 0.05 0.45 0.23 0.05 0.45 0.23 0.23 0.05 0.05	6.0 - 7.0 5.5 - 7.5 5.8 - 6.8 6.0 - 8.0 < 6.8 6.0 - 7.0	April to July July to October July to August August to October June to September summer May to July July to August
Mistflower Oxeye Sunflower Grassleaf Blazing Star Wild Bergamot Hoary Mountainmint Blackeyed Susan Wild Senna Gray Goldenrod	0.05 0.45 0.09 0.23 0.05 0.45 0.23 0.05 0.05	5.5 - 7.5 5.8 - 6.8 6.0 - 8.0 < 6.8 6.0 - 7.0	July to October July to August August to October June to September summer May to July July to August
Oxeye Sunflower Grassleaf Blazing Star Wild Bergamot Hoary Mountainmint Blackeyed Susan Wild Senna Gray Goldenrod	0.45 0.09 0.23 0.05 0.45 0.23 0.05 0.05	5.8 - 6.8 6.0 - 8.0 < 6.8 6.0 - 7.0	July to August August to October June to September summer May to July July to August
Grassleaf Blazing Star Wild Bergamot Hoary Mountainmint Blackeyed Susan Wild Senna Gray Goldenrod	0.09 0.23 0.05 0.45 0.23 0.05 0.05	6.0 - 8.0 < 6.8 6.0 - 7.0	August to October June to September summer May to July July to August
Wild Bergamot Hoary Mountainmint Blackeyed Susan Wild Senna Gray Goldenrod	0.23 0.05 0.45 0.23 0.05 0.05	6.0 - 8.0 < 6.8 6.0 - 7.0	June to September summer May to July July to August
Hoary Mountainmint Blackeyed Susan Wild Senna Gray Goldenrod	0.05 0.45 0.23 0.05 0.05	< 6.8 6.0 - 7.0	summer May to July July to August
Blackeyed Susan Wild Senna Gray Goldenrod	0.45 0.23 0.05 0.05	6.0 - 7.0	May to July July to August
Wild Senna Gray Goldenrod	0.23 0.05 0.05		July to August
Gray Goldenrod	0.05	6.5 - 7.5	
•	0.05	6.5 - 7.5	August to Sentembe
Ohio Spiderwort			August to opticition
_	45.00		late April to mid-Jul
	40.00		


DRAWN			DATE	:		
CHECKED			DATE			
APP'D			DATE	Ξ	08,	/11,
SCALE	N.T.S		SHEE	т	1	OF
JOB NO.						
PROJECT	ID:					
MVP	-	V	A F	PC	R	TI

Native tree and shrub wetlands.	o species for bare roo	t plantings within	riparian area	s and forested
Species	Common Name	Indicator Status	Riparian Planting ¹	Forested Wetland Planting ²
	Nativ	e Trees		

		e Trees		
Acer rubrum	Red Maple	FAC	X	Х
Acer saccharinum	Silver Maple	FACW	Х	Х
Betula nigra	River Birch	FACW	Х	Х
Carpinus caroliniana	American Hornbeam	FAC	Х	Х
Carya glabra	Pignut Hickory	FACU	Х	
Carya ovata	Shagbark Hickory	FACU	Х	
Chionanthus virginicus	White Fringe Tree	FAC+	Х	
Diospyros virginiana	Common Persimmon	FAC-	Х	
Species	Common Name	Indicator Status	Riparian Planting ¹	Forested Wetland Planting ²
Fraxinus pennsylvanica	Green Ash	FACW	Х	Х
Juniperus virginiana	Eastern Red Cedar	FACU	Х	х
Liquidambar styraciflua	Sweet Gum	FAC	Х	х
Liriodendron tulipifera	Tuliptree	FACU	Х	х
Nyssa sylvatica	Black Gum	FAC	Х	
Platanus occidentalis	American Sycamore	FACW-	Х	х
Populus deltoids	Eastern Cottonwood	FAC	х	
Quercus bicolor	Swamp White Oak	FACW+	Х	х
Quercus falcata	Cherrybark Red Oak	FACW	Х	Х
Quercus phellos	Willow Oak	FAC+	Х	х
Quercus nigra	Water Oak	FAC	Х	
Quercus palustris	Pin Oak	FACW	Х	х
Salix nigra	Black Willow	FACW	Х	Х
Ulmus americana	American Elm	FACW-	Х	Х
ER TO MVP-ES11.8 AND M	VP-ES11.9 FOR LOCATIONS O	F BARE ROOT PLANTING	S.	

DRAWN	DATE	Mountain	ENVIRONMENTAL DETA	JL	
CHECKED APP'D SCALE N.T.S.	DATE DATE 08/11/17 SHEET 1 0F 1	NATIVE TREE AND SHRUB SPECIES FO			
JOB NO.		PIPELINE	BARE ROOT PLANTINGS WITHIN RIPARIAN AREAS AND FORESTED WETLANDS		
PROJECT ID:		DESIGN ENGINEERING	DRAWING NO.	REV.	
MVP - V	A PORTION	DESIGN ENOMEERING	MVP-ES11.6	0	

TE	Mountain	ENVIRONMENTAL DETA	JL
TE 08/11/17 EET 1 0F 1		UPLAND STEEP SLOPE SEED I AND APPLICATION RATES	MIX
PORTION	DESIGN ENGINEERING	drawing no. MVP-ES11.3	rev. O

	Native S	hrubs		
ata	Brook-side Alder	OBL		Х
adensis	Canada Serviceberry	FAC	Х	
folia	Red Chokecherry	FACW	Х	Х
nifolia	Groundsel Bush	FACW-	Х	Х
identalis	Buttonbush	OBL		Х
num	Silky Dogwood	FACW	х	х
ifera	Red-osier Dogwood	FAC	х	Х
iniana	American Witchhazel	FAC-	х	
ata	Common Winterberry	FACW+	Х	Х
a	Virginia Willow	OBL		Х
ns	Marsh Elder	FACW+	х	х
emosa	Fetter-bush	FACW	Х	Х
toin	Spicebush	FACW-	Х	Х
rina	Maleberry	FACW	Х	Х
niana	Sweetbay Magnolia	FACW+	Х	Х
ulifolius	Eastern Ninebark	FACW-	Х	Х
densis	American Elder	FACW-	Х	х
nbosum	Highbush Blueberry	FACW-	Х	Х
tatum	Arrow-wood	FAC	Х	
folium	Black-haw	FACU	Х	

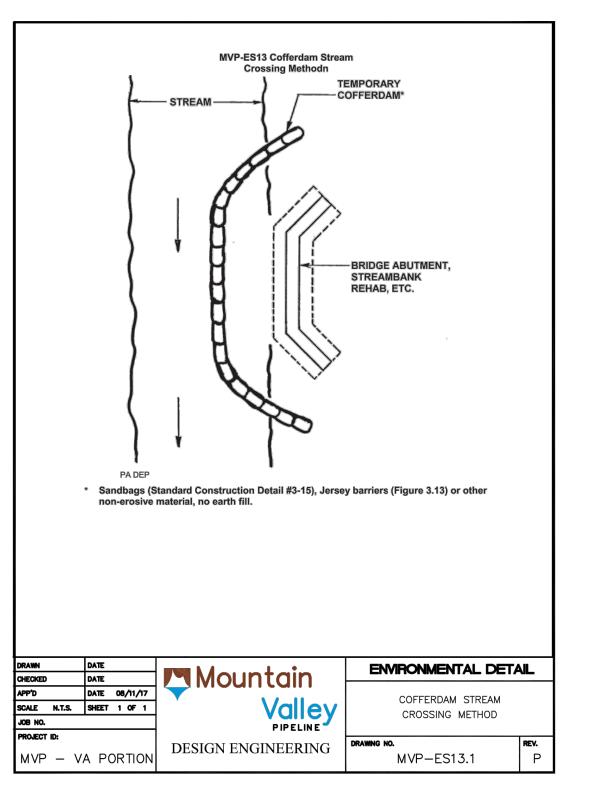
	Mountain	ENVIRONMENTAL DETA	JL
08/11/17 1 OF 1	Valley	NATIVE TREE AND SHRUB SPECIES BARE ROOT PLANTINGS WITHIN RIF	
	PIPELINE	AREAS AND FORESTED WETLAN	DS
	DESIGN ENGINEERING	DRAWING NO.	REV.
ORTION		MVP-ES11.7	0

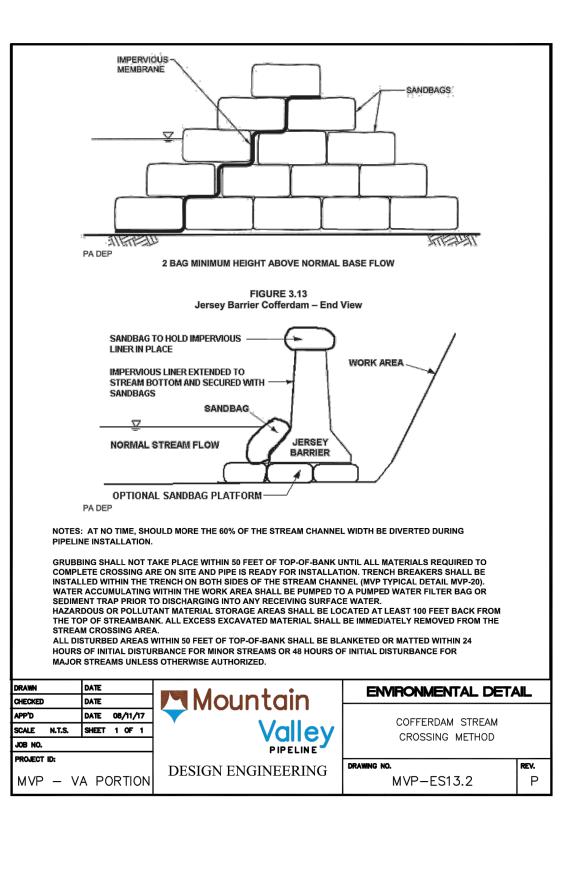
ADDED DETAILS FOR ROADS AND PADS	ADDRESS VADEQ COMMENTS	ADDRESS VADEQ COMMENTS	ADDRESS VADEQ COMMENTS	ADDRESS VADEQ COMMENTS	ADDRESS VADEQ COMMENTS	DESCRIPTION:		REVISIONS:	
DW	DW	DW	DW	DW	DW	APPD.:		Щ М М	
RE	RE	RE	RE	RE	RE	DWN.: CHKD.: APPD.:			
3 KAL	3 KAL	3 KAL	7 KAL	7 KAL	7 KAL	DWN.:			
01/31/18	01/26/18	01/08/18	11/28/17	11/01/17	08/18/17	DATE:			
7	9	5	4	3	2	NO.:			
C + 2		ME		Ž		6	Ļ	BO	S
		EROSION AND SEDIMENT CONTROL PLANS		MUUNIAIN VALLET PIPELINE PROJECT - ROUU LINE				555 SOUTHPOINTE BOULEVARD, SUITE 200	CANONSBURG, PA 15317
(comp	661 F	TE worl AN OST		LEAF SEN PLA	EC so I DF ZA		rion E	
(comp	661 F	TE worl AN OST	TR a c DER ER RGH	LEAF SEN PLA	EC so I DF ZA		rion E	
(comp		AN OST BUI			EC S SO J DF ZA LNER		rion E	
CH	F		TE AN OST BUI DAVI Lic.			EC S SO J DF ZA LNER		rion E	s [™]
DR CH AP DA	F		TE AN OST BUI DAVI Lic. BY: BY:		WALL CONTRACT OF C	LINER DITT			KAL

Waterbody Name	MP	County	State	Valuable Resource
Kimballton Branch	199.1, 199.4	Giles	VA	headwaters of wild trout stream, coldwater stream
Waterbody Name	MP	County	State	Valuable Resource
Stony Creek	200.4	Giles	VA	candy darter, green floater, coldwater stream, wild trout stream
Little Stony Creek	204.4	Giles	VA	coldwater stream, wild trout stream
Sinking Creek	211.2	Giles	VA	candy darter, green floater, coldwater stream, wild trout stream, non-listed mussels
UNT Craig Creek	219.2	Montgomery	VA	Headwaters of James spinymussel occurrences, USFS lands area
UNT Craig Creek	219.3	Montgomery	VA	Headwaters of James spinymussel occurrences, USFS lands area
Craig Creek	219.7	Montgomery	VA	Headwaters of James spinymussel occurrences, USFS lands area
Craig Creek	219.7	Montgomery	VA	Headwaters of James spinymussel occurrences, USFS lands area
UNT Craig Creek	219.8	Montgomery	VA	Headwaters of James spinymussel occurrences, USFS lands area
UNT Craig Creek	220.0	Montgomery	VA	Headwaters of James spinymussel occurrences, USFS lands area
Mill Creek	222.2	Montgomery	VA	upstream of Roanoke logperch suitable habitat, orangefin madtom, coldwater stream, wild trout
North Fork Roanoke River	227.2	Montgomery	VA	Roanoke logperch present, non-listed mussels present, orangefin madtom, coldwater stream, wild trout
North Fork Roanoke River	227.4	Montgomery	VA	Roanoke logperch present, non-listed mussels present, orangefin madtom, coldwater stream, wild trout
Bradshaw Creek	230.7	Montgomery	VA	Roanoke logperch suitable habitat, orangefin madtom, coldwater stream, wild trout
Bradshaw Creek	231.5	Montgomery	VA	Roanoke logperch suitable habitat, orangefin madtom, coldwater stream, wild trout
Roanoke River	235.4	Montgomery	VA	Roanoke logperch present, orangefin madtom, non-listed mussels present
Bottom Creek	241.1	Roanoke	VA	upstream of Bottom Creek Gorge, orangefin madtom, coldwater stream, wild trout
Bottom Creek	242.5	Roanoke	VA	upstream of Bottom Creek Gorge, orangefin madtom, coldwater stream, wild trout
DATE	Mo	untain		ENVIRONMENTAL DETA
DATE 08/11/17				STREAM CROSSINGS PROPOSED
N.T.S. SHEET 1 OF 1		Valle	ey∣	BARE ROOT SEEDING PLANTIN

Mill Creek	245.1	Roanoke	VA	upstream of Bottom Creek Gorge, orangefin madtom, coldwater stream, wild trout
Green Creek	247.1	Franklin	VA	upstream of Bottom Creek Gorge, orangefin madtom, coldwater stream, wild trout
Green Creek	247.4	Franklin	VA	upstream of Bottom Creek Gorge, orangefin madtom, coldwater stream, wild trout
North Fork Blackwater River	249.7	Franklin	VA	Roanoke logperch suitable habitat, coldwater stream wild trout stream
Waterbody Name	MP	County	State	Valuable Resource
Teels Creek	258.2	Franklin	VA	upstream of Roanoke logperch suitable habitat, one of numerous project crossings of Teels Creek
Teels Creek	260.3	Franklin	VA	upstream of Roanoke logperch suitable habitat, one of numerous project crossings of Teels Creek
Teels Creek	261.0	Franklin	VA	upstream of Roanoke logperch suitable habitat, one of numerous project crossings of Teels Creek
Teels Creek	261.8	Franklin	VA	upstream of Roanoke logperch suitable habitat, one of numerous project crossings of Teels Creek
Teels Creek	262.3	Franklin	VA	Roanoke logperch suitable habitat, one of numerous project crossings of Teels Creek contributing sediment impacts
Little Creek	262.6	Franklin	VA	Roanoke logperch suitable habitat, numerous crossings upstream contributing sediment impacts
Little Creek	263.3	Franklin	VA	Roanoke logperch suitable habitat, non- listed mussels present, numerous crossings upstream contributing sediment impacts
Maggodee Creek	269.4	Franklin	VA	Roanoke logperch suitable habitat
Blackwater River	269.7	Franklin	VA	Roanoke logperch present, non-listed mussels present
UNT to Jacks Creek	278.8	Franklin	VA	orangefin madtom
Turkey Creek	280.5	Franklin	VA	orangefin madtom
Strawfield Creek	282.3	Franklin	VA	orangefin madtom
Parrot Branch	282.9	Franklin	VA	orangefin madtom
Jonnikin Creek	284.4	Pittsylvania	VA	orangefin madtom
UNT to Rocky Creek Pigg River	287.1 289.1	Pittsylvania Pittsylvania	VA VA	orangefin madtom Roanoke logperch present, orangefin madtom, mussels present including
Harpen Creek	289.9	Pittsylvania	VA	yellow lampmussel (VA threatened) Roanoke logperch suitable habitat,
Harpen Creek	292.0	Pittsylvania	VA	orangefin madtom orangefin madtom
	1			•
DATE DATE DATE DATE	Mo	ountain		ENVIRONMENTAL DETAIL
APP'D DATE 08/11/17 SCALE N.T.S. SHEET 1 0F 1 JOB NO.				STREAM CROSSINGS PROPOSED FOR BARE ROOT SEEDING PLANTINGS
project id: MVP — VA PORTION	DESIGN	ENGINEERI	_ <u>_</u>	AWING NO. REV. MVP-ES11.9 0

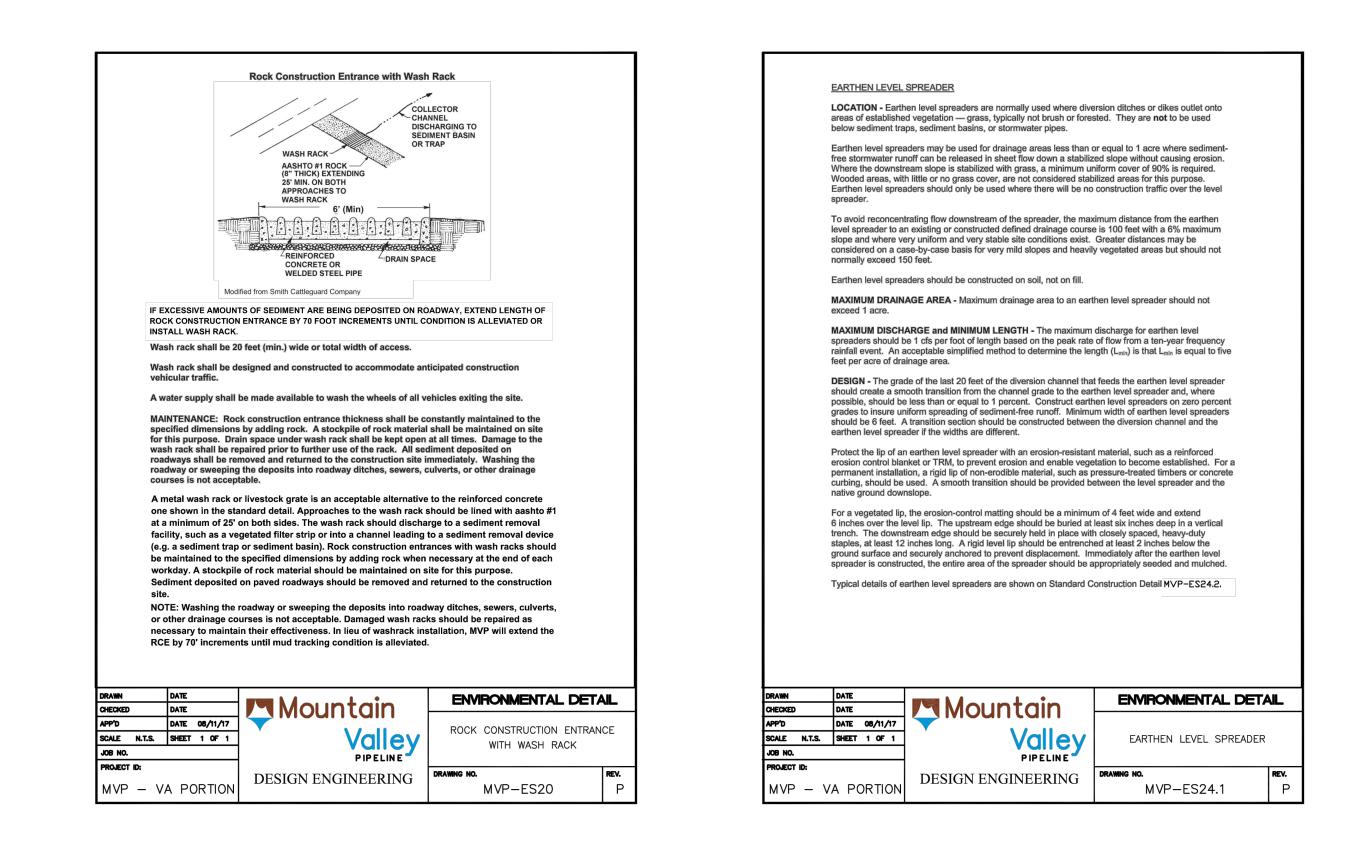
Scientific Name	mixes within the Jefferson National Common Name	Growth Habit	pH Preference
Scientific Name	Non-native Species for Temporary Erosion C		pri Fielelence
Lolium perenne subsp. multiflorum	Italian ryegrass; Annual ryegrass	Graminoid	5.0-7.9
Urochloa ramosa (Panicum ramosu		Graminoid	5.5-6.9
Secale cereale	Cereal rye	Graminoid	5.2-8.0
Setaria italica	Foxtail millet	Graminoid	5.3-6.9
	Native – Highly Preferred		
Sorghastrum nutans	Indiangrass	Graminoid	5.0 - 7.8
Tridens flavus	Purpletop	Graminoid	4.5 - 6.5
	Native – Preferred		
Agrostis perennans	Autumn bentgrass; Upland bentgrass	Graminoid	5.5 - 7.5
Dichanthelium clandestinum	Deertongue	Graminoid	4.0 - 7.5
Elymus canadensis	Canada wildrye	Graminoid	5.0 - 7.9
Desmodium canadense	Showy ticktrefoil	Forb	wide tolerance
Heliopsis helianthoides	Oxeye sunflower; Smooth oxeye	Forb	unknown
Lespedeza virginica	Slender bushclover; Slender lespedeza	Forb	acid tolerant
Liatris spicata	Dense blazing star; Spiked gayfeather	Forb	5.6 - 7.5
Senna hebecarpa	Wild senna; American senna	Forb	unknown
	Native – Moderately Preferred		
Panicum virgatum	Switchgrass	Graminoid	4.5-8.0
Chamaecrista fasciculata	Partridge pea	East	
	• ·	Forb	5.5-7.5
Rudbeckia hirta	Blackeyed Susan	Forb	5.5 – 7.5 6.0 – 7.0
	• ·		
Rudbeckia hirta	Blackeyed Susan		6.0 - 7.0
Rudbeckia hirta	• ·	Forb	6.0-7.0 TAL DETAIL
Rudbeckia hirta ANN DATE EckED DATE PD DATE	Blackeyed Susan	Forb ENVIRONMEN US FOREST	6.0-7.0 TAL DETAIL SERVICE
Rudbeckia hirta	Blackeyed Susan	Forb	6.0-7.0 TAL DETAIL SERVICE REST) LANDS
Rudbeckia hirta AWN DATE ECKED DATE PD DATE PD DATE PD DATE PL N.T.S. SHEET 1 OF 1	Blackeyed Susan	ENVIRONMEN US FOREST (NATIONAL FOR HYDROSES	6.0-7.0 TAL DETAIL SERVICE REST) LANDS ED MIX
Rudbeckia hirta AWN DATE ECKED DATE PD DATE PD DATE PD DATE P1 DATE P3 N.T.S. SHEET 1 B NO.	Blackeyed Susan	Forb ENVIRONMEN US FOREST (NATIONAL FOR	6.0-7.0 TAL DETAIL SERVICE REST) LANDS ED MIX

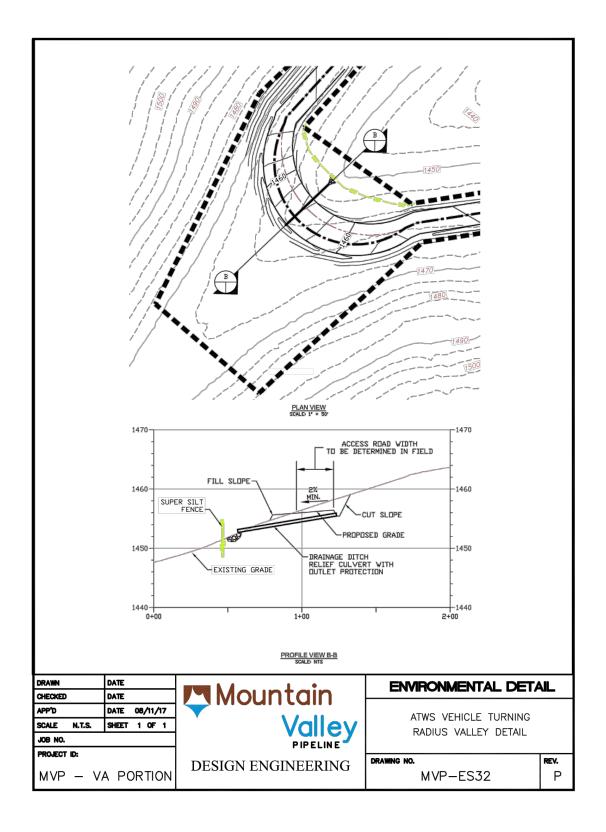

Nan	ne		Ph preference	Wetland Indicator Status
	nual Ryegrass enne var. ital	(Lolium Multiflorum (L. icum))	5.0-7.9	NI/moderate
Ger	rman/Foxtail	Millet (Setaria italica)	5.3-6.9	FACU
Cer	real Rye (Seco	ale cereale)	5.2-8.0	NI/damp
(in		(Panicum ramosum) A & south; possibly ok	5.5-6.9	FACU
2): APF 3): APF	PLY WHENEVER EF	OF THE ABOVE LISTED SPECIES S ROSION CONTROL IS NEEDED OU WITH PERMANENT EROSION CON RMANENT SEEDING WITH WILDLIF	ITSIDE OF NORMA	D L (PERMANENT) SEEDING SEASONS
1): A M 2): APF 3): APF 4): APF	PLY WHENEVER EF PLY CONCURRENT PLY PRIOR TO PE	ROSION CONTROL IS NEEDED OU WITH PERMANENT EROSION CON RMANENT SEEDING WITH WILDLIF	ITSIDE OF NORMA NTROL TE MIXES	
1): A M 2): APF 3): APF 4): APF 4): APF <u>4): APF 5 E N.T.S.</u>	PLY WHENEVER EF	ROSION CONTROL IS NEEDED OU WITH PERMANENT EROSION CON RMANENT SEEDING WITH WILDLIF	ITSIDE OF NORMA NTROL TE MIXES	L (PERMANENT) SEEDING SEASONS
1): A M 2): APF 3): APF 4): APF 4): APF	DATE DATE DATE DATE DATE DATE DATE	ROSION CONTROL IS NEEDED OU WITH PERMANENT EROSION CON RMANENT SEEDING WITH WILDLIF		(PERMANENT) SEEDING SEASONS ENVIRONMENTAL DETAIL US FOREST SERVICE (NATIONAL FOREST) LANDS ORARY EROSION CONTROL SPEC

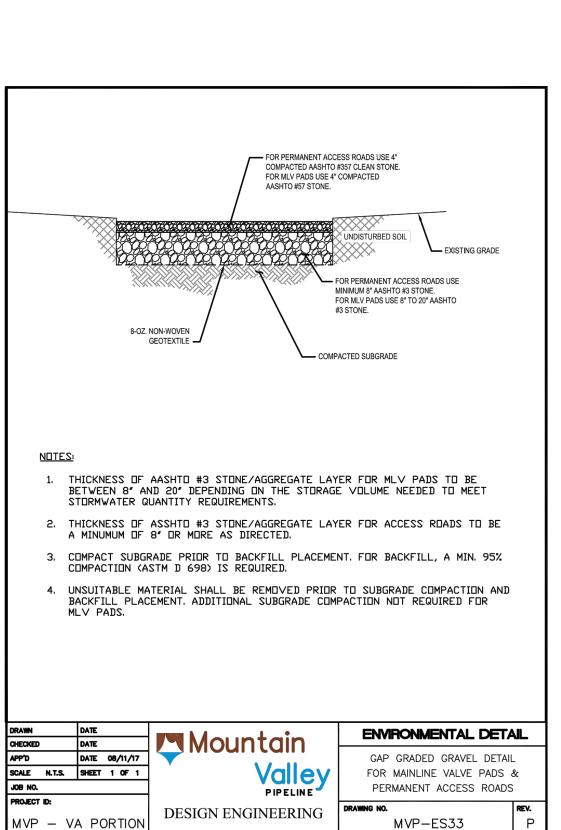

Scientific Name	Common Name	Growth Habit	pH Preference
Upland /	Areas - Non-native Species for Erosion	Control	
Lolium perenne subsp. multiflorum	Italian ryegrass; Annual ryegrass	Graminoid	5.0 - 7.9
Urochloa ramosa (Panicum ramosum)	Browntop millett	Graminoid	5.5 - 6.9
Secale cereale	Cereal rye	Graminoid	5.2 - 8.0
Setaria italica	Foxtail millet	Graminoid	5.3 - 6.9
	Upland Areas - Native Species		
Chasmanthium laxumª	Slender woodoats	Graminoid	4.5 - 7.0
Eragrostis spectabilisª	Purple lovegrass	Graminoid	4.0 - 7.5
Panicum virgatum	Switchgrass	Graminoid	4.5 - 8.0
Sorghastrum nutans	Indiangrass	Graminoid	5.0 - 7.8
Tridens flavusª	Purpletop	Graminoid	4.5 - 6.5
Apocynum cannabinumª	Indian hemp	Forb	4.5 - 7.0
Chamaecrista fasciculata	Partridge pea	Forb	5.5 - 7.5
Desmodium canadense	Showy ticktrefoil	Forb	wide tolerance
Desmodium paniculatum	Panicledleaf ticktrefoil	Forb	6.0 - 7.0
Elymus virginicus ^b	Virginia wildrye	Graminoid	5.0 - 7.4
Geum canadenseª	White avens	Forb	4.5 – 7.5
Heliopsis helianthoides	Oxeye sunflower; Smooth oxeye	Forb	unknown
Monarda fistulosa ^b	Wild bergamot	Forb	6.0 - 8.0
Pycnanthemum spp.b	Mountain mint	Forb	unknown
Rubus allegheniensis ^a	Common blackberry; Allegheny blackberry	Forb/ Subshrub	4.6 - 7.5
Rudbeckia hirta	Blackeyed Susan	Forb	6.0 - 7.0
Solidago canadensisª	Canada goldenrod	Forb	4.8 - 7.5
Tradescantia virginianaª	Virginia spiderwort	Forb	4.0 - 8.0

DRAWN	DATE			
CHECKED	DATE	Mountain	ENVIRONMENTAL DETA	NL
APP'D SCALE N.T.S. JOB NO.	DATE 08/11/17 SHEET 1 OF 1	Valley	US FOREST SERVICE (NATIONAL FOREST) LANDS UPLAND AREA SEED MIX	
project id: MVP — V	A PORTION	PIPELINE DESIGN ENGINEERING	DRAWING NO. MVP-ES12.1	REV.

