S-A120

Photograph Direction West

Comments:

STREAM ID S-A120	STREAM NAME Stout Run
LAT 39.489692 LONG -80.520845	DATE 06/03/2015
CLIENT MVP	PROJECT NAME MVP
INVESTIGATORS SY, KL, RS, WS	
FLOW REGIME Perennial Intermittent Ephemeral	WATER TYPE TNW RPW ✓ NRPW

Perenniai _		nt <u> </u>	erai INVV —	RPW —	NRPW —	
		F-4!4: •	1		Otroom Front	
			/leasurements k Width: 6.0 ft		Stream Erosion None ✓ Moderate	Heavy
		·	<u> </u>			·
		Top of Ban	ŭ		Artificial, Modified or Char	nnelized
		LB <u>18.0</u>		<u>n</u>	Yes No	
CHANNEL FE	ATURES	·	th: 3.00 in		Dam PresentYes _	<u>∕</u> No
			th: 27.0 in		Sinuosity <u>v</u> Low	Modium High
			Mark: <u>13.0 in</u>		Siliuosity V Low	iviedidiri riigiri
		Flow Direc	tion: West		Gradient	
						Severe (10 ft/100 ft)
		Water Pres	sent		Proportion of Reach Repre	esented by Stream
			r, stream bed dry		Morphology Types	•
		_	bed moist		Riffle 20 % Run 30 Pool 50 %	%
FLOW		Standing	-		F001 50 %	
CHARACTER	ISTICS	<u>v</u> riowing	water		Turbidity	
		Velocity			Clear Slightly	
		Fast ✓ Slow	Moderate		OpaqueStainedOther	
INOD			MOONENTO	_	RGANIC SUBSTRATE CON	IDONENTO
INOR		STRATE CO add up to 10			p to 100%)	
Substrate Type	Diame	eter	% Composition in Sampling Reach	Substrate Type	Characteristic	% Composition in Sampling Area
Bedrock			10	Dotrituo	sticks, wood, coarse	
Boulder	> 256	mm (10")	10	Detritus	plant materials (CPOM)	10
Cobble	64-256 m	m (2.5"-10")	25	Muck-Mud	black, very fine organic	
Gravel	2-64 mm	า (0.1"-2.5")	0	IVIUCK-IVIUU	(FPOM)	
Sand	0.06-2n	nm (gritty)	40			
Silt	0.004-0	0.06 mm	10	Marl	grey, shell fragments	
Clay	< 0.004	mm (slick)	5			
			ant Surrounding Lan		Indicate the dominant type	
		Field/P	Commer asture Industrial		✓ Trees Shrub Grasses Herba	
		— Agricul	- · · · · · · - · · · · · · · · · · · ·	tial	_	
WATERSHED FEATURES		Other:			Floodplain Width Wide > 30ft Mode	rate 15-30ft
LATORES		0			Narrow <16ft	rate 15-50ft
		Canopy Co	over open ✓ Partly sh	aded	_	
		Shaded			Wetland Present ✓ Yes Wetland ID W-A34	No
		Indicate th	e dominant type and		dominant species present	
AQUATIC VE	GETATION			Rooted subme		tingFree floating
		Floatin	g algae	Attached algae	e	_
MACROINVER OR OTHER	RTEBRATES	;				
WILDLIFE	THER					
OBSERVED/C OBSERVATIO						
NOTES						

West Virginia Stream and Wetland Valuation Metric (SWVM) Version 2.1, September 2015

USACE FILE NO./ Project Name: (v2.1, Sept 2015)		Mounta	nin Valley Pipeli SWVM v2.1			COORDINATES: cimal Degrees)	Lat.	39.489890	Lon.	-80.522083	WEATHER:		Sunny, 55°		DATE:	November 10, 2	2016
IMPACT STREAM/SITE ID (watershed size {acreage},				S-A120; Stout Ru Form of Mitiga	in; 57.60 ac wate			MITIGATION STREAM CLASS./ (watershed size {acreage}							Comments:		
STREAM IMPACT LENGTH:	26	FORM OF MITIGATION		PRESERVATION		DORDINATES: cimal Degrees)	Lat.		Lon.		PRECIPITATION PAST 48 H	RS:	0.40"		Mitigation Length:		
Column No. 1- Impact Existing	g Condition (Deb	pit)	C	Column No. 2- Mitigation Existing	Condition - Base	line (Credit)		Column No. 3- Mitigation Pr Post Completion		ive Years	Column No. 4- Mitigati Post Comp	on Projected at T pletion (Credit)	en Years		Column No. 5- Mitigation Project	cted at Maturity (Credit)	
Stream Classification:	Interm	nittent	Stream	Classification:	Inte	ermittent		Stream Classification:		Intermittent	Stream Classification:		Intermittent	Stre	am Classification:	Intermittent	
Percent Stream Channel Slo	ope	8		Percent Stream Channel S	lope			Percent Stream Channel Sl	ре	0	Percent Stream Cha	nnel Slope	0		Percent Stream Channel S	Slope	0
HGM Score (attach d	ata forms):			HGM Score (attac	h data forms):			HGM Score (attach	data forms	s):	HGM Score (at	ttach data forms):		HGM Score (attach	data forms):	
		Average				Average				Average			Average	<u> </u>		A ₁	verage
Hydrology Biogeochemical Cycling Habitat	0.62 0.58 0.12	0.44	Hydrolo	ogy chemical Cycling		0		Hydrology Biogeochemical Cycling Habitat		0	Hydrology Biogeochemical Cycling Habitat		0		rology geochemical Cycling		0
PART I - Physical, Chemical and	Biological Indica	ators		PART I - Physical, Chemical a	_	licators		PART I - Physical, Chemical ar	_	I Indicators	PART I - Physical, Chemi				PART I - Physical, Chemical an		
		Site Score			Points Scale Range	Site Score				Range Site Score		Points Scale	Range Site Score	<u> </u>		.	Site Score
PHYSICAL INDICATOR (Applies to all streams	s classifications)		PHYSIC	CAL INDICATOR (Applies to all stream	ns classifications)			PHYSICAL INDICATOR (Applies to all streams	classification	s)	PHYSICAL INDICATOR (Applies to a	II streams classificati	ons)	PHY	SICAL INDICATOR (Applies to all stream	ns classifications)	
USEPA RBP (High Gradient Data Sheet)	T T	44		RBP (High Gradient Data Sheet)				USEPA RBP (High Gradient Data Sheet)	1 1		USEPA RBP (High Gradient Data S				PA RBP (High Gradient Data Sheet)		
Epifaunal Substrate/Available Cover Embeddedness	0-20 0-20	11		unal Substrate/Available Cover eddedness	0-20 0-20			Epifaunal Substrate/Available Cover Embeddedness	0-20 0-20		 Epifaunal Substrate/Available Cov Embeddedness 	er 0-20 0-20			pifaunal Substrate/Available Cover mbeddedness	0-20 0-20	
Velocity/ Depth Regime	0-20	4		city/ Depth Regime	0-20			Velocity/ Depth Regime	0-20		3. Velocity/ Depth Regime	0-20			elocity/ Depth Regime	0-20	
Sediment Deposition	0-20	16		nent Deposition	0-20			Sediment Deposition	0-20		Sediment Deposition	0-20			ediment Deposition	0-20	
Channel Flow Status	0-20	6	Chan	nel Flow Status	0-20			5. Channel Flow Status	0-20	0.4	5. Channel Flow Status	0-20	0.4		hannel Flow Status	0-20	
Channel Alteration	0-20	14	Chan	nel Alteration	0-20			6. Channel Alteration	0-20	U-1	Channel Alteration	0-20	0-1	6. Cł	hannel Alteration	0-20	
7. Frequency of Riffles (or bends)	0-20	3		uency of Riffles (or bends)	0-20			7. Frequency of Riffles (or bends)	0-20		Frequency of Riffles (or bends)	0-20			requency of Riffles (or bends)	0-20	
Bank Stability (LB & RB)	0-20	12		Stability (LB & RB)	0-20			Bank Stability (LB & RB)	0-20		Bank Stability (LB & RB)	0-20			ank Stability (LB & RB)	0-20	
Vegetative Protection (LB & RB)	0-20	12		tative Protection (LB & RB)	0-20			Vegetative Protection (LB & RB)	0-20		Vegetative Protection (LB & RB)	0-20			egetative Protection (LB & RB)	0-20	
10. Riparian Vegetative Zone Width (LB & RB)	0-20	8		rian Vegetative Zone Width (LB & RB)	0-20			10. Riparian Vegetative Zone Width (LB & RB)	0-20		10. Riparian Vegetative Zone Width (LB				Riparian Vegetative Zone Width (LB & RB)		
Total RBP Score	Marginal	98		BP Score	Poor	0		Total RBP Score	Poor		Total RBP Score	Poo			I RBP Score	Poor	0
Sub-Total CHEMICAL INDICATOR (Applies to Intermitter	nt and Perennial Str	0.49	Sub-Tot	cal INDICATOR (Applies to Intermitt	ent and Perennial Str	reams)		Sub-Total CHEMICAL INDICATOR (Applies to Intermitter	t and Perenni	ial Streams)	Sub-Total CHEMICAL INDICATOR (Applies to I	ntermittent and Pere	nnial Streams)		Total MICAL INDICATOR (Applies to Intermitt	tent and Perennial Streams)	0
WVDEP Water Quality Indicators (General		,		Water Quality Indicators (General		,		WVDEP Water Quality Indicators (General		,	WVDEP Water Quality Indicators (,		DEP Water Quality Indicators (General		
Specific Conductivity				Conductivity				Specific Conductivity			Specific Conductivity	ocherul)			cific Conductivity		
<=99 - 90 points	0-90	0.135			0-90				0-90			0-90				0-90	
рН			рН					рН		24	рН		0.4	рН			
6.0-8.0 = 80 points	0-80	8.04			5-90				5-90	0-1 5.6		5-90	0-1			5-90	
DO			DO					DO			DO			DO			
	10-30	38			10-30				10-30			10-30				10-30	
>5.0 = 30 points Sub-Total	10 00	1	Sub-Tot	al	.0 00	0		Sub-Total	10 00	0	Sub-Total	10 00	0	Sub-	·Total	1.0 00	0
BIOLOGICAL INDICATOR (Applies to Intermi	ittent and Perennial	Streams)	BIOLOG	GICAL INDICATOR (Applies to Intern	nittent and Perennial	Streams)		BIOLOGICAL INDICATOR (Applies to Interm	ittent and Pe	erennial Streams)	BIOLOGICAL INDICATOR (Applies	to Intermittent and	Perennial Streams)	вю	LOGICAL INDICATOR (Applies to Inter	rmittent and Perennial Stre	eams)
WV Stream Condition Index (WVSCI)		-	WV Stre	eam Condition Index (WVSCI)				WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVS	CI)		wv s	Stream Condition Index (WVSCI)		
5	0-100 0-1	39.4			0-100 0-1				0-100	0-1		0-100	0-1			0-100 0-1	
Poor Sub-Total		0.294	Sub-Tot	al		0		Sub-Total		0	Sub-Total		0	Sub-	-Total		0
PART II - Index and U	Jnit Score			PART II - Index an	d Unit Score			PART II - Index and	Unit Score		PART II - Inde	x and Unit Score			PART II - Index and	Unit Score	
Index	Linear Feet	Unit Score		Index	Linear Feet	Unit Score		Index	Linear F	eet Unit Score	Index	Linear	Feet Unit Score		Index	Linear Feet Uni	nit Score
0.517	26	13.45066667		0	0	0		0	0	0	0	0	0		0	0	0

		(See instruction page		 Impact Factors It values for MITIGATIO 	N BANKING and II	LF)			
Temp	oral Loss-Construction					Long	-term Protection		
*Note: Reflects duration of aquatic functional loss		ct (debit) and completion of compensatory			% Add. Mitigati	ion and Monitoring Period		-Term Protection (Years)	
Years		0							
Sub-Total		0							
	mporal Loss-Maturity					10 Year Monitoring		101	
*Note: Period between completion of compensator function (i.e. maturity of tree stratum to provide					Sub-Total			0	
tunction (i.e. maturity of tree stratum to provide	corridor).	within riparian stream of wettand burier				PART IV - Index	to Unit Score Cor	nversion	
% Add. Mitigation		Temporal Loss-Maturity (Years)			Final Index Score	Linear Feet	Unit Score	ILF Costs	
% Add. Miligation		Temporal Loss-Maturity (Tears)			(Debit) 0.517333333	26	(Debit) 13.45066667	(Offsetting Debit \$10,760.53	
								¥16,1 co.o.	
0%		0							
Sub-Total		0							
		PART V	- Comparison of U	nit Scores and Projecte	ed Balance				
Final Unit Score (Debit)		Mitigation Existing		Mitigation Projected at		Mitigation Projected at Ten		Mitigation Projected At	
[No Net Loss Value]	13.45066667	Condition - Baseline		Five Years		Years		Maturity	
		(Credit)		Post Completion (Credit)		Post Completion (Credit)		(Credit)	
FINAL PROJECTED NET BALANCE					0		0		0
		Р	art VI - Mitigation (Considerations (Incentiv	voe)				
		'	art VI - Willigation	Sonsiderations (incentiv	ves,				
	Extent of Stream Re					Extended	Upland Buffer Zone	e	
	onal handout to determine the c Place an "X" in the appropriate	correct Restoration Levels (below) for your pr	oject		*Note1: Referen	nce Instructional handout for the de	initions of the Buffer Zo	ne Mitigation Extents and Type	s (below)
		satisfier y (e.m.y solicet ello).				*Note ² : Enter the buffer width for	each channel side (Left ne appropriate mitigation		
Restoration Level 1						1,010 1,00001 11	e appropriate intigation	. 1,950	
Restoration Level 2					Buffer Width		Left Banl	k	
Restoration Level 3						0-50		None	
				_	Buffer Width	51-150	Dight Day	None	
					buller width	0-50	Right Ban	None	
Compensatory Mitigation Plan incorpo						51-150		None	
*Note: HUC 12-based watershed	approach required to obtain Stream	am Restoration incentive	No	J	Average Buffer Width/Side	0			
		Impact	Mitigation Unit				Stra	night Preservation Ratio	
Site		Unit Yield (Debit)	Yield (Credit)				Sila	(v2.1, Sept 2015)	
S-A120		13.45066667	#VALUE!	1		Final Mitigation Unit Yield			
0-A120		13:4300001	#VALUE:]		#VALUE!			
						#VALUE:			

FCI Calculator for the High-Gradient Headwater Streams in eastern Kentucky and western West Virginia HGM Guidebook

To ensure accurate calculations, the <u>UPPERMOST STRATUM</u> of the plant community is determined based on the calculated value for V_{CCANOPY} (≥20% cover is required for tree/sapling strata). Go to the SAR Data Entry tab and enter site characteristics and data in the yellow cells. For information on determining how to split a project into SARs, see Chapter 5 of the Operational Draft Regional Guidebook for the Functional Assessment of High-gradient Ephemeral and Intermittent Headwater Streams in Western West Virginia and Eastern Kentucky (Environmental Laboratory U.S. Army Corps of Engineers 2010).