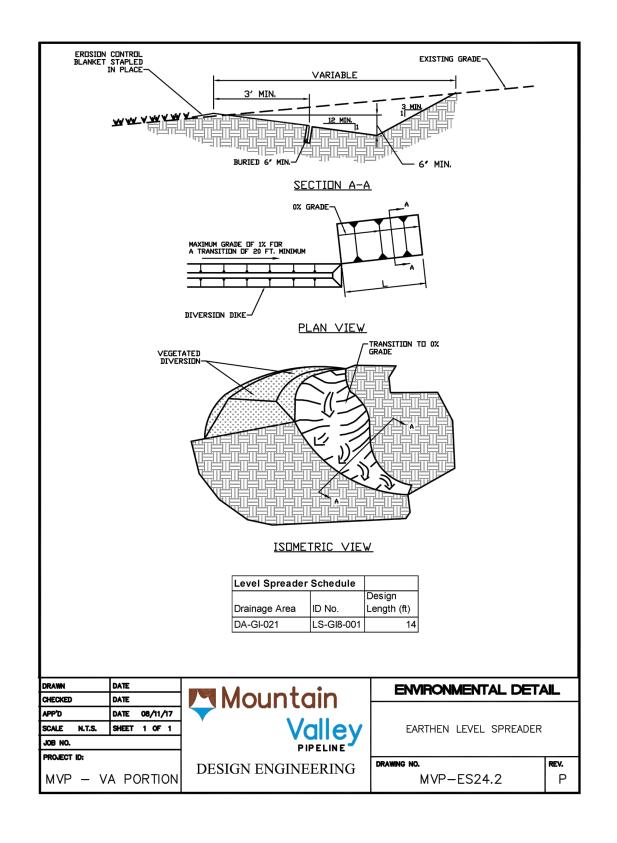
	Riparian Seed Mix Scientific N
-	Oolentanio I
	Lolium perenne subsp. n
	Urochloa ramosa (Panic
	Secale cereale
	Setaria italica
	Agrostis perennans
	Elymus virginicus
	Sorghastrum nutans
	Asclepias incarnata
	Chamaecrista fasciculata
	Eutrochium fistulosum (E
	fistulosum)
	Eupatorium maculatum
	Eupatorium perfoliatum
	Helenium autumnale
	Senna hebecarpa
	Senna marilandica
	Vernonia noveboracensi

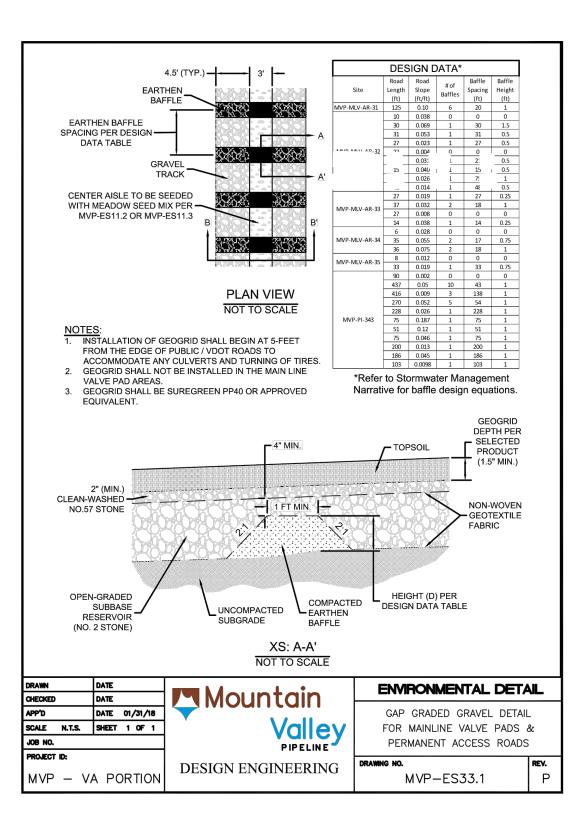

	DATE DATE	Mountain	ENVIRONMENTAL DETA	JL
APP'D	DATE 08/11/17		US FOREST SERVICE	
SCALE N.T.S. JOB NO.	SHEET 1 OF 1		(NATIONAL FOREST) LANDS RIPARIAN SEED MIX	
PROJECT ID:		DESIGN ENGINEERING	DRAWING NO.	REV.
MVP - VA	A PORTION	DESIGN ENGINEERING	MVP-ES12.2	0

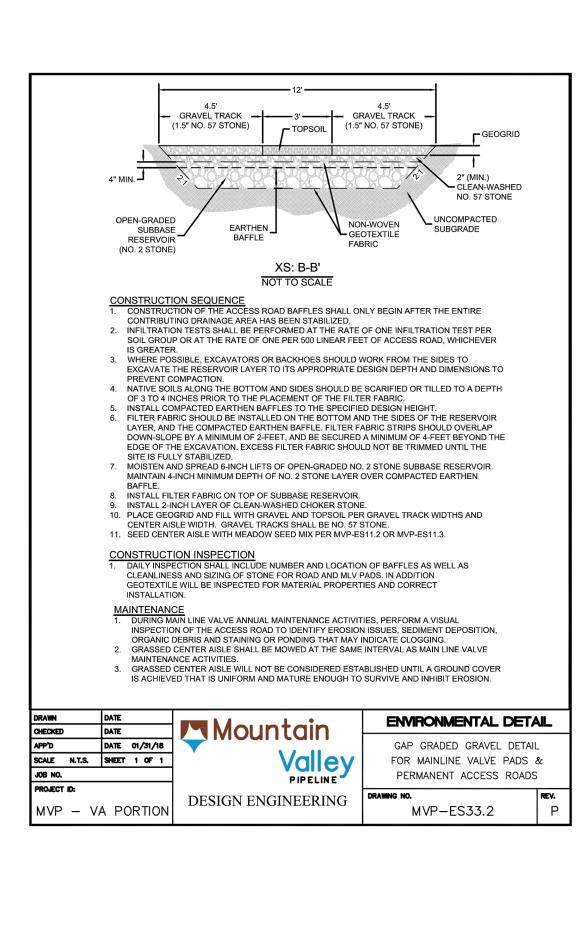


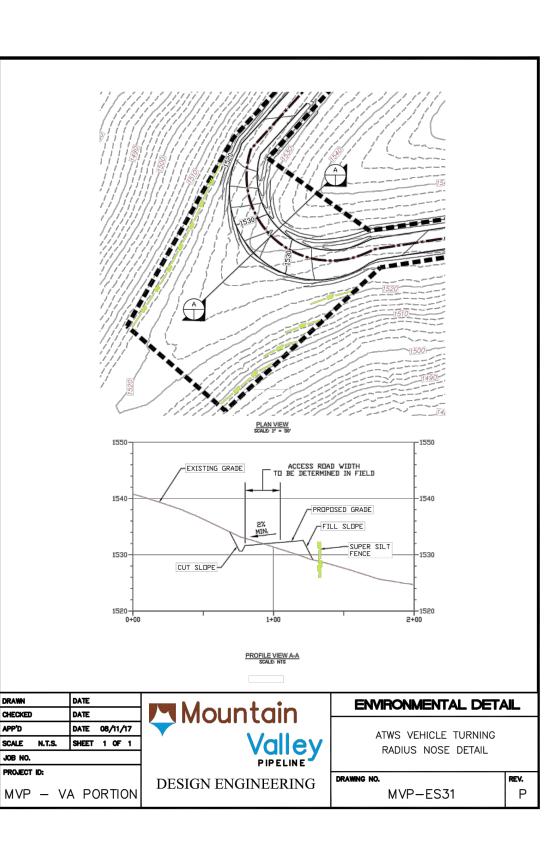


Name	Common Name	Habit	pH Preference
N	Ion-native Species for Erosion Control		
multiflorum	Italian ryegrass; Annual ryegrass	Graminoid	5.0 – 7.9
cum ramosum)	Browntop millett	Graminoid	5.5 – 6.9
	Cereal rye	Graminoid	5.2 - 8.0
	Foxtail millet	Graminoid	5.3 – 6.9
	Native Species		
	Autumn bentgrass; upland bentgrass	Graminoid	5.5 - 7.5
	Virginia Wildrye	Graminoid	5.0 - 7.4
ł	Indiangrass	Graminoid	5.0 - 7.8
ł	Swamp milkweed	Forb	5.0 - 8.0
ta	Partridge pea	Forb	5.5 - 7.5
(Eupatorium	Joe pye weed	Forb	4.5 – 7.0
	Spotted joe pye weed	Forb	5.5 - 7.0
1	Boneset	Forb	unknown
	Common sneezeweed	Forb	4.0 - 7.5
	Wild senna; American senna	Forb	unknown
1	Maryland senna	Forb / Subshrub	4.0 - 7.0
sis	New York ironweed	Forb	4.5 -8.0

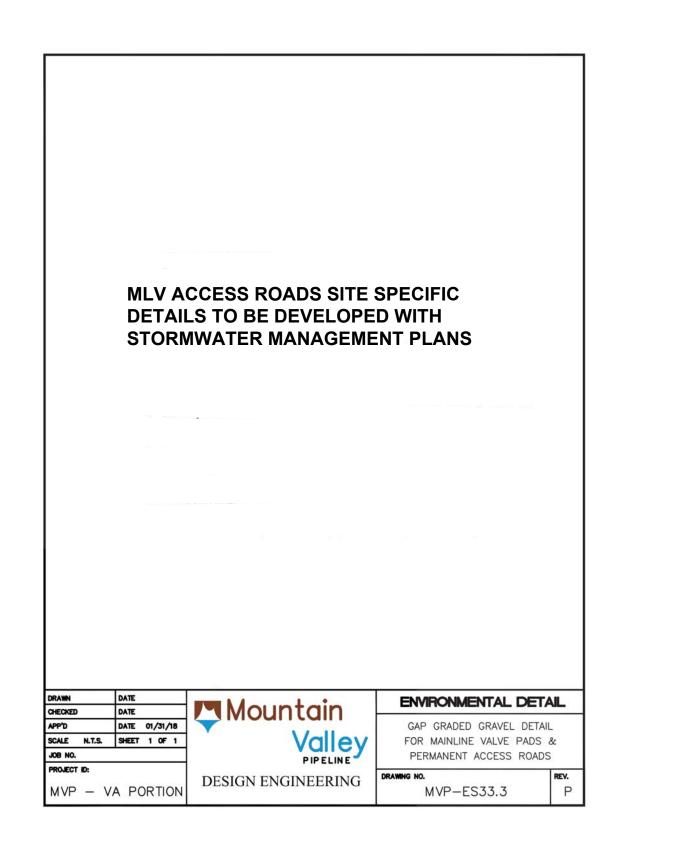

01/31/18 KAL RE DW ADDED DETAILS FOR ROADS AND PADS	01/26/18 KAL RE DW ADDRESS VADEQ COMMENTS	01/08/18 KAL RE DW ADDRESS VADEQ COMMENTS	11/28/17 KAL RE DW ADDRESS VADEQ COMMENTS	11/01/17 KAL RE DW ADDRESS VADEQ COMMENTS	08/18/17 KAL RE DW ADDRESS VADEQ COMMENTS	DATE: DWN.: CHKD.: APPD.: DATE: DESCRIPTION:	REVISIONS:	
7 0	9	5 0	4	3	2	NO.:		
Consisting and sediment of the series of the series of the sediment control plans and sediment control plans mountain valley PIPELINE PROJECT – H600 LINE MOUNTAIN VALLEY PIPELINE, PLCC 555 SOUTHPOINTE BOULEVARD, SUITE 200 555 SOUTHPOINTE BOULEVARD, SUITE 200 CANONSBURG, PA 15317								
c	Complex world CLEAR SOLUTIONS* 661 ANDERSEN DRIVE FOSTER PLAZA 7							
	F	פדדוי	SBUF			A 15	5220	
GENERAL DETAILS SET								
	DAVID J. WALLNER Lic. No. 0402057593							
		Transformation COLUMN	Lic.	No. 0	40205 2005	57593	NIA 47 Mar	



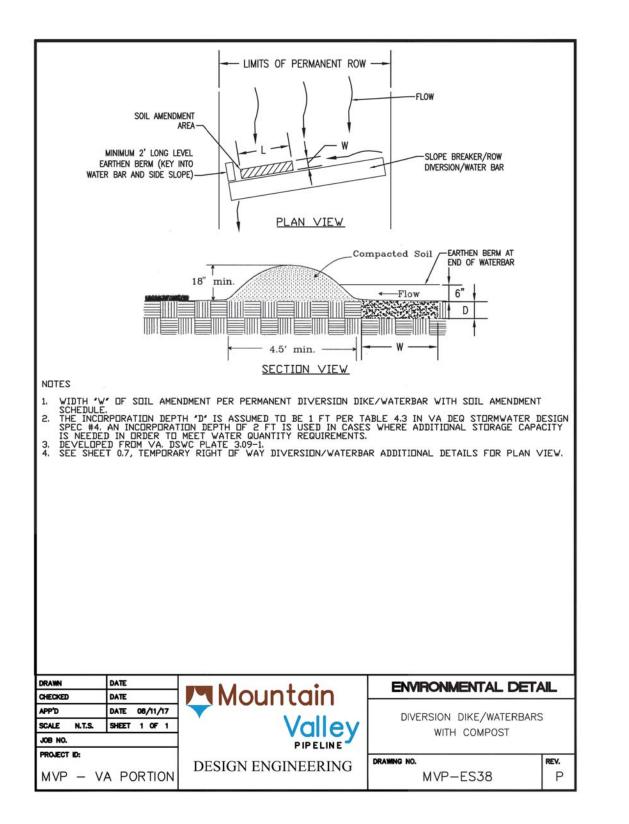


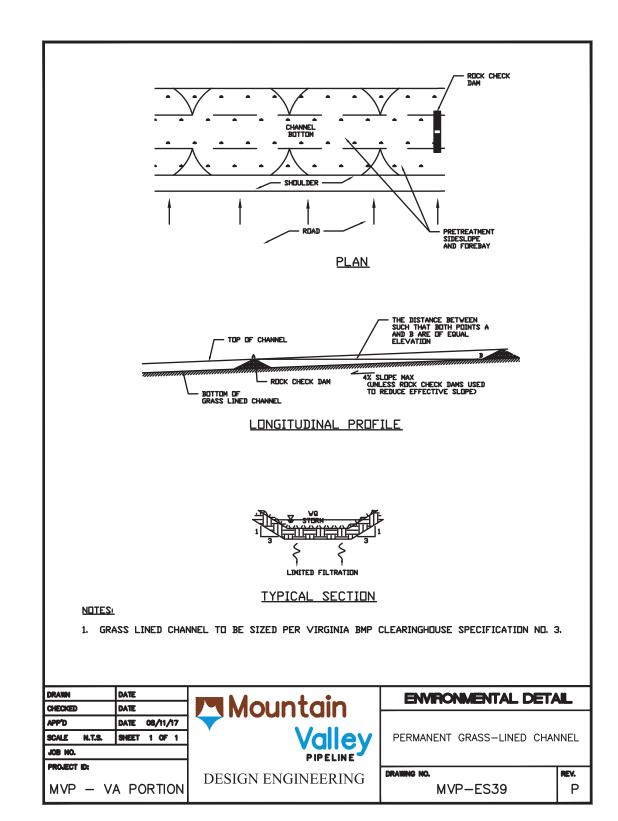


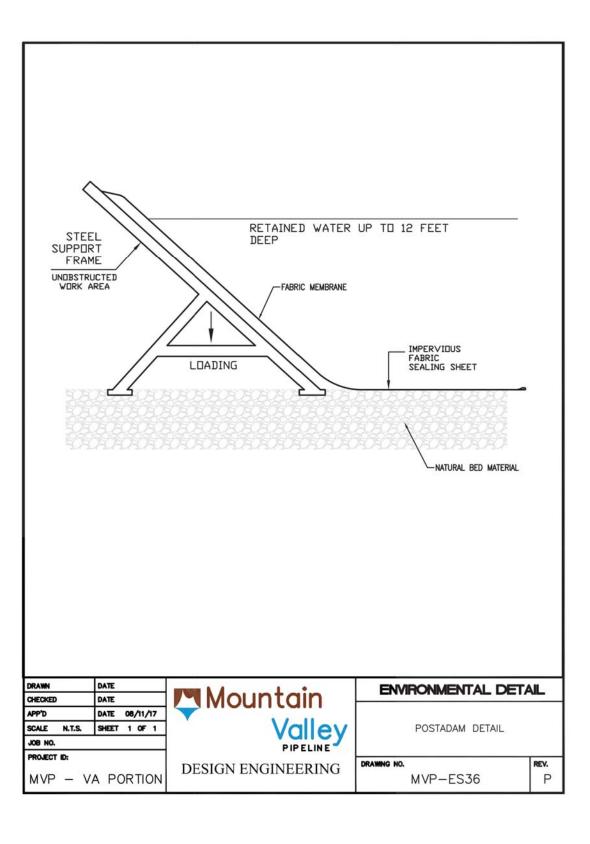
tain	ENVIRONMENTAL DETA	IL				
Valley	GAP GRADED GRAVEL DETAIL FOR MAINLINE VALVE PADS &					
PIPELINE	PERMANENT ACCESS ROADS					
INEERING	DRAWING NO.	REV.				
	MVP-ES33	Р				

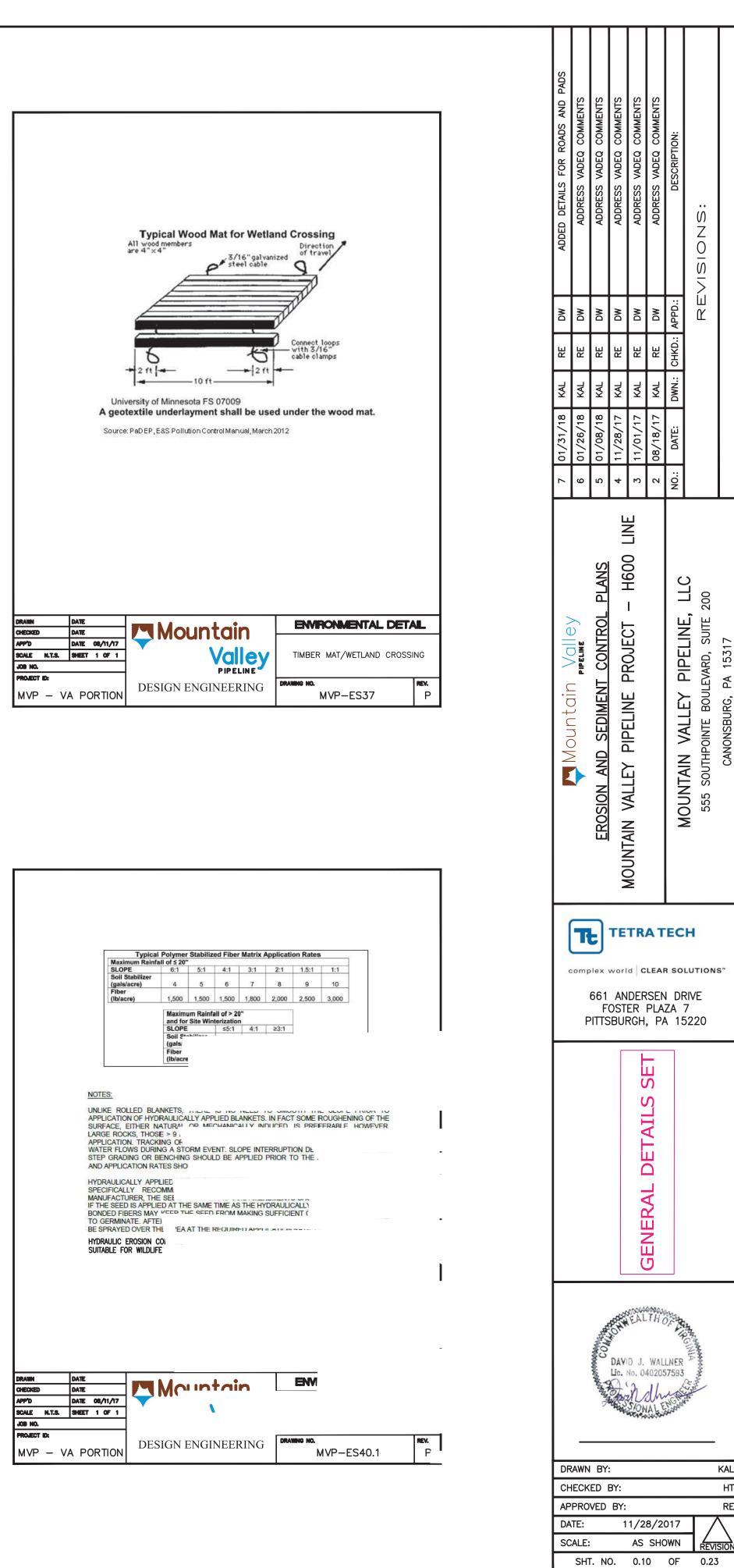

CHECKED

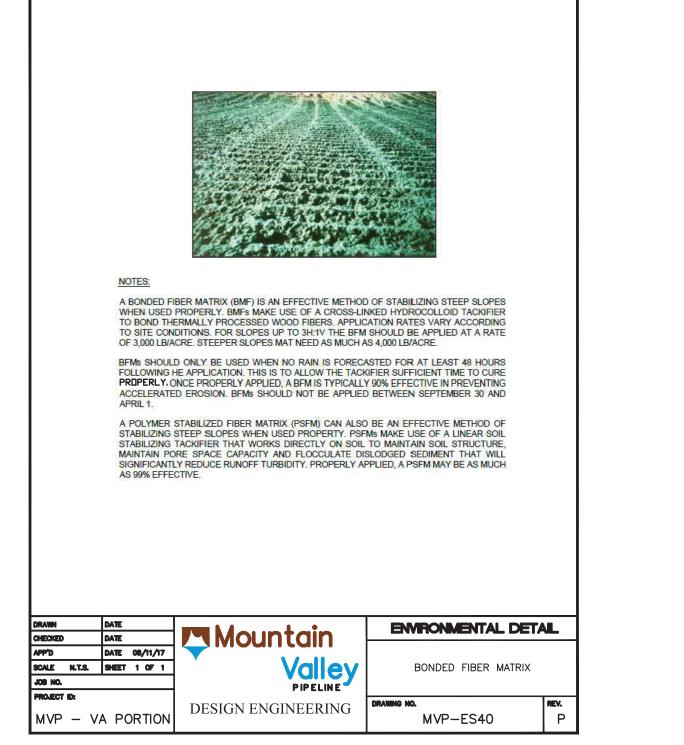

JOB NO.

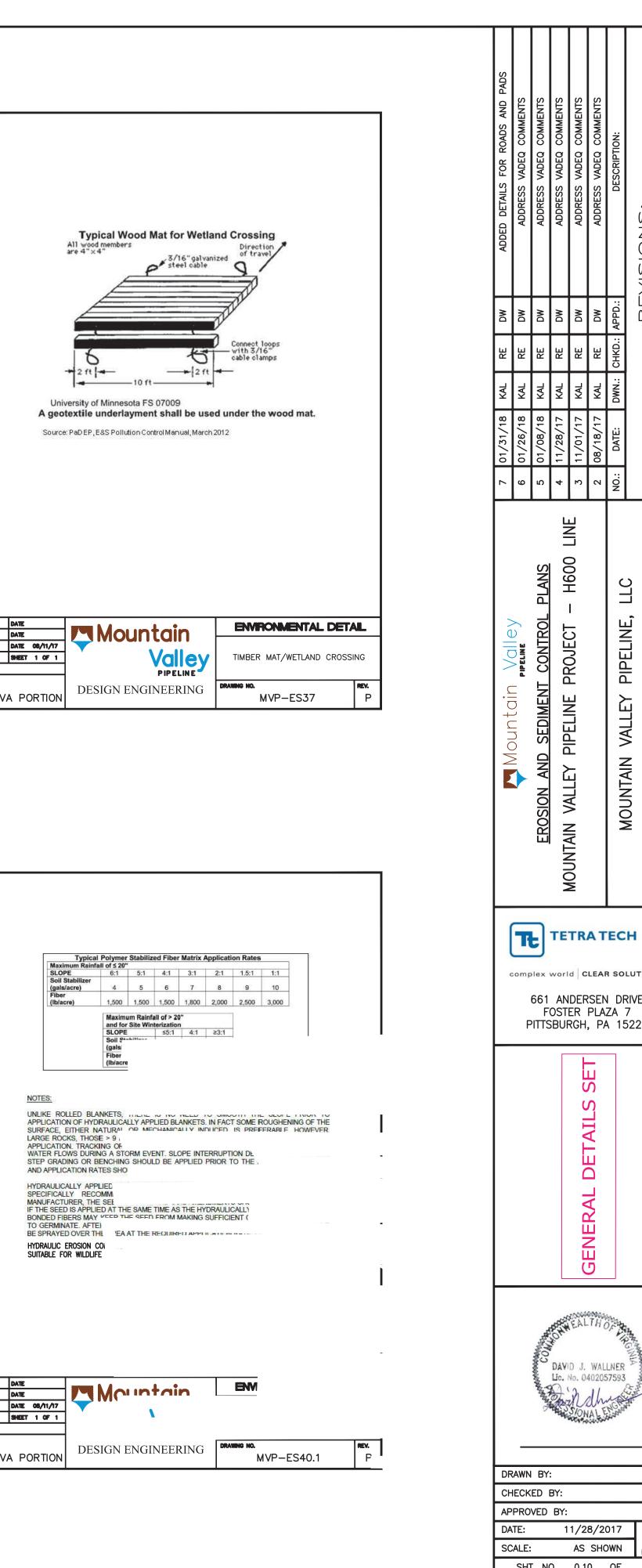

PROJECT ID:

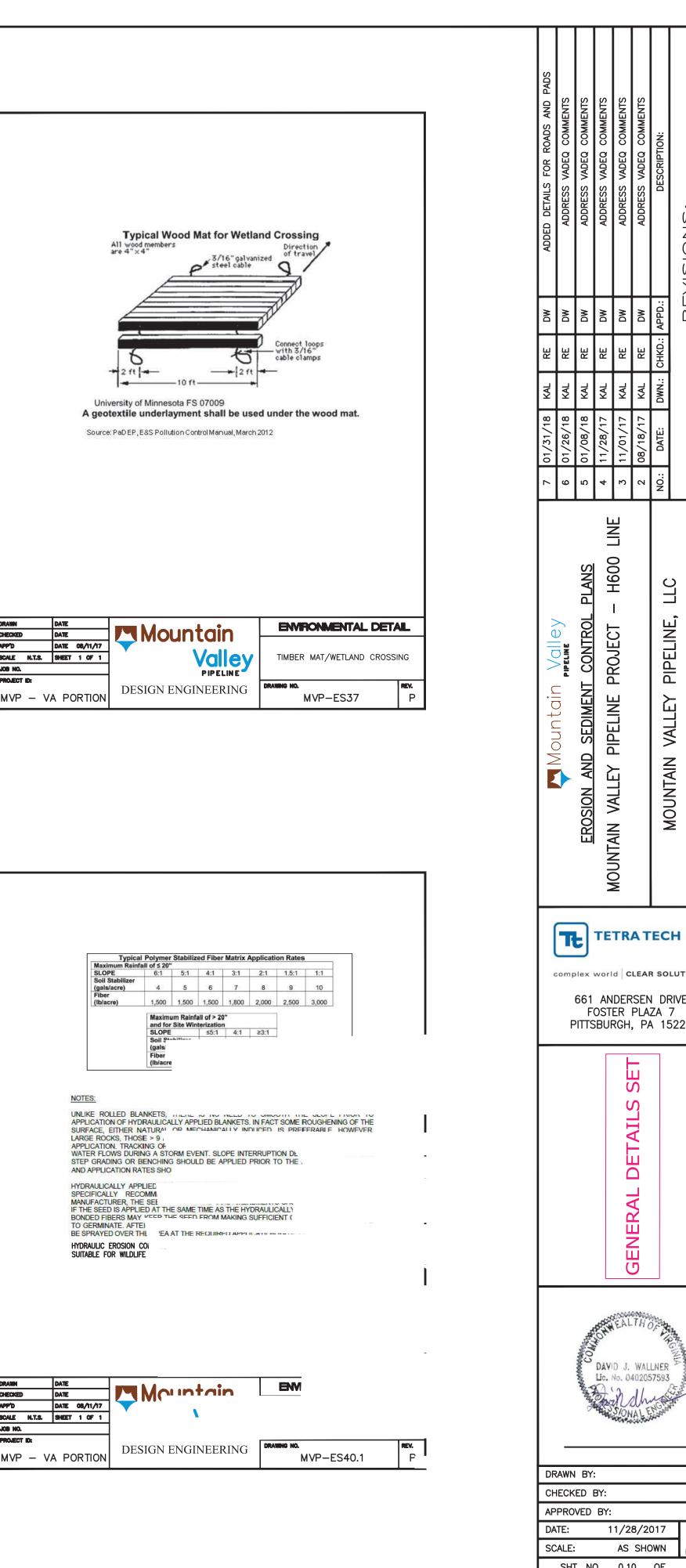

APP'D

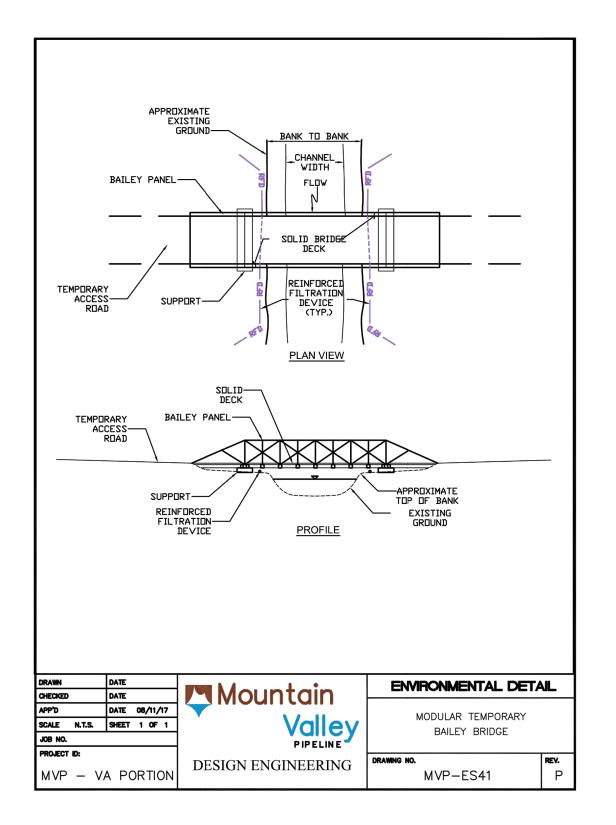

ADDED DETAILS FOR ROADS AND PADS ADDRESS VADEQ COMMENTS	ADDRESS VADEQ COMMENTS	ADDRESS VADEQ COMMENTS ADDRESS VADEQ COMMENTS	ADDRESS VADEQ COMMENTS	DESCRIPTION:	REVISIONS:		
8 03/21/18 KAL RE DW 6 01/26/18 KAL RE DW	KAL RE	4 11/28/1/ KAL KE UW 3 11/01/17 KAL RE DW	2 08/18/17 KAL RE DW	NO.: DATE: DWN.: CHKD.: APPD.:	RE		
Mountain Valley EROSION AND SEDIMENT CONTROL PLANS MOUNTAIN VALLEY PIPELINE PROJECT – H600 LINE MOUNTAIN VALLEY PIPELINE PROJECT – H600 LINE S55 SOUTHPOINTE BOULEVARD, SUITE 200 555 SOUTHPOINTE BOULEVARD, SUITE 200 CANONSBURG, PA 15317							
	Complex world CLEAR SOLUTIONS" 661 ANDERSEN DRIVE FOSTER PLAZA 7 PITTSBURGH, PA 15220						
GENERAL DETAILS SET							
DAVID J. WALLNER Lic. No. 0402057593							
and thus							