Project Name: MVP Location: S-A120

Sampling Date: Enter dates on Data Form Project Site Before Project

Subclass for this SAR:

Intermittent Stream

Uppermost stratum present at this SAR: SAR number:

Shrub/Herb Strata

Functional Results Summary:

Enter Results in Section A of the Mitigation Sufficiency Calculator

Function	Functional Capacity Index
Hydrology	0.62
Biogeochemical Cycling	0.58
Habitat	0.12

Variable Measure and Subindex Summary:

Variable	Name	Average Measure	Subindex
V _{CCANOPY}	Percent canpoy over channel.	Not Used, <20%	Not Used
V _{EMBED}	Average embeddedness of channel.	3.20	0.89
V _{SUBSTRATE}	Median stream channel substrate particle size.	0.08	0.04
V _{BERO}	Total percent of eroded stream channel bank.	0.00	1.00
V _{LWD}	Number of down woody stems per 100 feet of stream.	4.00	0.50
V _{TDBH}	Average dbh of trees.	Not Used	Not Used
V _{SNAG}	Number of snags per 100 feet of stream.	0.00	0.10
V _{SSD}	Number of saplings and shrubs per 100 feet of stream.	31.00	0.48
V _{SRICH}	Riparian vegetation species richness.	0.00	0.00
V _{DETRITUS}	Average percent cover of leaves, sticks, etc.	19.38	0.24
V _{HERB}	Average percent cover of herbaceous vegetation.	115.00	1.00
V _{WLUSE}	Weighted Average of Runoff Score for Catchment.	0.93	0.98

Version 1-25-11

	High-G	Gradient	Headwat				entucky a alculato		tern Wes	t Virgini	a
	Team:	C. Vileno, C	C. Stoliker					Latitude/UT	M Northing:	39.489890	
Pr	oject Name:	MVP					L	ongitude/U	TM Easting:	-80.522083	
	Location:	S-A120						San	npling Date:		
Si	AR Number:		Reach	Length (ft):	100	Stream Ty	/pe: Inter	mittent Stream	m		•
	Top Strata:	Sh	rub/Herb Str	ata	(determined	d from perce	ent calculate	d in V _{CCANO}	PY)		
Site	and Timing:	Project Site					Before Proje	ct			•
Sample	e Variables										
										Not Used, <20%	
	List the per	cent cover r	measuremer	nts at each p	oint below:						
	15										
2	V_{EMBED}	along the s	tream. Sele	ct a particle	from the be	d. Before n	at no fewer to noving it, de	termine the	percentage	of the	3.2
							y fine sedim				
			ving table. I bed is comp				composed of	tine seaim	ents, use a r	ating score	
						_	les (rescale	d from Platt	e Megahan	and	ı
		Minshall 19	983)		obble and bo	odider partic	ies (rescale	u IIOIII Fiall	s, iviegariari	, and	
		Rating	Rating Des				la contra al la contra	C	/	\	
		5 4					buried by fir I, or buried b			.)	
		3					ed, or buried				
		2					ed, or buried				
		1					r buried by f			al surface)	
	List the rati	ngs at each	point below								-
	3	3	3	4	4	3	3	3	3	3	
	3	3	3	3	3	3	4	3	3	3	
	3	4	3	3	3	3	3	3	4	4	
3	V _{SUBSTRATE}						t no fewer thed in V _{EMBED}		hly equidista	ant points	0.08 in
	Enter partic	le size in in	ches to the r	nearest 0.1 i	inch at each	point below	(bedrock sl	nould be co	unted as 99	in, asphalt	
	or concrete	as 0.0 in, s	and or finer	particles as	0.08 in):						
	4.00	4.00	1.00	0.08	1.00	0.08	0.08	0.08	3.00	3.00	
	0.08	0.08	0.08	0.08	0.08	0.08	2.00	0.08	0.08	0.08	
	0.08	1.00	0.08	0.08	0.08	0.08	0.08	2.00	1.00	1.00	
4	V_{BERO}	and the tota	al percentag				tal number or re eroded, t				0 %
		up to 200%) .								

Sample	e Variables	5-9 within t	he entire ri	parian/buff	er zone adj	acent to th	e stream ch	annel (25 f	eet from ea	ch bank).	
5	V_{LWD}	stream read	ch. Enter th		om the entir llated.	e 50'-wide l	ter and 36 inc buffer and wi	thin the cha			4.0
		A 11					oody stems:		4	.14	
6	V_{TDBH}			measure on eter. Enter			ng cover is at	t least 20%)	. Trees are	at least 4	Not Used
		•	,				n) within the	huffer on ea	ich side of		
		the stream		ents of man	nuuai liees	(at least 4 ii	i) within the	builei oli ea	ich side of		
			Left Side					Right Side			
7	V_{SNAG}			ast 4" dbh a			t of stream. Iculated.	Enter numb	er of snags	on each	0.0
					•		D: 1 . 0: 1		•		
8	V	Number of	Left Side:		0 oody stoms	up to 4 inch	Right Side: nes dbh) per		0 stroom (mos	acuro only if	
0	V_{SSD}						s on each sic				31.0
			f stream wil	l be calculat							
0	\/	Dinarian	Left Side:		1	ant of atroo	Right Side: m reach. Ch		20	from	
9	V_{SRICH}						ve species p				0.00
							from these d				0.00
		Grou	p 1 = 1.0					Group	2 (-1.0)		
Ш	Acer rubru	ım		Magnolia ti	ripetala		Ailanthus a	ltissima		Lonicera ja	ponica
	Acer sacci	harum		Nyssa sylv	atica		Albizia julib	orissin		Lonicera ta	tarica
Ш	Aesculus f	flava		Oxydendrun	arboreum		Alliaria peti	olata		Lotus corni	culatus
Ш	Asimina tri	iloba		Prunus ser	otina		Alternanthe	era		Lythrum sa	licaria
	Betula alleg	ghaniensis		Quercus ai	'ba		philoxeroid	es	1	Microstegiun	n vimineum
	Betula leni	ta		Quercus co	occinea		Aster tatari	cus		Paulownia	tomentosa
Ш	Carya alba	a		Quercus in	nbricaria		Cerastium	fontanum		Polygonum d	cuspidatum
	Carya glab	ora		Quercus pi	rinus		Coronilla va	aria		Pueraria m	ontana
Ш	Carya ova	lis		Quercus ru	ıbra		Elaeagnus u	mbellata	J	Rosa multit	flora
	Carya ova	ta		Quercus ve	elutina		Lespedeza	bicolor		Sorghum h	alepense
	Cornus flo	rida		Sassafras	albidum		Lespedeza	cuneata		Verbena br	asiliensis
Ш	Fagus gra	ndifolia		Tilia amerio	cana	\Box	Ligustrum ob	otusifolium			
	Fraxinus a			Tsuga can	adensis		Ligustrum s	sinense			
	Liriodendroi	n tulipifera		Ulmus ame			-				
	Magnolia a	•									
		0	Species in	Group 1				2	Species in	Group 2	

Sample	e Variables	10-11 withir	n at least 8	subplots (4	40" x 40". o	r 1m x 1m)	in the ripar	ian/buffer z	one within	25 feet fron	n each
		pplots shou	ld be place	d roughly	equidistant	y along ea	ch side of t	he stream.			
10	V _{DETRITUS}				ticks, or other t cover of the				<4" diamete	r and <36"	19.38 %
			Left	Side			Righ	t Side] '	
		20	15	20	20	20	20	20	20		
11	V_{HERB}	Average pe	rcentage co	over of herb	aceous vege	tation (mea	sure only if	tree cover is	s <20%). Do	o not	
		include woo	ody stems a	t least 4" db	h and 36" ta	II. Because	there may b	e several la	yers of grou	und cover	115 %
		each subplo	-	s up througr	n 200% are a	іссертеа. Е	nter the per	cent cover o	or ground ve	egetation at	
				Side				t Side	•		
		120	100	115	115	120	120	115	115		
Sample	e Variable 1	2 within the	entire cate	chment of t	he stream						
12	V _{WLUSE}				e for watersh	od:				1	
12	V WLUSE	vveignted A	werage or N	COTOTI SCOTE	o ioi watersii	eu.					0.93
			11	(Ob		- 1 !- 0			Runoff	% in Catch	Running
			Land	Use (Choos	se From Dro	o List)			Score	ment	Percent (not >100)
	Forest and n	alive range (>	75% ground	cover)				-	1	90	90
	Open space	(pasture, lawn	s, parks, etc.),	, grass cover	>75%			-	0.3	10	100
	-							•			
								~			
	-							•			
								_			
	_										
	-							Ţ			
	5							_	<u> </u>		
		mmary					No	tes:			
	ariable	Value Not Used,	VSI								
V _c	CANOPY	<20%	Not Used								
VE	MBED	3.2	0.89								
Vs	UBSTRATE	0.08 in	0.04								
V_{B}	ERO	0 %	1.00								
V _L	WD	4.0	0.50								
V _T	DBH	Not Used	Not Used								
Vs	NAG	0.0	0.10								
Vs		31.0	0.48								
	RICH	0.00	0.00								
	ETRITUS	19.4 %	0.24								
	ERB	115 %	1.00								
Vw	/LUSE	0.93	0.98								

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (FRONT)

STREAM NAME S-A120	LOCATION Wetzel, County				
STATION # RIVERMILE	STREAM CLASS Intermittent				
Lat <u>39.489890</u> long <u>-80.522083</u>	RIVER BASIN Headwater	RIVER BASIN Headwaters South Fork Fishing Creek			
STORET#	AGENCY Tetra Tech				
INVESTIGATORS C. Vileno, C. Stoliker					
FORM COMPLETED BY C. Vileno	DATE 11/10/2016 TIME 3:00pm	REASON FOR SURVEY SWVM			

	Habitat		Condition	ı Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
	SCORE 11	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
ı sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.
ted in	SCORE 12	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast- shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).
ıram	SCORE 4	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Par	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
	SCORE 16	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
	SCORE 6	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

	Habitat		Condition	ı Category	
	Habitat Parameter	Optimal	Suboptimal	Marginal	Poor
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
	SCORE 14	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
ling reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.
samp	SCORE 3	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.
e eva	SCORE 6 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
to b	SCORE 6 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0
Parameters	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
	SCORE 6 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE 6 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.
	SCORE 4 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE 4 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0

Total Score 98

Insects	Count	Tolerance	TV	Insects	Count	Tolerance	TV	Non-Insects	Count	Tolerance	TV	7	
Ephemeroptera			0	Odonata		1	0	Crustacea	•	•	1		
Ameletidae		2	0	Aeshnidae		3	0	Asellidae		7	0	1	
Baetidae		4	0	Calopterygidae		6	0	Cambaridae	1	5	5	1	
Beatiscidae		4	0	Coenagrionidae		7	0	Gammaridae		5	0		
Caenidae		5	0	Cordulegastridae		3	0	Palaemonidae		5	0		
Ephemerellidae		3	0	Gomphidae		5	0	Annelida	•	•	5		
Ephemeridae		5	0	Lestidae		7	0	Hirudinea		10	0		
Heptageniidae		3	0	Libellulidae		7	0	Nematoda		10	0		
Isonychiidae		3	0	Coleoptera		•	0	Nematomorpha		10	0		
Leptophlebiidae		4	0	Chrysomelidae		7	0	Oligochaeta	5	10	50		
Potamanthidae		5	0	Dryopidae		5	0	Turbellaria			0		
Siphlonuridae		3	0	Dytiscidae		6	0	Turbellaria		7	0		
Tricorythidae		5	0	Elmidae		4	0	Bivalvia			0		
Plecoptera			3	Gyrinidae		5	0	Corbiculidae		6	0		
Capniidae		2	0	Haliplidae		7	0	Sphaeriidae		5	0		
Chloroperlidae	1	2	2	Hydrophilidae		7	0	Unionidae		4	0		
Leuctridae		2	0	Psephenidae		3	0	Gastropoda			0		
Nemouridae		2	0	Ptilodactylidae		5	0	Ancylidae		7	0		
Peltoperlidae		1	0	Hemiptera			0	Hydrobiidae		4	0		
Perlidae	2	1	2	Belostomatidae		8	0	Physidae		7	0		
Perlodidae		1	0	Corixidae		8	0	Planorbidae		5	0		
Pteronarcyidae		1	0	Gerridae		10	0	Pleuroceridae		5	0		
Taeniopterygidae		2	0	Hydrometridae		8	0	Viviparidae		5	0		
Trichoptera			0	Nepidae		8	0	Miscellaneous			0		
Brachycentridae		2	0	Notonectidae		8	0	Collembola		6	0		
Glossosomatidae		2	0	Megaloptera			0	Lepidoptera		5	0		
Helicopsychidae		3	0	Corydalidae		3	0	Neuroptera		5	0		
Hydropsychidae		5	0	Sialidae		6	0	Hydrachnidae		6	0		
Hydroptilidae		3	0	Diptera		•	1	Totals	Total r	number	10		
Lepidostomatidae		3	0	Athericidae		3	0	Totals	Total f	amilies	5		
Leptoceridae		3	0	Blephariceridae		2	0		•	Metric o	alculations	•	
Limnephilidae		4	0	Ceratopogonidae		8	0		Richnes	ss		Additional metri	ics
Molannidae		3	0	Chironomidae		9	0	Total Taxa		5	22.7	Ephemeroptera Taxa	0
Philopotamidae		4	0	Culicidae		10	0	EPT Taxa		2	15.4	Plecoptera Taxa	2
Phryganeidae		4	0	Dixidae		6	0		Toleran	ce		Trichoptera Taxa	0
Polycentropodidae		5	0	Empididae		7	0	Biotic Index		6.40	51.4	Long-lived Taxa	5
Psychomiidae		3	0	Psychodidae		8	0	% Tolerant		50.0	51.0	Odonata Taxa	0
Rhyacophilidae		3	0	Ptychopteridae		8	0		Composit	ion		Diptera Taxa	1
Uenoidae		2	0	Simuliidae		6	0	% EPT Abundance		30.0	33.3	COET Taxa	0
		erance Value	64	Stratiomyidae		10	0	% Dominance		50.0	62.5	% Sensitive	30.0
		Syrphidae		10	0	% Net-spinners		0.0	NA	% Chironomidae	0.0		
601 57th Stre			304	Tabanidae		7	0	Stream (Condition Ind	ex	39.4	% Clingers	30.0
http://	www.dep.w	v.gov/sos		Tipulidae	1	5	5	Integrity Ra	ating	Po	or	More diversity mea	sures

<u>Note</u>: There may be instances when families are collected that are not listed above. In those cases choose a similar family/tolerance value if known, to calculate the metrics. You should contact the WV Save Our Streams Coordinator to confirm your choice. Provide as much detail as possible so that family-level identification can be determined.

Photograph Direction West

Comments:

STREAM ID	S-QR34		STREAM N	STREAM NAME UNT to Stout Run						
CLIENT EQT			PROJECT N							
LAT 39.48914		ONG -80.52069			COUNTY Wetzel					
INVESTIGATO	DRS D Ha	dersbeck, J McC	Guirk, C Sapusek							
WATER TYPE	RPW	NRPW	FLOW REG Perennial	SIME Intermi	ittent Ephemeral					
		Estimata Mar	euromonte	ı	Sinuosity Low 🗸	Medium High				
CHANNEL FE	ATURES	Top of Bank H LB0.5fl Water Depth: Water Width:_ Ordinary High	Vidth: 2.5 ft leight: RB 0.5 1.00 in 1.0 ft Water Mark (Width) Water Mark (Height	: <u>2.0</u> ft	Within Roadside Ditch Yes No Culvert Present Yes No Culvert Material:					
					Culvert Size:in					
FLOW CHARACTER	ISTICS	Stream bed Standing w Flowing wa	tream bed dry I moist vater		Proportion of Reach Repres Morphology Types (Only ente Riffle % Run 10 Pool % Turbidity Clear Slightly to Other	er if water present) 10 %				
INOR		JBSTRATE CO			ORGANIC SUBSTRATE COM					
Cubatasta	(shou	ld add up to 100		Cubatast	(does not necessarily add u	,				
Substrate Type	Dia	meter	% Composition in Sampling Reach	Substrat Type	Characteristic	% Composition in Sampling Area				
Bedrock		//		Detritus	sticks, wood, coarse					
Boulder		56 mm (10")	5		plant materials (CPOM)	40				
Cobble		mm (2.5"-10")	15	Muck-Muc	black, very fine organic (FPOM)					
Gravel Sand		nm (0.1"-2.5")	25		(11 OW)					
Sand		-2mm (gritty) 04-0.06 mm	30	Marl	grey, shell fragments					
Clay)4 mm (slick)	25	IVIAII	grey, shell fragilielits					
WATERSHED FEATURES		` '	Residentia	al ıl ad	Floodplain Width Wide > 30ft Modera Narrow <15ft	1 ate 15-30ft				
MAC	ROINVER	TEBRATES/OT	HER WILDLIFE OB	SERVED OR	OTHER NOTES AND OBSER	RVATIONS				
Starts as epher	meral and	turns into roadsi	de stream that joins	 into S-A121.						

West Virginia Stream and Wetland Valuation Metric (SWVM) Version 2.1, September 2015

JSACE FILE NO./ Project Name: v2.1, Sept 2015)		Mounta	ain Valley Pipeline Project SWVM v2.1		COORDINATES: imal Degrees)	Lat.	39.489083 Lo	n.	-80.520519	WEATHER:	Sunny, 55°	DATE:	November 10, 2016
IMPACT STREAM/SITE ID A (watershed size {acreage}, u			S-QR34; UNT to Stou	ŕ			MITIGATION STREAM CLASS./SITE (watershed size {acreage}, una					Comments:	No / low water flow at time of survey. Unable to sample water quality or WVSCI.
STREAM IMPACT LENGTH:	125	FORM OI MITIGATIO			OORDINATES: imal Degrees)	Lat.	Lo	n.		PRECIPITATION PAST 48 HRS:	0.40"	Mitigation Length:	
Column No. 1- Impact Existing	Condition (Deb	it)	Column No. 2- Mitigation Existing C	ondition - Basel	ine (Credit)		Column No. 3- Mitigation Project Post Completion (Cro		e Years	Column No. 4- Mitigation Project Post Completion (C		Column No. 5- Mitigation Project	ted at Maturity (Credit)
Stream Classification:	Epher	neral	Stream Classification:	Eph	nemeral		Stream Classification:	I	Ephemeral	Stream Classification:	Ephemeral	Stream Classification:	Ephemeral
Percent Stream Channel Slo	ре	15	Percent Stream Channel Sle	рре			Percent Stream Channel Slope		0	Percent Stream Channel Slo	pe 0	Percent Stream Channel S	lope 0
HGM Score (attach da	a forms):		HGM Score (attach	data forms):			HGM Score (attach data	forms):		HGM Score (attach dat	ta forms):	HGM Score (attach o	lata forms):
	· · · · · · · ·	Average		· · · · · · · · · · · ·	Average				Average		Average		Average
lydrology	0.5	7100.030	Hydrology		Attorage		Hydrology		, morago	Hydrology	, , , , , , , , , , , , , , , , , , ,	Hydrology	, , , , , , , , , , , , , , , , , , ,
Biogeochemical Cycling	0.54 0.2	0.413333333	Biogeochemical Cycling		0		Biogeochemical Cycling		0	Biogeochemical Cycling Habitat	0	Biogeochemical Cycling	0
Habitat PART I - Physical, Chemical and E	liological Indica	ators	PART I - Physical, Chemical an	_	icators		PART I - Physical, Chemical and Bi	_	Indicators	PART I - Physical, Chemical and E		Habitat PART I - Physical, Chemical and	
	Points Scale Range	Site Score		Points Scale Range	Site Score		Poin	s Scale Ra	nge Site Score		Points Scale Range Site Score		Points Scale Range Site Score
PHYSICAL INDICATOR (Applies to all streams of	classifications)		PHYSICAL INDICATOR (Applies to all streams	classifications)			PHYSICAL INDICATOR (Applies to all streams class	ifications)		PHYSICAL INDICATOR (Applies to all streams	classifications)	PHYSICAL INDICATOR (Applies to all stream	s classifications)
JSEPA RBP (High Gradient Data Sheet)			USEPA RBP (High Gradient Data Sheet)				USEPA RBP (High Gradient Data Sheet)			USEPA RBP (High Gradient Data Sheet)		USEPA RBP (High Gradient Data Sheet)	
. Epifaunal Substrate/Available Cover	0-20	0	Epifaunal Substrate/Available Cover	0-20				-20			0-20	Epifaunal Substrate/Available Cover	0-20
2. Embeddedness 3. Velocity/ Depth Regime	0-20 0-20	3	Embeddedness Velocity/ Depth Regime	0-20				-20 -20		Embeddedness Velocity/ Depth Regime	0-20 0-20	Embeddedness Velocity/ Depth Regime	0-20
I. Sediment Deposition	0-20	12	Velocity/ Depth Regime Sediment Deposition	0-20				-20		Velocity/ Depth Regime Sediment Deposition	0-20	Velocity Depth Regime Sediment Deposition	0-20
5. Channel Flow Status	0-20	0	5. Channel Flow Status	0-20				-20		5. Channel Flow Status	0-20	5. Channel Flow Status	0-20
S. Channel Alteration	0-20 0-1	5	6. Channel Alteration	0-20				-20	-1	6. Channel Alteration	0-20	6. Channel Alteration	0-20
. Frequency of Riffles (or bends)	0-20	0	7. Frequency of Riffles (or bends)	0-20			7. Frequency of Riffles (or bends)	-20		7. Frequency of Riffles (or bends)	0-20	7. Frequency of Riffles (or bends)	0-20
B. Bank Stability (LB & RB)	0-20	12	8. Bank Stability (LB & RB)	0-20				-20		8. Bank Stability (LB & RB)	0-20	8. Bank Stability (LB & RB)	0-20
Vegetative Protection (LB & RB)	0-20	11	Vegetative Protection (LB & RB)	0-20			Vegetative Protection (LB & RB)	-20		Vegetative Protection (LB & RB)	0-20	Vegetative Protection (LB & RB)	0-20
Riparian Vegetative Zone Width (LB & RB)	0-20	11	10. Riparian Vegetative Zone Width (LB & RB)	0-20				-20		10. Riparian Vegetative Zone Width (LB & RB)	0-20	Riparian Vegetative Zone Width (LB & RB)	0-20
Total RBP Score	Marginal	54	Total RBP Score	Poor	0		Total RBP Score	Poor	0	Total RBP Score	Poor 0	Total RBP Score	Poor 0
Sub-Total CHEMICAL INDICATOR (Applies to Intermittent		0.45	Sub-Total		0		Sub-Total CHEMICAL INDICATOR (Applies to Intermittent and	D	0	Sub-Total CHEMICAL INDICATOR (Applies to Intermittent	0	Sub-Total	0
	and Perennial Str	eams)	CHEMICAL INDICATOR (Applies to Intermitter		eams)		· · · ·	Perenniai	Streams)		•	CHEMICAL INDICATOR (Applies to Intermitte	·
WDEP Water Quality Indicators (General) Specific Conductivity			WVDEP Water Quality Indicators (General Specific Conductivity				WVDEP Water Quality Indicators (General) Specific Conductivity			WVDEP Water Quality Indicators (General) Specific Conductivity		WVDEP Water Quality Indicators (General Specific Conductivity	1)
specific Conductivity			Specific Conductivity							Specific Conductivity		Specific Conductivity	
100-199 - 85 points	0-90			0-90				-90			0-90		0-90
Н			рН				рН			pH		рН	
	0-80			5-90			5	-90	-1 5.6		5-90		5-90 0-1
5.6-5.9 = 45 points													
00			ро				DO			DO		БО	
	10-30			10-30			11)-30			10-30		10-30
Sub-Total			Sub-Total		0		Sub-Total		0	Sub-Total	0	Sub-Total	0
BIOLOGICAL INDICATOR (Applies to Intermitte	ent and Perennial S	Streams)	BIOLOGICAL INDICATOR (Applies to Intermit	tent and Perennial S	Streams)		BIOLOGICAL INDICATOR (Applies to Intermittent	and Pere	ennial Streams)	BIOLOGICAL INDICATOR (Applies to Intermi	ittent and Perennial Streams)	BIOLOGICAL INDICATOR (Applies to Interr	mittent and Perennial Streams)
WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)				WV Stream Condition Index (WVSCI)	1		WV Stream Condition Index (WVSCI)		WV Stream Condition Index (WVSCI)	
0	0-100 0-1			0-100 0-1			0-	100 0	-1		0-100 0-1		0-100 0-1
Sub-Total	ı	0	Sub-Total		0		Sub-Total		0	Sub-Total	0	Sub-Total	0
PART II - Index and Un	it Score		PART II - Index and	Unit Score			PART II - Index and Unit	Score		PART II - Index and Un	nit Score	PART II - Index and I	Unit Score
				T =									
Index	Linear Feet	Unit Score	Index	Linear Feet	Unit Score		Index L	inear Fe	et Unit Score	Index	Linear Feet Unit Score	Index	Linear Feet Unit Score
0.519	125	64.89583333	0	0	0		0	0	0	0	0 0	0	0 0

		(See instruction p		 Impact Factors It values for MITIGATIO 	N BANKING and II	LF)			
Temn	oral Loss-Construction	· · · · · · · · · · · · · · · · · · ·				Long	-term Protection		
*Note: Reflects duration of aquatic functional loss		ct (debit) and completion of compensatory			% Add. Mitigati	on and Monitoring Period		-Term Protection (Years)	
•	mitigation (credit).								
Years		0							
Sub-Total		0							
Tor	mporal Loss-Maturity				0 + 5/	10 Year Monitoring		101	
*Note: Period between completion of compensator		e time required for maturity, as it relates to			Sub-Total	To Teal Worldoning		0	
function (i.e. maturity of tree stratum to provide					-				
	corridor).					PART IV - Index	to Unit Score Cor	nversion	
					Final Index Score	Linear Feet	Unit Score	ILF Costs	
% Add. Mitigation		Temporal Loss-Maturity (Years)			(Debit)		(Debit)	(Offsetting Debit	
					0.519166667	125	64.89583333	\$51,916.67	
					0.515100007	123	04.0330333	ψ51,510.01	
0%		0							
Sub-Total		0							
		· ·							
		PART V	- Comparison of U	nit Scores and Projecte	d Balance				
Final Unit Score (Debit)		Mitigation Existing		Mitigation Projected at		Mitigation Projected at Ten		Mitigation Projected At	
[No Net Loss Value]	64.89583333	Condition - Baseline		Five Years		Years		Maturity	
-		(Credit)		Post Completion (Credit)		Post Completion (Credit)		(Credit)	
FINAL PROJECTED NET BALANCE					0		0		0
		P	art VI - Mitigation	Considerations (Incentiv	ves)				
	Extent of Stream Re					Extended	Upland Buffer Zone	e	
		correct Restoration Levels (below) for your pr	oject		*Note1: Referen	nce Instructional handout for the def			s (below)
^Note2: P	Place an "X" in the appropriate	category (only select one).				*Note ² : Enter the buffer width for	each channel side (Left	Bank and Right Bank)	
Restoration Level 1						*Note ³ : Select th	ne appropriate mitigation	n type	
				4					
Restoration Level 2					Buffer Width		Left Bank	k	
Restoration Level 3						0-50		None	
				J		51-150		None	
					Buffer Width	000	Right Ban		
				_		0-50		None	
Compensatory Mitigation Plan incorpo						51-150		None	
*Note: HUC 12-based watershed	approach required to obtain Strea	am Restoration incentive	No		Average Buffer	0			
				_	Width/Side				
		Impact	Mitigation Unit				Stro	ight Preservation Ratio	
Site		Unit Yield (Debit)	Yield (Credit)				Stra	(v2.1, Sept 2015)	
		Offic Field (Debit)	Tiela (Glealt)					(vz.1, ocpt zu13)	
S-QR34		64.89583333	#DIV/0!			Final Mitigation Unit Yield			
			-	J		#DIV/0!			
						11011101			

FCI Calculator for the High-Gradient Headwater Streams in eastern Kentucky and western West Virginia HGM Guidebook

To ensure accurate calculations, the <u>UPPERMOST STRATUM</u> of the plant community is determined based on the calculated value for V_{CCANOPY} (≥20% cover is required for tree/sapling strata). Go to the SAR Data Entry tab and enter site characteristics and data in the yellow cells. For information on determining how to split a project into SARs, see Chapter 5 of the Operational Draft Regional Guidebook for the Functional Assessment of High-gradient Ephemeral and Intermittent Headwater Streams in Western West Virginia and Eastern Kentucky (Environmental Laboratory U.S. Army Corps of Engineers 2010).

Project Name: MVP

Location: S-QR34 Sampling Date: 11/10/2016

Project Site Before Project

Subclass for this SAR:

Ephemeral Stream

Uppermost stratum present at this SAR: SAR number:

Tree/Sapling Strata

Functional Results Summary:

Enter Results in Section A of the Mitigation Sufficiency Calculator

Function	Functional Capacity Index
Hydrology	0.50
Biogeochemical Cycling	0.54
Habitat	0.20

Variable Measure and Subindex Summary:

Variable	Name	Average Measure	Subindex
V _{CCANOPY}	Percent canpoy over channel.	23.00	0.14
V _{EMBED}	Average embeddedness of channel.	2.00	0.46
V _{SUBSTRATE}	Median stream channel substrate particle size.	0.08	0.04
V _{BERO}	Total percent of eroded stream channel bank.	0.00	1.00
V_{LWD}	Number of down woody stems per 100 feet of stream.	0.00	0.00
V _{TDBH}	Average dbh of trees.	7.11	0.70
V _{SNAG}	Number of snags per 100 feet of stream.	0.00	0.10
V _{SSD}	Number of saplings and shrubs per 100 feet of stream.	Not Used	Not Used
V _{SRICH}	Riparian vegetation species richness.	3.60	1.00
V _{DETRITUS}	Average percent cover of leaves, sticks, etc.	19.38	0.24
V _{HERB}	Average percent cover of herbaceous vegetation.	Not Used	Not Used
V _{WLUSE}	Weighted Average of Runoff Score for Catchment.	0.93	0.98

Version 1-25-11

	High-G	radient	Headwat				entucky a alculator		ern Wes	t Virginia	3
	Team:	C. Vileno, C	C. Stoliker						M Northing:	39.489083	
Pro	oject Name:						•		_	-80.520519	
	Location:							-	_	11/10/2016	
SA	AR Number:		Reach	Length (ft):	100	Stream Ty	/pe: Ephei	meral Stream	_		•
	Top Strata:	Tre	e/Sapling St	rata	(determined	d from perce	ent calculate	d in V _{CCANOR}	_{>Y})		
Site a	and Timing:	Project Site				•	Before Projec	ct			•
Sample	Variables	1-4 in strea	m channel								
1	V _{CCANOPY}	Average pe equidistant	rcent cover points along	g the stream	. Measure	only if tree/s	anopy. Measapling cover trata choice.	is at least 2			23.0 %
	List the per			nts at each p	oint below:						
	50	40	30	20	15	15	15	15	15	15	
2	V_{EMBED}	along the st	tream. Sele	ct a particle	from the be	d. Before n	at no fewer t noving it, det	ermine the	percentage	of the	2.0
							y fine sedim				
				osed of bed			composed of	line sealme	ents, use a r	ating score	
							les (rescale	d from Platt	s Megahan	and	
		Minshall 19	83)		bble and bo	Juider partic	ies (rescale	u nom r latt	s, Meganan	, and	
		Rating	Rating Des			 			<u> </u>	`	
		5 4					buried by fin d, or buried b			.)	
		3					ed, or buried be				
		2					ed, or buried				
		1					r buried by fi			al surface)	
	List the ration	ngs at each	point below	:							
	2	2	2	2	2	2	2	2	2	2	
	2	2	2	2	2	2	2	2	2	2	
	2	2	2	2	2	2	2	2	2	2	
3							it no fewer the d in V _{EMBED} .		hly equidista	ant points	0.08 in
	Enter partic	ele size in ind	ches to the i	nearest 0.1 i	nch at each	point below	/ (bedrock sł	nould be co	unted as 99	in, asphalt	
				particles as			,		, ,	, ,	
	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	
	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	
	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	
4	V_{BERO}	Total perce	nt of erodec	stream cha	nnel bank.	Enter the to	tal number o	of feet of ero	oded bank o	n each side	
	223		al percentag				re eroded, t				0 %
			Left Bank:	0	ft		Right Bank:	0	ft		