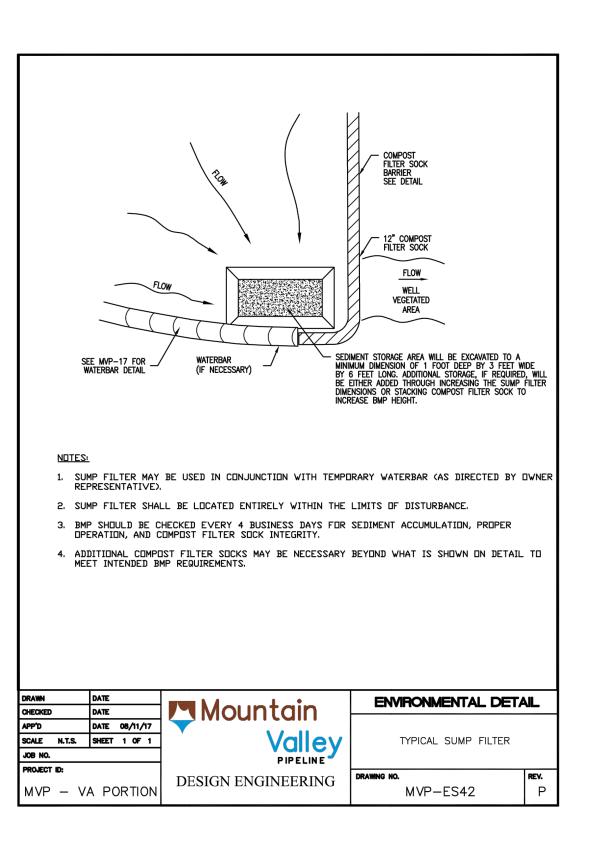


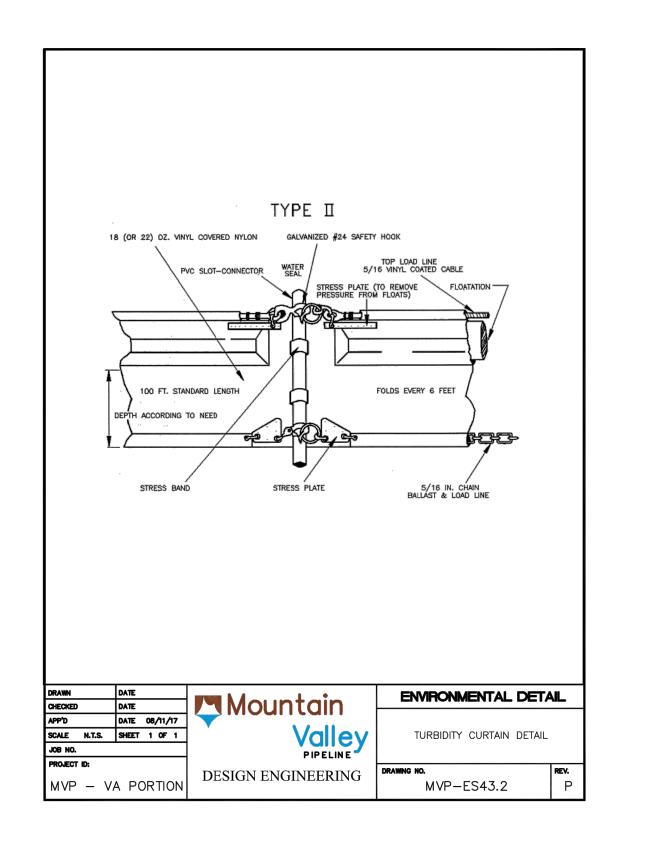


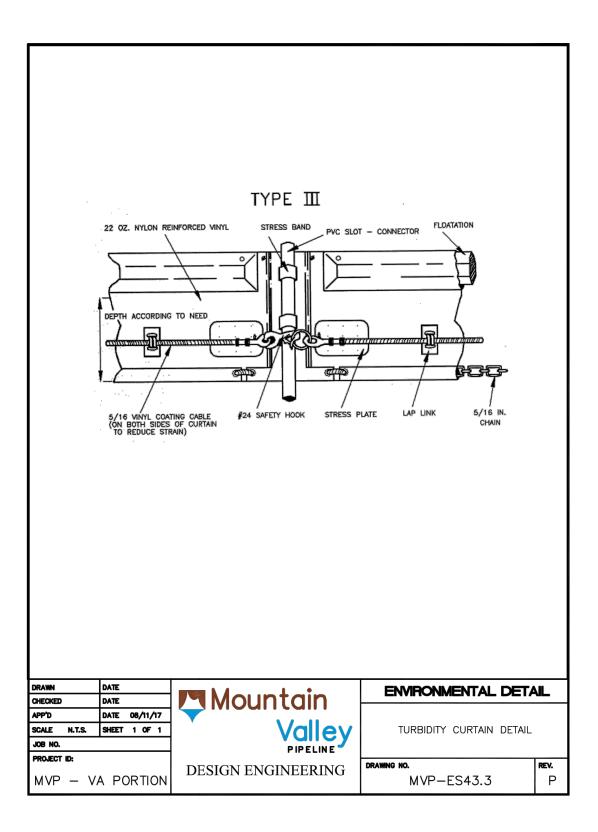


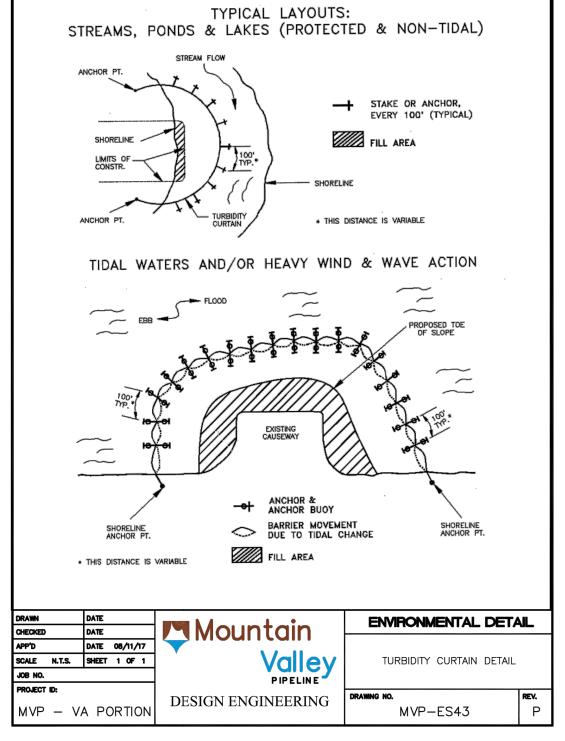


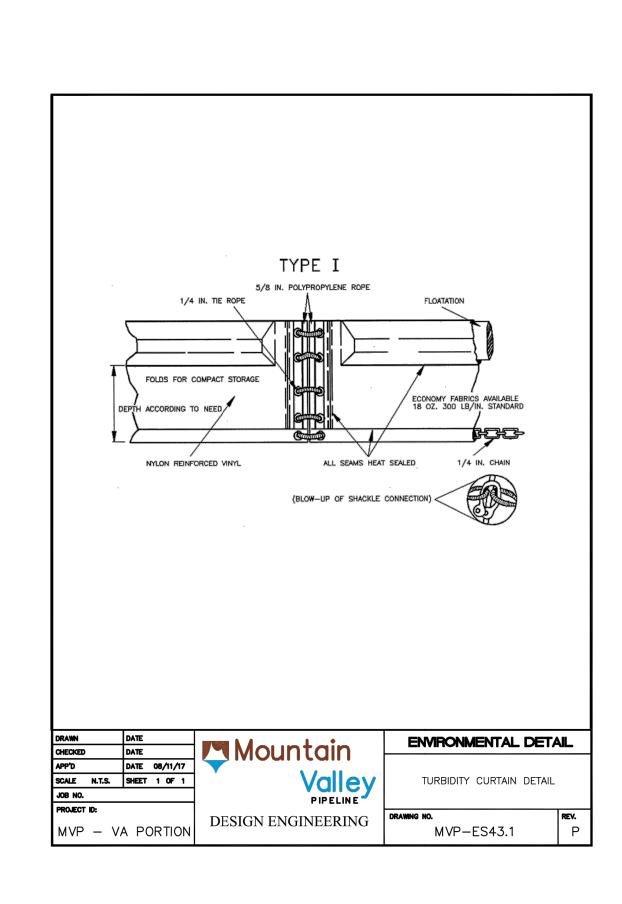


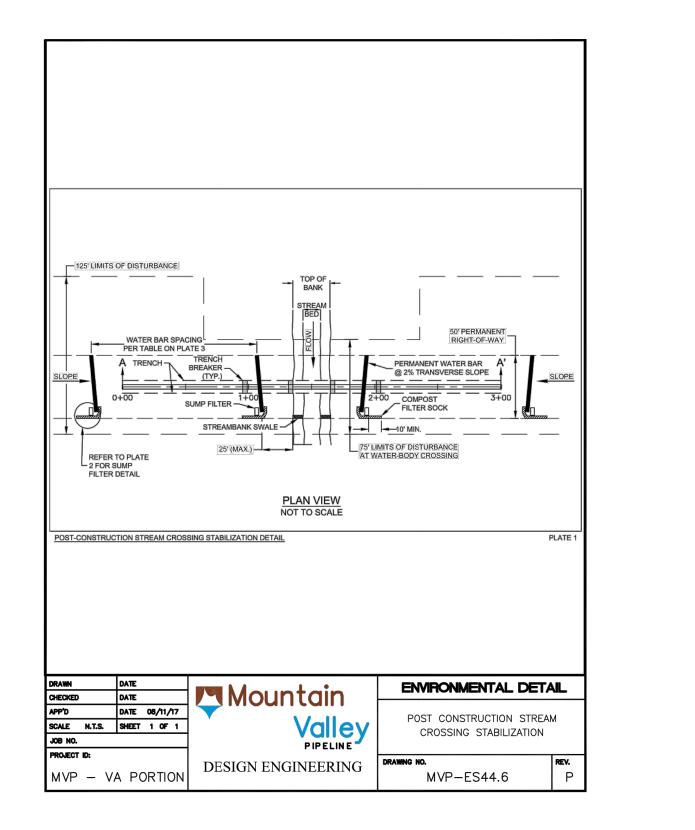

KAL

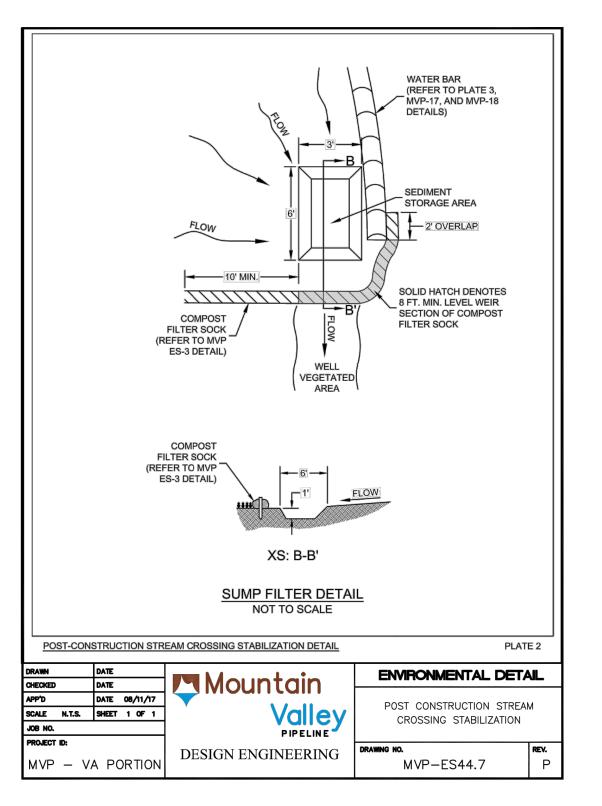

HT

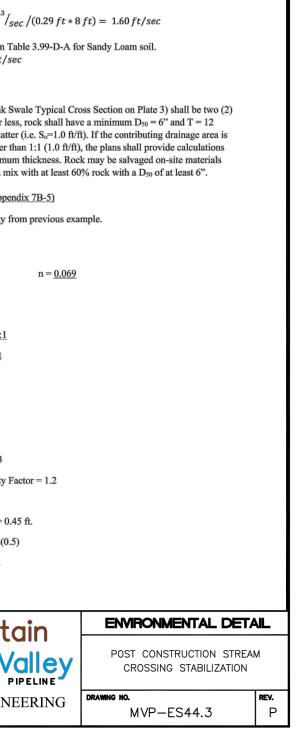

RE

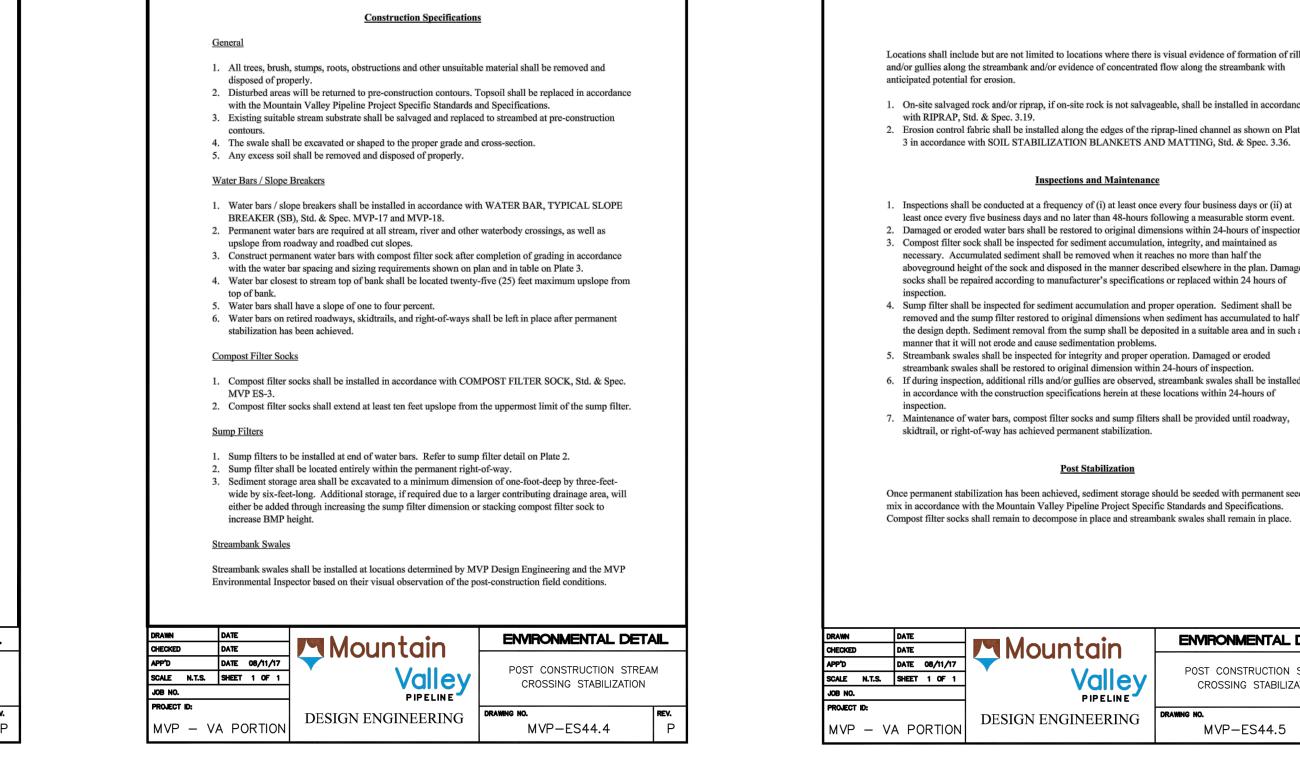


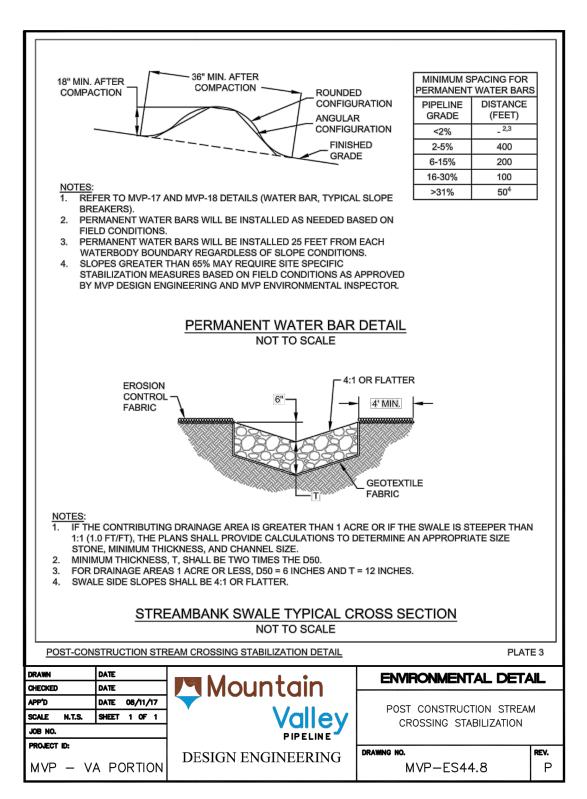


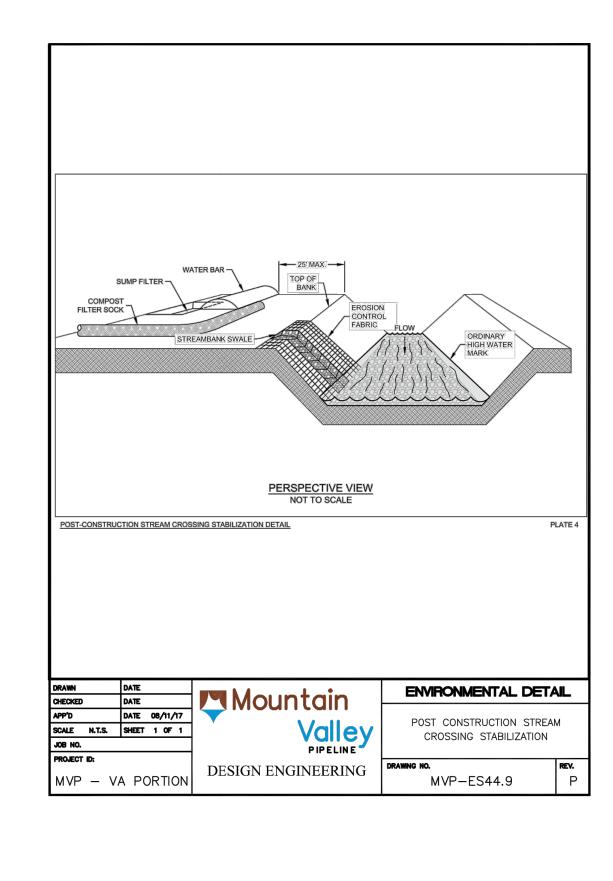



POST-CONSTRUCTION STREAM CROSSING STABILIZATION FOR M.V.P.							
		Definition					
lar		Id sediment control measures to limit the format g the edge of a stream, river and other waterboot.	-				
		Purpose					
		potential along the edge of stream, river or othe nanent right-of-way of a pipeline.	r water body as a result of the change				
		Conditions Where Practice Appl	ies				
Aŗ	pplicable to stream,	river or other water body crossings within the r	atural gas pipeline right-of-way.				
		Planning Considerations					
rec	Permanent water bars with compost filter socks and sump filters with discretionary streambank swales are required at all stream, river and other waterbody crossings in accordance with the spacing and sizing requirements shown on Plates 1-4						
the de ex	Based on visual observation of the post-construction field conditions by MVP Design Engineering and the MVP Environmental Inspector, the necessity for and location of streambank swales will be determined. Considerations will include but are not limited to locations where there is visual evidence of existing (or formation of) rills and/or gullies along the streambank and/or concentrated flow along the streambank with anticipated potential for erosion.						
rec	quired depth. Plans	iodically removed from the sump filter and con s shall detail how excavated sediment is to be di an approved off-site location.					
DRAWN	DATE	Mountain	ENVIRONMENTAL D	ETAIL			
CHECKED APP'D	DATE DATE 08/11/17	Mountain 🔼					
	SHEET 1 OF 1	Valley	POST CONSTRUCTION S				
SCALE N.T.S.			CROSSING STABILIZAT	ION			
SCALE N.T.S. JOB NO.	-						
		PIPELINE DESIGN ENGINEERING		REV.			


		Design Criteria								
As de	As detailed on Plates 1-3, design criteria per specific erosion and sediment control measures include:									
Water	Water Bars / Slope Breakers									
crossi	Permanent water bars will be installed twenty-five (25) feet from edge of stream, river or other waterbody crossing as shown on Plate 2. Slopes greater than 65% may require site specific stabilization measures based on field conditions as approved by MVP Design Engineering and MVP Environmental Inspector.									
Excav	vation of Sump Fil	ter								
	Side slopes of sump filter should be no steeper than 1:1. The minimum depth of excavation should be one (1) foot.									
Comp	oost Filter Sock									
veloci	ity over the compo	Il function as a pre-treatment for sediment ren st filter sock size conservatively assumes that nce and that no flow is occurring through the	t the sump filter is full of sediment							
veloci	The outfall velocity from this BMP should be non-erosive for the 2-year design storm. The 2-year velocities shall meet the criteria in Table 3.99-D-A. Due to the anticipated small size of contributing drainage area, the Rational Method shall be used to calculate discharge:									
		Q = CiA								
where	where, $Q = discharge (ft^3/sec)$ i = Rainfall intensity (inches/hour) A = Contributing drainage area (acres)									
Disch	Discharge over the compost filter sock is calculated using the broad-crested weir equation:									
		$Q = C_d L H^{3/2}$								
where	where, $Q = Discharge \text{ over weir } (ft^3/sec)$ $C_d = Weir Coefficient$ L = Length of weir crest (ft) H = Overtopping depth (ft)									
The v	elocity over the w	eir is calculated using the following equation:	:							
		v = Q/A								
	ATE ATE	Mountain	ENVIRONMENTAL DETAIL							
	ATE 08/11/17 HEET 1 0F 1	Valley	POST CONSTRUCTION STREAM							
OB NO. ROJECT ID:		PIPELINE	CROSSING STABILIZATION							
MVP – VA	PORTION	DESIGN ENGINEERING	DRAWING NO. REV. MVP-ES44.1 P							


ADDED DETAILS FOR ROADS AND PADS	ADDRESS VADEQ COMMENTS	DESCRIPTION:	REVISIONS:					
DW	DW	DW	DW	DW	DW	PD.:	て て し て	
RE	RE	RE	RE	RE	RE	HKD.: AF		
KAL	KAL	KAL	KAL	KAL	KAL	DWN.: CHKD.: APPD.:		
	01/26/18	1/08/18	1/28/17	11/01/17	08/18/17			
01/31/18	01/26	01/08	11/28	11/01	08/15	: DATE:		
7	9	5	4	3	2	NO.:		
MOUNTAIN VALLEY PIPELINE PROJECT – H600 LINE MOUNTAIN VALLEY PIPELINE PROJECT – H600 LINE MOUNTAIN VALLEY PIPELINE, LLC 555 SOUTHPOINTE BOULEVARD, SUITE 200 555 SOUTHPOINTE BOULEVARD, SUITE 200 CANONSBURG, PA 15317								CANONSBURG, PA 15317
Complex world CLEAR SOLUTIONS" 661 ANDERSEN DRIVE FOSTER PLAZA 7 PITTSBURGH, PA 15220								S≥
GENERAL DETAILS SET								
DAVID J. WALLNER Lic. No. 0402057593								
		BY: ED						KAL HT
	PRO TE:	VED		1/2	8/2	017		RE
_		_	_				-1 /	
SC	ALE: SH1		Э.	AS 0.1		OWN	REVI 0.23	


				JOB NO.		
	CROSSING STABILIZ	ZATION				
	POST CONSTRUCTION			SCALE N.T.S		▼
🎮 Mountain 🛛 -			1	CHECKED APP'D	DATE DATE 08/11/17	Moun
Mountain	ENVIRONMENTAL	. DETAIL		DRAWN	DATE	Moup
T			4			
he velocity over the compost filter sock:					-	*
$H = (Q/(C_D * L))^{\frac{2}{3}} = (3.66 \ ft^3/sec/(2.66))^{\frac{2}{3}} = (3.66 \ ft^3/sec$	$.99 * 8 ft))^{2/3} = 0.29 ft$					ssumed D50 is appropria
g the weir equation to solve for overtopping de				1	D50 Compu	ted (0.45) < D50 Assume
	<i>,</i> .				D50 = 0.001	* 6.813 / (0.5% * 0.931.5)
he discharge: Q = CiA = 0.9 * 4.07 inches/hour * 1	$acre = 3.66 \ ft^3/sec$			1	D50 = 0.001	$* V_a^3 / (d_{avg}^{0.5} * K_1^{1.5})$
ha disaharras				1		Gravity = 2.65 and Stabi
				1 I		$n^2 14^\circ / \sin^2 41.5^\circ)]^{0.5} = 0.5$
length of 8 feet, in a Sandy Loam soil installed	-					
drainage area in Giles County, an 18-inch diam	neter compost filter sook with an			1	-	$n^2 \Theta / \sin^2 \Phi]^{0.5}$
				1	Side Slope =	$= 4:1$ $\Theta = 14^{\circ}$
				1	$\phi = 41.2^{*}$ (A	ppendix 7E-1)
Plate 5-39, Virginia Erosion and Sediment Co 3rd Ed., 1992.	ontrol Handbook,			1 I	VERIFY AS	SUMED ROCK SIZE
Source: Chapter 5, Engineering Calculations:					ASSUMED	ROCK SIZE - $D50 = 0.5$
one foot has been applied to original table.	r depuis iess mail			1	$A = 0.54 (ft^2)$	
Shales and Hard Pans <u>NOTE</u> : Correction factor value = 0.8 for flow	4.8 w denths less than			1 I		
Cobbles and Shingles	4.4			1 I	$d_n = 0.37$ (ft.	
Coarse Gravel (noncolloidal)	4.8				$S_0 = 1.00$ (ft	(ff) R = 0.18 (ff.)
Alluvial Silts (colloidal)	4.4				Q = 3.66 (cf	P = 3.02 (ft.)
Graded, Silt to Cobbles (colloidal) Alluvial Silts (noncolloidal)	4.4 4.4				CHANNEL DATA	
Graded, Loam to Cobbles (noncolloidal)	4.0			1 I	Solution:	
Stiff Clay (very colloidal)	4.0			1 I	Given: A one-acre d	rainage area in Giles Cou
Fine Gravel	4.0					
Silt Loam (noncolloidal) Ordinary Firm Loam	2.4 2.8				Calculations (from V	DOT Drainage Manual
Sandy Loam (noncolloidal)	2.0				and may contain top	soil, fines, sand, gravel in
Fine Sand (noncolloidal)	2.0					opriate size stone and mi
Soil Types	(ft./sec.)					nks with a slope of 1:1 or acre or if the swale is stee
	Corrected Permissible Velocities				times the D ₅₀ . For dr	(T, as shown on Streamb ainage areas one (1) acre
PERMISSIBLE VELOCITES FOR EA					Streambank Swale	
TABLE 3.99-D-A					Streambank Swale	
$A = Flow$ area over weir (ft^2)					4. Verify that t	$1.60 \ ft/sec < 2.0$
$Q = Discharge over weir (ft^3/sec)$						
v = Velocity(ft/sec)						v = Q/A = 3.66
Q	$=$ Flow area over weir (ft^2)	= Discharge over weir (ft ³ /sec) = Flow area over weir (ft ²)	= Discharge over weir (ft ³ /sec) = Flow area over weir (ft ²)	= Discharge over weir (ft ³ /sec) = Flow area over weir (ft ²)	= Discharge over weir (ft^3/sec) = Flow area over weir (ft^2)	$= Discharge over weir (ft^3/sec)$ $= Flow area over weir (ft^2)$ 4. Verify that the fourth of the



Locations shall include but are not limited to locations where there is visual evidence of formation of rills and/or gullies along the streambank and/or evidence of concentrated flow along the streambank with anticipated potential for erosion.

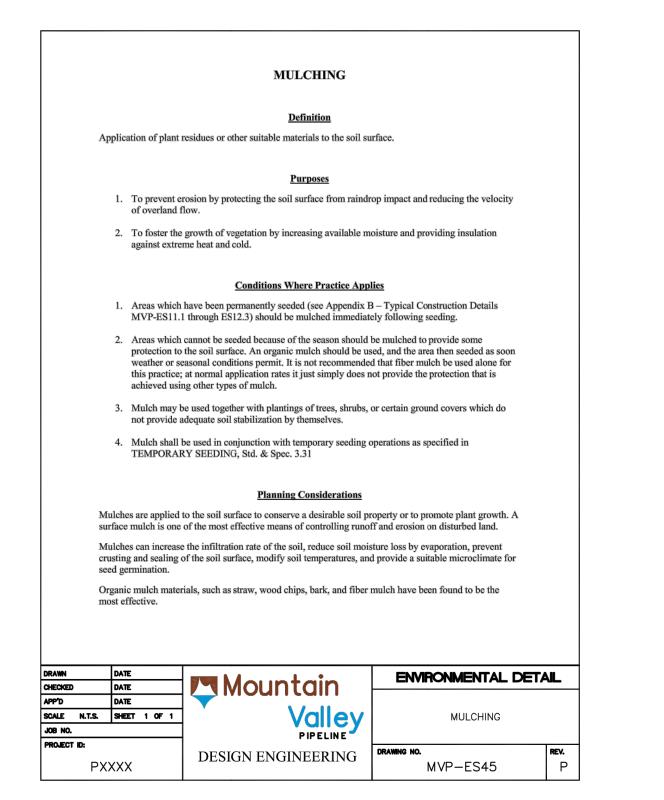
1. On-site salvaged rock and/or riprap, if on-site rock is not salvageable, shall be installed in accordance with RIPRAP, Std. & Spec. 3.19. 2. Erosion control fabric shall be installed along the edges of the riprap-lined channel as shown on Plate

Inspections and Maintenance

1. Inspections shall be conducted at a frequency of (i) at least once every four business days or (ii) at least once every five business days and no later than 48-hours following a measurable storm event. 2. Damaged or eroded water bars shall be restored to original dimensions within 24-hours of inspection. 3. Compost filter sock shall be inspected for sediment accumulation, integrity, and maintained as necessary. Accumulated sediment shall be removed when it reaches no more than half the aboveground height of the sock and disposed in the manner described elsewhere in the plan. Damaged socks shall be repaired according to manufacturer's specifications or replaced within 24 hours of

4. Sump filter shall be inspected for sediment accumulation and proper operation. Sediment shall be removed and the sump filter restored to original dimensions when sediment has accumulated to half the design depth. Sediment removal from the sump shall be deposited in a suitable area and in such a manner that it will not erode and cause sedimentation problems. 5. Streambank swales shall be inspected for integrity and proper operation. Damaged or eroded streambank swales shall be restored to original dimension within 24-hours of inspection.

6. If during inspection, additional rills and/or gullies are observed, streambank swales shall be installed in accordance with the construction specifications herein at these locations within 24-hours of


7. Maintenance of water bars, compost filter socks and sump filters shall be provided until roadway, skidtrail, or right-of-way has achieved permanent stabilization.

Post Stabilization

Once permanent stabilization has been achieved, sediment storage should be seeded with permanent seed mix in accordance with the Mountain Valley Pipeline Project Specific Standards and Specifications. Compost filter socks shall remain to decompose in place and streambank swales shall remain in place.

	Mountain	ENVIRONMENTAL DETA	JL			
08/11/17 1 OF 1		POST CONSTRUCTION STREAM CROSSING STABILIZATION				
RTION	DESIGN ENGINEERING	drawing no. MVP-ES44.5	rev. P			

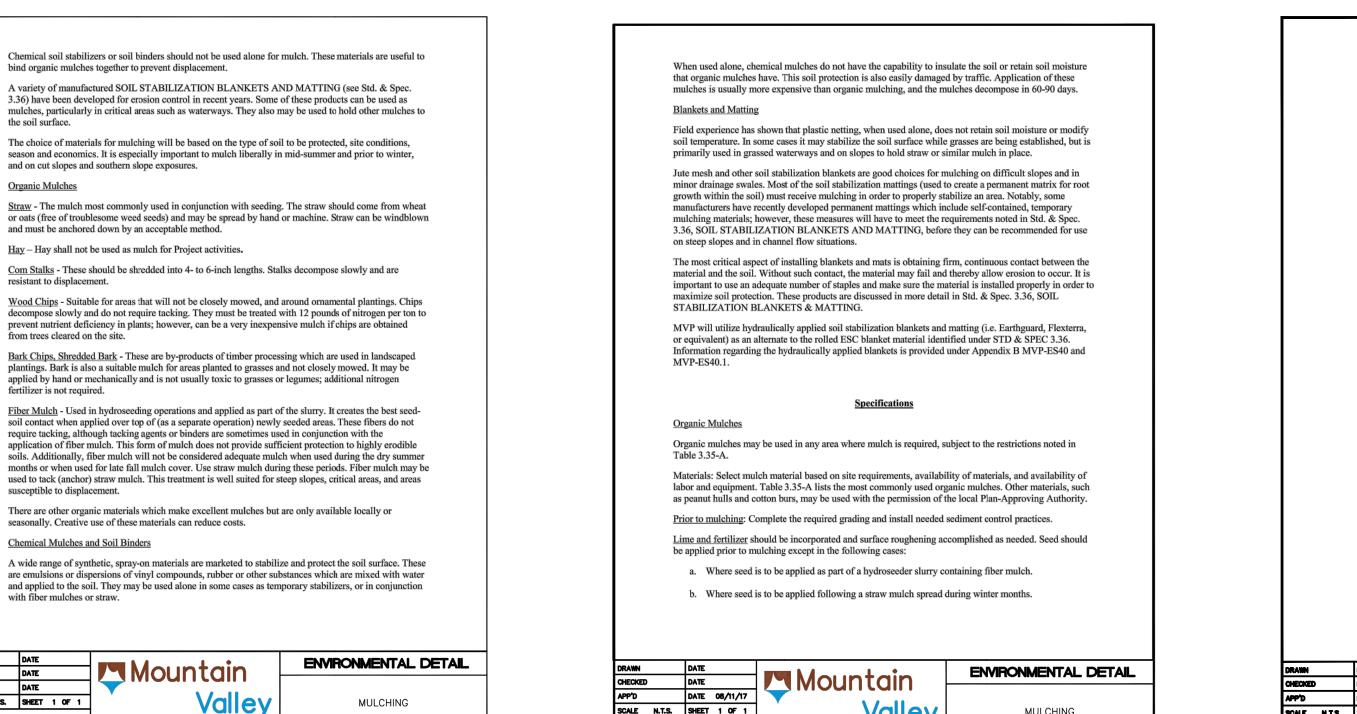
ADDED DETAILS FOR ROADS AND PADS	ADDRESS VADEQ COMMENTS	ADDRESS VADEQ COMMENTS	ADDRESS VADEQ COMMENTS	ADDRESS VADEQ COMMENTS	ADDRESS VADEQ COMMENTS	: DESCRIPTION:	REVISIONS:	
M	DW	DW	DW	MQ	MQ	: APPD.:	Ц	
RE	RE	RE	RE	RE	RE	: CHKD.:		
8 KAL	8 KAL	8 KAL	7 KAL	7 KAL	7 KAL	DWN.:		
01/31/18	01/26/18	01/08/18	11/28/17	11/01/11	08/18/17	DATE:		
7	9	5 (4	£	2	NO.:		
MOUNTAIN VALLEY PIPELINE PROJECT – H600 LINE ROUNTAIN VALLEY PIPELINE PROJECT – H600 LINE MOUNTAIN VALLEY PIPELINE, LLC 555 SOUTHPOINTE BOULEVARD, SUITE 200 555 SOUTHPOINTE BOULEVARD, SUITE 200 CANONSBURG, PA 15317								
c	Complex world CLEAR SOLUTIONS" 661 ANDERSEN DRIVE FOSTER PLAZA 7 PITTSBURGH, PA 15220							
	DAVID J. WALLNER Lic. No. 0402057593							
Lic. No. 0402057593								

3.36) have been developed for erosion control in r mulches, particularly in critical areas such as wate the soil surface.
The choice of materials for mulching will be based season and economics. It is especially important to and on cut slopes and southern slope exposures.
Organic Mulches
<u>Straw</u> - The mulch most commonly used in conjur or oats (free of troublesome weed seeds) and may and must be anchored down by an acceptable meth
Hay - Hay shall not be used as mulch for Project a
<u>Com Stalks</u> - These should be shredded into 4- to resistant to displacement.
<u>Wood Chips</u> - Suitable for areas that will not be cl decompose slowly and do not require tacking. The prevent nutrient deficiency in plants; however, can from trees cleared on the site.

fertilizer is not required.

susceptible to displacement.

seasonally. Creative use of these materials can reduce costs. Chemical Mulches and Soil Binders


with fiber mulches or straw.

DRAWING NO.

MVP-ES45.1

DRAWN	DATE	
CHECKED	DATE	Mountain
APP'D	DATE	
SCALE N.T.S.	SHEET 1 OF 1	Vallev
JOB NO.		PIPELINE
PROJECT ID:		
PX	XXX	DESIGN ENGINEERING

	XXXX	DESIGN ENGINEERING	drawing no. MVP-ES45.4	rev. P		PXXXX	DESIGN
JOB NO. PROJECT ID:	· · ·		MOLOHING		JOB NO. PROJECT	' ID:	
APP'D SCALE N.T.S.	SHEET 1 0		MULCHING		SCALE	N.T.S. SHEET 1 OF 1	4
CHECKED	DATE DATE	🗖 Mountain			APP'D	DATE	
DRAWN	DATE		ENVIRONMENTAL DE		CHECKED		- 🎝 M ơ
					DRAWN	DATE	
	nore th	nice around each beet					
1		by stretching twine between pegs in a criss-cross-wi mes around each peg.	thin-a square pattern. Turn twine 2 or				
		nethods cannot be used. Drive 8- to 10-inch wooden , every 4 feet in all directions. Stakes may be driven					
		d twine: Because it is labor-intensive, this method is					
	accordi	ng to manufacturer's recommendations.					
		nettings: Lightweight plastic, cotton, or paper nets n	nay be stapled over the mulch				
		not enter valuable water supplies. Avoid applicatio					
		synthetic or organically based binders and tackifier environmental concerns should be addressed to en-					
		The development of hydraulic seeding equipment j	promoted the industry to turn to				
		*Note: This particular method is not used as comm	only today as it once was in the past				
		use heavier applications as it may cause the straw t designations are from the Asphalt Institute Specific					
		Apply asphalt at 0.10 gallon per square yard (10 ga					
		RS-2, CRS-1, and CRS-2).	· · ·				
		satisfactory. Recommended for use are rapid curing curing (MC-250, MC-800) and emulsified asphalt					
		*Asphalt - Any type of asphalt thin enough to be b				soil surface; repair	as needed.
		as recommended by the manufacturer to anchor m				plantings, inspect p	ses are firmly estable periodically through
	a.	Synthetic binders - Formulated binders or organica	illy formulated products may be used			install netting or m	atting as necessary
	The fol	lowing types of binders may be used:					erosion is observed
		yed into the mulch as it is being blown onto the soil				All mulches and so	il coverings should
		of areas and at crests of ridges and banks, to prevent ould have binder applied uniformly. Binders may be					
		mulch binders: Application of liquid mulch binders					eeded slurry at any es shall be followed
		ng additional mulch to the newly seeded area.					Chemical mulches
	2. Fiber M	fulch: A very common practice with widespread use droseeder at a rate of 500-750 lbs/acre over top of st	e today. Apply fiber mulch by means traw mulch. It has an added benefit of				e applied immediate
	-	Machinery shall be operated on the contour.				areas v SURF	vith slopes no steep ACE ROUGHENIN
	control	with straw. It is limited to use on slopes no steeper					March 15 to May 1 a
		anchoring tool (often referred to as a Krimper or Kr tent designed to punch mulch into the soil surface. T				practic	e.
a	2	v may be used:				b. In conj	junction with tempo
C)ther organic n	nulches listed in Table 3.35-A do not require anchor				a. Where	no other mulching
		ng: Straw mulch must be anchored immediately after				Chemical mulches	* may be used alone
		g straw mulch by hand, divide the area to be mulche ace 70-90 lbs. (n to 2 bales) of straw in each section				Chemical Mulches	
		ulch materials shall be spread uniformly, by hand or					

SCALE N.T.S. SHEET 1 OF 1

MVP - VA PORTION

JOB NO.

PROJECT ID:

Vallev

PIPELINE

DESIGN ENGINEERING

MULCHING

MVP-ES45.2

Mountain Valley	MULCHING	CHECKE APP'D SCALE JOB NO	DATE N.T.S. SHEET 1 OF 1	Mountain Valley	TOPSOILING & SOIL HANDLIN	٧G
Mountain	ENVIRONMENTAL DETA		when properly limed	and fertilized, subsoils may provide a good grov		AIL
			to the presence of org available to plants, an Although topsoil prov stockpiling, and reap delay seeding or sodd weed seeds, and weed Advantages of topsoil capacity, and nutrient In site planning, the o The clay content of su	pption of topsoiling should be compared with that ubsoils does provide high moisture availability a	ment, carrying much of the nutrients lants. advantages to its use. Stripping, ays be cost-effective. Topsoiling can denuded areas. Most topsoil contains ble consistence, water-holding at of preparing a seedbed in subsoil. and deter leaching of nutrients and,	
ical mulches may be used to bind other m slurry at any time. Manufacturer's recomm be followed. <u>Maintenance</u> rings should be inspected periodically (pa n is observed in mulched areas, additional after rainstorms for dislocation or failure. as necessary after repairing damage to the firmly established. Where mulch is used i cally throughout the year to determine if m ded.	endations for application of chemical rticularly after rainstorms) to check mulch should be applied. Nets and If washouts or breakage occur, re- slope or ditch. Inspections should take a conjunction with ornamental		 Where the proproviding a set of the set of	growth medium for final site stabilization with <u>Conditions Where Practice Appl</u> eservation or importation of topsoil is determine uitable growth medium. bsoil or existing soil presents the following prob texture, pH, or nutrient balance of the available s onable means to provide an adequate growth med soil material is too shallow to provide an adequat ture and nutrients for plant growth. soil contains substances potentially toxic to plan es that are 2:1 or flatter unless other measures an	ies d to be the most effective method of olems: soil cannot be modified by dium. te root zone and to supply necessary t growth.	
be used alone only in the following situati er mulching material is available. n with temporary seeding during the time: 15 to May 1 and August 15 to September pes no steeper than 4:1, which have been OUGHENING, Std. & Spec. 3.29. If rill de immediately.	when mulch is not required for that 30, provided that they are used on roughened in accordance with		Methods of preservin order to obtain a more	OPSOILING & SOIL HANDLING <u>Definition</u> g and using the surface layer of undisturbed soil e desirable planting and growth medium. <u>Purposes</u>	, often enriched in organic matter, in	

CHECKED	DA	TE
DRAWN	DA	
	will be	sample
	pipelir	e station
	Soil sa	mples co
		Soluble
		test res being u
		pH ran
		Organi
	Enviro	is where onmental VP EI an
	-	
	justify loam).	strippin It shall I able to si
		exploration
	Materi	als
	5.	If tops it will good b
		the jun subsoil
	4.	Care m Clayey
	3.	Allow plantin
	2.	Location on the
	1.	Wheth depth of
	If tops	oiling is
	lower mainte	maintena enance tu w soils, s
	of wee	d seeds.

DRAWN			DAT	E		
CHECKED			DAT	E		
APP'D			DAT	E	08,	/11
SCALE	N.T.S	r	SHE	ET	1	OF
JOB NO.						
PROJECT	ID:					
MVP	_	VA	A F	ÞC	R	ΤI

OR	GANIC MULCH	TABLE 3.35-A MATERIALS AND	APPLICATION RATES
MULCHES:	RA	TES:	NOTES:
MULCHES:	Per Acre	Per 1000 sq. ft.	NOTES:
Straw	1 ½ - 2 tons (Minimum 2 tons for winter cover)	70 – 90 lbs.	Free from weeds and coarse matter. Must be anchored. Spread with mulch blower or by hand.
Fiber Mulch	Minimum 1500 lbs.	35 lbs.	Do not use as mulch for winter cover or during hot, dry periods.* Apply as slurry.
Corn Stalks	4 – 6 tons	185 – 275 lbs.	Cut or shredded in 4-6" lengths. Air-dried. Do not use in fine turf areas. Apply with mulch blower or by hand.
Wood Chips	4 – 6 tons	185 – 275 lbs.	Free of coarse matter. Air- dried. Treat with 12 lbs nitrogen per ton. Do not use in fine turf areas. Apply with mulch blower, chip handler, or by hand.
Bark Chips or Shredded Bark	50 – 70 cu. yds.	1-2 cu. yds.	Free of coarse matter. Air- dried. Do not use in fine turf areas. Apply with mulch blower, chip handler, or by hand.

Source: Va. DSWC

PXXXX

Mountain	ENVIRONMENTAL DET/	VIL
Valley	MULCHING	
PIPELINE		
DESIGN ENGINEERING	DRAWING NO.	REV.
DESIGN ENGINEERING	MVP-ES45.3	Р
	Mountain Valley PIPELINE DESIGN ENGINEERING	MOUNTAIN Valley PIPELINE DESIGN ENGINEERING

ds. In many cases topsoiling may not be required for the establishment of less demanding, enance plant material. Topsoiling is strongly recommended where ornamental plants or high-
turf will be grown. Topsoiling is a required procedure when establishing vegetation on s, soils containing potentially toxic materials, and soils of critically low pH (high acid) levels.
is to be done, the following items should be considered:

ther an adequate volume of topsoil exists on the site. Topsoil will be spread at a compacted h of 2 to 4 inches (depths closer to 4 inches are preferred).

ation of the topsoil stockpile so that it meets specifications and does not interfere with work e site

w sufficient time in scheduling for topsoil to be spread and bonded prior to seeding or

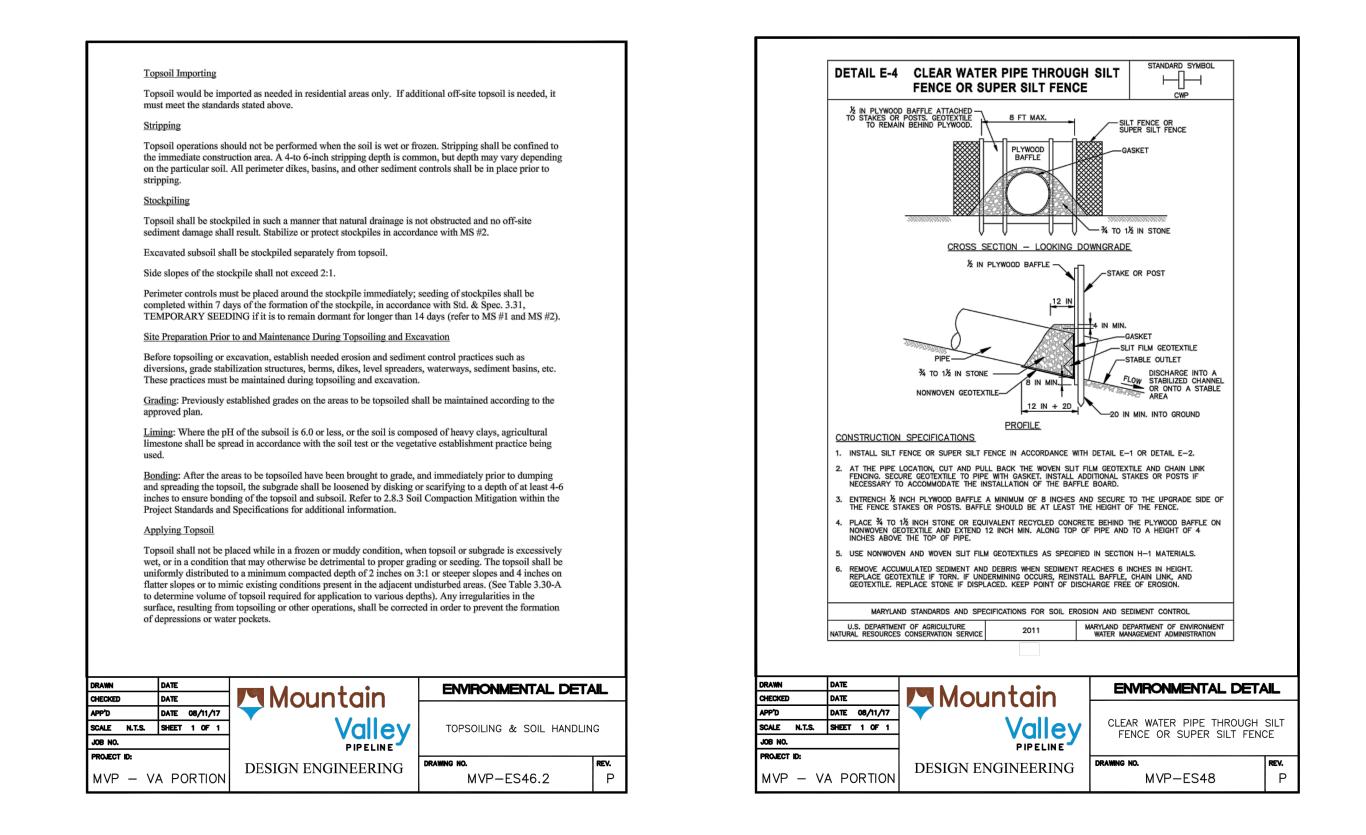
must be taken not to apply topsoil to subsoil if the two soils have contrasting textures. ey topsoil over sandy subsoil is a particularly poor combination, as water may creep along unction between the soil layers, causing the topsoil to slough. Sandy topsoil over a clay oil is equally as likely to fail.

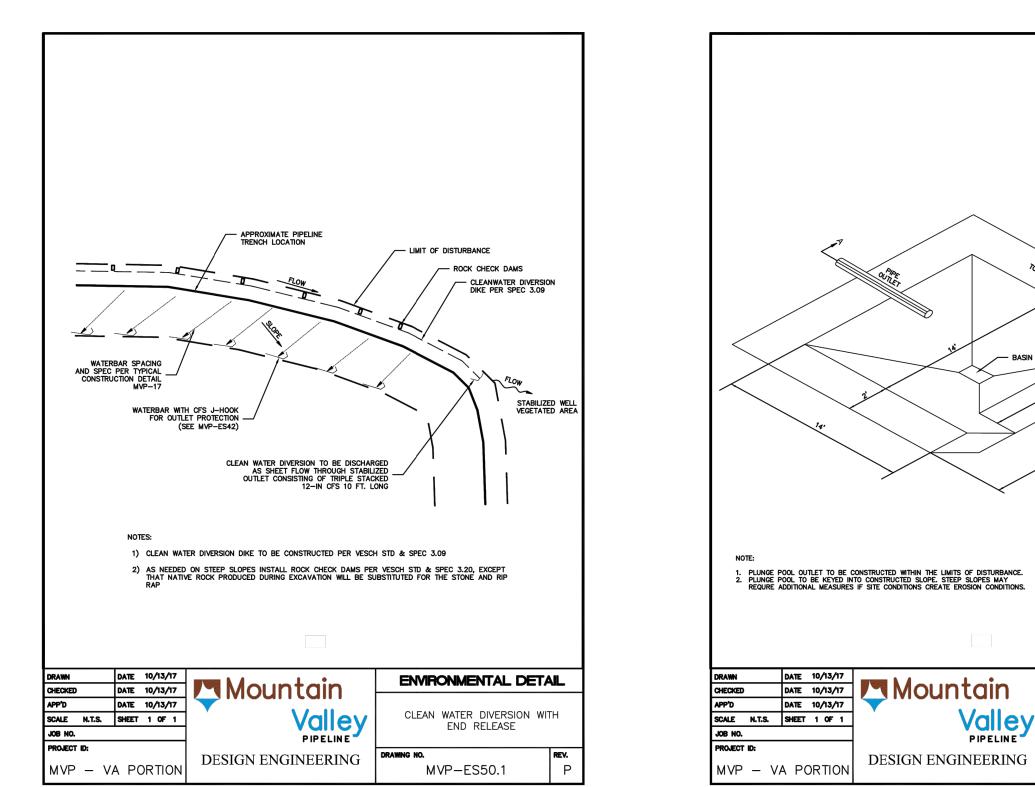
psoil and subsoil are not properly bonded, water will not infiltrate the soil profile evenly and ill be difficult to establish vegetation. Topsoiling of steep slopes should be discouraged unless d bonding of soils can be achieved.

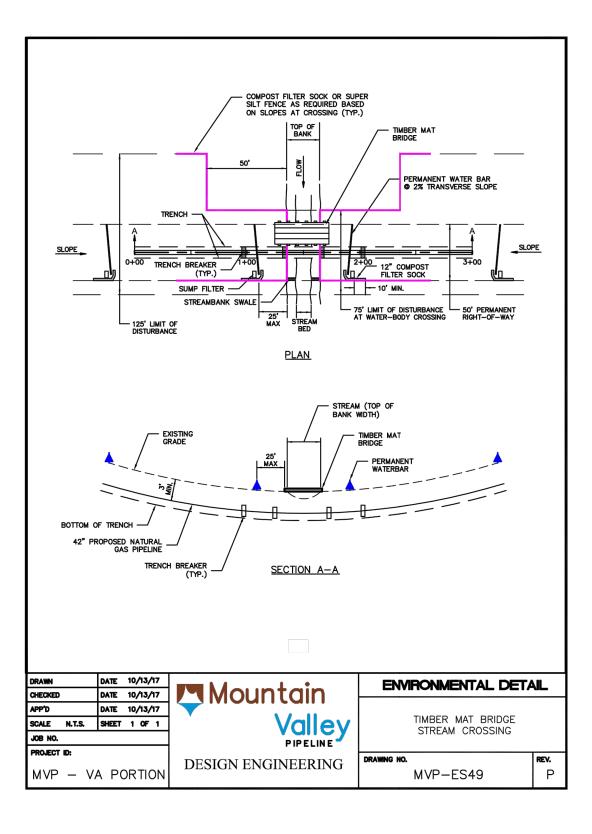
Specifications

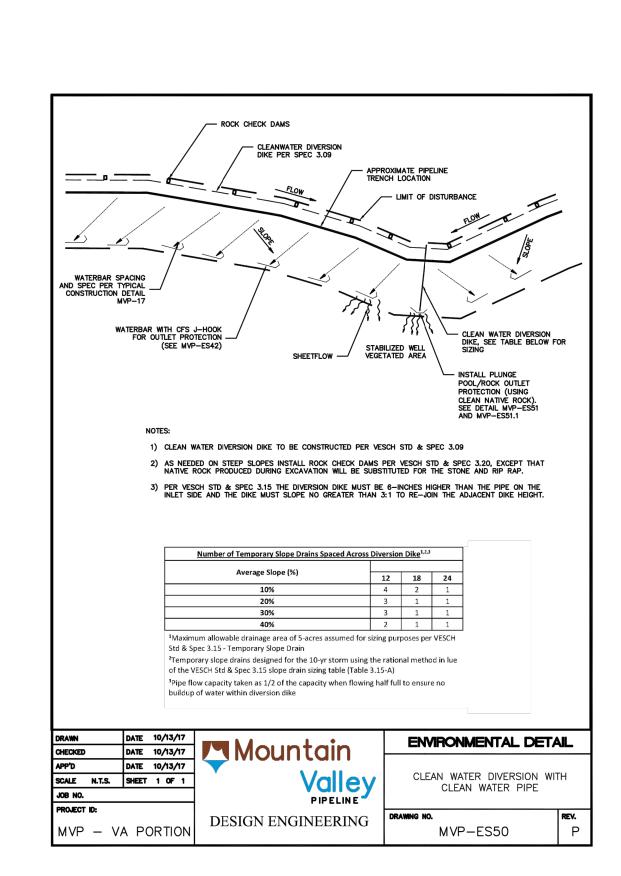
ation of the site shall be made to determine if there is sufficient surface soil of good quality to ing. Topsoil shall be friable and loamy (loam, sandy loam, silt loam, sandy clay loam, clay l be free of debris, trash, stumps, rocks, roots, and noxious weeds, and shall give evidence of support healthy vegetation. It shall contain no substance that is potentially toxic to plant

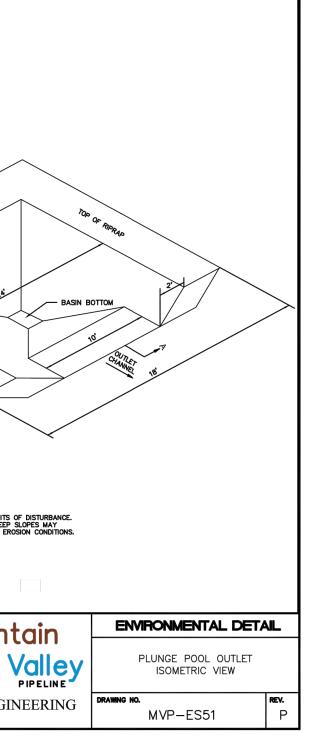
re revegetation is of concern based on existing soil conditions and determined by the MVP tal Inspector (EI), topsoil samples shall be taken for analysis. Samples will be collected by and sent to a recognized laboratory for analysis of the following criteria: nic matter content shall be not less than 1.5% by weight.

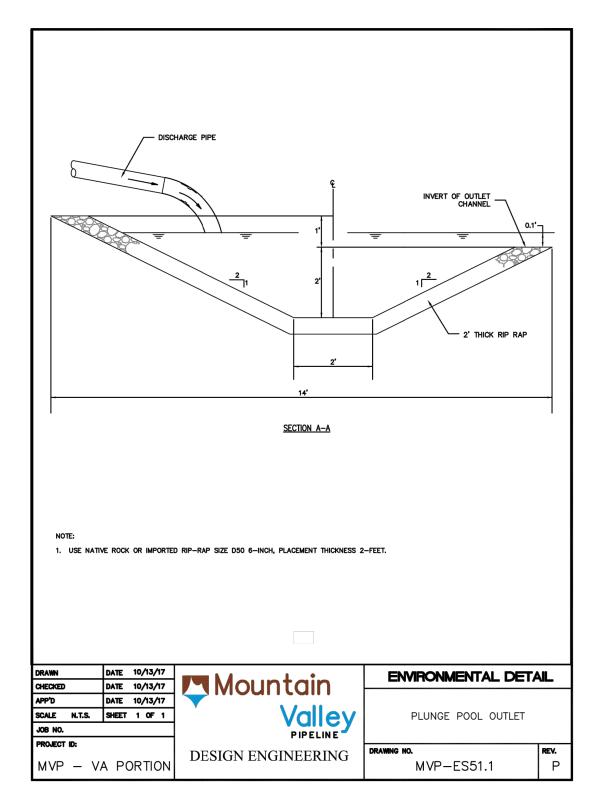

ange shall be from 6.0-7.5. If pH is less than 6.0, lime shall be added in accordance with soil results or in accordance with the recommendations of the vegetative establishment practice g used.

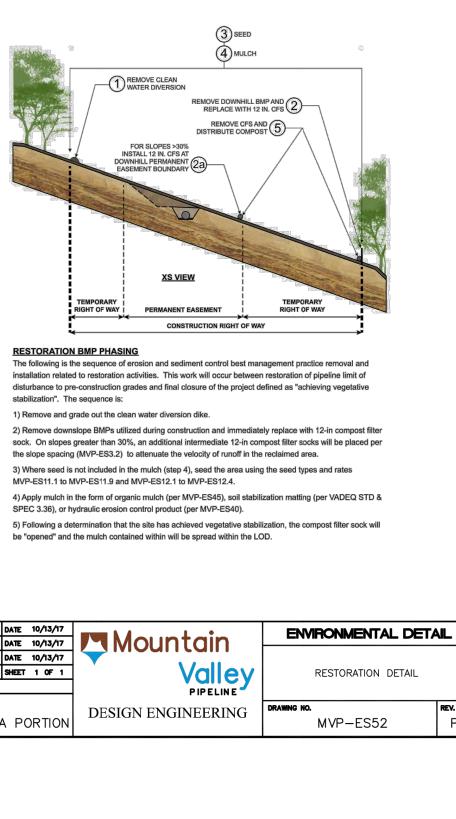

ble salts shall not exceed 500 ppm.

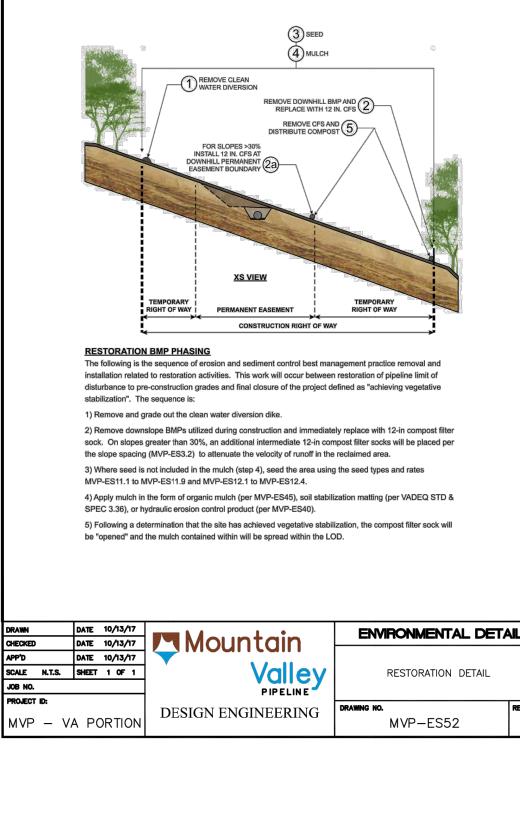

collected and sent for analysis will be identified by the MVP Constructions Spread # and ion from which the sample was obtained. Areas that fail to revegetate following restoration led and analyzed based on the above parameters.

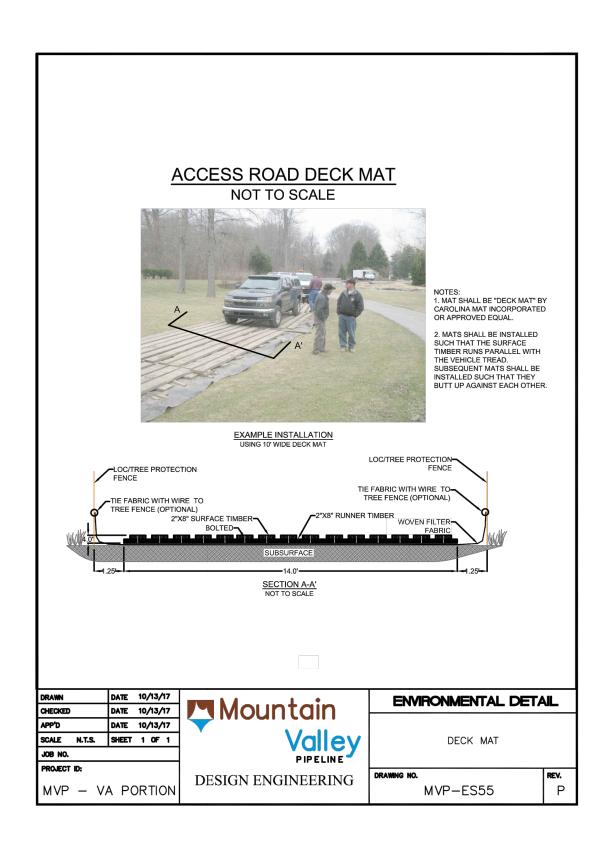

	Mountain	ENVIRONMENTAL DETA	JL
08/11/17 1 OF 1		TOPSOILING & SOIL HANDLIN	G
RTION	DESIGN ENGINEERING	drawing no. MVP-ES46.1	rev. P

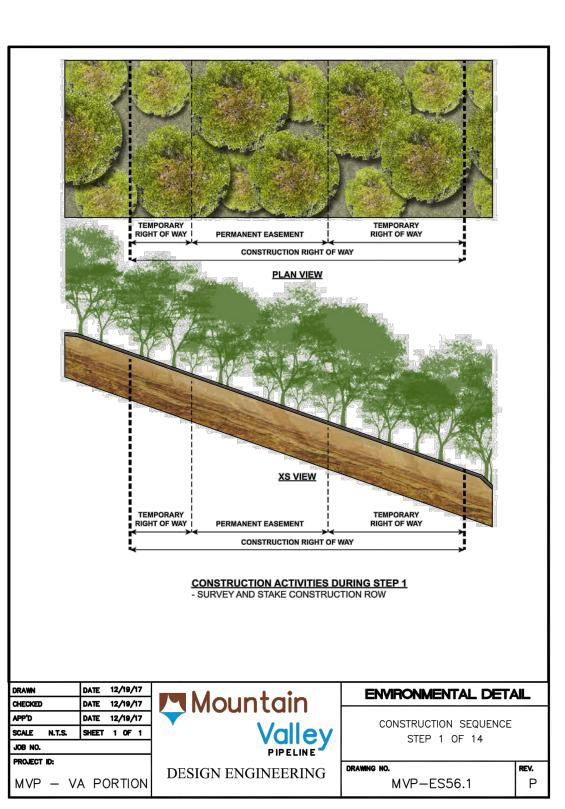

- 1								
				7 0	7 01/31/18	KAL RE	DW	ADDED DETAILS FOR ROADS AND PADS
				6 01,	/26/18	KAL RE	E DW	ADDRESS VADEQ COMMENTS
		661 F	EROSION AND SEDIMENT CONTROL PLANS	5 01,	/08/18	KAL RE	E DW	ADDRESS VADEQ COMMENTS
		worl AN OST		4 11,	/28/17	KAL RE	E DW	ADDRESS VADEQ COMMENTS
		⊣∣c DER ER	MOUNIAIN VALLET FIFELINE FRUJEUT - 1900 LINE	3 1	11/01/17	KAL RE	E DW	ADDRESS VADEQ COMMENTS
	GENERAL DE LAILS SEI	LEAF SEN PLA		2 08,	/18/17	KAL RE	E DW	ADDRESS VADEQ COMMENTS
		IDF ZA T		NO.:	DATE: D	DWN.: CHK	CHKD.: APPD.:	DESCRIPTION:
		LUTION	555 SOUTHPOINTE BOULEVARD, SUITE 200				Ц Ц	REVISIONS:
		6™	CANONSBURG, PA 15317					