Sample	e Variables	5-9 within t	he entire ri	parian/buff	er zone adj	acent to th	e stream ch	annel (25 f	eet from ea	ch bank).	
5	V_{LWD}	stream read	ch. Enter th		om the entir ılated.	e 50'-wide I	ter and 36 in buffer and wi	ithin the cha			0.0
							oody stems:		0		T
6	V_{TDBH}				ly if V _{CCANOP} tree DBHs i		ng cover is a	t least 20%)	. Trees are	at least 4	7.1
		,	,				n) within the	buffer on ea	ch side of		
		the stream		ionio oi man	ridual fioco	at loadt 1 li	1) William 1110	541101 011 00	ion oldo ol		_
			Left Side					Right Side			I
	7	4	8	8	4	12	5				
	10	6									
											1
											1
7	V_{SNAG}				and 36" tall) t per 100 fee		t of stream. Iculated.	Enter numb	er of snags	on each	0.0
0	W	Niverie en ef	Left Side:		0	4 . 4 :	Right Side:		0		
8	V_{SSD}						nes dbh) per s on each sic				Not Used
				l be calculat		u u	J 011 00011 010		Jan, and m		
			Left Side:				Right Side:				
9	V_{SRICH}						m reach. Ch ve species p				3.60
							from these d		Strata. Opc	.0103	3.00
		Grou	p 1 = 1.0					Group	2 (-1.0)		<u> </u>
7	Acer rubru	ım		Magnolia tı	ripetala	Ш	Ailanthus a	ltissima		Lonicera ja	ponica
7	Acer sacci	harum		Nyssa sylv	atica		Albizia julib	orissin		Lonicera ta	tarica
Ш	Aesculus f	flava		Oxydendrun	n arboreum		Alliaria peti	iolata		Lotus corni	iculatus
Ш	Asimina tri	iloba		Prunus ser	otina		Alternanthe	era		Lythrum sa	licaria
	Betula alleg	ghaniensis	7	Quercus al	lba		philoxeroid	es		Microstegiun	n vimineum
	Betula leni	ta		Quercus co	occinea		Aster tatari	cus		Paulownia	tomentosa
\Box	Carya alba	9	\Box	Quercus in	nbricaria	Ш	Cerastium	fontanum		Polygonum o	cuspidatum
	Carya glab	ora		Quercus pi	rinus		Coronilla va	aria		Pueraria m	ontana
\sqcup	Carya ova	lis		Quercus ru	ıbra		Elaeagnus u	ımbellata	4	Rosa multit	flora
	Carya ova	ta		Quercus ve	elutina		Lespedeza	bicolor		Sorghum h	alepense
	Cornus flo	rida		Sassafras	albidum		Lespedeza	cuneata		Verbena br	rasiliensis
4	Fagus gra	ndifolia		Tilia amerio	cana		Ligustrum ol	otusifolium			
	Fraxinus a			Tsuga cana	adensis		Ligustrum s	sinense			
1	Liriodendroi	n tulipifera		Ulmus ame							
	Magnolia a	•									
		5	Species in	Group 1				1	Species in	Group 2	

_		40.44 1/11									
	le Variables The four su								one within	25 feet fron	n each
10	V_{DETRITUS}				sticks, or oth				<4" diamete	er and <36"	19.38 %
		long are inc		Side	nt cover of th	e detritai iay		t Side		1	
		20	30	40	30	20	15	0	0		
	.,								200()		
11	V_{HERB}				aceous vege oh and 36" ta						Netherd
		vegetation	percentages		h 200% are a						Not Used
		each subpl		Side			Righ	t Side		1	
	le Variable 1										
12	V _{WLUSE}	Weighted A	verage of R	Runoff Score	e for watersh	ied:					0.93
									Runoff	% in Catch	Running
			Land	Use (Choos	se From Dro	p List)			Score	ment	Percent (not >100)
	Forest and r	native range (>	75% ground	cover)				-	1	90	90
	Open space	(pasture, lawr	is, parks, etc.)	, grass cover	>75%			-	0.3	10	100
								•			
								•			
								•			
								•			
	•							•			
	-							•			
	Su	ımmary					No	otes:			
\	/ariable	Value	VSI								
V	CCANOPY	23 %	0.14								
V	EMBED	2.0	0.46								
V,	SUBSTRATE	0.08 in	0.04								
	BERO	0 %	1.00								
	_WD	0.0	0.00								
	говн	7.1	0.70								
	SNAG	0.0	0.10								
	SSD	Not Used	Not Used								
	SRICH	3.60	1.00 0.24								
	DETRITUS HERB	19.4 % Not Used	0.24 Not Used								
	NLUSE	0.93	0.98								
٧,	NLUSE	0.93	0.96								

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (FRONT)

STREAM NAME S-QR34	LOCATION Wetzel, Cour	nty			
STATION # RIVERMILE	STREAM CLASS Ephemeral				
Lat <u>39.489083</u> Long <u>-80.520519</u>	RIVER BASIN Headwaters South Fork Fishing Creek				
STORET#	AGENCY Tetra Tech				
INVESTIGATORS C. Vileno, C. Stoliker					
FORM COMPLETED BY C. Vileno	DATE 11/10/2016 TIME 3:30pm	REASON FOR SURVEY SWVM			

	Habitat		Condition	ı Category		
	Parameter	Optimal	Suboptimal	Marginal	Poor	
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.	
	SCORE 0	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
n sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.	
ted in	SCORE 3	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast- shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/depth regime (usually slow-deep).	
ıram	SCORE 0	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
P _k	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.	
	SCORE 12	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.	
	SCORE 0	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

	Habitat		Condition	n Category			
	Parameter Parameter	Optimal	Suboptimal	Marginal	Poor		
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.		
	_{SCORE} 5	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
oling reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.		
samp	SCORE 0	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.		
e eva	SCORE 6 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0		
to be	SCORE 6 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0		
Parameters	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.		
	SCORE 8 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0		
	SCORE 3 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0		
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.		
	SCORE 8 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0		
	SCORE 3 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0		

Total Score 54

No / low flow at time of survey. Unable to sample water quality or $\ensuremath{\mathbf{WVSCI}}$.

Photograph Direction SW

Comments:

STREAM ID S-J56	STREAM NAME Manion Run
LAT 39.464274 LONG -80.502218	DATE 05/31/2015
PROJECT NAME MVP	CLIENT MVP
INVESTIGATORS Pete Johnson, Chris Weber,	Nate K
FLOW REGIME Perennial — Intermittent — Ephemeral —	WATER TYPE TNW — RPW ✓ NRPW —

Perenniai 🚣	_ intermitte	nt <u> Ephem</u>	eral TNW	RPW –	NRPW		
			_				
			Measurements		Stream ErosionNone ✓ Moderate	Незуу	
		·	k Width: 10.0 ft		NoneNoderate	Tleavy	
		Top of Ban	ŭ	, ,	Artificial, Modified or Channelized		
		LB <u>4.0</u>		<u>ft</u>	Yes No		
CHANNEL FE	ATURES	·	th: 2.00 in		Dam PresentYes _	✓ No	
		Water Widt	th: 5.0 ft			_	
		High Water	Mark: <u>3.0 ft</u>		Sinuosity Low	Medium High	
		Flow Direc	tion: SE		Gradient		
						Severe (10 ft/100 ft)	
		Water Pres	sent		Proportion of Reach Repre	,	
			r, stream bed dry		Morphology Types	-	
		Stream			Riffle 70 % Run 15	%	
FLOW		Standin	•		Pool 15 %		
CHARACTERI	ISTICS	<u>✓</u> Flowing	water		Turbidity		
		Velocity			<u>✓</u> ClearSlightly		
			<u>✓</u> Moderate		OpaqueStainedOther		
		Slow					
INOR		STRATE CO add up to 10	MPONENTS 0%)	_	RGANIC SUBSTRATE CON does not necessarily add u		
Substrate Type	Diame	ter	% Composition in Sampling Reach	Substrate Type	Characteristic	% Composition in Sampling Area	
Bedrock			15	Detritue	sticks, wood, coarse		
Boulder	> 256 ı	mm (10")	20	Detritus	plant materials (CPOM)	20	
Cobble	64-256 m	m (2.5"-10")	35	Muck-Mud	black, very fine organic	40	
Gravel	2-64 mm	(0.1"-2.5")	10	IVIUCK-IVIUU	(FPOM)	10	
Sand	0.06-2n	nm (gritty)	15				
Silt	0.004-0	0.06 mm	5	Marl	grey, shell fragments		
Clay	< 0.004 r	mm (slick)					
		Predomina ✓ Forest	ant Surrounding Lan Commer		Indicate the dominant type ✓ Trees Shrub		
		Field/P			Grasses Herba		
		Agricul			_		
WATERSHED FEATURES		Other:			Floodplain Width Wide > 30ft Mode	rate 15-30ft	
		Canopy Co	ovor		Narrow <16ft		
		Partly of	ppenPartly sh	aded			
		Shaded	Open		Wetland PresentYes Wetland ID	<u>✓</u> No	
		Indicate th	e dominant type and	d record the o	dominant species present		
AQUATIC VE	GETATION	Rooted	l emergent	Rooted subme	ergentRooted float	tingFree floating	
		Floatin	g algae	Attached alga	е		
		_					
MACDOINVE	TEDDATES						
MACROINVER OR OTHER	KIEBKAIES						
WILDLIFE OBSERVED/C	THER						
OBSERVATIO NOTES							
.10123							

West Virginia Stream and Wetland Valuation Metric (SWVM) Version 2.1, September 2015

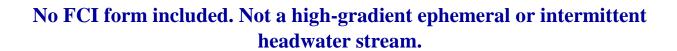
USACE FILE NO./ Project Name: (v2.1, Sept 2015)		Moun		y Pipeline Project M v2.1		COORDINATES: cimal Degrees)	Lat.	39.463899	Lon.	-80.502594		WEATHER:	WEATHER: Sunny, 70		DAT	E:	Septembe	r 1, 2016
IMPACT STREAM/SITE ID (watershed size {acreage},					on Run; 318ac	on Run; 318ac MITIGATION STREAM CLASS./SITE ID AND SITE DESCRI (watershed size {acreage}, unaltered or impairments) on: Mitigation Bank			:				Comm	ents:				
STREAM IMPACT LENGTH:	41	FORM (RESTORATION (Levels I-III)		OORDINATES: cimal Degrees)	Lat.		Lon.			PRECIPITATION PAST 48 HRS:			Mitigation	Length:		
Column No. 1- Impact Existing	g Condition (Debi	it)		Column No. 2- Mitigation Existing C	Condition - Base	line (Credit)		Column No. 3- Mitigation Pr Post Completio		Years		Column No. 4- Mitigation Pro Post Completion		ears	Column No. 5	5- Mitigation Project	ed at Maturity (Cr	redit)
Stream Classification:	Peren	nnial		Stream Classification:	Pe	rennial		Stream Classification:	Р	erennial	Str	ream Classification:	Pere	ennial	Stream Classification:		Peren	inial
Percent Stream Channel Slo	оре	2		Percent Stream Channel Sl	оре			Percent Stream Channel S	оре	0		Percent Stream Channel SI	оре	0	Percent	Stream Channel S	ope	0
HGM Score (attach da	ata forms):			HGM Score (attach	data forms):			HGM Score (attach	data forms):			HGM Score (attach d	ata forms):		НО	M Score (attach d	ata forms):	
		Average				Average				Average				Average			· · · · · · · · ·	Average
Hydrology Biogeochemical Cycling		0		Hydrology Biogeochemical Cycling		0		Hydrology Biogeochemical Cycling		0		rdrology ogeochemical Cycling		0	Hydrology Biogeochemical Cycli	ng		0
PART I - Physical, Chemical and	Biological Indica	ators		Habitat PART I - Physical, Chemical ar	d Biological Ind	icators		Habitat PART I - Physical, Chemical a	nd Biological In	dicators	На	PART I - Physical, Chemical and	Biological India	cators	Habitat PART I - Phy	sical, Chemical and	Biological Indica	ators
	Points Scale Range	Site Score	ŀ		Points Scale Range	Site Score			Points Scale Range	Site Score			Points Scale Range	Site Score		-:-:-:	Points Scale Range	Site Score
PHYSICAL INDICATOR (Applies to all streams	s classifications)		Ī	PHYSICAL INDICATOR (Applies to all streams	classifications)			PHYSICAL INDICATOR (Applies to all stream			PH	HYSICAL INDICATOR (Applies to all stream	s classifications)		PHYSICAL INDICATOR			
USEPA RBP (High Gradient Data Sheet)				USEPA RBP (High Gradient Data Sheet)				USEPA RBP (High Gradient Data Sheet)				SEPA RBP (High Gradient Data Sheet)			USEPA RBP (High Gra			
Epifaunal Substrate/Available Cover Embaddedness	0-20	16	1	Epifaunal Substrate/Available Cover Embeddedness	0-20			Epifaunal Substrate/Available Cover Embaddedness	0-20			Epifaunal Substrate/Available Cover	0-20		Epifaunal Substrate/ Embaddadaga	Available Cover	0-20	
Embeddedness Velocity/ Depth Regime	0-20	13 12	1	2. Embeddedness 3. Velocity/ Depth Regime	0-20			Embeddedness Velocity/ Depth Regime	0-20			Embeddedness Velocity/ Depth Regime	0-20 0-20		Embeddedness Velocity/ Depth Regir	mo.	0-20 0-20	
Velocity Depth Regime Sediment Deposition	0-20	10	1	4. Sediment Deposition	0-20			Velocity Depth Regime Sediment Deposition	0-20			Sediment Deposition	0-20		Velocity/ Depth Regil Sediment Deposition		0-20	
5. Channel Flow Status	0-20	6		5. Channel Flow Status	0-20			5. Channel Flow Status	0-20			Channel Flow Status	0-20		Channel Flow Status		0-20	
Channel Alteration	0-20 0-1	18	Ī	6. Channel Alteration	0-20			Channel Alteration	0-20		6. 0	Channel Alteration	0-20		Channel Alteration		0-20	
7. Frequency of Riffles (or bends)	0-20	18		7. Frequency of Riffles (or bends)	0-20			7. Frequency of Riffles (or bends)	0-20		7. I	Frequency of Riffles (or bends)	0-20		7. Frequency of Riffles	(or bends)	0-20	
Bank Stability (LB & RB)	0-20	11		8. Bank Stability (LB & RB)	0-20			8. Bank Stability (LB & RB)	0-20			Bank Stability (LB & RB)	0-20		Bank Stability (LB & I		0-20	
Vegetative Protection (LB & RB)	0-20	14	9	9. Vegetative Protection (LB & RB)	0-20			9. Vegetative Protection (LB & RB)	0-20		9. \	Vegetative Protection (LB & RB)	0-20		Vegetative Protection	(LB & RB)	0-20	
10. Riparian Vegetative Zone Width (LB & RB)	0-20	12		10. Riparian Vegetative Zone Width (LB & RB)	0-20			10. Riparian Vegetative Zone Width (LB & RB)	0-20		10.	. Riparian Vegetative Zone Width (LB & RB)	0-20		Riparian Vegetative Z	one Width (LB & RB)	0-20	
Total RBP Score	Suboptimal	130	-	Total RBP Score	Poor	0		Total RBP Score	Poor	0		otal RBP Score	Poor	0	Total RBP Score		Poor	0
Sub-Total CHEMICAL INDICATOR (Applies to Intermitter	nt and Perennial Stre	0.65 eams)		Sub-Total CHEMICAL INDICATOR (Applies to Intermitter	nt and Perennial Str	eams)		Sub-Total CHEMICAL INDICATOR (Applies to Intermitte	nt and Perennial S	treams)		ub-Total HEMICAL INDICATOR (Applies to Intermitte	ent and Perennial S	0 Streams)	Sub-Total CHEMICAL INDICATO	R (Applies to Intermitte	nt and Perennial Stre	eams)
WVDEP Water Quality Indicators (General		,	,	WVDEP Water Quality Indicators (General	1	,		WVDEP Water Quality Indicators (Genera)	•		VDEP Water Quality Indicators (Genera		,	WVDEP Water Quality	Indicators (General)	,
Specific Conductivity				Specific Conductivity				Specific Conductivity				pecific Conductivity	.,		Specific Conductivity			
	0-90	0.164			0-90				0-90				0-90				0-90	
<=99 - 90 points	0.00	0.104			0.00				0 00				0 00					
рН	2.1			pH	0-1			рН	0-1		рН				рН			
6.0-8.0 = 80 points	0-80	7.42			5-90				5-90	5.6			5-90				5-90	
DO	10-30	76.8	<u> </u>	DO	10-30			DO	10-30		DC	0	10-30		DO		10-30	
>5.0 = 30 points Sub-Total	1	1	1	Sub-Total		0		Sub-Total		0	Sul	ib-Total		0	Sub-Total			0
BIOLOGICAL INDICATOR (Applies to Intermit	ttent and Perennial S	Streams)		BIOLOGICAL INDICATOR (Applies to Intermit	tent and Perennial	Streams)		BIOLOGICAL INDICATOR (Applies to Intermittent and Perennial Streams) BIOLOGICAL INDICA		BIOLOGICAL INDICATOR (Applies to Intermittent and Perennial Streams)		BIOLOGICAL INDICATOR (Applies to Intermittent and Perennial Stream		BIOLOGICAL INDICAT	OR (Applies to Intern	nittent and Perennia	al Streams)	
WV Stream Condition Index (WVSCI)			1	WV Stream Condition Index (WVSCI)	 			WV Stream Condition Index (WVSCI)			w\	V Stream Condition Index (WVSCI)	<u> </u>		WV Stream Condition	Index (WVSCI)		
Good	0-100 0-1	70.5			0-100 0-1				0-100 0-1				0-100 0-1				0-100 0-1	
Sub-Total		0.705	3	Sub-Total	- N	0		Sub-Total	· · · · · · · · · · · · · · · · · · ·	0	Sul	ıb-Total		0	Sub-Total			0
PART II - Index and U	Init Score		Г	PART II - Index and	Unit Score		Ī	PART II - Index and	I Unit Score			PART II - Index and U	Jnit Score		P	ART II - Index and U	Jnit Score	
Index	Linear Feet	Unit Score	ľ	Index	Linear Feet	Unit Score		Index	Linear Feet	Unit Score		Index	Linear Feet	Unit Score	Ind	ex	Linear Feet	Unit Score
0.785	41	32.185	ľ	0	0	0		0	0	0		0	0	0	0		0	0

		(See instruction page		 Impact Factors It values for MITIGATIO 	N BANKING and I	LF)			
Temporal Loss-Co	nstruction	· · · · · · · · · · · · · · · · · · ·				Long	-term Protection		
*Note: Reflects duration of aquatic functional loss between the til		ct (debit) and completion of compensatory			% Add. Mitigati	ion and Monitoring Period		-Term Protection (Years)	
mitigation (credit).									
Years		0							
Sub-Total		U							
Temporal Loss-	Maturity				0 + 5/	10 Year Monitoring		101	
*Note: Period between completion of compensatory mitigation me		e time required for maturity, as it relates to			Sub-Total	To real Monitoring		0	
function (i.e. maturity of tree stratum to provide organic matte									
corridor).						PART IV - Index	to Unit Score Cor	nversion	
					Final Index Score	Linear Feet	Unit Score	ILF Costs	
% Add. Mitigation		Temporal Loss-Maturity (Years)			(Debit)	7.7	(Debit)	(Offsetting Debit	
· ·		. ,			0.785	41	32.185	\$25,748.00	
					0.703	71	32.103	\$23,740.00	
00/		0							
0% Sub-Total		0							
Sub-1 otal		V							
		PART V	- Comparison of U	nit Scores and Projecte	d Balance				
				•					
Final Unit Score (Debit)		Mitigation Existing		Mitigation Projected at		Mitigation Projected at Ten		Mitigation Projected At	
[No Net Loss Value] 32.	185	Condition - Baseline		Five Years		Years		Maturity	
[NO Net Loss Value]		(Credit)		Post Completion (Credit)		Post Completion (Credit)		(Credit)	
FINAL PROJECTED NET BALANCE							•		•
					0		0		0
		D	Part VI - Mitigation	Considerations (Incentiv	voc)				
		_	art vi - Willigation	Considerations (incention	ves)				
				•	T				
Extent of	of Stream Re	estoration				Extended	Upland Buffer Zon	a	
*Note1: Reference the Instructional handout to			oject		*Note ¹ · Referen	nce Instructional handout for the def	-		s (below)
*Note2: Place an "X" in t	he appropriate	category (only select one).			11010 1 11010101	*Note ² : Enter the buffer width for			C (201011)
Restoration Level 1				1			ne appropriate mitigation		
- Nectoralion 20001									
Restoration Level 2					D (()A() ()		Left Banl	k	
				4	Buffer Width				
Restoration Level 3						0-50		None	
-				.		51-150		None	
					Buffer Width		Right Ban		
				_		0-50		None	
Compensatory Mitigation Plan incorporates HUC 12						51-150		None	
*Note: HUC 12-based watershed approach require	d to obtain Strea	am Restoration incentive	No		Average Buffer	0			
					Width/Side				
		lune and	Mitigation Unit			Ī	Ctar	ight Drocometics Deti-	
Site		Impact	Mitigation Unit Yield (Credit)				Stra	hight Preservation Ratio	
	Unit Yield (Debit)							(v2.1, Sept 2015)	
		` '							
0.170			#PD1/101			P1 1 841/2			
S-J56		32.185	#DIV/0!			Final Mitigation Unit Yield			

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (FRONT)

STREAM NAME S-J56	LOCATION Wetzel County, WV				
STATION # RIVERMILE	STREAM CLASS Perennial				
Lat <u>39.463899</u> Long <u>-80.502594</u>	RIVER BASIN Headwater	s South Fork Fishing Creek			
STORET#	AGENCY Tetra Tech				
INVESTIGATORS C. Vileno, J. McGuirk, J.	Bittner				
FORM COMPLETED BY J. McGuirk	DATE 09/01/2016 TIME 1:00	REASON FOR SURVEY Proposed pipeline			

	Habitat		Condition	ı Category		
	Parameter	Optimal	Suboptimal	Marginal	Poor	
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.	
	SCORE 16	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
ı sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.	
ted in	SCORE 13	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast- shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).	
aram	SCORE 12	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
P ₂	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.	
	SCORE 10	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.	
	SCORE 6	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	


HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

	Habitat		Condition	Category			
	Parameter Parameter	Optimal	Suboptimal	Marginal	Poor		
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.		
	_{SCORE} 18	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
ling reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.		
samp	SCORE 18	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.		
e eva	SCORE 5 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0		
to b	SCORE 6 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0		
Parameters	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.		
	SCORE 7 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0		
	SCORE 7 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0		
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.		
	SCORE 2 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0		
	SCORE 10 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0		

Total Score 130

Insects	Count	Tolerance	TV	Insects	Count	Tolerance	TV	Non-Insects	Count	Tolerance	TV	7	
Ephemeroptera		•	11	Odonata	•	•	6	Crustacea	•	•	3		
Ameletidae		2	0	Aeshnidae		3	0	Asellidae		7	0	1	
Baetidae	1	4	4	Calopterygidae		6	0	Cambaridae	3	5	15		
Beatiscidae		4	0	Coenagrionidae		7	0	Gammaridae		5	0		
Caenidae		5	0	Cordulegastridae		3	0	Palaemonidae		5	0		
Ephemerellidae		3	0	Gomphidae	6	5	30	Annelida	•	•	0		
Ephemeridae		5	0	Lestidae		7	0	Hirudinea		10	0		
Heptageniidae	6	3	18	Libellulidae		7	0	Nematoda		10	0		
Isonychiidae		3	0	Coleoptera	•	•	1	Nematomorpha		10	0		
Leptophlebiidae	4	4	16	Chrysomelidae		7	0	Oligochaeta		10	0		
Potamanthidae		5	0	Dryopidae		5	0	Turbellaria			0		
Siphlonuridae		3	0	Dytiscidae		6	0	Turbellaria		7	0		
Tricorythidae		5	0	Elmidae		4	0	Bivalvia			0		
Plecoptera			3	Gyrinidae		5	0	Corbiculidae		6	0		
Capniidae		2	0	Haliplidae		7	0	Sphaeriidae		5	0		
Chloroperlidae		2	0	Hydrophilidae		7	0	Unionidae		4	0		
Leuctridae	2	2	4	Psephenidae	1	3	3	Gastropoda			0		
Nemouridae		2	0	Ptilodactylidae		5	0	Ancylidae	Ancylidae 7		0		
Peltoperlidae		1	0	Hemiptera		•	0	Hydrobiidae 4		0			
Perlidae	1	1	1	Belostomatidae		8	0	Physidae 7		0			
Perlodidae		1	0	Corixidae		8	0	Planorbidae		5	0		
Pteronarcyidae		1	0	Gerridae		10	0	Pleuroceridae		5	0		
Taeniopterygidae		2	0	Hydrometridae		8	0	Viviparidae		5	0		
Trichoptera			0	Nepidae		8	0	Miscellaneous			0		
Brachycentridae		2	0	Notonectidae		8	0	Collembola		6	0		
Glossosomatidae		2	0	Megaloptera			0	Lepidoptera		5	0		
Helicopsychidae		3	0	Corydalidae		3	0	Neuroptera		5	0		
Hydropsychidae		5	0	Sialidae		6	0	Hydrachnidae		6	0		
Hydroptilidae		3	0	Diptera	•	•	2	Totals	Total r	number	26		
Lepidostomatidae		3	0	Athericidae		3	0	Totals	Total f	amilies	9		
Leptoceridae		3	0	Blephariceridae		2	0		•	Metric o	calculations	•	
Limnephilidae		4	0	Ceratopogonidae		8	0		Richnes	SS		Additional metri	ics
Molannidae		3	0	Chironomidae		9	0	Total Taxa		9	40.9	Ephemeroptera Taxa	3
Philopotamidae		4	0	Culicidae		10	0	EPT Taxa		5	38.5	Plecoptera Taxa	2
Phryganeidae		4	0	Dixidae		6	0		Toleran	ce		Trichoptera Taxa	0
Polycentropodidae		5	0	Empididae		7	0	Biotic Index		3.88	87.4	Long-lived Taxa	5
Psychomiidae		3	0	Psychodidae		8	0	% Tolerant		0.0	100.0	Odonata Taxa	1
Rhyacophilidae		3	0	Ptychopteridae		8	0		Composit	ion		Diptera Taxa	1
Uenoidae		2	0	Simuliidae		6	0	% EPT Abundance		53.8	59.8	COET Taxa	5
		erance Value	101	Stratiomyidae		10	0	% Dominance		23.1	96.2	% Sensitive	38.5
	rginia Save O			Syrphidae		10	0	% Net-spinners		0.0	NA	% Chironomidae	0.0
601 57th Stre			304	Tabanidae		7	0	Stream (Condition Ind	ex	70.5	% Clingers	53.8
http://	www.dep.w	v.gov/sos		Tipulidae	2	5	10	Integrity Ra	ating	Subo	ptimal	More diversity mea	sures

<u>Note</u>: There may be instances when families are collected that are not listed above. In those cases choose a similar family/tolerance value if known, to calculate the metrics. You should contact the WV Save Our Streams Coordinator to confirm your choice. Provide as much detail as possible so that family-level identification can be determined.

Photograph Direction South

Comments:

STREAM ID S-J59	STREAM NAME UNT to Manion Run
LAT 39.462645 LONG -80.504754	DATE 05/31/2015
PROJECT NAME MVP	CLIENT MVP
INVESTIGATORS Pete Johnson, Chris Weber,	Nate K
FLOW REGIME Perennial — Intermittent ✓ Ephemeral —	WATER TYPE TNW — RPW ✓ NRPW —

Perenniai –		nt <u> </u>	erai rivvv	RPW —	NRPW —		
		F-4'4- B			Ota		
			/leasurements k Width: <u>3.0 ft</u>		Stream ErosionNone ✓ Moderate	Heavy	
CHANNEL FEATURES		-			Woderate		
		Top of Ban	ŭ	. .	Artificial, Modified or Char	nnelized	
		LB <u>1.0</u>		<u>ft</u>	Yes No		
		Water Dep	th: <u>1.00 in</u>		Dam PresentYes _	∠ No.	
		Water Widt	h: 6.0 in		Daili Fleseill 165 _	<u>/ </u>	
		High Water	Mark: <u>6.0 in</u>		Sinuosity Low	Medium High	
		Flow Direct	tion: S		Gradient		
						✓ Severe	
					(0.5/100 ft (2 ft/100 ft)	(10 ft/100 ft)	
		Water Pres			Proportion of Reach Repre	esented by Stream	
			r, stream bed dry bed moist		Morphology Types Riffle 15 % Run 40	%	
		✓ Standin			Pool 45 %	70	
FLOW CHARACTER	ISTICS	Flowing					
OHARAGIER	01100				Turbidity	turbid Turbid	
		Velocity	✓ Madarata		✓ Clear — Slightly — Opaque — Stained		
		Fast Slow	<u>✓</u> Moderate		Other		
INOR	CANIC CUR	STRATE CO	MDONENTS	_	RGANIC SUBSTRATE CON	IDONENTS	
INOR		add up to 10			does not necessarily add u		
Substrate	Diama		% Composition in	Substrate		% Composition in	
Type	Diame	eter	Sampling Reach	Type	Characteristic	Sampling Area	
Bedrock			5	Detritus	sticks, wood, coarse		
Boulder		mm (10")	40		plant materials (CPOM)	40	
Cobble	64-256 m	m (2.5"-10")	30	Muck-Mud	black, very fine organic	0	
Gravel	2-64 mm	n (0.1"-2.5")	10		(FPOM)	U	
Sand	0.06-2n	nm (gritty)	10				
Silt	0.004-0	0.06 mm	5	Marl	grey, shell fragments		
Clay	< 0.004	mm (slick)	0				
			ant Surrounding Lan		Indicate the dominant type	(Check one)	
		Field/P	Commer asture Industrial		✓ Trees ✓ Shrub — Grasses — Herba	S	
		— Agricul			Orassesrierba	ceous	
WATERSHED		Other:			Floodplain Width	45 006	
FEATURES					Wide > 30ftMode	rate 15-30Tt	
		Canopy Co	over open Partly sh	adad	Narrow Tolt		
		✓ Shaded		aueu	Wetland PresentYes	<u>✓</u> No	
					Wetland ID		
A OU A TIC VE	SETATION			d record the or Rooted subme	dominant species present	ting Free floating	
AQUATIC VE	SEIATION			Attached alga	<u> </u>	ingi ree lloating	
				, maonoa anga			
MACROINVER	TERRATES						
OR OTHER							
WILDLIFE OBSERVED/C							
OBSERVATION NOTES	NS AND						