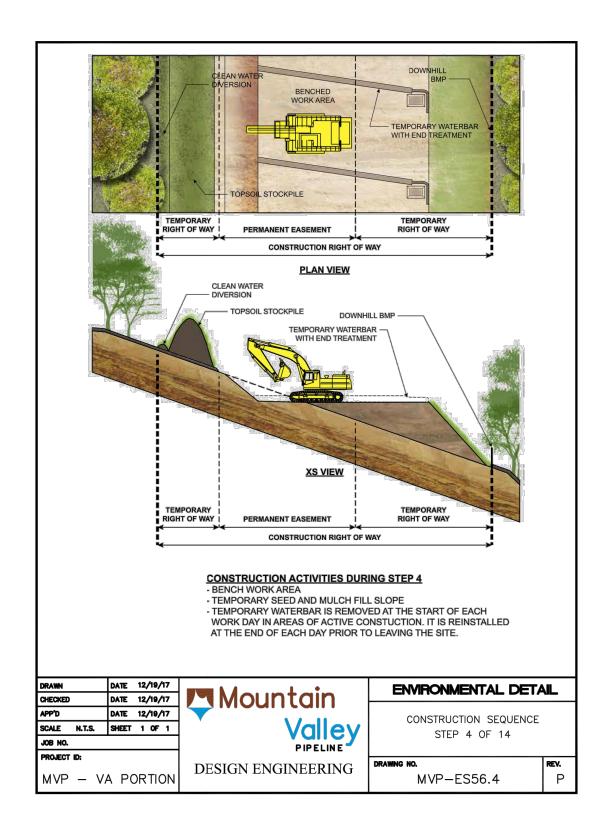


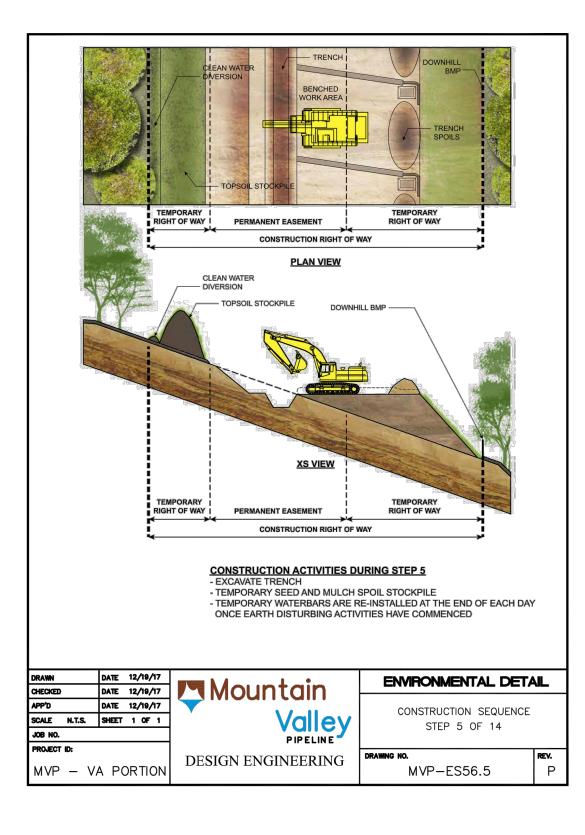


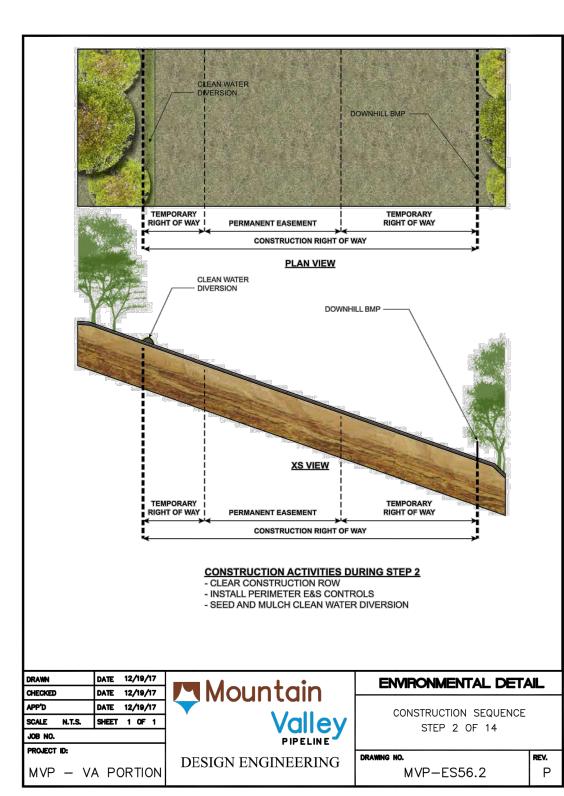


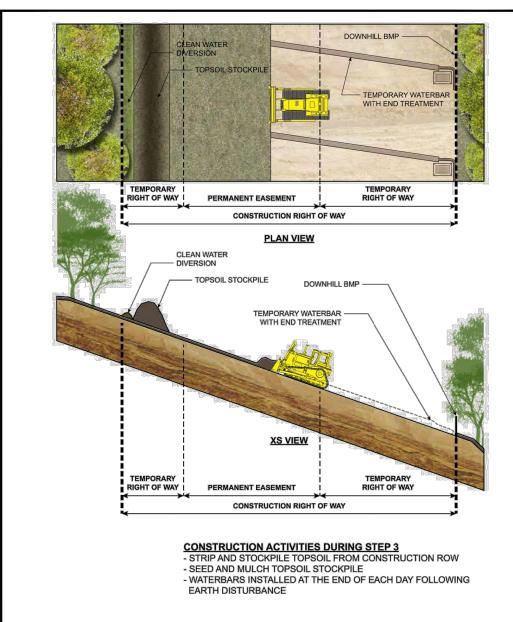


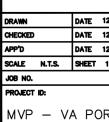


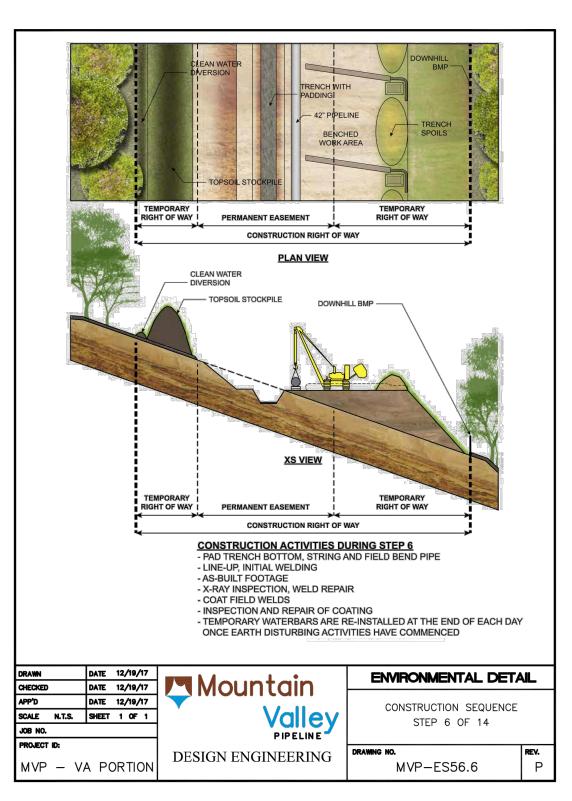


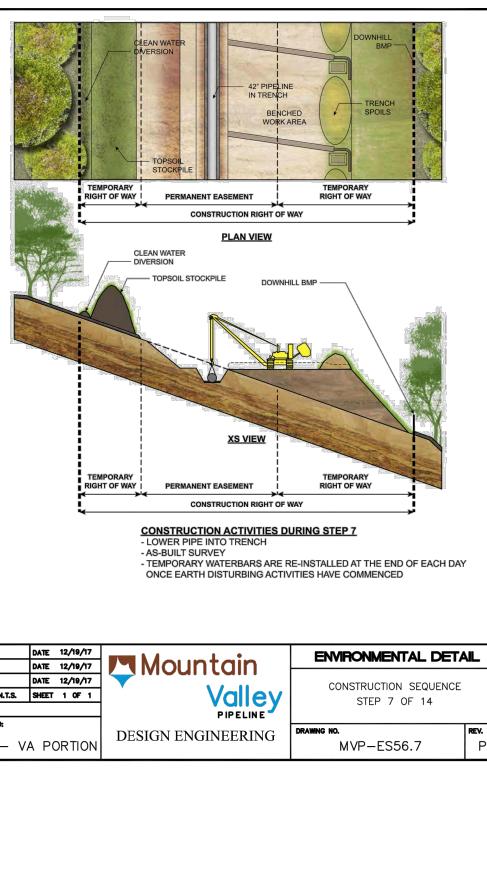


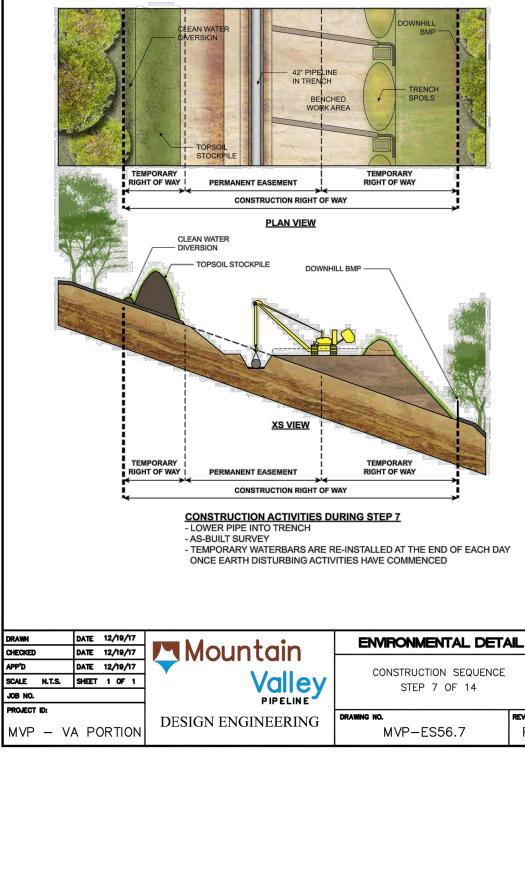

ADDED DETAILS FOR ROADS AND PADS	ADDRESS VADEQ COMMENTS	ADDRESS VADEQ COMMENTS	ADDRESS VADEQ COMMENTS	ADDRESS VADEQ COMMENTS	ADDRESS VADEQ COMMENTS	DESCRIPTION:	REVISIONS:	
DW	DW	DW	DW	DW	DW	APPD.:	Я Ы	
RE	RE	RE	RE	RE	RE	CHKD.:		
KAL	KAL	KAL	KAL	KAL	KAL	DWN.:		
01/31/18	01/26/18	01/08/18	1/28/17	1/01/17	08/18/17	DATE:		
7 01,	6 01,	5 01,	4 11,	3 11,	2 08,	NO.: I		
			L L	L L				
		EROSION AND SEDIMENT CONTROL PLANS		MOUNTAIN VALLET FIFELINE FROJECT - ROUD LINE			555 SOUTHPOINTE BOULEVARD, SUITE 200	CANONSBURG, PA 15317
c		661 F	AN OST	⊣∣c DER ER	LEAF SEN PLA	r so I DF ZA	lutions	5™
					GENERAL DE LAILS SE I			
		CLARKE A COALTRA		10.0	WAL 40205		AND CINIA 477	
				_	_			

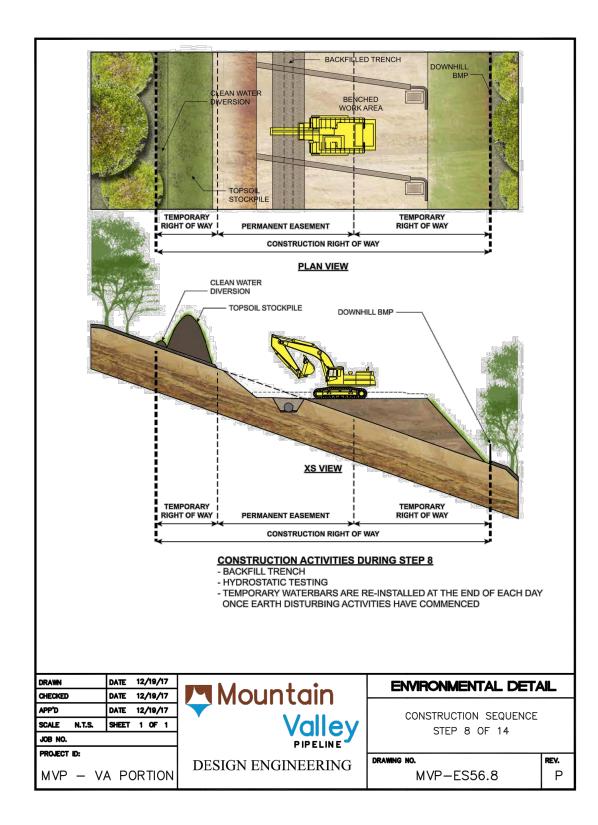


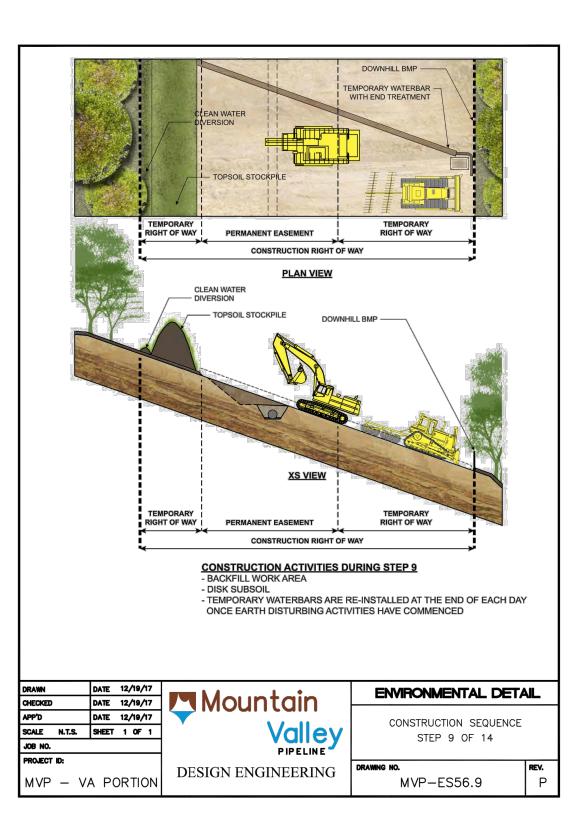


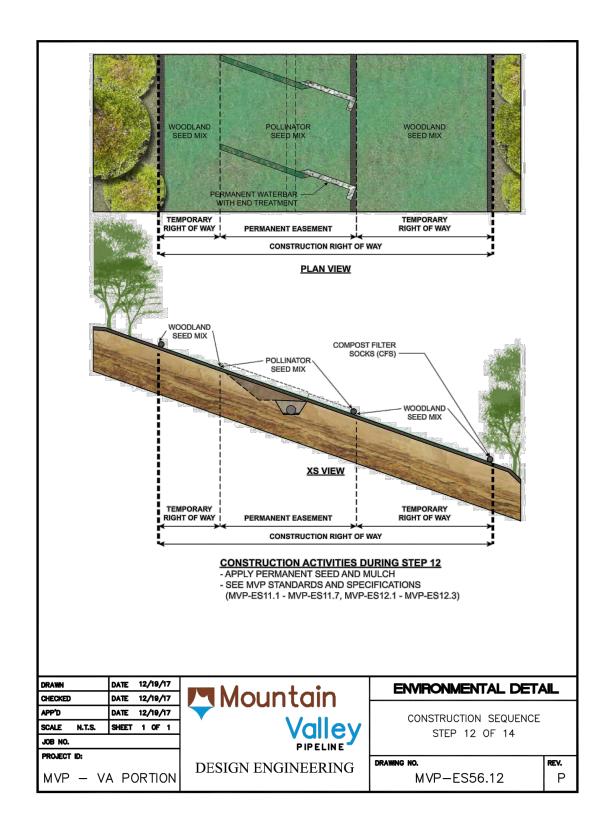


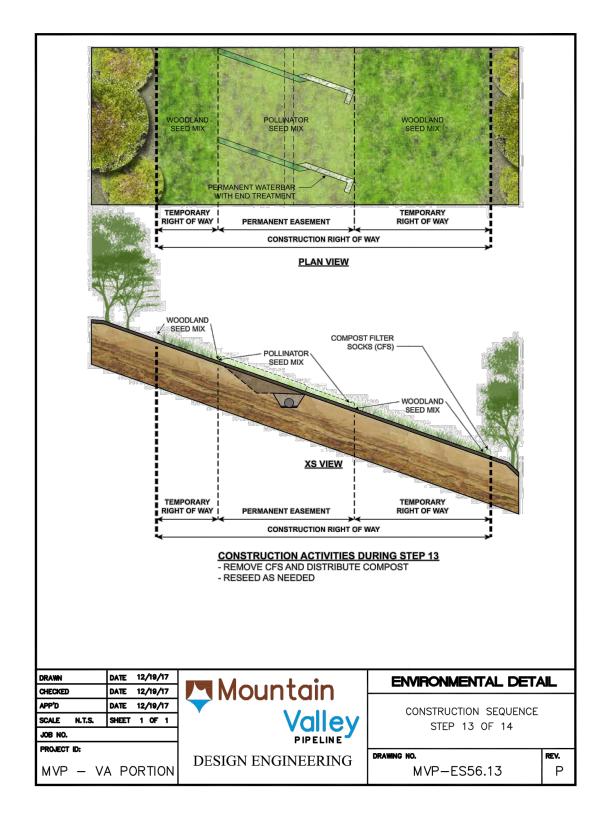


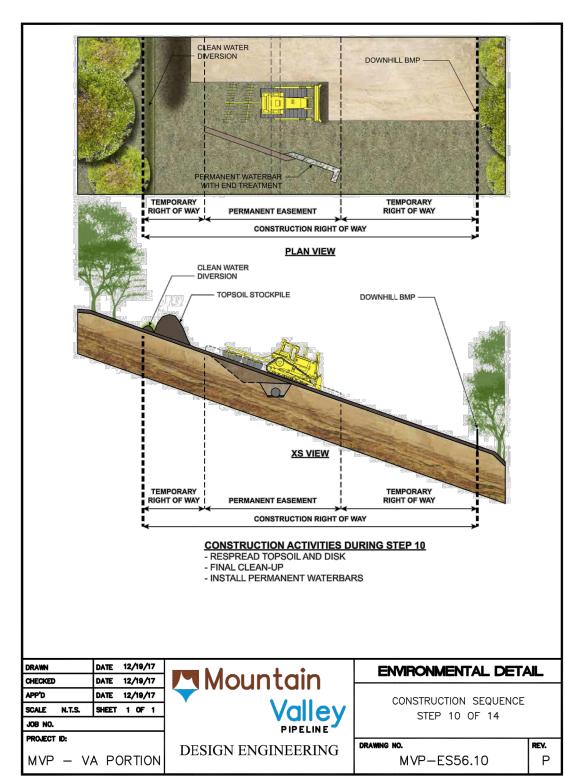


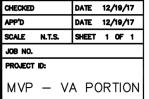


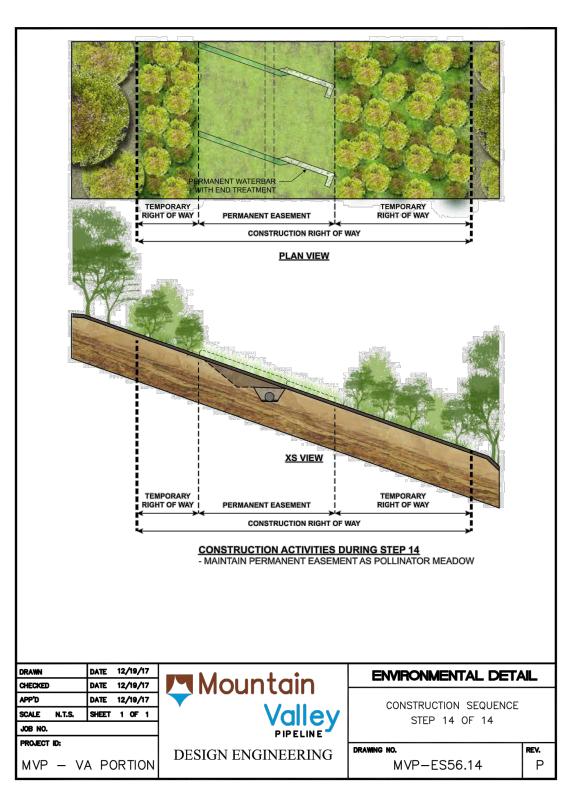


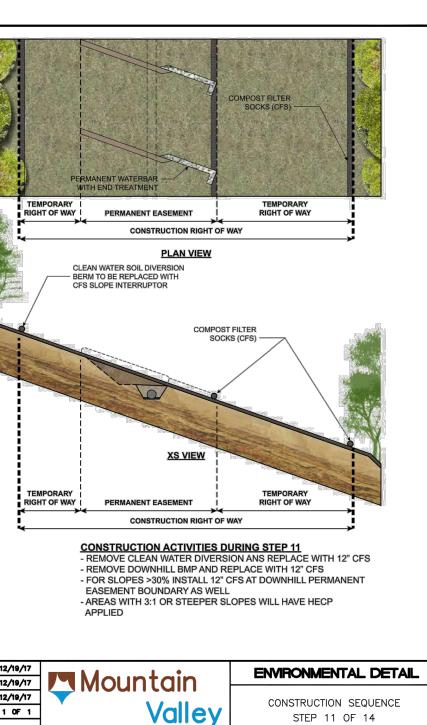



12/19/17		ENVIRONMENTAL DETA	JL
12/19/17	Mountain 🗖		
12/19/17		CONSTRUCTION SEQUENCE	
10F1	' Valley	STEP 3 OF 14	
	PIPELINE		
	DESIGN ENGINEERING	DRAWING NO.	REV.
RTION	DESIGN ENGINEERING	MVP-ES56.3	Р

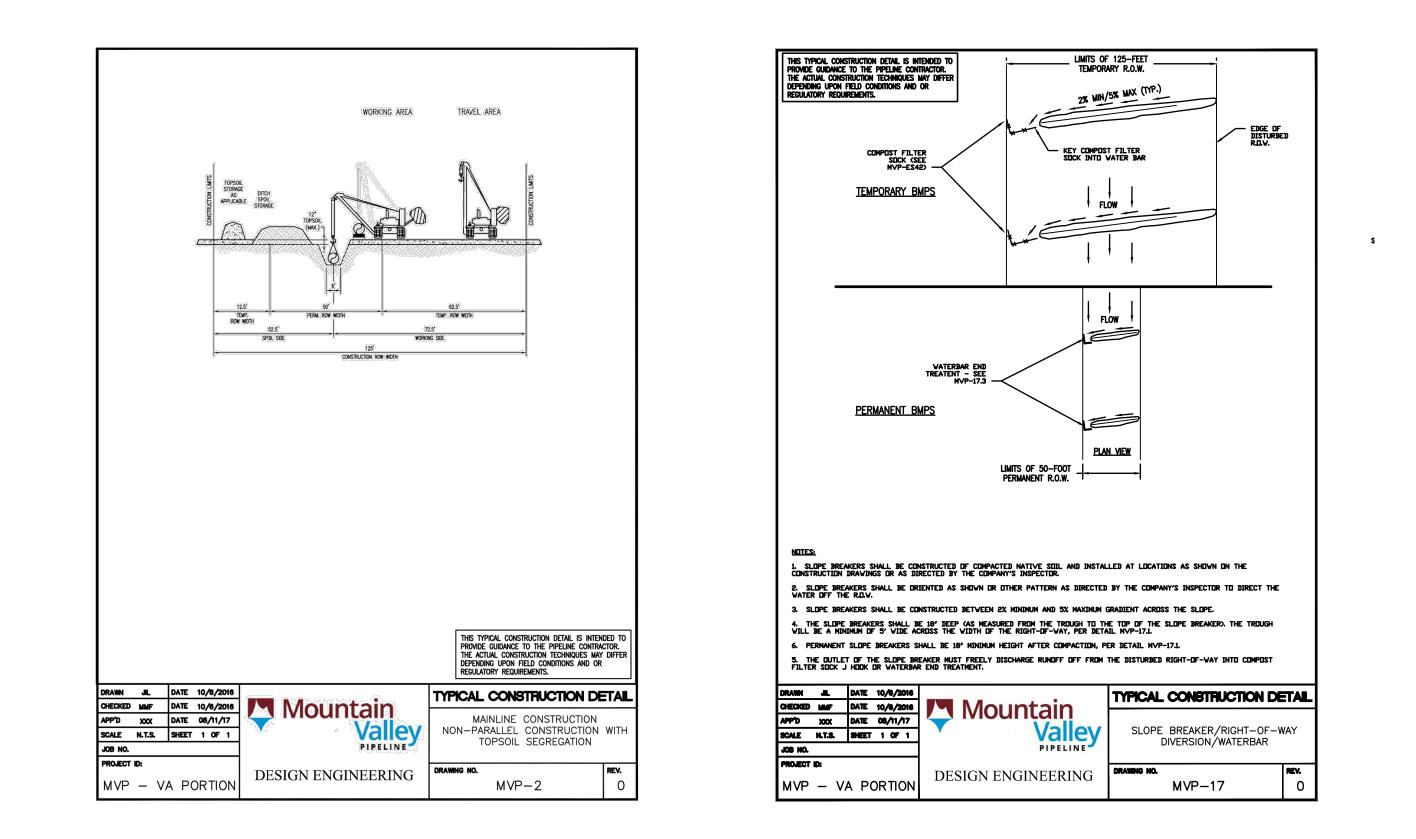


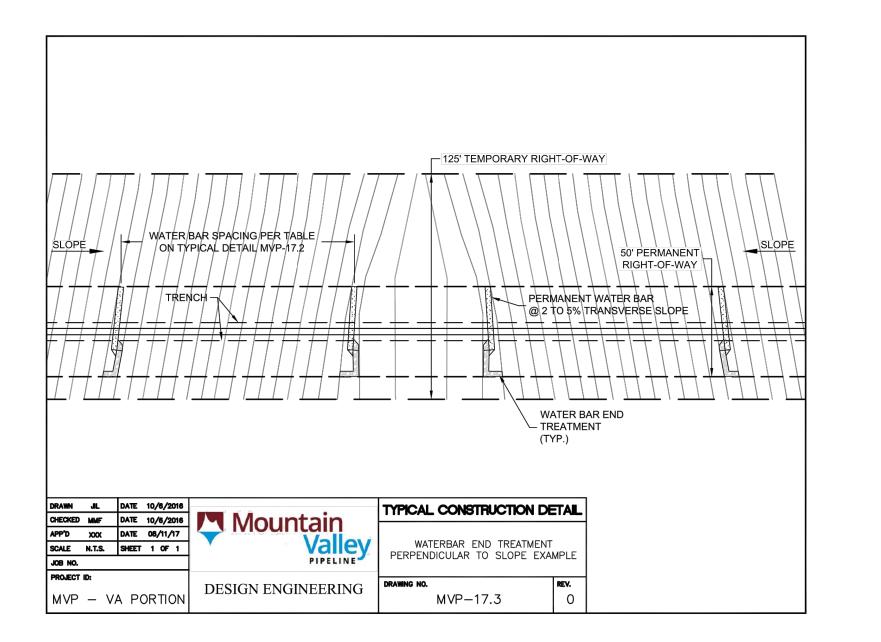




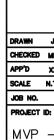


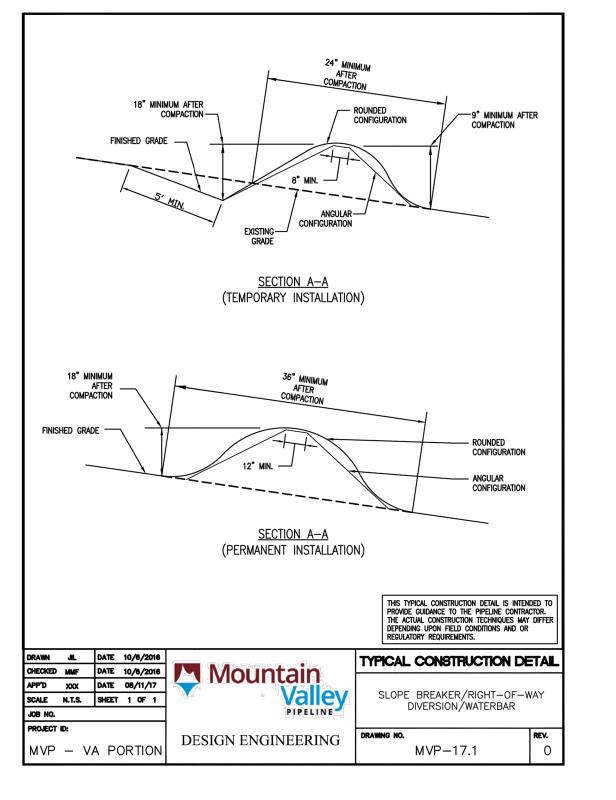
and a second		
	Surger Street	
	4	Ľ
	an a	
02.00		
	halla. Baile	1

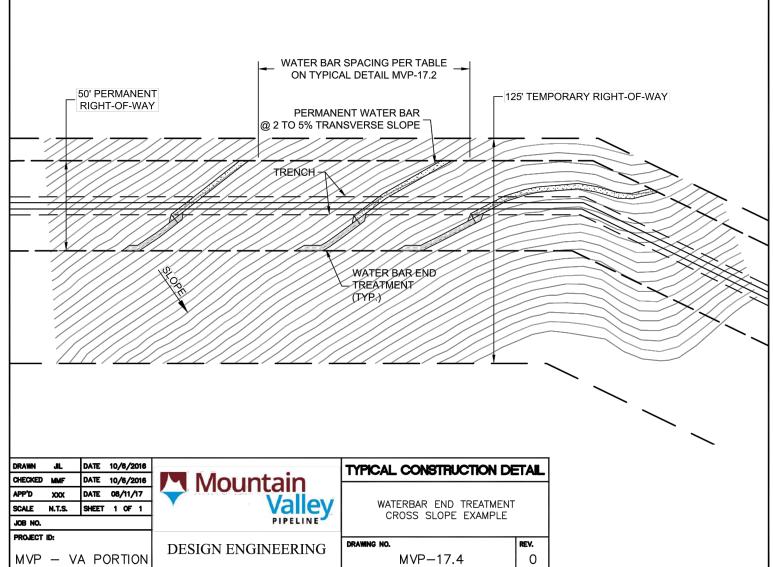

PIPELINE

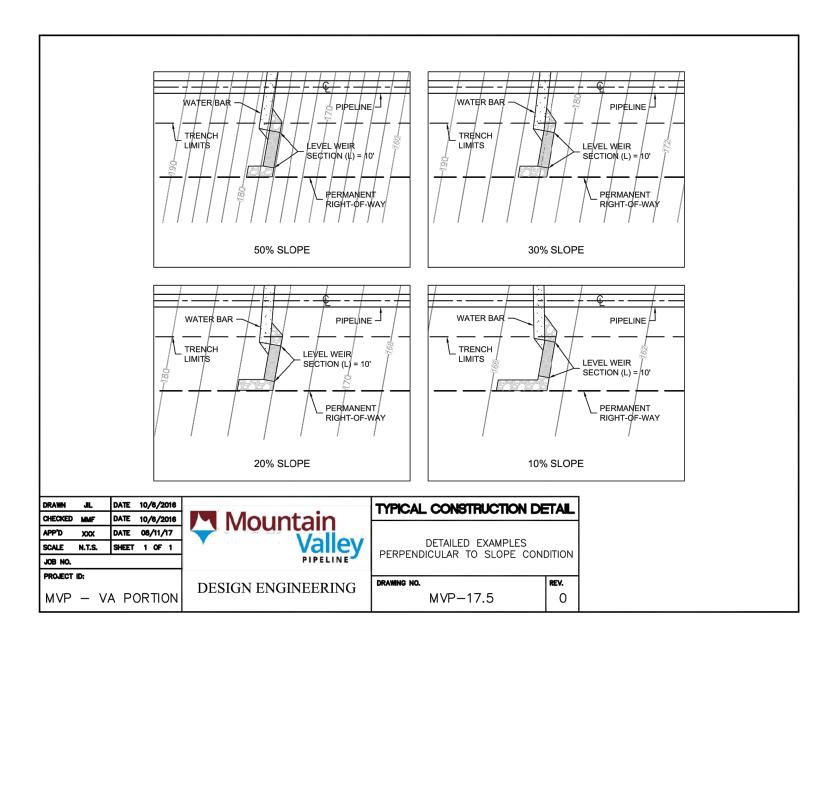

DESIGN ENGINEERING

DRAWING NO.