West Virginia Stream and Wetland Valuation Metric (SWVM) Version 2.1, September 2015

USACE FILE NO./ Project Name: (v2.1, Sept 2015)			y Pipeline Project IMPACT COORDINATES: (in Decimal Degrees)		39.462705 L	.on.	-80.504726	WEATHER:	Rain, 75°	DATE:	September 1, 2016
IMPACT STREAM/SITE ID AND S (watershed size {acreage}, unaltered)		S-J59; UNT to M			MITIGATION STREAM CLASS./SIT (watershed size {acreage}, u					Comments:	Low water flow at time of survey. Unable to sample water quality
STREAM IMPACT LENGTH:	7 FORM OF MITIGATION:	RESTORATION (Levels I-III)	MIT COORDINATES: (in Decimal Degrees)	Lat.	L	.on.		PRECIPITATION PAST 48 HRS:	0.50"	Mitigation Length:	
Column No. 1- Impact Existing Condi	ition (Debit)	Column No. 2- Mitigation Existing Co	ondition - Baseline (Credit)		Column No. 3- Mitigation Proje Post Completion (0		ve Years	Column No. 4- Mitigation Project Post Completion (C		Column No. 5- Mitigation Projec	ted at Maturity (Credit)
Stream Classification:	Intermittent	Stream Classification:	Intermittent		Stream Classification:		Intermittent	Stream Classification:	Intermittent	Stream Classification:	Intermittent
Percent Stream Channel Slope	4	Percent Stream Channel Slop	oe e		Percent Stream Channel Slope	Ð	0	Percent Stream Channel Slo	pe 0	Percent Stream Channel S	lope 0
HGM Score (attach data for	ns):	HGM Score (attach d	ata forms):		HGM Score (attach da	ta forms)	:	HGM Score (attach dat	a forms):	HGM Score (attach o	lata forms):
Biogeochemical Cycling (0.603 0.77 0.41	Hydrology Biogeochemical Cycling Habitat PART I - Physical, Chemical and	0		Hydrology Biogeochemical Cycling Habitat PART I - Physical, Chemical and I		0	Hydrology Biogeochemical Cycling Habitat PART I - Physical, Chemical and B	0	Hydrology Biogeochemical Cycling Habitat PART I - Physical, Chemical and	0
Points Sc.	ale Range Site Score		Points Scale Range Site Score			oints Scale R	ange Site Score		Points Scale Range Site Score		Points Scale Range Site Score
PHYSICAL INDICATOR (Applies to all streams classific	cations)	PHYSICAL INDICATOR (Applies to all streams of	lassifications)		PHYSICAL INDICATOR (Applies to all streams cla	ssifications		PHYSICAL INDICATOR (Applies to all streams of	classifications)	PHYSICAL INDICATOR (Applies to all stream	
USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover 0-20 2. Embeddedness 0-20 3. Velocity/ Depth Regime 0-20 4. Sediment Deposition 0-20 6. Channel Flow Status 0-20 6. Channel Alteration 0-20 7. Frequency of Riffles (or bends) 0-20 8. Bank Stability (LB & RB) 0-20 9. Vegetative Protection (LB & RB) 0-20 10. Riparian Vegetative Zone Width (LB & RB) 0-20 Total RBP Score Mc Sub-Total CHEMICAL INDICATOR (Applies to Intermittent and Pound of the Conductivity Specific Conductivity	0-1 10 0 17 1 1 16 0 12 15 12 15 12 17 15 12 17 17 15 17 17 17 17 17 17 17 17 17 17 17 17 17	USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover 2. Embeddedness 3. Velocity/ Depth Regime 4. Sediment Deposition 5. Channel Flow Status 6. Channel Alteration 7. Frequency of Riffles (or bends) 8. Bank Stability (LB & RB) 9. Vegetative Protection (LB & RB) 10. Riparian Vegetative Zone Width (LB & RB) Total RBP Score Sub-Total CHEMICAL INDICATOR (Applies to Intermittent WVDEP Water Quality Indicators (General) Specific Conductivity	0-20 0-20		2. Embeddedness 3. Velocity/ Depth Regime 4. Sediment Deposition 5. Channel Flow Status 6. Channel Alteration 7. Frequency of Riffles (or bends) 8. Bank Stability (LB & RB) 9. Vegetative Protection (LB & RB)	0-20 0-20 0-20 0-20 0-20 0-20 0-20 0-20	0 0 0 I Streams)	USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover 2. Embeddedness 3. Velocity/ Depth Regime 4. Sediment Deposition 5. Channel Flow Status 6. Channel Alteration 7. Frequency of Riffles (or bends) 8. Bank Stability (LB & RB) 9. Vegetative Protection (LB & RB) 10. Riparian Vegetative Zone Width (LB & RB) Total RBP Score Sub-Total CHEMICAL INDICATOR (Applies to Intermittent WVDEP Water Quality Indicators (General) Specific Conductivity	0-20 0-30 0-40	USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover 2. Embeddedness 3. Velocity/ Depth Regime 4. Sediment Deposition 5. Channel Flow Status 6. Channel Alteration 7. Frequency of Riffles (or bends) 8. Bank Stability (LB & RB) 9. Vegetative Protection (LB & RB) 10. Riparian Vegetative Zone Width (LB & RB) Total RBP Score Sub-Total CHEMICAL INDICATOR (Applies to Intermitte WYDEP Water Quality Indicators (General Specific Conductivity	
100-199 - 85 points PH 5.6-5.9 = 45 points DO 10-30 Sub-Total BIOLOGICAL INDICATOR (Applies to Intermittent and	0-1	pH DO Sub-Total BIOLOGICAL INDICATOR (Applies to Intermitte	0-90 0-1 5-90 0-1 10-30 0 0 ont and Perennial Streams)		рН	0-90 5-90 10-30	0 ennial Streams)	pH DO Sub-Total BIOLOGICAL INDICATOR (Applies to Intermi	0-90 0-1 10-30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	pH DO Sub-Total BIOLOGICAL INDICATOR (Applies to Inter	0-90 0-1 5-90 0-1 10-30 0
WV Stream Condition Index (WVSCI)	r eleminal Streams)	WV Stream Condition Index (WVSCI)	and Petermial Streams)		WV Stream Condition Index (WVSCI)	ent and rei	enniai Streams)	WV Stream Condition Index (WVSCI)	tterit and Perennial Streams)	WV Stream Condition Index (WVSCI)	intent and Perennal Streams)
Good 0-100 Sub-Total	0 0-1 73.9 0.739	Sub-Total	0-100 0-1 0		Sub-Total	0-100	0-1	Sub-Total	0-100 0-1 0	Sub-Total	0-100 0-1
PART II - Index and Unit Sco	re	PART II - Index and U	Jnit Score		PART II - Index and Ur	nit Score		PART II - Index and Un	it Score	PART II - Index and	Jnit Score
Index Line	ar Feet Unit Score	Index	Linear Feet Unit Score		Index	Linear Fe	et Unit Score	Index	Linear Feet Unit Score	Index	Linear Feet Unit Score
0.637	7 4.461333333	0	0 0		0	0	0	0	0 0	0	0 0

		(See instruction page		 Impact Factors It values for MITIGATIO 	N BANKING and I	LF)			
Temp	oral Loss-Construction					Long	-term Protection		
*Note: Reflects duration of aquatic functional loss	between the time of an impac	ct (debit) and completion of compensatory			% Add. Mitigati	on and Monitoring Period		-Term Protection (Years)	
	mitigation (credit).								
Voore		0							
Years Sub-Total		0							
Oub Total		· ·							
Ter	mporal Loss-Maturity				0 + 5/	10 Year Monitoring		101	
*Note: Period between completion of compensator					Sub-Total			0	
function (i.e. maturity of tree stratum to provide		vithin riparian stream or wetland buffer				DADT N/ 1 1		•	
	corridor).						to Unit Score Cor		
0/ A 11 A4/		Towns all and Mark Mark Market			Final Index Score	Linear Feet	Unit Score	ILF Costs	
% Add. Mitigation		Temporal Loss-Maturity (Years)			(Debit)		(Debit)	(Offsetting Debit	
					0.637333333	7	4.461333333	\$3,569.07	
0%		0							
Sub-Total		0							
		PART V	- Comparison of U	nit Scores and Projecte	ed Balance				
		.,							
Final Unit Score (Debit)		Mitigation Existing		Mitigation Projected at		Mitigation Projected at Ten		Mitigation Projected At	
[No Net Loss Value]	4.461333333	Condition - Baseline		Five Years		Years		Maturity	
[NO Net 2005 Value]		(Credit)		Post Completion (Credit))	Post Completion (Credit)		(Credit)	
FINAL PROJECTED NET BALANCE					0		0		0
					U		0		U
		P	art VI - Mitigation (Considerations (Incenti	ves)				
			and the initial gamen.	(,				
	Fortage of Ottown Do	at a matter							
	Extent of Stream Re					Extended	Upland Buffer Zone	е	
	Place an "X" in the appropriate of	orrect Restoration Levels (below) for your processory (only select one)	oject		*Note1: Referen	nce Instructional handout for the def			s (below)
110102.1	I	satisfiery (only coloci only).				*Note ² : Enter the buffer width for			
Restoration Level 1						*Note ³ : Select th	ne appropriate mitigation	n type	
				+					
Restoration Level 2					Buffer Width		Left Bank	k	
Restoration Level 3						0.50		N	
				J		0-50 51-150		None	
					Buffer Width	51-150	Right Ban	None	
					Dano: Tridai	0-50	Right Ball	None	
Compensatory Mitigation Plan incorpo	orates HUC 12-based water	rshed approach? (Yes or No)		1		51-150		None	
*Note: HUC 12-based watershed			No		Average Buffer	0			
			Width/Side	U					
						j			
Site		Impact	Mitigation Unit				Stra	hight Preservation Ratio	
		Unit Yield (Debit)	Yield (Credit)					(v2.1, Sept 2015)	
0.45		4.40460000	#PD1//01	1					
S-J59		4.461333333	#DIV/0!			Final Mitigation Unit Yield			
				4		#DIV/0!			

FCI Calculator for the High-Gradient Headwater Streams in eastern Kentucky and western West Virginia HGM Guidebook

To ensure accurate calculations, the <u>UPPERMOST STRATUM</u> of the plant community is determined based on the calculated value for V_{CCANOPY} (≥20% cover is required for tree/sapling strata). Go to the SAR Data Entry tab and enter site characteristics and data in the yellow cells. For information on determining how to split a project into SARs, see Chapter 5 of the Operational Draft Regional Guidebook for the Functional Assessment of High-gradient Ephemeral and Intermittent Headwater Streams in Western West Virginia and Eastern Kentucky (Environmental Laboratory U.S. Army Corps of Engineers 2010).

Project Name: MVP

Location: Wetzel County **Sampling Date:** 09/01/2016

Project Site Before Project

Subclass for this SAR:

Intermittent Stream

Uppermost stratum present at this SAR: SAR number:

Tree/Sapling Strata

Functional Results Summary:

Enter Results in Section A of the Mitigation Sufficiency Calculator

Function	Functional Capacity Index
Hydrology	0.63
Biogeochemical Cycling	0.77
Habitat	0.41

Variable Measure and Subindex Summary:

Variable	Name	Average Measure	Subindex
V _{CCANOPY}	Percent canpoy over channel.	43.00	0.40
V _{EMBED}	Average embeddedness of channel.	2.97	0.81
V _{SUBSTRATE}	Median stream channel substrate particle size.	0.40	0.20
V _{BERO}	Total percent of eroded stream channel bank.	20.00	0.97
V _{LWD}	Number of down woody stems per 100 feet of stream.	6.00	0.75
V _{TDBH}	Average dbh of trees.	22.00	1.00
V _{SNAG}	Number of snags per 100 feet of stream.	0.00	0.10
V _{SSD}	Number of saplings and shrubs per 100 feet of stream.	Not Used	Not Used
V _{SRICH}	Riparian vegetation species richness.	0.00	0.00
V _{DETRITUS}	Average percent cover of leaves, sticks, etc.	25.00	0.30
V _{HERB}	Average percent cover of herbaceous vegetation.	Not Used	Not Used
V _{WLUSE}	Weighted Average of Runoff Score for Catchment.	0.75	0.79

	High-G	Gradient	Headwat				entucky a alculator		ern Wes	t Virginia	a			
	Team:	C. Vileno, J	l. McGuirk.						M Northing:	39.462705				
Pro	oject Name:		,,,				•		_	-80.504726				
	-	Wetzel Cou	inty				•	_	_	09/01/2016				
SA	R Number:			Length (ft):	100	Stream Ty	/pe: Inter	mittent Strear	m		-			
	Top Strata:	Tree/Sapling Strata (determined from percent calculated in V _{CCANOPY})												
Site	and Timing:	d Timing: Project Site ■ Before Project ■ ■ Before Project												
Sample	Variables •	1-4 in strea	m channel											
Sample Variables 1-4 in stream channel 1 V _{CCANOPY} Average percent cover over channel by tree and sapling canopy. Measure at no fewer than 10 roughly equidistant points along the stream. Measure only if tree/sapling cover is at least 20%. (If less than 20%, enter at least one value between 0 and 19 to trigger Top Strata choice.)														
	List the per	cent cover n		nts at each p	oint below:						ì			
	85	80	70	0	10	50	85	20	20	10				
2	V_{EMBED}	along the st	tream. Sele	ct a particle	from the be	d. Before n	at no fewer to noving it, de	termine the	percentage	of the	3.0			
							y fine sedim composed of							
			-		drock, use a			iiie seuiiiie	erits, use a i	alling score				
								d from Platt	s. Megahan	and				
		Embeddedness rating for gravel, cobble and boulder particles (rescaled from Platts, Megahan, and Minshall 1983)												
		Rating Description 5 <5 percent of surface covered, surrounded, or buried by fine sediment (or bedrock)												
		5 4					d, or buried by)				
		3					ed, or buried							
		2					ed, or buried							
		1					r buried by f			al surface)				
	List the ration	ngs at each	point below	:										
	3	2	4	3	3	3	4	2	3	2				
	3	3	3	3	3	2	3	3	3	4				
	4	3	2	3	4	4	3	2	2	3				
3							it no fewer thed in V _{EMBED}		hly equidista	ant points	0.40 in			
	Enter partic	le size in ind	ches to the r	nearest 0.1	inch at each	point below	/ (bedrock sl	nould be co	unted as 99	in, asphalt				
		as 0.0 in, sa					,			•				
	8.00	4.00	0.50	0.10	0.20	5.00	11.00	10.00	5.00	0.30				
	0.25	0.50	6.00	0.25	0.08	10.00	15.00	0.08	4.00	0.25				
	3.00	3.00	0.25	0.08	0.08	0.08	7.00	0.25	0.08	0.08				
4	V_{BERO}						tal number or re eroded, t				20 %			
		up to 200%					,							
			Left Bank:	5	ft		Right Bank:	15	5 ft	<u> </u>				

Sample	e Variables	5-9 within t	he entire ri	parian/buff	er zone adj	acent to th	e stream ch	annel (25 f	eet from ea	ch bank).	
5	V_{LWD}	stream read	ch. Enter th		om the entir		er and 36 incouffer and wi				6.0
		•			Number of		oody stems:		6		
6	V_{TDBH}	-			ly if V _{CCANOP} tree DBHs i		ng cover is at	t least 20%)). Trees are	at least 4	22.0
		List the dbh	n measurem	ents of indiv	vidual trees	at least 4 ir	n) within the	buffer on ea	ach side of		
		the stream	below:								•
		_	Left Side					Right Side			l .
	40	6				20					
											ł
7	V	Number of	onogo (ot la	oot 4" dbb c	and 26" tall)	or 100 foo	t of otroom	Enter numb	or of onogo	an aaah	
7	V_{SNAG}				t per 100 fee		t of stream. culated.	Enter numb	er of snags	on eacn	0.0
			Left Side:		0		Right Side:		0		
8	V_{SSD}			,	•	•	es dbh) per s on each sic		•	•	Not Used
			f stream wi	ll be calcula							
9	\/	Dinarian	Left Side:		22 par 100 f	ant of otrop	Right Side: m reach. Ch	and all and	oioo propont	from	
9	V_{SRICH}						ve species p				0.00
							rom these d		·		
		Grou	p 1 = 1.0					Group	2 (-1.0)		
	Acer rubru	ım		Magnolia t	ripetala	Ш	Ailanthus a	Itissima	Ш	Lonicera ja	ponica
	Acer sacci	harum		Nyssa sylv	ratica		Albizia julib	orissin	1	Lonicera ta	ıtarica
	Aesculus	flava		Oxydendrun	n arboreum	Ш	Alliaria peti	olata		Lotus corni	iculatus
Ш	Asimina tr	iloba		Prunus ser	rotina		Alternanthe	era		Lythrum sa	licaria
	Betula alle	ghaniensis		Quercus a	lba		philoxeroid	es	7	Microstegiun	n vimineum
Ш	Betula len	ta		Quercus co	occinea	Ш	Aster tatari	cus		Paulownia	tomentosa
Ш	Carya alba	9		Quercus in	nbricaria		Cerastium	fontanum		Polygonum d	cuspidatum
	Carya glal	bra		Quercus p	rinus		Coronilla va	aria		Pueraria m	ontana
	Carya ova			Quercus ru	ıbra	Ш	Elaeagnus u	mbellata	./	Rosa multii	flora
Ш	Carya ova	ta	Ш	Quercus ve	elutina	Ш	Lespedeza	bicolor	Ш	Sorghum h	alepense
	Cornus florida		Sassafras	albidum		Lespedeza			Verbena br	•	
V	Fagus grandifolia				Ligustrum ob						
	Fraxinus a		_	Tsuga can		_	Ligustrum s				
7	Liriodendro			Ulmus ame							
		-		Jiiius ailie	Jilouria						
Ш	Magnolia a	acummala									
		2	Species in	Group 1				3	Species in	Group 2	

	e Variables								one within	25 feet fron	n each
bank . 10	The four sul	•			equidistant				-4" diamete	r and <36"	
10	* DETRITUS				t cover of the				C+ Glamoto	Tana 400	25.00 %
			Left			Right Side			Ī		
		30	10	15	50	10	15	30	40		
11	V_{HERB}				aceous vege						
					h and 36" ta n 200% are a						Not Used
		each subplo	ot.	9.00	1						
			Left	Side			Righ	t Side			
										-	
Sampl	e Variable 1	2 within the	entire cate	chment of t	he stream.						
12	V_{WLUSE}	Weighted A	verage of R	Runoff Score	for watersh	ed:					0.75
			Land	Use (Choos	se From Dro	p List)			Runoff Score	% in Catch- ment	Running Percent (not >100)
	Gravel							-	0	10	10
	Forest and n	ative range (>	75% ground	cover)				•	1	60	70
	Open space	(pasture, lawn	s, parks, etc.),	, grass cover	<50%			-	0.1	10	80
	Forest and n	ative range (5	0% to 75% gr	round cover)				V	0.7	20	100
								•			
								•			
	-							•			
	-							•			
	Su	mmary					No	tes:			
٧	'ariable	Value	VSI								
Vo	CANOPY	43 %	0.40								
VE	MBED	3.0	0.81								
Vs	SUBSTRATE	0.40 in	0.20								
V _B	BERO	20 %	0.97								
V _L	.wD	6.0	0.75								
	ТВН	22.0	1.00								
	SNAG	0.0	0.10								
	SSD	Not Used	Not Used								
	RICH	0.00	0.00								
	ETRITUS	25.0 %	0.30								
	IERB	Not Used	Not Used								
V _v	VLUSE	0.75	0.79								

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (FRONT)

STREAM NAME S-J59	LOCATION Wetzel County, WV						
STATION # RIVERMILE	STREAM CLASS Intermitte	STREAM CLASS Intermittent					
Lat <u>39.462705</u> Long <u>-80.504726</u>	RIVER BASIN Headwater	s South Fork Fishing Creek					
STORET#	AGENCY Tetra Tech	AGENCY Tetra Tech					
INVESTIGATORS C. Vileno, J. McGuirk, J.	Bittner						
FORM COMPLETED BY	DATE 09/01/2016	REASON FOR SURVEY					
J. Bittner	^{TIME} 12:45	Proposed pipeline					

	Habitat		Condition	ı Category			
	Parameter	Optimal	Suboptimal	Marginal	Poor		
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.		
	SCORE 12	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.		
ted in	SCORE 10	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast- shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).		
ıram	SCORE 0	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
Pa	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.		
	SCORE 17	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	channel and mostly		
	SCORE 1	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

	Habitat	Condition Category												
	Parameter	Optimal	Suboptimal	Marginal	Poor									
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.									
	SCORE 16	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0									
ling reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.									
samp	SCORE 0	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0									
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.									
e eva	SCORE 6 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0									
to b	SCORE 6 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0									
Parameters	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.									
	SCORE 7 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0									
	SCORE 8 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0									
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.									
	SCORE 6 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0									
	SCORE 6 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0									

Total Score 95

Insects	Count	Tolerance	TV	Insects	Count	Tolerance	TV	Non-Insects	Count	Tolerance	TV		
Ephemeroptera			7	Odonata			0	Crustacea	•		0		
Ameletidae		2	0	Aeshnidae		3	0	Asellidae		7	0		
Baetidae		4	0	Calopterygidae		6	0	Cambaridae		5	0		
Beatiscidae		4	0	Coenagrionidae		7	0	Gammaridae		5	0		
Caenidae		5	0	Cordulegastridae		3	0	Palaemonidae		5	0		
Ephemerellidae		3	0	Gomphidae		5	0	Annelida		•	0		
Ephemeridae		5	0	Lestidae		7	0	Hirudinea		10	0		
Heptageniidae	1	3	3	Libellulidae		7	0	Nematoda		10	0		
Isonychiidae		3	0	Coleoptera			0	Nematomorpha		10	0		
Leptophlebiidae	6	4	24	Chrysomelidae		7	0	Oligochaeta		10	0		
Potamanthidae		5	0	Dryopidae		5	0	Turbellaria		•	0		
Siphlonuridae		3	0	Dytiscidae		6	0	Turbellaria		7	0		
Tricorythidae		5	0	Elmidae		4	0	Bivalvia		•	0		
Plecoptera			13	Gyrinidae		5	0	Corbiculidae		6	0		
Capniidae		2	0	Haliplidae		7	0	Sphaeriidae		5	0		
Chloroperlidae		2	0	Hydrophilidae		7	0	Unionidae		4	0		
Leuctridae		2	0	Psephenidae		3	0	Gastropoda	•		0		
Nemouridae		2	0	Ptilodactylidae		5	0	Ancylidae		7	0		
Peltoperlidae	4	1	4	Hemiptera			0	Hydrobiidae		4	0		
Perlidae	8	1	8	Belostomatidae		8	0	Physidae		7	0		
Perlodidae	1	1	1	Corixidae		8	0	Planorbidae		5	0		
Pteronarcyidae		1	0	Gerridae		10	0	Pleuroceridae		5	0		
Taeniopterygidae		2	0	Hydrometridae		8	0	Viviparidae		5	0		
Trichoptera			0	Nepidae		8	0	Miscellaneous		•	0		
Brachycentridae		2	0	Notonectidae		8	0	Collembola		6	0		
Glossosomatidae		2	0	Megaloptera			1	Lepidoptera		5	0		
Helicopsychidae		3	0	Corydalidae		3	0	Neuroptera		5	0		
Hydropsychidae		5	0	Sialidae	1	6	6	Hydrachnidae		6	0		
Hydroptilidae		3	0	Diptera		•	0	T-4-1-	Total r	umber	21		
Lepidostomatidae		3	0	Athericidae		3	0	Totals	Total f	amilies	6		
Leptoceridae		3	0	Blephariceridae		2	0		•	Metric o	calculations	*	
Limnephilidae		4	0	Ceratopogonidae		8	0		Richnes	s		Additional metri	ics
Molannidae		3	0	Chironomidae		9	0	Total Taxa		6	27.3	Ephemeroptera Taxa	2
Philopotamidae		4	0	Culicidae		10	0	EPT Taxa		5	38.5	Plecoptera Taxa	3
Phryganeidae		4	0	Dixidae		6	0		Toleran	e		Trichoptera Taxa	0
Polycentropodidae		5	0	Empididae		7	0	Biotic Index		2.19	100.0	Long-lived Taxa	3
Psychomiidae		3	0	Psychodidae		8	0	% Tolerant		0.0	100.0	Odonata Taxa	0
Rhyacophilidae		3	0	Ptychopteridae		8	0		Composit	ion	•	Diptera Taxa	0
Uenoidae		2	0	Simuliidae		6	0	% EPT Abundance		95.2	100.0	COET Taxa	2
	Total Tol	erance Value	46	Stratiomyidae		10	0	% Dominance		38.1	77.4	% Sensitive	66.7
West Vi	rginia Save O	ur Streams		Syrphidae		10	0	% Net-spinners		0.0	NA	% Chironomidae	0.0
601 57th Stre			304	Tabanidae		7	0	Stream (Condition Ind	ex	73.9	% Clingers	95.2
http:/	/www.dep.w	v.gov/sos		Tipulidae		5	0	Integrity R	ating	Suboi	ptimal	More diversity mea	sures

<u>Note</u>: There may be instances when families are collected that are not listed above. In those cases choose a similar family/tolerance value if known, to calculate the metrics. You should contact the WV Save Our Streams Coordinator to confirm your choice. Provide as much detail as possible so that family-level identification can be determined.

No / low flow at time of surve	ey. Unable to sample water quality.	

S-A110/S-K62

Comments:

STREAM ID S-A110 / K6 2 (upstream)	STREAM NAME UNT to Laural Run				
LAT 39.201933 LONG -80.553215	DATE 05/30/2015				
CLIENT MVP	PROJECT NAME MVP				
INVESTIGATORS J. Hart, D. Santillo, J. Potrik	us				
FLOW REGIME Perennial — Intermittent ✓ Ephemeral —	WATER TYPE TNW RPW ✓ NRPW				

i erennai =	— ппенние	пс— приспи		1X1 VV —			
		Estimate N	/leasurements		Stream Erosion		
			k Width: 7.0 ft		None _v Moderate Heavy		
		Top of Ban					
		LB <u>1.5</u>	=	ft	Artificial, Modified or Char Yes ✓ No	nnelized	
			th: 0.50 in	<u></u>	Yes No		
CHANNEL FE	ATURES	Water Widt			Dam PresentYes _	<u>∠</u> No	
			Mark: 4.5 ft		Sinuosity V Low	Medium High	
		J	tion: South		<i>,</i>	g	
		riow Direc	11011		Gradient Flat Moderate _	✓ Severe	
						(10 ft/100 ft)	
		Water Pres			Proportion of Reach Repre	esented by Stream	
			r, stream bed dry bed moist		Morphology Types Riffle 20 % Run 55	%	
		✓ Standing			Pool 25 %	,-	
FLOW CHARACTER	ISTICS	Flowing			To and the later.		
		Velocity			Turbidity <u>✓</u> ClearSlightly	turbidTurbid	
		Fast	Moderate		OpaqueStained		
		✓ Slow			Other		
INOR		STRATE CO	-	_	RGANIC SUBSTRATE CON		
Substrate	(Should a	add up to 10	% Composition in	1	does not necessarily add u	% Composition in	
Type	Diame	ter	Sampling Reach	Type	Characteristic	Sampling Area	
Bedrock			20	Detritus	sticks, wood, coarse	00	
Boulder		mm (10")	10		plant materials (CPOM)	20	
Cobble		m (2.5"-10")	20	Muck-Mud	black, very fine organic (FPOM)		
Gravel		1 (0.1"-2.5")	10		(ITOM)		
Sand Silt		nm (gritty) 0.06 mm	15	Marl	grey, shell fragments		
Clay		mm (slick)	15 10	Iviaii	grey, shell fragments		
Olay	0.001	` '	ant Surrounding Lar	nduse	Indicate the dominant type	(Check one)	
		✓ Forest	Commer		<u>✓</u> Trees Shrub	s	
		— Field/P			GrassesHerba	iceous	
WATERSHED		Agricult Other:	tural Residen	tiai	Floodplain Width		
FEATURES					Wide > 30ft Mode Narrow <16ft Mode	rate 15-30ft	
		Canopy Co		adad	<u>v</u> Narrow < roll		
		Partly o			Wetland Present _v_Yes Wetland ID W-A23	No	
		Indicate th	e dominant type and	d record the d	lominant species present		
AQUATIC VE	GETATION		_	Rooted subme	_	tingFree floating	
		Floating	g algae	Attached algae	e 		
		Charmala	maitta at etm 1		stational Desired Control	dan no e d e d	
		disperses in	J	ounawater cor	ntributions. Drains to culvert,	under road and	
MACROINVERTEBRATES		'	paotaro				
OR OTHER	OR OTHER WILDLIFE OBSERVED/OTHER		(62				
OBSERVED/C							
OBSERVATIO NOTES	UNA GNU						

West Virginia Stream and Wetland Valuation Metric (SWVM) Version 2.1, September 2015