MVP-ES56.11

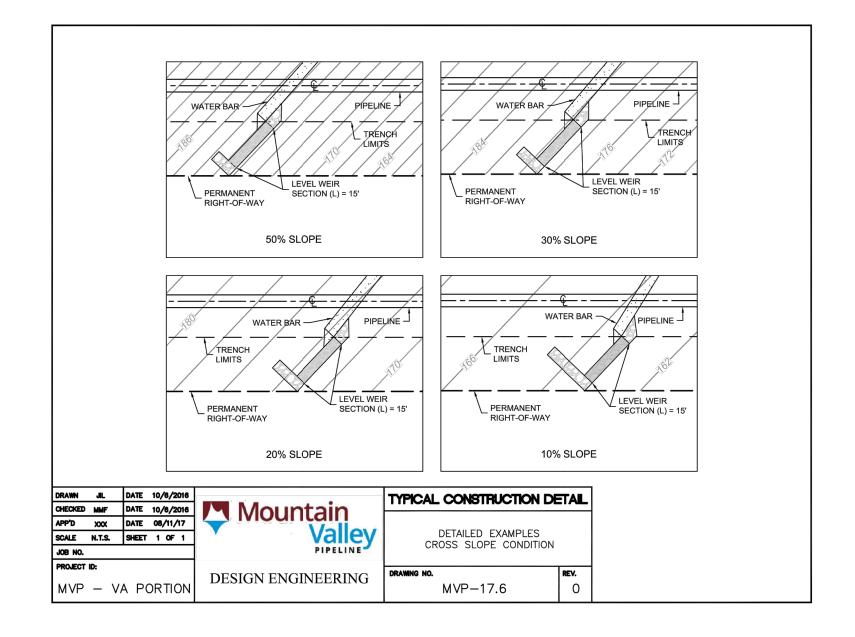

ADDED DETAILS FOR ROADS AND PADS	ADDRESS VADEQ COMMENTS	ADDRESS VADEQ COMMENTS	ADDRESS VADEQ COMMENTS	ADDRESS VADEQ COMMENTS	ADDRESS VADEQ COMMENTS	DESCRIPTION:	REVISIONS:		
DW	DW	DW	DW	DW	DW	APPD.:	Ц		
RE	RE	RE	RE	RE	RE	CHKD.:			
3 KAL	3 KAL	3 KAL	/ KAL	/ KAL	7 KAL	DWN.:			
01/31/18	01/26/18	01/08/18	11/28/17	11/01/17	08/18/17	DATE:			
7 0	6 0	5 0	4 1	3 1	2 0	NO.:			
EROSION AND SEDIMENT ONITION EROSION AND SEDIMENT CONTROL PLANS MOUNTAIN VALLEY PIPELINE PROJECT – H600 LINE MOUNTAIN VALLEY PIPELINE PROJECT – H600 LINE S55 SOUTHPOINTE BOULEVARD, SUITE 200 S55 SOUTHPOINTE BOULEVARD, SUITE 200 CANONSBURG, PA 15317									
(T	E)	TE worl	TR. d c DER	SEN	EC sol	H		
(comp	661 F	TE worl AN OST	TR. a c DER ER RGH	SEN PLA , P/	EC sol	H		
(comp	661 F	TE worl AN OST	TR. DER ER RGH	SEN PLA	EC sol	H LUTION RIVE 7		
c	P	661 FOITTS	AN OST BUI		WALL NELLAND	EC I DF ZA 15	H LUTION RIVE 7		
CH	F		TE AN OST BUI Lic.		WALL NELLAND	LINER I DF	H LUTION RIVE 7	S	
DR CH AP	F		TE AN OST BUI DAVI Lic. BY: BY:			LINER TSP3		s" KAL HT	

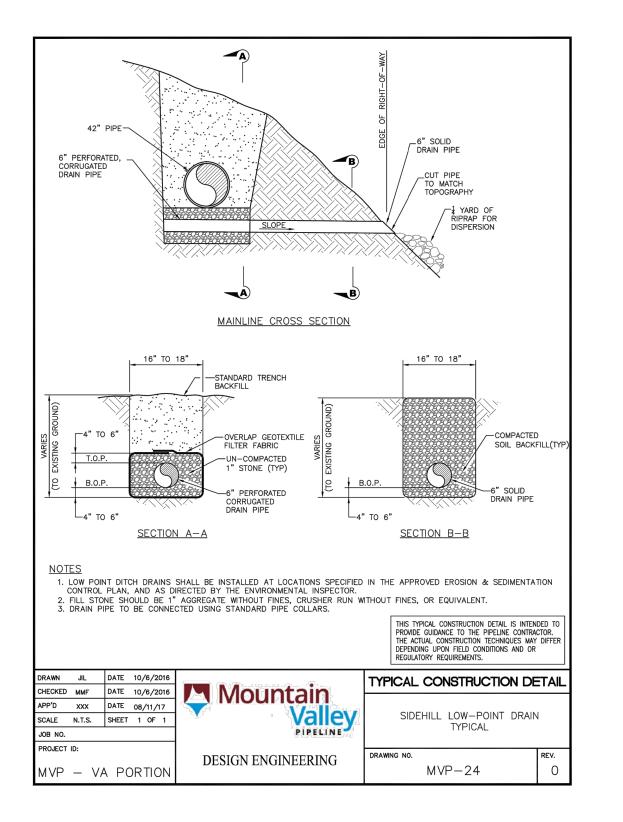


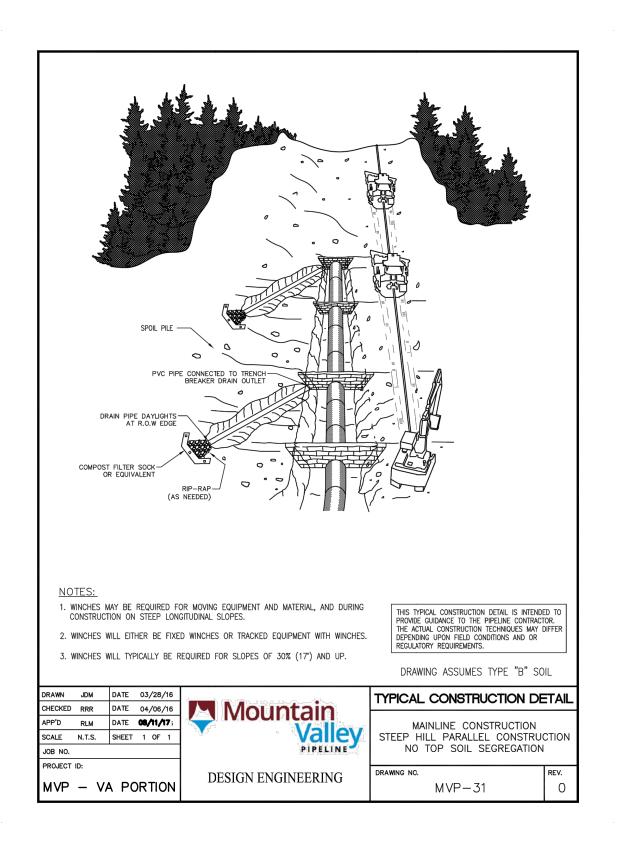


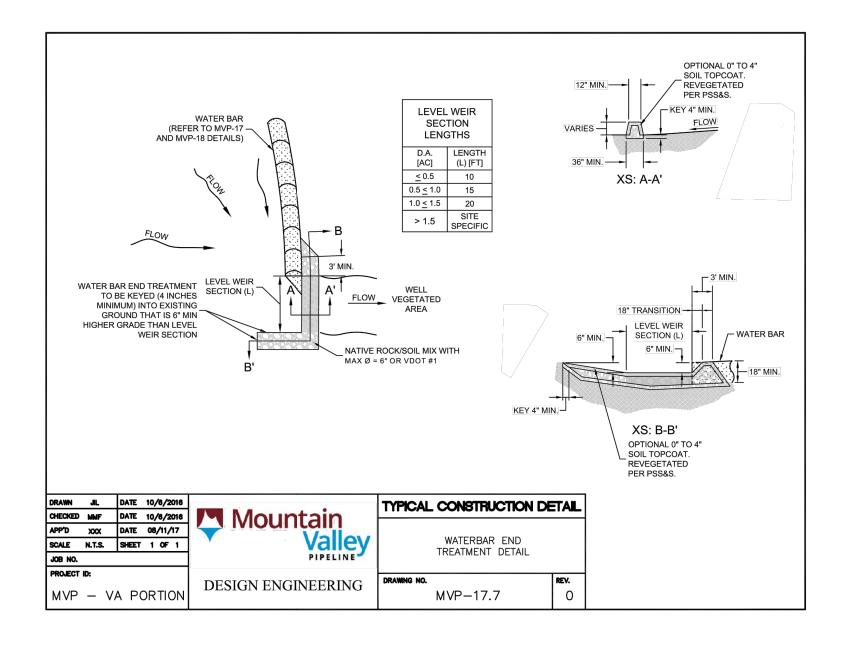
RECOMMENDED MAXIMUM SPACING FOR							
PERMANENT SLOPE BREAKERS PIPELINE GRADE DISTANCE (FEET)							
<2%	- 1,2						
2-5%	400						
6-15%	200						
16-30%	100						
>31%	50 ³						

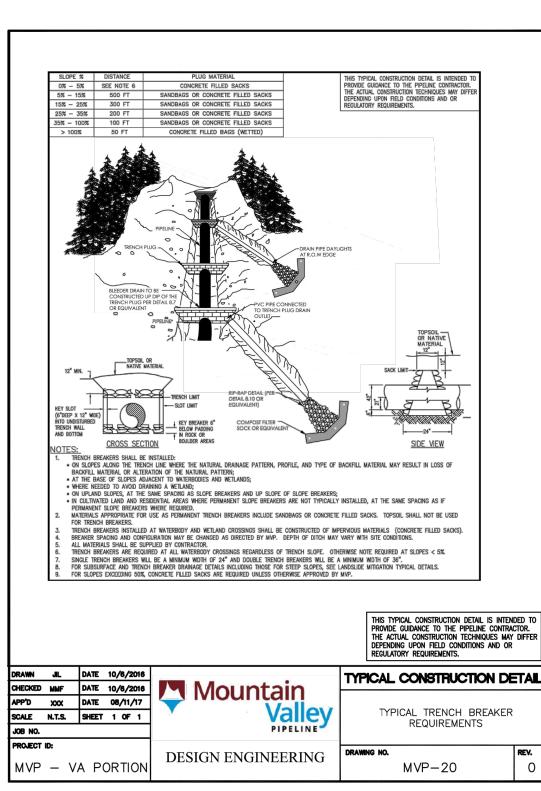
¹ PERMANENT SLOPE BREAKERS WILL BE INSTALLED AS NEEDED BASED ON FIELD CONDITIONS. ² PERMANENT SLOPE BREAKERS WILL BE INSTALLED 25 FEET FROM EACH WATERBODY BOUNDARY REGARDLESS OF SLOPE CONDITIONS.

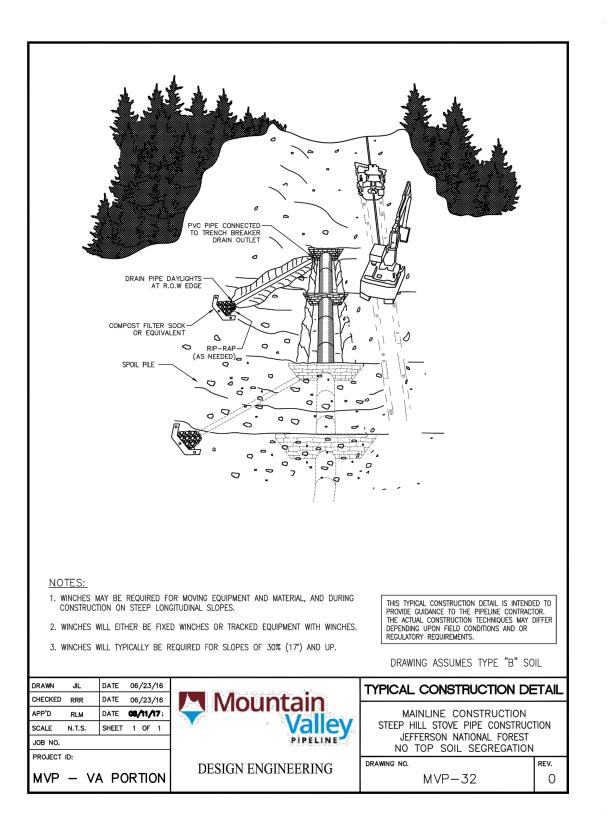

³ SLOPES GREATER THAN 65% MAY REQUIRE SITE SPECIFIC STABILIZATION MEASURES BASED ON FIELD CONDITIONS AS APPROVED BY MVP DESIGN ENGINEERING AND MVP ENVIRONMENTAL INSPECTOR.

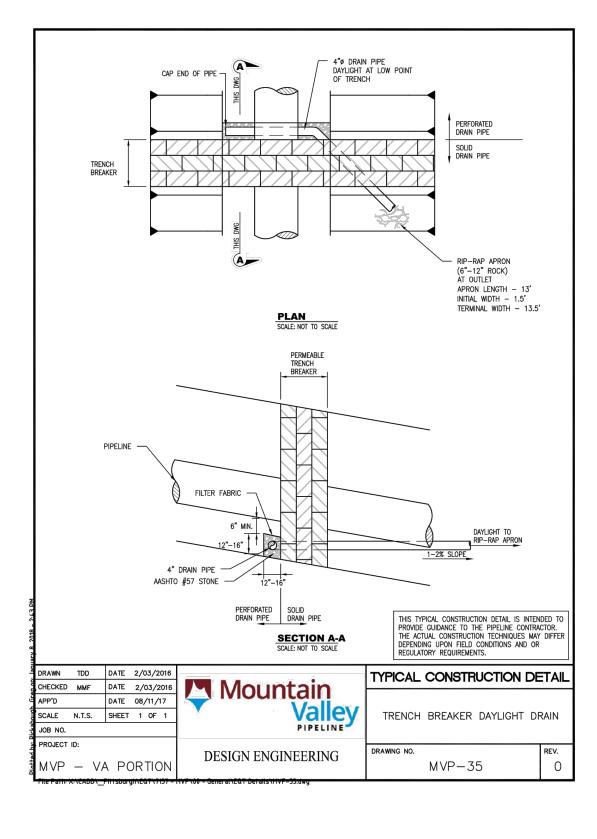

NDTES:

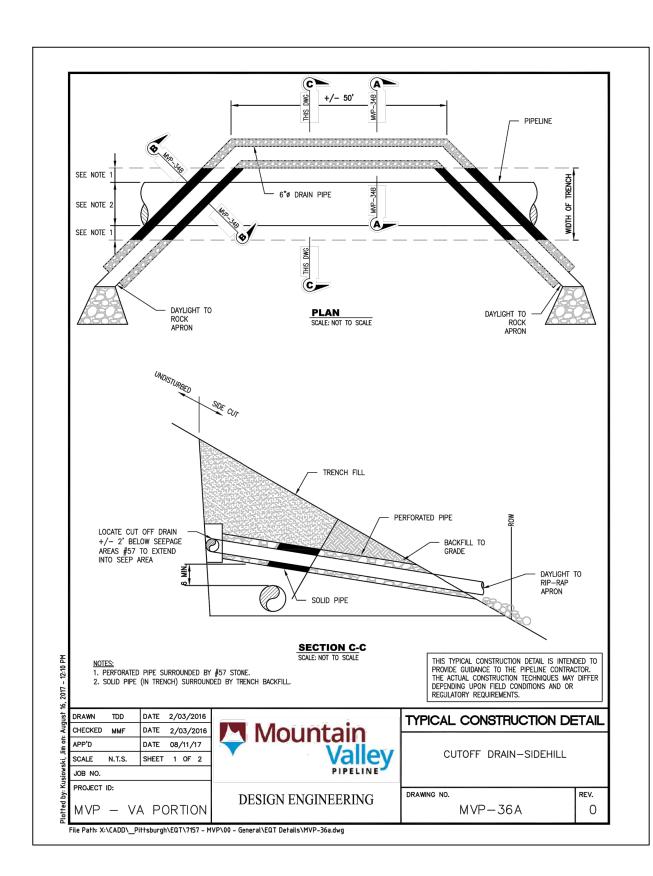

1. WATERBARS SHALL BE INSPECTED EVERY 4 BUSINESS DAYS (DAILY ON ACTIVE ROADS), DAMAGED OR ERODED WATERBARS SHALL BE RESTORED TO ORIGINAL DIMENSIONS WITHIN 24 HOURS OF INSPECTION 2. MAINTENANCE DF WATERBARS SHALL BE PROVIDED UNTIL ROADWAY, SKIDTRAIL, DR RIGHT-DF-WAY HAS ACHIEVED PERMANENT STABILIZATION 3. WATERBARS DN RIGHT-DF-WAYS SHALL BE LEFT IN PLACE AFTER PERMANENT STABILIZATION HAS BEEN ACHIE∨ED 4. SUMP FILTERS TO BE INSTALLED AT END OF TEMPORARY WATERBARS. REFER TO SUMP FILTER DETAIL MVP-ES42. 5. DUTLET PROTECTION/COMPOST FILTER SOCK SHOULD BE INSTALLED AT THE DUTLET OF ALL TEMPORARY WATERBARS PER DETAIL MVP-ES42. 6. WATERBAR END TREATMENTS WILL BE INSTALLED FDR PERMANENT WATERBARS PER DETAILS MVP-17.3 THRDUGH MVP-17.7.

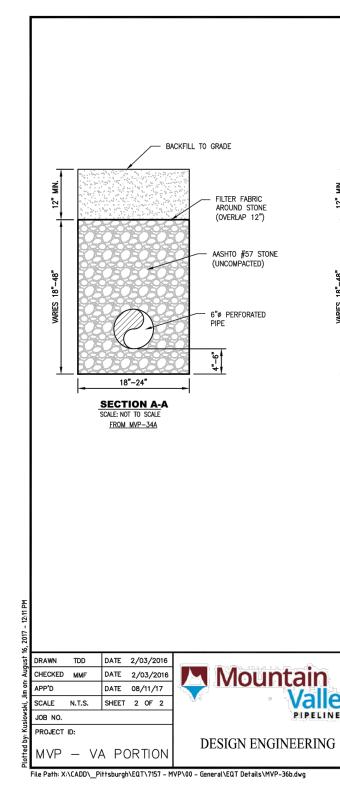

				THIS TYPICAL CONSTRUCTION DETAIL IS INTEN PROVIDE GUIDANCE TO THE PIPELINE CONTRA THE ACTUAL CONSTRUCTION TECHNIQUES MAY DEPENDING UPON FIELD CONDITIONS AND OR REGULATORY REQUIREMENTS.	CTOR.
DRAWN JIL	DATE 10/6/2016		TYP	CAL CONSTRUCTION DE	ETAIL
CHECKED MMF	DATE 10/6/2016	Mountain	L		
APP'D XXX	DATE 08/11/17				
SCALE N.T.S.	SHEET 1 OF 1	Valley	S	LOPE BREAKER/RIGHT-OF-V DIVERSION/WATERBAR	VAY
JOB NO.		PIPELINE		DIVERSION WATERDAR	
PROJECT ID:			DRAWN		REV.
MVP – V	A PORTION	DESIGN ENGINEERING		MVP-17.2	0

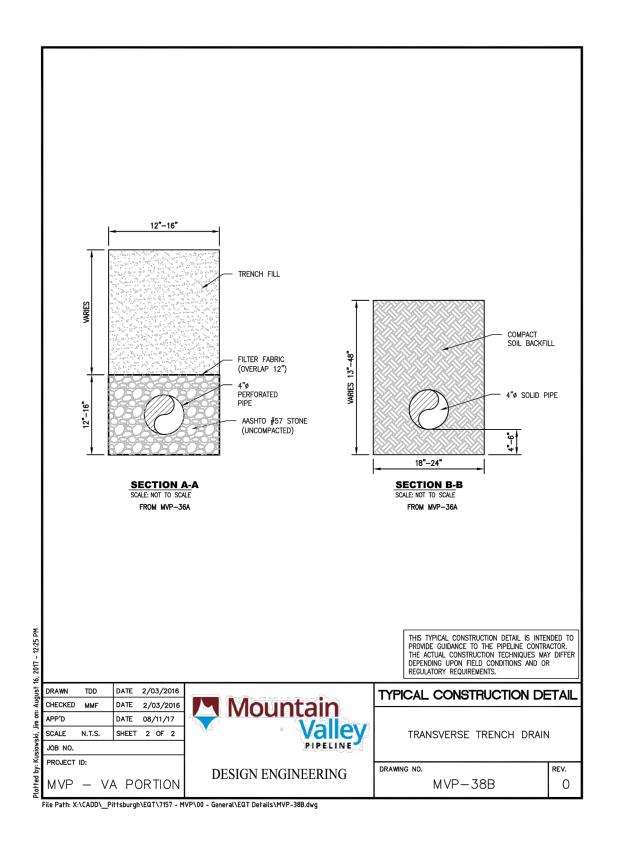

 ADDED DETAILS FOR ROADS AND PADS ADDRESS VADEQ COMMENTS DESCRIPTION: 	REVISIONS:									
	ſĽ									
· · · · · · · · · · · · · · · · · · ·										
B KAL B KAL B KAL 7 KAL 7 KAL DWN:										
01/31/18 01/26/18 01/08/18 11/28/17 11/01/17 08/18/17 DATE:										
NO.: NO.: NO.: NO.: NO.: NO.: NO.: NO.:										
MOUNTAIN VALLEY PIPELINE MOUNTAIN VALLEY PIPELINE MOUNTAIN VALLEY PIPELINE ROSION AND SEDIMENT CONTROL MOUNTAIN VALLEY PIPELINE COMDIAN VALLEY PIPELIN	E									
GENERAL DETAILS SET										
CHIERLING CONTRACTOR	DAVID J. WALLNER Lic. No. 0402057593									
Lic. No. 0402057593	 KAL									
Lic. No. 0402057593	HT									
DRAWN BY: CHECKED BY:										

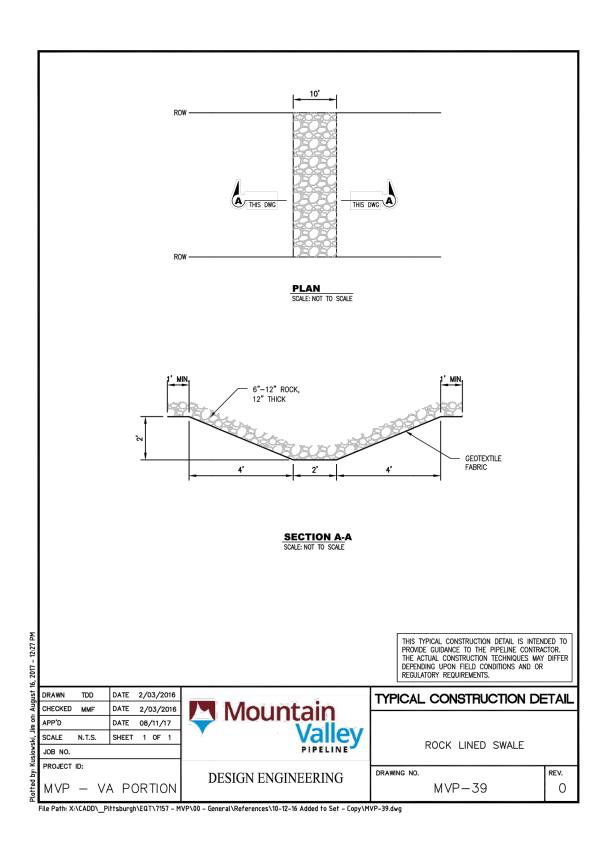


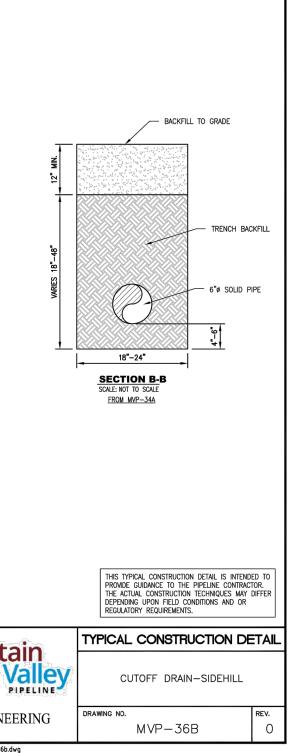


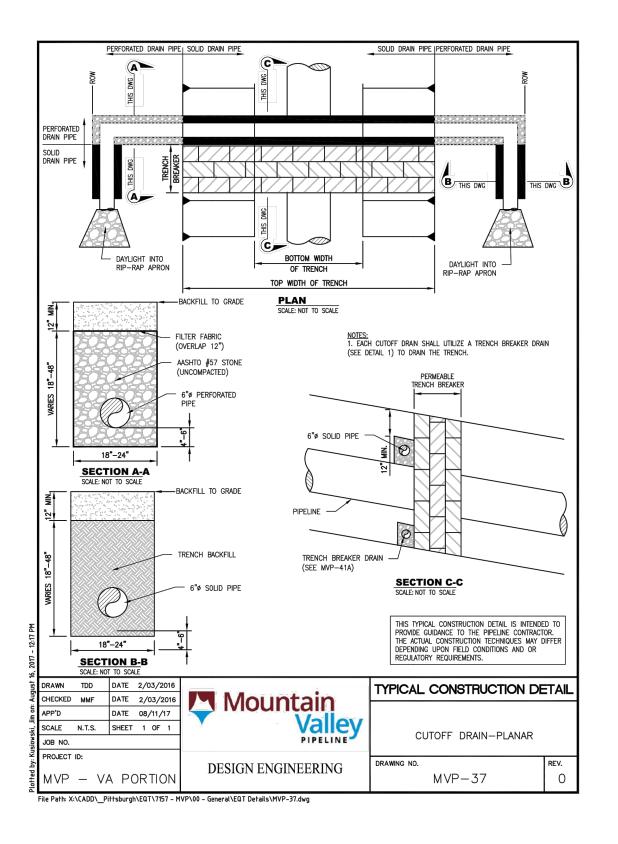


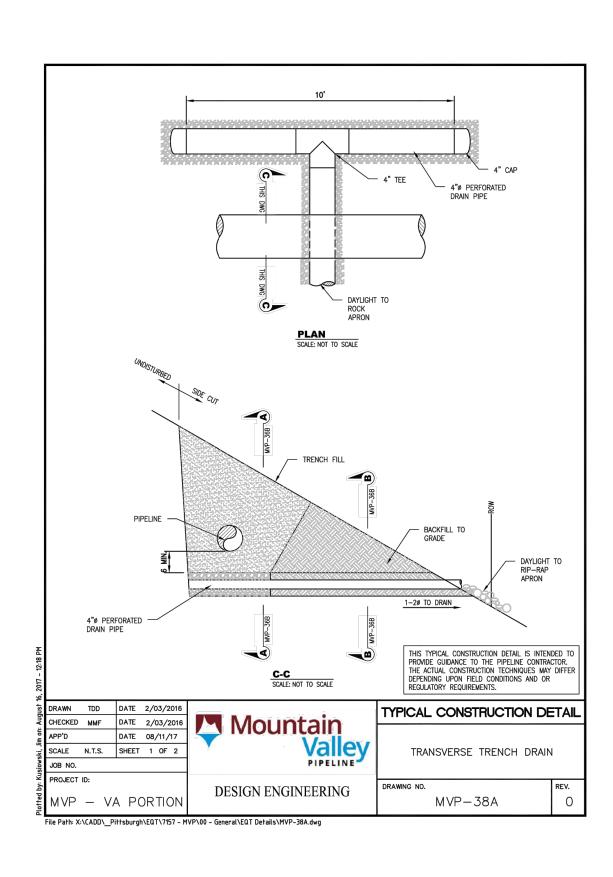


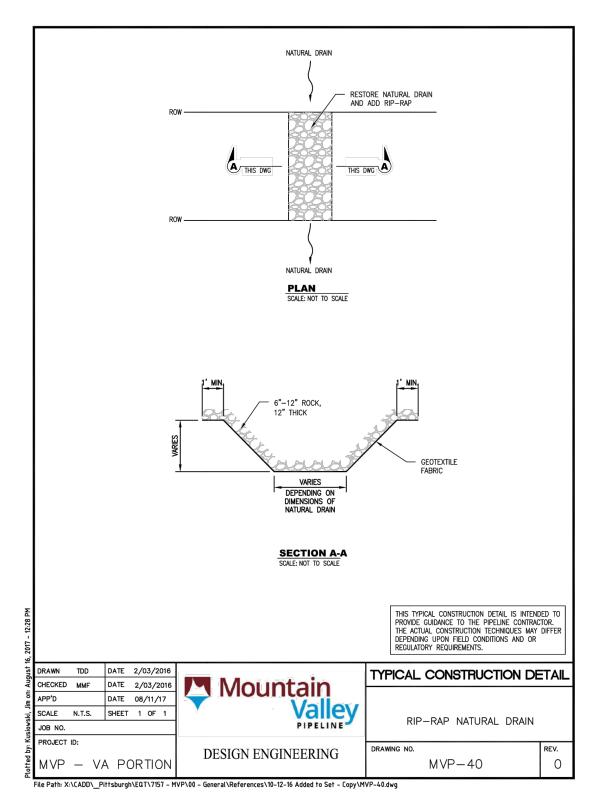


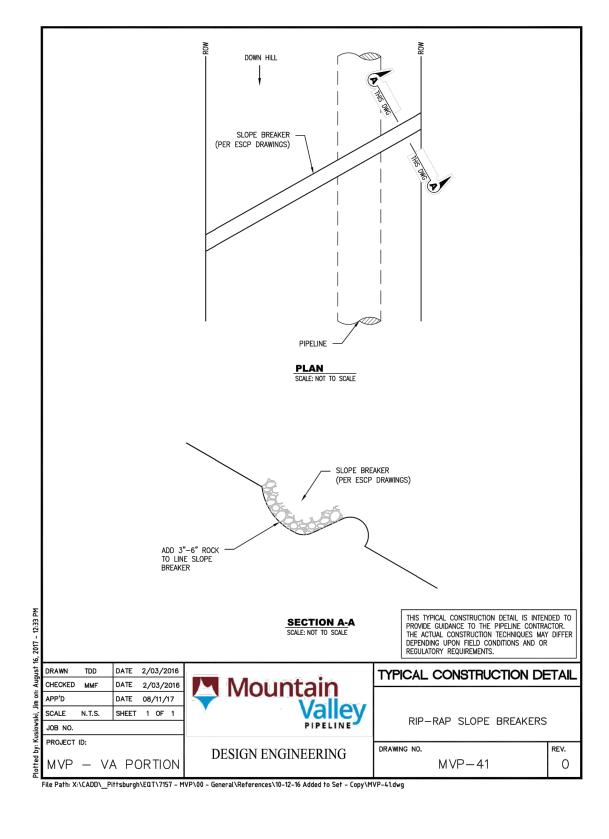

/6/2016	Mountain		
8/11/17 0F 1		TYPICAL TRENCH BREAKER REQUIREMENTS	
RTION	DESIGN ENGINEERING	drawing no. MVP-20	rev.

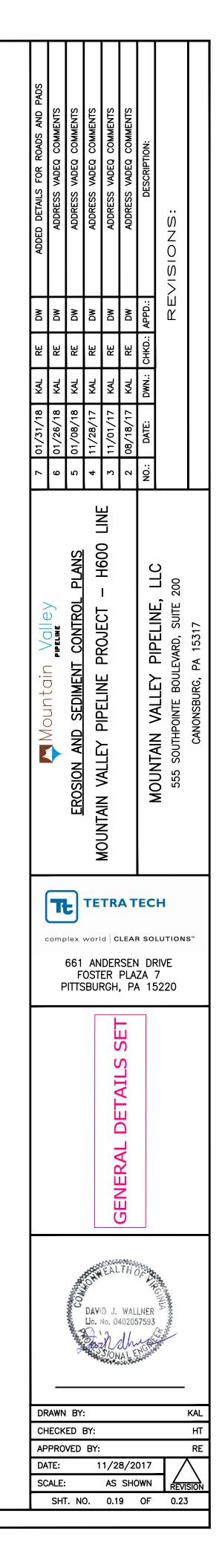

Image: Second point of the second p
Complex world CLEAR SOLUTIONS* Complex world CLEAR SOLUTIONS* 661 ANDERSEN DRIVE FOSTER PLAZA 7 PITTSBURGH, PA 15220 ES SIVE I VIII I VIIII I VIIIII I VIIII I VIIIII I VIIII I VIIIII I VIIII I VIIIII I VIIII I VIIIII I VIII
661 ANDERSEN DRIVE FOSTER PLAZA 7 PITTSBURGH, PA 15220
DRAWN BY: KAL CHECKED BY: RE
LIC. NO. 0402057593
CHECKED BY: HT APPROVED BY: RE

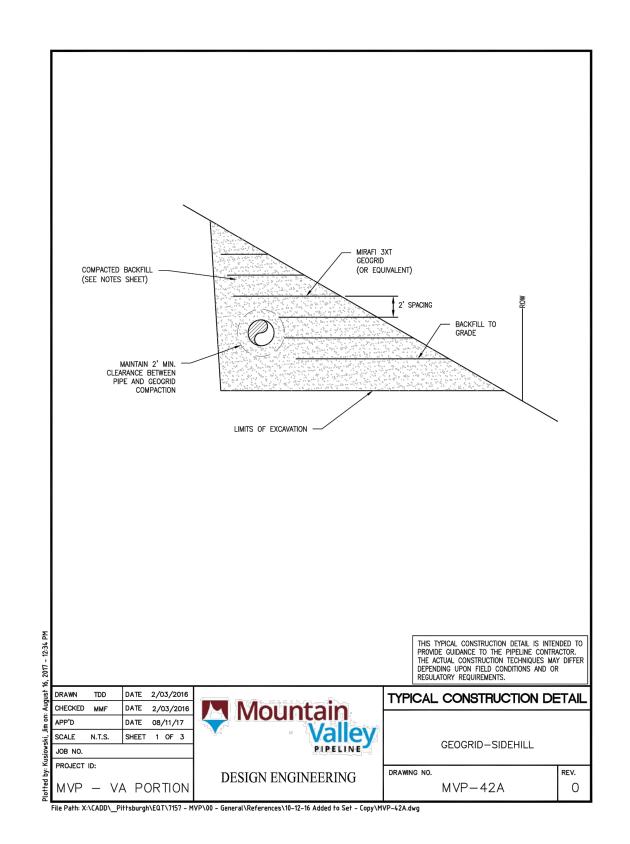


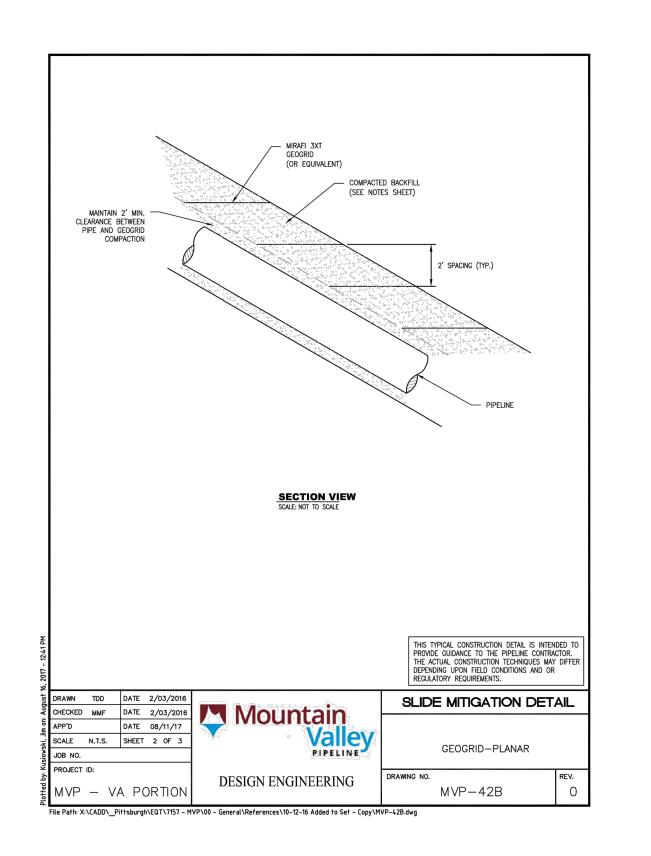


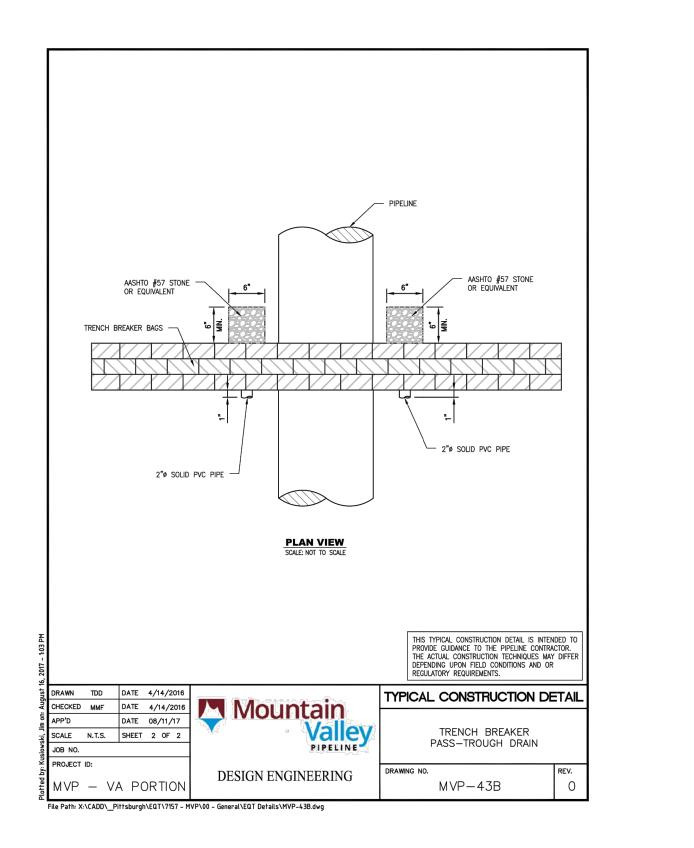


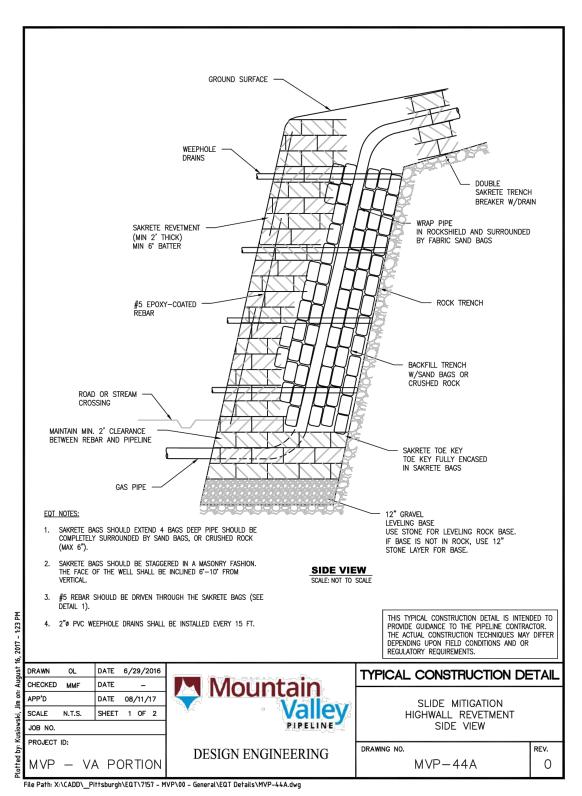


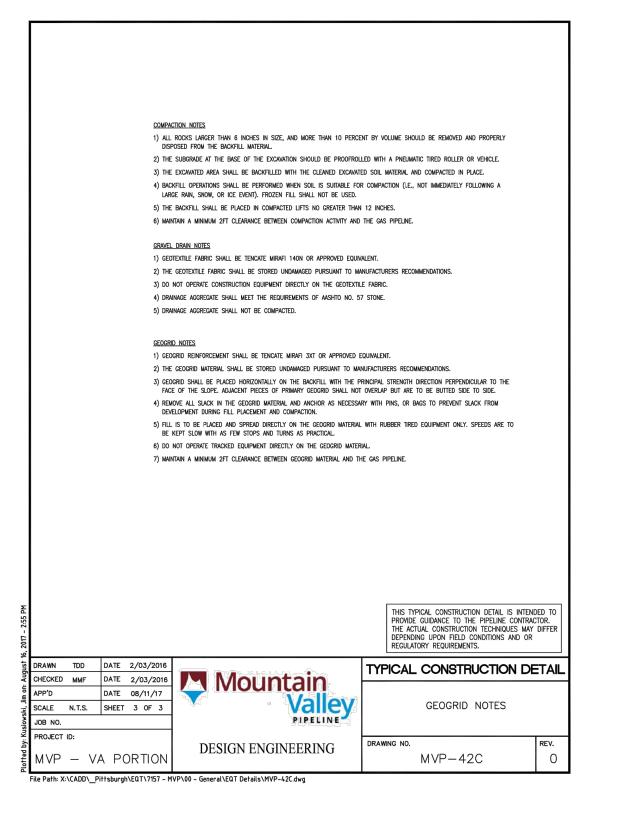


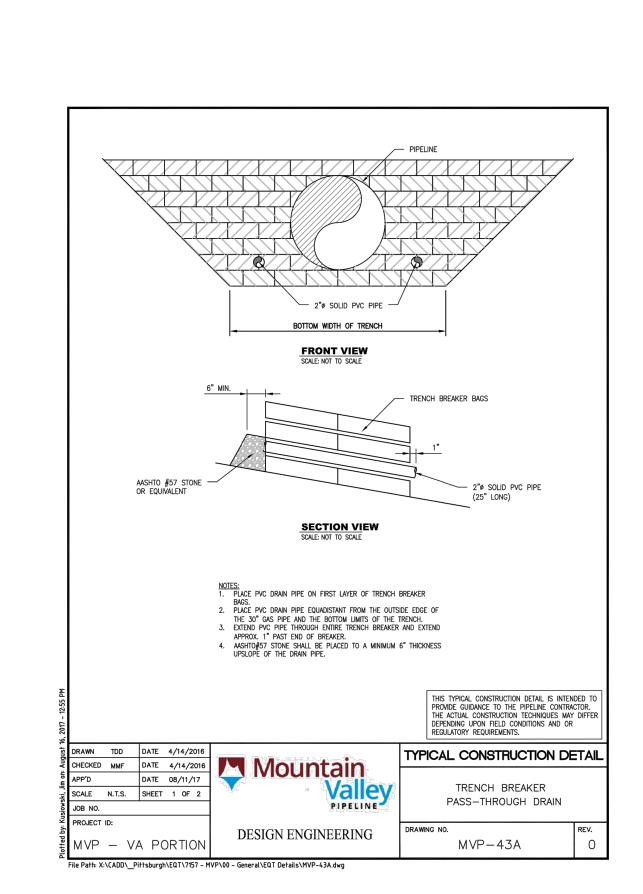


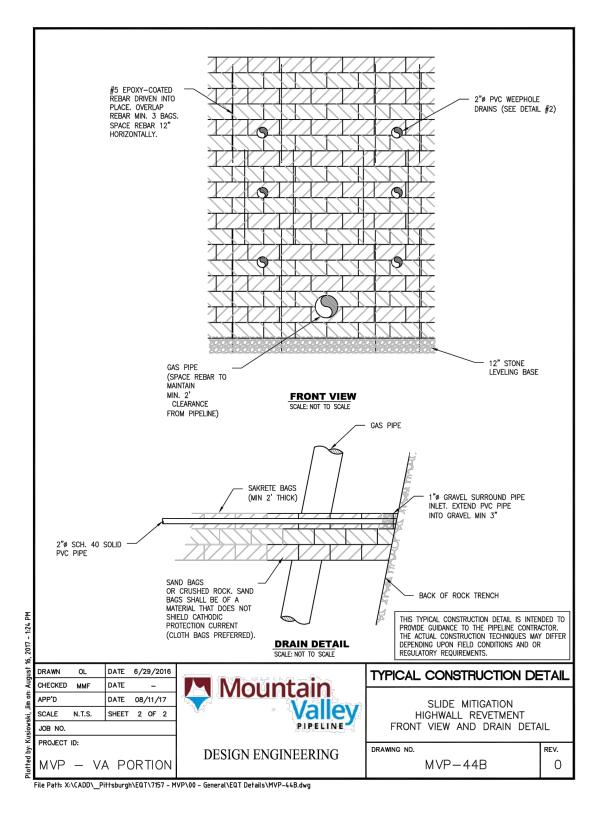


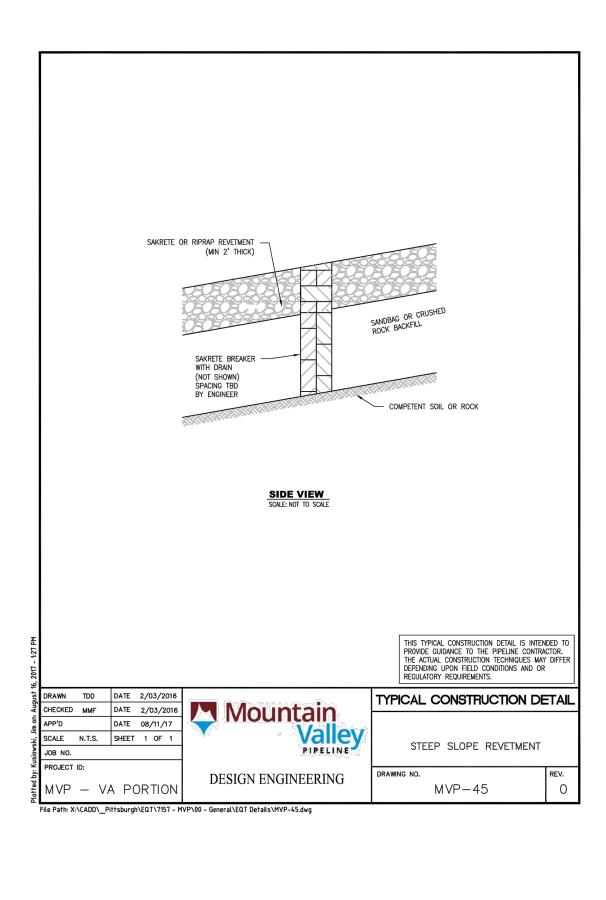


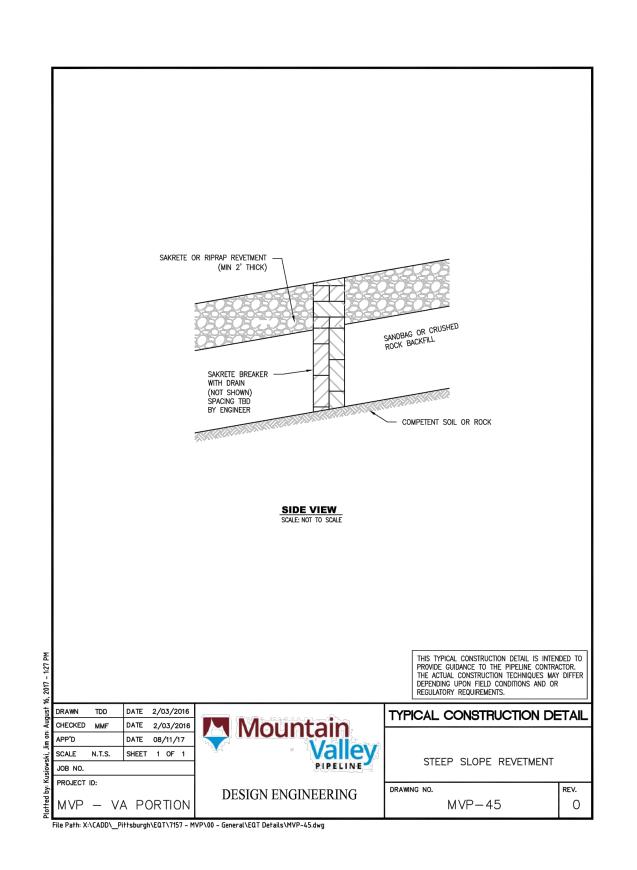


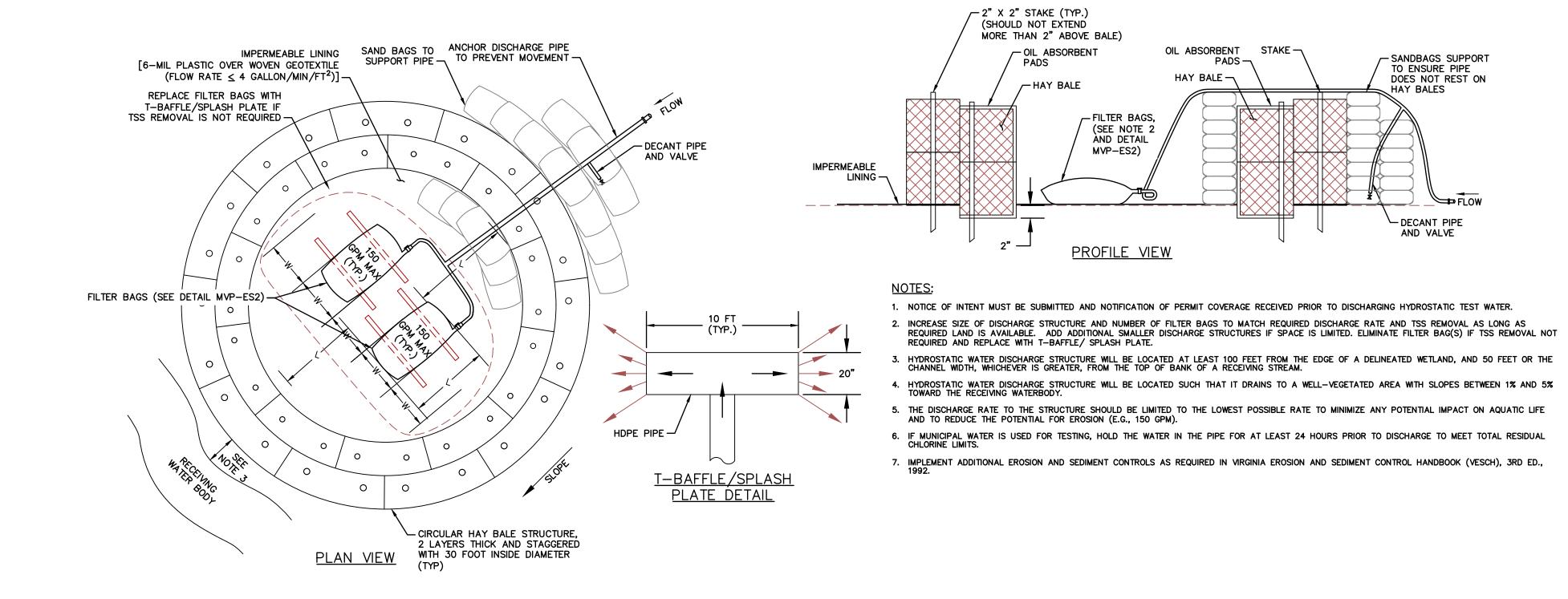












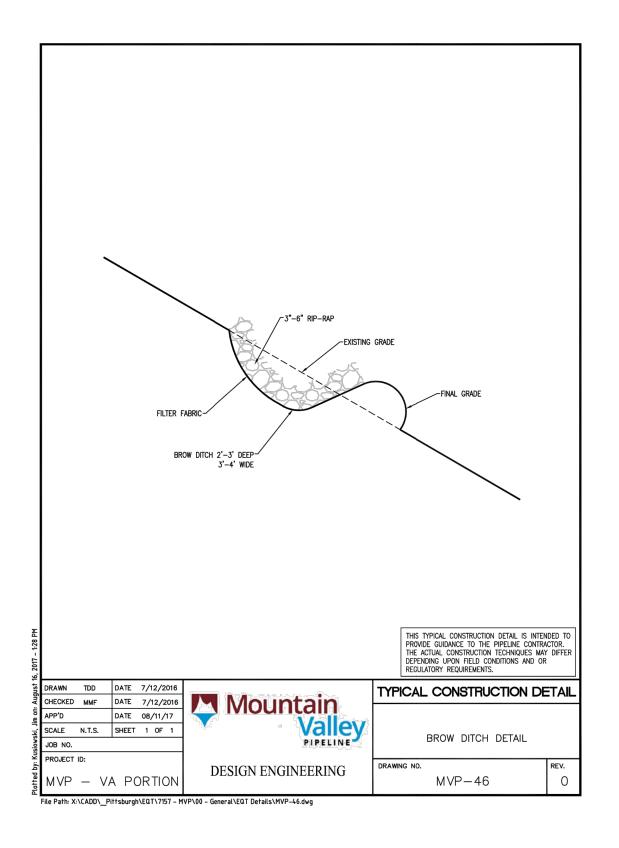
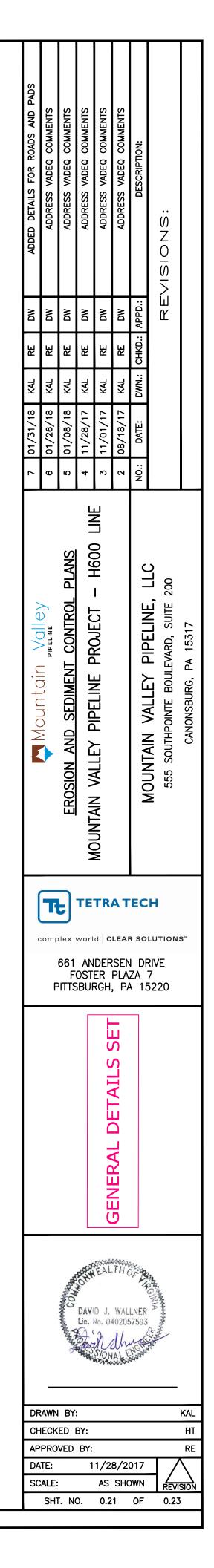


Image: Construct of the consthe construct of the construct of the construct of the construct o	ADDED DETAILS FOR ROADS AND PADS	ADDRESS VADEQ COMMENTS	DESCRIPTION:	REVISIONS:						
CONNEDUCE PARTS SET DRAWN RT: CANONEBIGG, PA 15317 CANONEBUGG, PA 15317 CANONEBUGG, PA 15210 DRAWN RT: DRAWN RT: DRAWN RT: CHIPONEL BY: TIT/28/2017 CANONEBUG PA 15217 CANONEBUG PA 15217 CANONEBU	DW	MQ	DW	DW	DW	DW	APPD.:	Ц		
CONNEDUCE PARTS SET DRAWN RT: CANONEBIGG, PA 15317 CANONEBUGG, PA 15317 CANONEBUGG, PA 15210 DRAWN RT: DRAWN RT: DRAWN RT: CHIPONEL BY: TIT/28/2017 CANONEBUG PA 15217 CANONEBUG PA 15217 CANONEBU	RE	RE	RE	RE	RE	RE	CHKD.:			
							DWN.:			
	1/31/18	1/26/18	1/08/18	1/28/17	1/01/17	8/18/17	DATE:			
TETRATECH complex world CLEAR SOLUTIONS* 661 ANDERSEN DRIVE FOSTER PLAZA 7 PITTSBURGH, PA 15220 IS STUTIONE IS STUTIONE IS STUTIONE IS SUPE IN ORAWN BY: IN APPROVED BY: IN IN IN IN	7 0	6 0	5 0	4 1	3 1	2 0	NO.:			
TETRATECH complex world CLEAR SOLUTIONS* 661 ANDERSEN DRIVE FOSTER PLAZA 7 PITTSBURGH, PA 15220 IS STUTIONE IS STUTIONE IS STUTIONE IS SUPE IN ORAWN BY: IN APPROVED BY: IN IN IN IN	EROSION AND SEDIME DUNTAIN VALLEY PIPELINE MOUNTAIN VALLEY 555 SOUTHPOINTE BOU CANONSBURG,									
DAVID J. WALLNER Lic. No. 0402057593 DRAWN BY: KAL CHECKED BY: HT APPROVED BY: RE DATE: 11/28/2017	661 ANDERSEN DRIVE FOSTER PLAZA 7 PITTSBURGH, PA 15220									
CHECKED BY: HT APPROVED BY: RE DATE: 11/28/2017										
DATE: 11/28/2017				Lic.	ULL N L L L L		LNER			
	СН	IECK	BY: ED I	Lic.	ULL N L L L L		LNER			



TEST BREAK NAME	TEST BREAK COORDINATES PROPOSED OUTFALL COORDINATES ANTICIDATED DISCURDED DI						TIME TO RELEASE (DAYS)	# OF HAY BALE STRUCTURES	RECEIVING WATER NAME
	LATITUDE	LONGITUDE	LATITUDE	LONGITUDE	ANTICIPATED DISCHARGE VOLUME (GAL)	RECOMMENDED DISCHARGE RANGE (GPM)		# OF HAT BALE STRUCTURES	
11A	37° 02' 52.583"	-79° 53' 43.515"	37° 02' 54.509"	-79° 53' 46.055"	3,830,000	600 to 1200	4 to 2	2 to 4	UNT TO BLACKWATER RIVER
118	37° 00' 38.316''	-79° 45' 15.476'''	37° 00' 38.797"	-79° 45' 17.255'''	930,000	300 to 600	2 to 1	1 to 2	UNT TO BLACKWATER RIVER
11C	36° 49' 53.750"	-79° 20' 34.420'''	36° 49' 52.137"	-79° 20' 37.560'''	680,000	300 to 600	2 to 1	1 to 2	UNT TO LITTLE CHERRYSTONE CREEK

TETRA TECH CAD FILE PATH: X:\CADD_Pittsburgh\EQT\7157 - MVP\00 - General\E&S\Spread 11\7157ES021(S11).dwg PLOTTED ON: 2/3/2018 8:01 AM PLOTTED BY: Rickabough. Greg PLOT FILE: ENVIRONMENTAL_COLOR.ctb

DISCHARGE STRUCTURES TO BE USED FOR HYDROSTATIC TEST WATER NOT TO SCALE

GENERAL CONSTRUCTION SEQUENCE

THE FOLLOWING IS A GENERAL SEQUENCE FOR EARTHMOVING ACTIVITIES ASSOCIATED WITH CONSTRUCTION OF THE PIPELINE:

- 1. INSTALL TEMPORARY EROSION AND SEDIMENT CONTROLS PRIOR TO EARTH DISTURBANCE. REFER TO BEST MANAGEMENT PRACTICES (BMP) INSTALLATION AND REMOVAL NOTES. APPROPRIATE BMPS SHOULD BE PLACED AROUND SENSITIVE AREAS PRIOR TO EARTH DISTURBANCE. STONE CONSTRUCTION ENTRANCES (SCE) ARE TO BE PROVIDED AT ALL LOCATIONS WHERE ACCESS ROADS AND PIPELINES WILL BE ACCESSING OR CROSSING A PUBLIC ROADWAY. NOTE THAT SILT FENCE, COMPOST FILTER SOCK AND SUPER SILT FENCE IS BEING INSTALLED AS PART OF A "SYSTEM" OF EROSION CONTROL BMPS INCLUDING CLEAN WATER DIVERSIONS, WATERBARS AND BONDED FIBER MATRIX. THIS BMP SYSTEM APPROACH ALLOWS MVP TO MANAGE SLOPE LENGTH LIMITATIONS OF SUPER SILT BY INTRODUCING SLOPE BREAKS AND ADDITIONAL SURFACE EROSION PROTECTION.
- 2. INSTALL TEMPORARY E&S CONTROLS FOR STREAM CROSSINGS AT LOCATIONS SHOWN ON THE E&S PLAN SHEETS. NO EARTH DISTURBANCE ACTIVITIES WITHIN 50 FEET OF STREAM CHANNELS WILL BE PERFORMED UNTIL MATERIALS NEEDED TO COMPLETE THE CROSSING ARE AT THE NEAREST AVAILABLE LOCATION.
- 3. GENERAL CLEARING AND GRUBBING OF THE TREES AND BRUSH ALONG THE RIGHT-OF-WAY (ROW) FOR PIPELINE TRENCHING MAY COMMENCE TO THE WIDTH SPECIFIED IN THE ROW AGREEMENTS OR CONSTRUCTION ALIGNMENT SHEETS, WHICHEVER IS LESS. SMALLER DEBRIS, SUCH AS SHRUBS OR LIMBS, ARE TO BE CHIPPED AND UTILIZED ON-SITE AS PART OF THE SOIL STABILIZATION. WHERE CHIPPED MATERIAL IS USED AS MULCH, SPREAD AT A RATE NOT TO EXCEED 1 TON/ACRE. UNLESS OTHERWISE DIRECTED BY THE LANDOWNER, LOGS WILL EITHER BE HAULED OFF-SITE OR GIVEN TO THE LANDOWNER UPON THEIR REQUEST; STUMPS AND/OR LOGS WILL BE GROUND, CHIPPED, WINDROWED, OR HAULED OFF-SITE.
- 4. INSTALL CLEAN WATER DIVERSIONS AND CLEAN WATER DIVERSION PIPES IN ACCORDANCE WITH VESCH STD & SPEC 3.09 AND MVP-ES50 AND MCP-ES50.1. IN ADDITION, INSTALL OUTLET STRUCTURES FOR CLEAN WATER PIPES IN ACCORDANCE WITH MVP-ES51 AND MVP-ES51.1. FOLLOWING INSTALLATION OF CLEAN WATER DIVERSION BERMS STABILIZE THE UPHILL SIDE OF THE BERM USING TEMPORARY SEED, EROSION CONTROL MATTING OR BONDED FIBER MATRIX. FINALLY INSTALL ROCK CHECK DAMS IN ACCORDANCE WITH VESCH STD & SPEC 3.20 EXCEPT THAT COMPOST FILTER SOCK OR NATIVE ROCK (SIZED APPROPRIATELY PER VESCH STD & SPEC 3.20) EXCAVATED DURING GRADING WILL BE USED FOR CONSTRUCTION.
- 5. INSTALL TEMPORARY AND PERMANENT RIGHT-OF-WAY DIVERSIONS/WATERBARS IMMEDIATELY AFTER INITIAL DISTURBANCE OF THE SOIL IN ACCORDANCE WITH THE WATERBAR SPACING AND SIZING REQUIREMENTS SHOWN ON THE PLAN AND DETAIL SHEETS (SEE DETAILS VADEQ STD & SPEC 3.11 AND MVP-17). RIGHT-OF-WAY DIVERSIONS/WATERBARS WILL BE CONSTRUCTED OF SOIL, AND USED TO REDUCE RUNOFF VELOCITY AND DIVERT WATER OFF THE PIPELINE ROW. WATERBARS WILL BE INSTALLED WITH SUMP FILTERS (DETAIL MVP-ES42) AT THE DISCHARGE END.
- 6. EXCAVATE PIPELINE TRENCH AND BEGIN GRADING OF PROPOSED METER AND RECTIFIER ANODE BED SITES. THE PROPOSED CONSTRUCTION ROW AND EXTRA WORKSPACES ARE TO BE USED AS A WORK AREA FOR TRENCH EXCAVATION, EQUIPMENT MOVEMENT AND THE TEMPORARY STORAGE OF SOIL STOCKPILES, AS NEEDED. EQUIPMENT, SOIL STOCKPILES, AND OTHER MATERIALS ARE TO REMAIN UPSLOPE OF BMPS DURING CONSTRUCTION ACTIVITIES. REFER TO BMP INSTALLATION AND REMOVAL SEQUENCE FOR THE BMPS TO BE USED FOR PROTECTION DURING TRENCH EXCAVATION AND AROUND TEMPORARY SOIL STOCKPILES. STOCKPILES AND NON-WORK AREA SLOPES WILL BE STABILIZED THROUGH AN APPLICATION OF EITHER MULCH (ORGANIC, EROSION CONTROL BLANKET OR BONDED FIBER MATRIX) OR TEMPORARY SEED. SEGREGATION OF TOPSOIL AND SUBSOIL WILL BE PERFORMED WHERE TRENCH EXCAVATION TAKES PLACE IN AN AGRICULTURAL, WETLAND, OR RESIDENTIAL AREA.
- 7. PIPELINE SECTIONS WILL BE TRANSPORTED TO THE WORK AREA AND STRUNG ALONG THE WORKING SIDE OF THE ROW PARALLEL TO THE TRENCH LINE. WELDING CAN OCCUR IN OR OUT OF THE TRENCH. THE PIPELINE WILL BE BENT TO CONFORM TO THE TRENCH CONTOUR, ALIGNED WELDED AND PLACED ON TEMPORARY SUPPORTS ALONGSIDE THE TRENCH. WELDS WILL BE VISUALLY AND RADIO-GRAPHICALLY INSPECTED AND REPAIRED AS NECESSARY. THE PIPE SECTION WILL BE LOWERED INTO THE TRENCH AND PLACED ON PADDING PER MVP CONSTRUCTION STANDARDS. ANY WETNESS ENCOUNTERED DURING CONSTRUCTION WORK WILL BE DEWATERED BY USING PUMPS, HOSES, AND PUMPED BAGS (DETAIL MVP-ES2), AND WILL BE DISCHARGED TO A WELL VEGETATED, UPLAND AREA.
- 8. STREAM PIPELINE CROSSING CONSTRUCTION METHODS WILL BE INSTALLED AT LOCATIONS SHOWN ON THE E&S PLAN SHEETS AND AS SPECIFIED ON DETAIL SHEET. STREAM BANK STABILIZATION WILL BE INSTALLED IMMEDIATELY FOLLOWING COMPLETION OF PIPELINE INSTALLATION AS SHOWN ON THE DETAIL SHEET.
- 9. INSTALL TRENCH BREAKERS AT LOCATIONS SHOWN ON THE DRAWINGS OR AS DIRECTED BY MVP AND AS SPECIFIED ON THE DETAIL SHEET (DETAIL MVP-20).
- 10. THE TRENCH WILL SUBSEQUENTLY BE BACKFILLED WITH SUITABLE EXCAVATED MATERIAL. THE BACKFILL MATERIAL WILL BE SLIGHTLY CROWNED IN UPLAND AREAS TO ALLOW FOR SETTLEMENT THAT MAY OCCUR. CROWNING THE SOIL SLIGHTLY OVER THE PIPELINE WILL HELP PREVENT FUTURE STORM WATER-RELATED PROBLEMS FROM SETTLING OF THE BACKFILLED AREA. NO CROWNING OF SOILS WILL TAKE PLACE IN WETLANDS, STREAMS, OR FLOOD PLAINS. IN AREAS WHERE TOPSOIL HAS BEEN SEGREGATED, THE SUBSOIL WILL BE REPLACED FIRST, AND THEN THE TOPSOIL WILL BE SPREAD OVER THE AREA FROM WHICH IT WAS REMOVED. DISTURBED AREAS WILL BE RESTORED TO THEIR APPROXIMATE ORIGINAL TOPOGRAPHIC CONTOURS.
- 11. STABILIZE EXPOSED AND UNWORKED SOILS BY APPLICATION OF EFFECTIVE BMPS THAT PROTECT THE SOIL FROM THE EROSIVE FORCES OF RAINDROPS, FLOWING WATER, AND WIND. PERMANENT OR TEMPORARY SOIL STABILIZATION SHALL BE APPLIED TO DENUDED AREAS WITHIN SEVEN DAYS AFTER FINAL GRADE IS REACHED ON ANY PORTION OF THE SITE. WHERE A DENUDED AREA WILL REMAIN IDLE FOR MORE THAN 7 CALENDAR DAYS, TEMPORARY SEEDING (VA STD & SPEC 3.31, TABLE 3.31-B) WILL BE APPLIED TO THE ROUGH GRADED AREA. PERMANENT STABILIZATION SHALL BE APPLIED TO AREAS THAT ARE TO BE LEFT DORMANT FOR MORE THAN ONE YEAR.
- 12. IN THE UNLIKELY EVENT THAT THERE ARE EXCESS EXCAVATED MATERIALS REMAINING AFTER THE TRENCH HAS BEEN BACKFILLED, THE MATERIAL IS TO BE DISPOSED OF WITHIN THE EXISTING ROW IN AN UPLAND AREA OUTSIDE OF THE 100-YEAR FLOOD PLAIN. MATERIAL WILL BE SPREAD IN A THIN LAYER AND TIED INTO EXISTING CONTOURS TO CREATE POSITIVE DRAINAGE FOR STORMWATER RUNOFF.
- 13. CONSTRUCT PERMANENT RIGHT-OF-WAY DIVERSION/WATERBARS AFTER COMPLETION OF GRADING IN ACCORDANCE WITH THE WATERBAR SPACING AND SIZING REQUIREMENTS SHOWN ON PLAN AND DETAIL SHEETS (DETAIL MVP-17).
- 14. PRIOR TO SEEDING MVP WILL DISC AREAS TO A DEPTH OF 4-6" TO FACILITATE REVEGETATION. DISCING WILL BE PERFORMED ON SUBSOILS TO A DEPTH OF 4-6" AND AGAIN FOLLOWING TOPSOILING.
- 15. REVEGETATE DISTURBED AREA PER THE TABLES ON DETAILS MVP-ES11.1 TO 11.9 AND MVP-12.1 TO 12.4 OR PER LANDOWNER REQUEST. FOR 3:1 OR STEEPER SLOPES THE DISTURBED AREA WILL HAVE EROSION CONTROL FABRIC (BLANKETING, HYDROSEEDING, FLEXTERRA, OR APPROVED EQUAL) INSTALLED AS SHOWN ON DETAIL SHEET (DETAILS VA STD & SPEC 3.36, MVP-ES40 AND MVP ES-40.1).
- 16. RE-ESTABLISH APPROPRIATE DRAINAGE IN EXISTING ROAD CHANNELS PRIOR TO SEEDING AND MULCHING.
- 17. CONDUCTING INSPECTIONS OF TEMPORARY ESC CONTROLS AND SWM BMPS ON AT LEAST THE FOLLOWING FREQUENCIES:
 - A. IN NON-TMDL WATERSHEDS
 AT LEAST ONCE EVERY FIVE BUSINESS DAYS, OR
 - •AT LEAST ONCE EVERY 10 BUSINESS DAYS AND NO LATER THAN 48 HOURS FOLLOWING A MEASURABLE STORM EVENT (OR ON THE NEXT BUSINESS DAY IF THE STORM EVENT OCCURS WHEN THERE ARE MORE THAN 48 HOURS BETWEEN BUSINESS DAYS. B. IN TMDL WATERSHEDS:
 - AT LEAST ONCE EVERY FOUR BUSINESS DAYS, OR
 - AT LEAST ONCE EVERY 5 BUSINESS DAYS AND NO LATER THAN 48 HOURS FOLLOWING A MEASURABLE STORM EVENT (OR ON THE NEXT BUSINESS DAY IF THE STORM EVENT OCCURS WHEN THERE ARE MORE THAN 48 HOURS BETWEEN BUSINESS DAYS.

TEMPORARY BMP'S WILL BE REMOVED UPON ACHIEVING VEGETATIVE STABILIZATION, WHICH IS DEFINED AS "A GROUND COVER IS ACHIEVED THAT IS UNIFORM, MATURE ENOUGH TO SURVIVE AND WILL INHIBIT EROSION". DISTURBED AREAS NOT ATTAINING AN ACCEPTABLE VEGETATIVE COVER SHALL BE RESEEDED AS NEEDED UNTIL THE ENDPOINT IS ACHIEVED.

18. ALL POLLUTANTS, INCLUDING WASTE MATERIALS AND DEMOLITION DEBRIS THAT OCCUR ON SITE DURING CONSTRUCTION SHALL BE HANDLED AND LEGALLY DISPOSED OF IN A MANNER THAT DOES NOT CAUSE CONTAMINATION OF SURFACE WATERS. WOODY DEBRIS MAY BE CHIPPED AND SPREAD ON-SITE. FOR STREAM CROSSINGS, REFER TO THE FOLLOWING STEPS:

- 1. INSTALL TEMPORARY EQUIPMENT BRIDGE, BYPASS HOSE, FLUME, PUMP, OR COFFERDAM AS DESCRIBED IN STREAM CROSSING DETAILS AROUND THE WORK AREA.
- 2. DEWATER WORK AREA UTILIZING PUMP WATER FILTER BAGS. WHERE POSSIBLE, EXCAVATION WILL BE FROM THE TOP OF THE STREAM BANK.
- 3. INSTALL TRENCH PLUGS, PIPE, AND BACKFILL.
- 4. STABILIZE CHANNEL EXCAVATION AND STREAM BANKS PRIOR TO REDIRECTING STREAM FLOW.
- 5. REMOVE BYPASS HOSE, FLUME, PUMP, AND TEMPORARY DAM AS NEEDED.
- IF WORKING WITHIN A WETLAND AREA, FOLLOW THE GENERALIZED CONSTRUCTION SEQUENCE BELOW:
- 1 INSTALL EITHER SUPER SILT FENCE, ORANGE CONSTRUCTION FENCE, OR COMPOST FILTER SOCKS ALONG THE PERIMETERS OF THE SITE AS SHOWN ON THE CONSTRUCTION DRAWINGS.
- 2. MATS, PADS, OR SIMILAR DEVICES WILL BE USED DURING THE CROSSINGS OF WETLANDS. ORIGINAL GRADES THROUGH WETLANDS MUST BE RESTORED AFTER TRENCHING AND BACKFILLING. ANY EXCESS FILL MATERIALS MUST BE REMOVED FROM THE WETLAND AND NOT SPREAD WITHIN WETLANDS.
- 3. SOIL EXCAVATED FROM WETLAND AREAS WILL BE CAREFULLY REMOVED WITH THE ROOTS INTACT. THIS SOIL WILL BE PLACED IN A SEPARATE STOCKPILE TO BE REUSED DURING THE WETLAND SURFACE RESTITUTION.
- 4. DEWATER WORK AREA UTILIZING PUMPED WATER FILTER BAGS.
- 5. INSTALL PIPE.
- 6. INSTALL TRENCH PLUGS IN WETLAND AREAS TO PREVENT THE TRENCH FROM DRAINING THE WETLAND OR CHANGING ITS HYDROLOGY.
- 7. BACKFILL PIPE TRENCH. BACKFILL THE TOP 12-INCHES OF THE EXCAVATED TRENCH WITH THE STOCKPILED WETLAND SOIL TO MATCH ORIGINAL SURFACE GRADES.
- 8. COMPACT BACKFILL AND GRADE THE SURFACE OF THE TRENCH AREA TO ALLOW FOR POSITIVE DRAINAGE TO SOIL E&SCS AND TO PREPARE DISTURBED AREAS FOR PERMANENT TRENCH RESTORATION.
- 9. MAINTAIN ALL E&SCS DEVICES UNTIL SITE WORK IS COMPLETE AND A GROUND COVER IS ACHIEVED THAT IS UNIFORM AND MATURE ENOUGH TO SURVIVE AND INHIBIT EROSION.
- 10. REMOVE ALL SOIL AND E&SC MEASURES UPON ESTABLISHMENT OF A GROUND COVER THAT IS UNIFORM AND MATURE ENOUGH TO SURVIVE AND INHIBIT EROSION. RE-GRADE AND REVEGETATE AREAS DISTURBED DURING THE REMOVAL OF THE SOIL E&SCS.

BMP MAINTENANCE

- TEMPORARY AND PERMANENT EROSION AND SEDIMENT CONTROL BMPS SHALL BE MAINTAINED AND REPAIRED AS NEEDED TO ASSURE CONTINUED PERFORMANCE OF THEIR INTENDED FUNCTION. MAINTENANCE AND REPAIR SHALL BE CONDUCTED IN ACCORDANCE WITH THE APPROVED STANDARDS AND SPECIFICATIONS.
- IN NON-AGRICULTURAL AREAS THE VISUAL SURVEY SHALL BE COMPARED TO THE DENSITY AND COVER OF ADJACENT UNDISTURBED LANDS. IN AGRICULTURAL AREAS, THE VISUAL SURVEY SHALL BE COMPARED TO THE ADJACENT UNDISTURBED PORTIONS OF THE SAME FIELD, UNLESS THE EASEMENT AGREEMENT SPECIFIES OTHERWISE.
- WETLANDS ALONG THE PROPOSED PIPELINE ARE EXPECTED TO EXHIBIT VARYING DEGREES OF SATURATION AND WATER ELEVATION, REQUIRING A VARIETY OF PLANT SPECIES TO BE RE-ESTABLISHED. IN UNSATURATED WETLANDS, MOST VEGETATION WILL BE REPLACED BY SEEDING. SATURATED WETLANDS WILL TYPICALLY BE ALLOWED TO RE-VEGETATE NATURALLY. WETLAND REVEGETATION WILL BE CONSIDERED SUCCESSFUL WHEN THE COVER OF HERBACEOUS AND/OR WOODY SPECIES IS AT LEAST 80 PERCENT OF THE TYPE, DENSITY, AND DISTRIBUTION OF THE VEGETATION IN ADJACENT WETLAND AREAS THAT WERE NOT DISTURBED BY CONSTRUCTION. REVEGETATION EFFORTS WILL CONTINUE UNTIL WETLAND REVEGETATION IS SUCCESSFUL.
- CONDUCTING INSPECTIONS OF TEMPORARY ESC CONTROLS AND SWM BMPS AT LEAST ONCE EVERY FOUR BUSINESS DAYS.
- TEMPORARY EROSION AND SEDIMENT CONTROL BMPS SHOULD BE REMOVED WITHIN 30 DAYS AFTER FINAL SITE STABILIZATION IS ACHIEVED OR AFTER THE TEMPORARY BMPS ARE NO LONGER NEEDED. TRAPPED SEDIMENT SHALL BE REMOVED OR STABILIZED ON SITE. DISTURBED SOIL RESULTING FROM REMOVAL OF BMPS OR VEGETATION SHALL BE PERMANENTLY STABILIZED.

RESTORATION BMP PHASING

THE FOLLOWING IS THE SEQUENCE OF EROSION AND SEDIMENT CONTROL BEST MANAGEMENT PRACTICE REMOVAL AND INSTALLATION RELATED TO RESTORATION ACTIVITIES. THIS WORK WILL OCCUR BETWEEN RESTORATION OF PIPELINE LIMIT OF DISTURBANCE TO PRE-CONSTRUCTION GRADES AND FINAL CLOSURE OF THE PROJECT DEFINED AS "ACHIEVING VEGETATIVE STABILIZATION". THE SEQUENCE IS:

1) REMOVE AND GRADE OUT THE CLEAN WATER DIVERSION DIKE.

2) REMOVE DOWNSLOPE BMPS UTILIZED DURING CONSTRUCTION AND IMMEDIATELY REPLACE WITH 12-IN COMPOST FILTER SOCK. ON SLOPES GREATER THAN 30%, AN ADDITIONAL INTERMEDIATE 12-IN COMPOST FILTER SOCKS WILL BE PLACED PER THE SLOPE SPACING (MVP-ES3.2) TO ATTENUATE THE VELOCITY OF RUNOFF IN THE RECLAIMED AREA.

3) APPLY SPECIALTY SEEDS AS REQUIRED THAT WILL NOT BE INCLUDED IN THE MULCH PHASE (STEP 4), SEED THE AREA USING THE SEED MIXES AND RATES SPECIFIED IN MVP-ES11.1 TO MVP-ES11.9 AND MVP-ES12.1 TO MVP-ES12.4.

4) APPLY MULCH IN THE FORM OF ORGANIC MULCH (PER MVP-ES45), SOIL STABILIZATION MATTING (PER VADEQ STD & SPEC 3.36), OR HYDRAULIC EROSION CONTROL PRODUCT (PER MVP-ES40).

5) FOLLOWING A DETERMINATION THAT THE SITE HAS ACHIEVED VEGETATIVE STABILIZATION, THE COMPOST FILTER SOCK WILL BE "OPENED" AND THE MULCH CONTAINED WITHIN WILL BE SPREAD WITHIN THE LIMITS OF DISTURBANCE.

7 01/31/18 KAL RE DW ADDEC	PIPELINE ADDRESS VADEQ COMMENTS	CONTROL PLANS 5 01/08/18 KAL RE DW ADDRESS VADEQ COMMENTS	T LICOO I INF 4 11/28/17 KAL RE DW ADDRESS VADEQ COMMENTS	TOUU LINE 3 11/01/17 KAL RE DW ADDRESS VADEQ COMMENTS	2 08/18/17 KAL RE DW ADDRESS VADEQ COMMENTS	NO.: DATE: DWN.: CHKD.: APPD.: DESCRIPTION:	REVISIONS:			
7 01/31/18 KAL RE	6 01/26/18 KAL RE	5 01/08/18 KAL RE	4 11/28/17 KAL RE	3 11/01/17 KAL RE	KAL RE	DATE: DWN.: CHKD.:	REV			
7 01/31/18 KAL	6 01/26/18 KAL	5 01/08/18 KAL	4 11/28/17 KAL	3 11/01/17 KAL	KAL	DATE: DWN.: CHKD.:				
7 01/31/18	6 01/26/18	5 01/08/18	4 11/28/17	3 11/01/17		DATE: DWN.:				
2	9	5	4	3	2 08/18/17					
2	9	5	4	3	2 06	NO.:				
untain Valley	PIPELINE	CONTROL PLANS								
(CONORDIRG, PAILET PIPELINE PROJECT – H600 LINE MOUNTAIN VALLET PIPELINE PROJECT – H600 LINE MOUNTAIN VALLET PIPELINE PROJECT – H600 LINE S555 SOUTHPOINTE BOULEVARD, SUITE 200 CANONSBURG, PAILET PIPELINE CONDERS MOLINE CONDERS MOLINE FOSTER PLAZA 7 PITTSBURGH, PAI 12220									
					GENERAL DE LAILS SE I					
	DAVID J. WALLNER Lic. No. 0402057593									
CHE	ECK	BY: ED I	BY:					k	KAL HT RF	
DAT	E:	VED	BY: 1	1/2				\wedge	RE	
SCA	ALE: SHT	. N	D .	AS 0.2	SHC 2	OWN OF	RE 0.1	<u>.VIS</u> 23		

BEST MANAGEMENT PRACTICES (BMP) INSTALLATION & REMOVAL NOTES	STREAM
TEMPORARY AND PERMANENT BMPS WILL BE USED DURING CONSTRUCTION ACTIVITIES TO AVOID AND/OR MINIMIZE ADVERSE ENVIRONMENTAL EFFECTS OF CONSTRUCTION ACTIVITIES.	<u>GENERAL:</u> PROCEDURE
THE FOLLOWING ARE GENERAL BMP INSTALLATION NOTES FOR PIPELINE CONSTRUCTION ACTIVITIES.	MINIMIZ PIPELIN
 A STONE CONSTRUCTION ENTRANCE, PER VESCH STD & SPEC 3.02 AND MVP-ES20, SHALL BE PROVIDED AT ALL LOCATIONS WHERE CONSTRUCTION TRAFFIC WILL BE ACCESSING A PAVED ROAD DIRECTLY FROM A DISTURBED AREA. 	ONLY T LIMIT O FROM T
• TEMPORARY SEDIMENT BARRIERS, INCLUDING APPROPRIATELY SIZED COMPOST FILTER SOCK, SILT FENCE OR SILT FENCE WILL BE PLACED AROUND SOIL STOCKPILES, AS NEEDED.	• STORIN AREAS
 COMPOST FILTER SOCK WILL BE PLACED AROUND WETLANDS AND WATERBODIES IN AND ADJACENT TO THE WORK AREA PRIOR TO ANY TRENCHING ACTIVITIES. COMPOST FILTER SOCK HAS BEEN SIZED PER MVP-ES3 AND THE SIZE IS SPECIFIED ON THE PLAN SETS UTILIZING THE LINE TYPES CONTAINED IN THE LEGEND ON EACH SHEET. 	SPOIL F ONCE V EMPHAS
• STOCKPILE SLOPES WILL BE 2:1 OR FLATTER, AND STOCKPILES WILL NOT EXCEED 35 FEET IN HEIGHT.	SPOILS

- TEMPORARY STREAM CROSSINGS SHALL BE INSTALLED AS INDICATED ON THE E&S PLAN SHEETS AND AS PER THE E&S DETAIL SHEETS.
- WATERBARS WILL BE INSTALLED IMMEDIATELY AFTER INITIAL DISTURBANCE OF THE SOIL IN ACCORDANCE WITH THE SPACING AND SIZING REQUIREMENTS SHOWN ON PLAN AND DETAIL SHEET. WATERBARS WILL BE CONSTRUCTED OF SOIL TO REDUCE RUNOFF VELOCITY AND DIVERT WATER OFF THE PIPELINE ROW.
- EXCAVATED TRENCH SPOIL MATERIAL WILL BE USED FOR TEMPORARY RIGHT OF WAY DIVERSIONS AS SHOWN IN THE DETAIL AT THE LOCATIONS INDICATED ON THE PLAN SHEETS.
- TRENCH DEWATERING, IF NEEDED, WILL BE CONDUCTED USING A PUMP AND HOSE. WATER WILL BE RELEASED INTO A FILTER BAG THAT WILL BE LOCATED IN A WELL-VEGETATED UPLAND AREA.
- TRENCH BREAKERS WILL BE INSTALLED ON SLOPES ADJACENT TO STREAMS, WETLANDS, AND ROAD CROSSINGS TO PREVENT SUBSURFACE EROSION. TRENCH BREAKERS WILL BE INSTALLED AS SHOWN ON THE DETAILS.
- THE WORK AREA WILL BE BACKFILLED FOLLOWING PIPELINE INSTALLATION OR OTHER EXCAVATION WORK. IN AREAS WHERE TOPSOIL HAS BEEN SEGREGATED. THE SUBSOIL WILL BE REPLACED FIRST, AND THEN THE TOPSOIL WILL BE SPREAD OVER THE AREA FROM WHICH IT WAS REMOVED. DISTURBED AREAS WILL BE RESTORED TO THEIR ORIGINAL TOPOGRAPHIC CONTOURS.
- PERMANENT WATERBARS, WILL BE CONSTRUCTED WITH A TWO PERCENT (TYPICAL) OUTSLOPE TO DIVERT SURFACE FLOW TO A WELL VEGETATED STABLE AREA.
- IMMEDIATELY FOLLOWING BACKFILLING ALL DISTURBED AREAS WILL BE GRADED IN PREPARATION FOR SEEDING AND MULCHING. PRIOR TO SEEDING MVP WILL DISC AREAS TO A DEPTH OF 4-6" TO FACILITATE REVEGETATION. DISCING WILL BE PERFORMED ON SUBSOILS TO A DEPTH OF 4-6" AND AGAIN FOLLOWING TOPSOILING. THE CONSTRUCTION SITE SHOULD BE STABILIZED AS SOON AS POSSIBLE AFTER COMPLETION. ESTABLISHMENT OF FINAL COVER MUST BE INITIATED NO LATER THAN 7 DAYS AFTER REACHING FINAL GRADE. REFER TO TABLES ON THIS SHEET FOR TEMPORARY AND PERMANENT SEEDING SPECIFICATIONS.
- FOR 3:1 OR STEEPER SLOPES THE DISTURBED AREA WILL HAVE EROSION CONTROL BLANKETING INSTALLED AS INDICATED ON DETAIL SHEET.
- TEMPORARY SEDIMENT BARRIERS WILL BE MAINTAINED UNTIL VEGETATION HAS BECOME ESTABLISHED WITH A GROUND COVER THAT IS UNIFORM, MATURE ENOUGH TO SURVIVE AND WILL INHIBIT EROSION. ONCE THIS COVERAGE HAS BEEN OBTAINED, APPROPRIATE CONTROLS WILL BE REMOVED FROM THE WORK AREA. AREAS DISTURBED DURING THE REMOVAL OF THE EROSION CONTROLS WILL BE STABILIZED IMMEDIATELY.
- ALL WASTE MATERIAL WILL BE TRANSPORTED OFFSITE FOR RECYCLING AND/OR DISPOSAL AT A FACILITY APPROVED TO RECEIVE THE MATERIAL.
- IN NON-AGRICULTURAL AREAS THE VISUAL SURVEY SHALL BE COMPARED TO THE DENSITY AND COVER OF ADJACENT UNDISTURBED LANDS. IN AGRICULTURAL AREAS, THE VISUAL SURVEY SHALL BE COMPARED TO THE ADJACENT UNDISTURBED PORTIONS OF THE SAME FIELD, UNLESS THE EASEMENT AGREEMENT SPECIFIES OTHERWISE.
- WETLANDS ALONG THE PROPOSED PIPELINE ARE EXPECTED TO EXHIBIT VARYING DEGREES OF SATURATION AND WATER ELEVATION, REQUIRING A VARIETY OF PLANT SPECIES TO BE RE-ESTABLISHED. IN UNSATURATED WETLANDS, MOST VEGETATION WILL BE REPLACED BY SEEDING. SATURATED WETLANDS WILL TYPICALLY BE ALLOWED TO RE-VEGETATE NATURALLY. WETLAND REVEGETATION WILL BE CONSIDERED SUCCESSFUL WHEN THE COVER OF HERBACEOUS AND/OR WOODY SPECIES IS AT LEAST 80 PERCENT OF THE TYPE, DENSITY, AND DISTRIBUTION OF THE VEGETATION IN ADJACENT WETLAND AREAS THAT WERE NOT DISTURBED BY CONSTRUCTION. REVEGETATION EFFORTS WILL CONTINUE UNTIL WETLAND REVEGETATION IS SUCCESSFUL.

PERMANENT STABILIZATION SHALL OCCUR IMMEDIATELY UPON INSTALLATION, BACKFILLING, AND GRADING AT EACH STREAM CROSSING.

CROSSING PROCEDURES

ES THAT WILL BE FOLLOWED AT STREAM CROSSING LOCATIONS INCLUDE THE FOLLOWING:

ZE CLEARING AND GRUBBING OF VEGETATION UP TO STREAMS, AS POSSIBLE, UNTIL THE TIME OF THE NE INSTALLATION;

THAT AREA WHICH IS REQUIRED FOR PIPELINE INSTALLATION SHALL BE DISTURBED WITHIN THE PROPOSED OF DISTURBANCE OR RIGHT-OF-WAY AT STREAM CROSSINGS; LOCATING STAGING AREAS 50 FEET AWAY THE STREAM, WHERE POSSIBLE;

IG CHEMICALS, STORING EQUIPMENT, WASHING EQUIPMENT, OR REFUELING EQUIPMENT MUST BE DONE IN THAT ARE GREATER THAN 100 FEET AWAY FROM THE STREAM;

PILE PLACEMENT AND BMPS WILL BE MONITORED AT ALL TIMES DURING STREAM CROSSING PROCEDURES; WORK WITHIN A STREAM AREA IS STARTED, IT WILL BE CONDUCTED CONTINUOUSLY TO COMPLETION; SIS WILL BE PLACED ON MINIMIZING TIME OF DISTURBANCE;

FROM STREAM CROSSINGS MUST BE PLACED AT LEAST 10 FEET FROM THE WATER'S EDGE; AND

• CONSTRUCTION EQUIPMENT WILL NOT BE ALLOWED IN THE STREAM CHANNEL WHEN EXCAVATION CAN BE DONE FROM EITHER SIDE OR A TEMPORARY CROSSING WHILE WORKING AT THE STREAM CROSSING.

• ESC BMPS WILL BE MONITORED/MAINTAINED AT ALL TIMES FOLLOWING INITIAL EARTH DISTURBANCE AND WILL CONTINUE UNTIL RESTORATION IS DEEMED COMPLETE.

THE FOLLOWING SECTIONS DESCRIBE STREAM CROSSING TECHNIQUES THAT MAY BE USED DURING PIPELINE RELOCATION /INSTALLATION ACTIVITIES. REFER TO THE DETAIL SHEETS AND APPROVED STANDARDS AND SPECIFICATIONS FOR ADDITIONAL INFORMATION.

DRY CROSSING TECHNIQUES:

THESE TECHNIQUES WILL BE USED TO PERFORM PIPELINE WORK IN A RELATIVELY DRY WORKING CONDITION OR AROUND THE OPEN EXCAVATION. THESE TECHNIQUES INCLUDE PUMP AROUND AND FLUME PIPE CROSSING METHODS. THE LIMITING FACTORS FOR THESE TECHNIQUES ARE USUALLY STREAM SIZE, FLOW, AND WATER DEPTH.

DIRECTIONAL BORING IS ALSO A TECHNIQUE THAT CAN BE UTILIZED AS IT WILL LESSEN THE IMPACTS ON THE WATERBODIES.

E&S CONTROL MEASURES WILL BE INSTALLED PRIOR TO ANY EARTH DISTURBANCE AND MONITORED/MAINTAINED UNTIL CONSTRUCTION AND RESTORATION THROUGH THE WATER-BODY IS COMPLETE.

FLUME PIPE METHOD: PLEASE SEE DETAIL SHEETS AND SWPPP FOR MORE INFORMATION ON THE FLUME PIPE METHOD. THIS PROCEDURE INVOLVES CONSTRUCTING TWO BULKHEADS, EITHER SANDBAGS OR PLASTIC DAMS, TO DIRECT THE STREAM FLOW THROUGH A FLUME PIPE PLACED OVER THE TRENCH PRIOR TO EXCAVATION. THE FLUME SHALL BE ALIGNED AS TO PREVENT BANK EROSION AND BED SCOUR. THE FLUME WILL NOT BE REMOVED DURING TRENCHING, PIPE LAYING OR BACKFILLING.

PUMP AROUND METHOD: PLEASE SEE THE DETAIL SHEETS AND APPROVED STANDARDS AND SPECIFICATIONS FOR MORE INFORMATION ON THE PUMP AROUND METHOD. THIS PROCEDURE INVOLVES CONSTRUCTING TWO BULKHEADS, EITHER SANDBAGS OR PLASTIC DAMS. THE UPSTREAM DAM WILL CAUSE THE WATER TO POND WHERE IT CAN BE PUMPED AROUND THE WORK AREA AND BE DISCHARGED BEHIND THE DOWNSTREAM BULKHEAD. PUMPS OF SUFFICIENT SIZE TO TRANSMIT THE FLOW DOWNSTREAM WILL BE USED. BACKUP PUMPS MUST BE ON-SITE. PUMP INTAKES MUST BE SCREENED. PUMP DISCHARGES MUST NOT CAUSE SCOUR.

TEMPORARY ROAD CROSSINGS

TEMPORARY ROAD CROSSINGS, CONSISTING OF BRIDGES OF TIMBER MATS OR CLEAN ROCK FILL AND FLUME(S), WILL BE INSTALLED TO CROSS MINOR OR INTERMEDIATE STREAMS. TIMBER MATS SHALL BE USED TO CROSS SMALLER STREAMS WHERE THE SPAN OF THE MAT WILL STRETCH FROM BANK TO BANK. CLEAN ROCK FILL AND FLUMED CROSSINGS WILL BE UTILIZED WHERE IT IS NOT FEASIBLE TO UTILIZE TIMBER MATS. AS AN ALTERNATIVE, PORTABLE BRIDGES MAY BE USED INSTEAD FOR SMALL CROSSINGS. EQUIPMENT WILL NOT BE ALLOWED TO FORD FLOWING STREAMS DURING CONSTRUCTION ACTIVITIES. TEMPORARY ROAD CROSSINGS OF STREAMS MUST MAINTAIN FOR ADEQUATE FLOW DOWNSTREAM.

STREAM BANK STABILIZATION:

ANST ANST	CLEAN WATER DIVERSION DIKE (SEE DETAIL MVP-ES50 AND MVP-ES51 STREAM US FOREST SERVICE (NATIONAL FOREST) LANDS APPALACHIAN NATIONAL SCENIC TRAIL EXISTING ROAD/TRAIL EXISTING PROPERTY LINE EXISTING STATE LINE EXISTING COUNTY LINE POND WETLAND	ADDED DETAILS FOR ROADS AND PADS	ADDRESS VADEQ COMMENTS	ADDRESS VADEQ COMMENTS	ADDRESS VADEQ COMMENTS	ADDRESS VADEQ COMMENTS	ADDRESS VADEQ COMMENTS	DESCRIPTION:	SIONS:
	ACID FORMING MATERIAL			_	_	_		<u>).:</u>	Г Х Ш
AGRI AGRI	AGRICULTURAL LAND USE BOUNDARY PROPOSED LIMIT OF DISTURBANCE	M	M	MQ	MQ	MQ	MQ	.: APPD.	Ľ
	PROPOSED ACCESS ROAD CENTERLINE	RE	RE	RE	RE	RE	RE	CHKD.:	
— SF — SF —	PROPOSED PIPELINE PROPOSED SILT FENCE	KAL	KAL	KAL	KAL	KAL	KAL	DWN.:	
	PROPOSED SUPER SILT FENCE (SEE DETAIL MVP-ES9.2) PROPOSED REINFORCED FILTRATION DEVICE (SEE DETAILS MVP-ES9, 9.1, 9.2, 9.3)	31/18	26/18	/08/18	28/17	1/17	18/17	DATE:	
OCSF	ORANGE CONSTRUCTION SAFETY FENCE	01/3	01/2	01/0	11/2	11/01/	08/18/		
	PROPOSED 12" COMPOST FILTER SOCK (SEE DETAILS MVP-ES3, 3.1, 3.2) PROPOSED 18" COMPOST FILTER SOCK (SEE DETAILS MVP-ES3, 3.1, 3.2)	~	9	2	4	٣	2	NO.:	
	PROPOSED 24" COMPOST FILTER SOCK (SEE DETAILS MVP-ES3, 3.1, 3.2) GRASS-LINED CHANNEL (SEE DETAIL MVP-ES39)					LINC			
	CLEAN WATER DIVERSION PIPE			S	C				
	TIMBER MAT (SEE DETAIL MVP-ES37)			PLANS					200 200
	STEEP SLOPE EROSION CONTROL (SEE NOTE 2) STEEP SLOPE AREAS (SEE NOTE 4)		\sum_{i}	TROL	F C	י כ			-
	PROPOSED ROCK CONSTRUCTION ENTRANCE			CONTRO				סוסבו ואנכ	IF LLI ARD, S 15317
•	PROPOSED TRENCH BREAKER (SEE DETAIL MVP-20)	2.		AENT					- <u> </u>
A	TEMPORARY ROW DIVERSION/WATER BAR (VADEQ STD & SPEC 3.11) PERMANENT SLOPE BREAKER/ROW DIVERSION/WATER BAR	+		SEDIMENT		LILELINE			SOUTHPOINTE BO CANONSBURG
ACCORDANCE \	EGATION WILL BE PERFORMED IN ALL—CONSTRUCTION AREAS OF THE PROJECT IN WITH DETAIL MVP—ES46.1 THROUGH MVP—ES46.3. RTHGUARD OR EQUIVALENT MAY BE USED AS A SUBSTITUTE TO EROSION CONTROL			EROSION		MUUNIAIN VALLET			555
BLANKET AS D 3. CONTRACTOR IS FOR INFORMATI 4. SLOPES OF 30 SLOPE TECHNIC STABILIZATION MOUNTAIN VALI 5. WHERE CONSTI THE CONTRACT 6. IMPROVEMENTS	IRECTED BY MVP. S RESPONSIBLE TO IDENTIFY ALL UTILITIES. THE UTILITY LINES SHOWN ON THE PLAN ARE IONAL PURPOSES ONLY AND DO NOT REPRESENT SURVEYED LINE INFORMATION. OR GREATER EXIST. CONSTRUCTION FOR STEEP SLOPES TO BE PERFORMED USING STEEP QUES IDENTIFIED IN THE DETAIL SHEETS. ALSO REFER TO THE SITE—SPECIFIC DESIGN OF MEASURES IN SELECTED HIGH—HAZARD PORTIONS OF THE ROUTE OF THE PROPOSED LEY PIPLELINE PROJECT. RUCTION CONDITIONS PRECLUDE THE USE OF DIVERSION DITCHES DUE TO SITE CONDITIONS OR WILL INSTALL SILT FENCE AT THE DIRECTION OF MVP. TO PERMANENT AND TEMPORARY ACCESS ROADS WILL BE PERFORMED PER THE SITE SS ROAD DETAILS.		comp	661 F	worl AN OST	⊣∣c IDEF ER	SEN PLA	r so I DF ZA	lutions™ RIVE
PERMANENT RO 8. ALL NON VMRO	CCESS ROAD CROSSING OF STREAMS AND WETLANDS WILL UTILIZE TIMBERMATS. ANY DAD CROSSINGS WILL BE CONDUCTED VIA CULVERTS. C STREAM CROSSINGS WILL BE PERFORMED AS DESCRIBED IN THE STREAM CROSSING ED IN THIS PACKAGE.						GENERAL DE LAILS SEI		
		CH AF DA	ieck Pro Te: Xale:	ed Ed	Lic. BY: BY:	No. 0. 3/01 1/2	WALL WALL 40205 MALE 8/20 8/20	017593	