USACE FILE NO./ Project Name: (v2.1, Sept 2015)		Moun	ntain Valley P SWVM	ipeline Project v2.1		COORDINATES: cimal Degrees)	Lat.	39.201316	Lon.	-80.553306	WEATHER:		Sunny, 70°	DATE:	June 1, 2016
IMPACT STREAM/SITE ID AND SITE DESCRIPTION: (watershed size {acreage}, unaltered or impairments)			S-A110/K62; UNT to La Form of Mitigati				MITIGATION STREAM CLASS. (watershed size {acreag						Comments:	Low water flow at time of survey. Unable to sample water quality or WVSCI.	
STREAM IMPACT LENGTH:	25	FORM (MITIGATI		RESTORATION (Levels I-III)		OORDINATES: cimal Degrees)	Lat.		Lon.		PRECIPITATION PAST 48 HRS:		0	Mitigation Length:	
Column No. 1- Impact Existin	g Condition (Del	bit)		Column No. 2- Mitigation Existing (Condition - Base	line (Credit)		Column No. 3- Mitigation Pr Post Completio		/ears	Column No. 4- Mitigation P Post Completic		ears	Column No. 5- Mitigation Proje	cted at Maturity (Credit)
Stream Classification:	Intern	nittent	Str	eam Classification:	Inte	ermittent		Stream Classification:	Inte	ermittent	Stream Classification:	Interr	mittent	Stream Classification:	Intermittent
Percent Stream Channel SI	ope	4		Percent Stream Channel SI	lope			Percent Stream Channel S	оре	0	Percent Stream Channel	Slope	0	Percent Stream Channel	Slope 0
HGM Score (attach d	lata forms):			HGM Score (attach	data forms):			HGM Score (attach	data forms):		HGM Score (attack	n data forms):		HGM Score (attach	data forms):
Hydrology Biogeochemical Cycling Habitat PART I - Physical, Chemical and	0.49 0.36 0.08	0.31	Bio	drology ogeochemical Cycling bitat PART I - Physical, Chemical at		0		Hydrology Biogeochemical Cycling Habitat PART I - Physical, Chemical a		Average 0	Hydrology Biogeochemical Cycling Habitat PART I - Physical, Chemical a		0	Hydrology Biogeochemical Cycling Habitat PART I - Physical, Chemical an	0
	Points Scale Range	Site Score	-		Points Scale Range	Site Score			Points Scale Range	Site Score		Points Scale Range	Site Score		Points Scale Range Site Score
PHYSICAL INDICATOR (Applies to all stream	s classifications)	•		YSICAL INDICATOR (Applies to all stream:		•		PHYSICAL INDICATOR (Applies to all stream		•	PHYSICAL INDICATOR (Applies to all stre		•	PHYSICAL INDICATOR (Applies to all stream	
USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover 2. Embeddedness 3. Velocity/ Depth Regime 4. Sediment Deposition 5. Channel Flow Status 6. Channel Flow Status 6. Channel Alteration 7. Frequency of Riffles (or bends) 8. Bank Stability (LB & RB) 9. Vegetative Protection (LB & RB) 10. Riparian Vegetative Zone Width (LB & RB) Total RBP Score Sub-Total CHEMICAL INDICATOR (Applies to Intermitte WYDEP Water Quality Indicators (Genera Specific Conductivity 100-199 - 85 points DO Sub-Total 5.6-5.9 = 45 points DO Sub-Total BIOLOGICAL INDICATOR (Applies to Intermited BIOLOGICAL INDICATOR (Applies BIOLOGICAL INDICATOR (Applies BIOLOGICAL INDICATOR (Applies BIOLOGICAL INDICATOR (A	0-90		1. E 2. E 3. V. 4. S 5. C 7. F 8. E 9. V 10. Tot Sut CH	EPA RBP (High Gradient Data Sheet) pifaunal Substrate/Available Cover imbeddedness /elocity/ Depth Regime Sediment Deposition Channel Flow Status Channel Alteration Frequency of Riffles (or bends) Bank Stability (LB & RB) /egetative Protection (LB & RB) Riparian Vegetative Zone Width (LB & RB) all RBP Score Do-Total EMICAL INDICATOR (Applies to Intermitte //DEP Water Quality Indicators (General ecific Conductivity	5-90	0		USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover 2. Embeddedness 3. Velocity/ Depth Regime 4. Sediment Deposition 5. Channel Flow Status 6. Channel Alteration 7. Frequency of Riffles (or bends) 8. Bank Stability (LB & RB) 9. Vegetative Protection (LB & RB) 10. Riparian Vegetative Zone Width (LB & RB) Total RBP Score Sub-Total CHEMICAL INDICATOR (Applies to Intermitte WYDEP Water Quality Indicators (Genera Specific Conductivity PH DO Sub-Total BIOLOGICAL INDICATOR (Applies to Internite	5-90	5.6	USEPA RBP (High Gradient Data Shee 1. Epifaunal Substrate/Available Cover 2. Embeddedness 3. Velocity/ Depth Regime 4. Sediment Deposition 5. Channel Flow Status 6. Channel Riber (or bends) 7. Frequency of Riffles (or bends) 8. Bank Stability (LB & RB) 9. Vegetative Protection (LB & RB) 10. Riparian Vegetative Zone Width (LB & RE Total RBP Score Sub-Total CHEMICAL INDICATOR (Applies to Interm WVDEP Water Quality Indicators (Genes Specific Conductivity DO Sub-Total BIOLOGICAL INDICATOR (Applies to Interm	0-20 0-20	0	USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover 2. Embeddedness 3. Velocity/ Depth Regime 4. Sediment Deposition 5. Channel Flow Status 6. Channel Alteration 7. Frequency of Riffles (or bends) 8. Bank Stability (LB & RB) 9. Vegetative Protection (LB & RB) 10. Riparian Vegetative Zone Width (LB & RB) Total RBP Score Sub-Total CHEMICAL INDICATOR (Applies to Intermit WVDEP Water Quality Indicators (Gener Specific Conductivity DO Sub-Total BIOLOGICAL INDICATOR (Applies to Internit	0-20 0-20 0-20 0-20 0-20 0-20 0-20 0-20
WV Stream Condition Index (WVSCI)			wv	/ Stream Condition Index (WVSCI)	1 1			WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)	
0 Sub-Total	0-100 0-1	0	Sut	p-Total	0-100 0-1	0		Sub-Total	0-100 0-1	0	Sub-Total	0-100 0-1	0	Sub-Total	0-100
PART II - Index and Unit Score			PART II - Index and	d Unit Score			PART II - Index and Unit Score		PART II - Index an	d Unit Score		PART II - Index and Unit Score			
Index	Linear Feet	Unit Score		Index	Linear Feet	Unit Score		Index	Linear Feet	Unit Score	Index	Linear Feet	Unit Score	Index	Linear Feet Unit Score
0.396	25	9.90625		0	0	0		0	0	0	0	0	0	0	0 0

Temporal Loss Administry Victor Victor Temporal Loss Maturity Victor Temporal Loss Maturity Victor Temporal Loss Maturity Victor Victor Temporal Loss Maturity Victor Victor Temporal Loss Maturity Victor Vict			(See instruction p		 Impact Factors It values for MITIGATIO 	N BANKING and IL	_F)			
Miligation Considerations Day				_			Long	-term Protection		
Comparison Condition Con		between the time of an impac	ct (debit) and completion of compensatory			% Add. Mitigation	on and Monitoring Period		-Term Protection (Years)	
Sub-Trial To Transport Loss Multiplication (Credit) Temporal Loss Maturity Water Providence or production of consequence or reliable to resource and reliable to the regions of resource and regions of the regio	Voors	ganaen (e. e any)	0							
Part V - Comparison of Unit Score (O-bas) Part V - Mitigation Projected at Ten			0							
Part V - Comparison of Unit Score (O-bas) Part V - Mitigation Projected at Ten	Te	mporal Loss-Maturity				0 + 5/1	0 Year Monitoring		101	
PART V- Comparison of Unit Scores and Projected Balance PART V- Comparison of Unit Scores and Projected Balance PART V- Comparison of Unit Scores and Projected Balance PART V- Comparison of Unit Scores and Projected Balance PART V- Comparison of Unit Scores and Projected Balance PART V- Comparison of Unit Scores and Projected Balance PART V- Comparison of Unit Scores and Projected Balance PART V- Comparison of Unit Scores and Projected Balance PART V- Comparison of Unit Scores and Projected Balance PART V- Comparison of Unit Scores and Projected Balance PART V- Comparison of Unit Scores and Projected Balance PART V- Comparison of Unit Scores and Projected Balance PART V- Comparison of Unit Scores and Projected Balance PART V- Comparison of Unit Scores and Projected Balance Part V- Comparison of Unit Scores and Projected Balance Part V- Comparison of Unit Scores and Projected Balance Part V- Comparison of Unit Scores and Projected Balance Part V- Comparison of Unit Scores and Projected Balance Part V- Comparison of Unit Scores and Projected Balance Part V- Comparison of Unit Scores and Projected Balance Part V- Comparison of Unit Scores and Projected Balance Part V- Comparison of Unit Scores and Projected Balance Part V- Comparison of Unit Scores and Projected Balance Part V- Comparison of Unit Scores and Projected Balance Part V- Comparison of Unit Scores and Projected Balance Part V- Comparison of Unit Scores and Projected Balance Part V- Comparison of Unit Scores and Projected Balance Part V- Miligation Drojected Balance Part V- Mi	*Note: Period between completion of compensator	ry mitigation measures and the					· · · · · · · · · · · · · · · · · · ·		0	
Final Unit Score (Debit) (Final Midgation Projected at Tentral Considerations (Incentives) PART V- Comparison of Unit Scores and Projected Balance PART V- Comparison of Unit Scores and Projected Balance Part VI - Comparison of Unit Scores and Projected at Tentral Considerations (Incentives) Part VI - Mitigation Projected at Tentral Considerations (Incentives) Part VI - Mitigation Projected at Tentral Considerations (Incentives) Part VI - Mitigation Considerations (Incentives) Extend Stream Restoration Considerations (Incentives) Extended Upland Buffer Zone Note: Restoration Level 1 Restoration Level 3 Part VI - Mitigation Projected At Manual Projected At Ma	function (i.e. maturity of tree stratum to provide		vithin riparian stream or wetland buffer				PART IV - Index	to Unit Score Con	nversion	
PART V- Comparison of Unit Scores and Projected at Ten Five Years (Credit) [No Net Loss Value] 9.30625 Mitigation Existing Condition - Baseline (Credit) Part VI - Mitigation Considerations (incentives) Part VI - Miti						Final Index Score	Linear Feet	Unit Score	ILF Costs	
PART V- Comparison of Unit Scores and Projected Balance Final Unit Score (Desit) 9.90625 Mitigation Existing Mitigation Projected at Five Years Post Completion (Credit) Part VI - Mitigation Projected at Five Years Post Completion (Credit) Part VI - Mitigation Projected at Five Years Post Completion (Credit) Part VI - Mitigation Considerations (Incentives) Final Projected at Five Years Post Completion (Credit) Part VI - Mitigation Considerations (Incentives) Final Projected at Five Years Post Completion (Credit) Part VI - Mitigation Considerations (Incentives) Final Projected at Ten Years Post Completion (Credit) Part VI - Mitigation Considerations (Incentives) Final Projected at Ten Years Post Completion (Credit) Part VI - Mitigation Considerations (Incentives) Final Projected at Ten Years Post Completion (Credit) Part VI - Mitigation Considerations (Incentives) Final Projected at Ten Years Post Completion (Credit) Part VI - Mitigation Considerations (Incentives) Final Projected at Ten Years Post Completion (Credit) Part VI - Mitigation Considerations (Incentives) Final Projected at Ten Years Post Completion (Credit) Part VI - Mitigation Considerations (Incentives) Final Projected at Ten Years Post Completion (Credit) Part VI - Mitigation Considerations (Incentives) Final Projected at Ten Years Post Completion (Credit) Part VI - Mitigation Considerations (Incentives) Final Projected at Ten Years Post Completion (Credit) Part VI - Mitigation Considerations (Incentives) Final Projected at Ten Years Post Completion (Credit) Part VI - Mitigation Consideration Considera	% Add. Mitigation		Temporal Loss-Maturity (Years)				. –			
PART V - Comparison of Unit Scores and Projected Balance Final Unit Score (Pebit) 9,90625 Mitigation Existing Condition - Baseline (Credit) Mitigation Projected at Five Years Post Completion (Credit) Post Completion (Credit) Post Completion (Credit) Post Completion (Credit) Credit)						0.39625	25	9.90625	\$7,925.00	
PART V - Comparison of Unit Scores and Projected Balance Final Unit Score (Pebit) 9,90625 Mitigation Existing Condition - Baseline (Credit) Mitigation Projected at Five Years Post Completion (Credit) Post Completion (Credit) Post Completion (Credit) Post Completion (Credit) Credit)										
PART V- Comparison of Unit Scores and Projected Balance Final Unit Score (Debit) No Net Loss Value) 9.90626 Mitigation Existing Condition - Baseline (Credit) Part VI - Mitigation Projected at Ten Post Completion (Credit) Part VI - Mitigation Projected at Ten Post Completion (Credit) Part VI - Mitigation Considerations (Incentives) Part VI - Mitigation Considerations (Incentives) Extent of Stream Restoration Note: Reference the instructional handout to determine the correct Restoration Level Sublevy for your project Note: Reference instructional handout to determine the correct Restoration Level Sublevy for your project Note: Restoration Level 1 Restoration Level 2 Prestoration Level 3 Compensatory Mitigation Plan incorporates HUC 12-based watershed approach? (Yes or No) Note: Huck 12-based watershed approach? (Yes or No) Note: Hu			0							
Final Unit Score (Debit) 9.90625 Mitigation Existing Condition - Baseline (Credit) Mitigation Projected at Five Years Post Completion (Credit) Post Completion (Credit) Mitigation Projected at Ten Years Post Completion (Credit) Post Completion (Credit)	Sub-1 otal		U							
Final Unit Score (Debit) 9.90625 Mitigation Existing Condition - Baseline (Credit) Mitigation Projected at Five Years Post Completion (Credit) Post Completion (Credit) Mitigation Projected at Ten Years Post Completion (Credit) Post Completion (Credit)			PART V	/- Comparison of II	nit Scores and Projecte	nd Balance				
Final first class (Julie) [No ket Loss Value] 9,90625 Condition - Baseline (Credit) Post Completion (Credit) Extended Upland Buffer Zone "Note! Reference the Instructional handout to ethe Buffer Zone Mitigation Extents and Types (bolow) "Note! Reference Instructional handout for the definitions of the Buffer Zone Mitigation Extents and Types (bolow) "Note! Reference Instructional handout for the definitions of the Buffer Zone "Note! Reference Instructional handout for the definitions of the Buffer Zone "Note! Reference Instructional handout for the definitions of the Buffer Zone "Note! Reference Instructional handout for the definitions of the Buffer Zone "Note! Reference Instructional handout for the definitions of the Buffer Zone "Note! Reference Instructional handout for the definitions of the Buffer Zone "Note! Reference Instructional handout for the definitions of the Buffer Zone "Note! Reference Instructional handout for the definitions of the Buffer Zone "Note! Reference Instructional handout for the definitions of the Buffer Zone "Note! Reference Instructional handout for the definitions of the Buffer Zone "Note! Reference Instructional handout for the definitions of the Buffer Zone "Note! Reference Instructional handout for the definitions of the Buffer Zone "Note! Reference Instructional handout for the definitions of the Buffer Zone "Note! Reference Instructional hand			I AIXI V	- Companson of C	- The occited and i rojecte	- Dalance				
Final first class (Julie) [No ket Loss Value] 9,90625 Condition - Baseline (Credit) Post Completion (Credit) Extended Upland Buffer Zone "Note! Reference the Instructional handout to ethe Buffer Zone Mitigation Extents and Types (bolow) "Note! Reference Instructional handout for the definitions of the Buffer Zone Mitigation Extents and Types (bolow) "Note! Reference Instructional handout for the definitions of the Buffer Zone "Note! Reference Instructional handout for the definitions of the Buffer Zone "Note! Reference Instructional handout for the definitions of the Buffer Zone "Note! Reference Instructional handout for the definitions of the Buffer Zone "Note! Reference Instructional handout for the definitions of the Buffer Zone "Note! Reference Instructional handout for the definitions of the Buffer Zone "Note! Reference Instructional handout for the definitions of the Buffer Zone "Note! Reference Instructional handout for the definitions of the Buffer Zone "Note! Reference Instructional handout for the definitions of the Buffer Zone "Note! Reference Instructional handout for the definitions of the Buffer Zone "Note! Reference Instructional handout for the definitions of the Buffer Zone "Note! Reference Instructional handout for the definitions of the Buffer Zone "Note! Reference Instructional handout for the definitions of the Buffer Zone "Note! Reference Instructional hand			Mitigation Existing		Mitigation Projected at		Mitigation Projected at Ten		Mitigation Projected At	
Part VI - Mitigation Considerations (incentives) Part VI - Mitigation Considerations (incentives)		9.90625								
Part VI - Mitigation Considerations (Incentives) Extent of Stream Restoration "Note!: Reference the Instructional handout to determine the correct Restoration Levels (below) for your project "Note!: Reference the Instructional handout to determine the correct Restoration Levels (below) for your project "Note!: Reference Instructional handout for the definitions of the Buffer Zone Mitigation Extents and Types (below) "Note!: Reference Instructional handout for the definitions of the Buffer Zone Mitigation Extents and Types (below) "Note!: Reference Instructional handout for the definitions of the Buffer Zone Mitigation Extents and Types (below) "Note!: Reference Instructional handout for the definitions of the Buffer Zone Mitigation Extents and Types (below) "Note!: Reference Instructional handout for the definitions of the Buffer Zone Mitigation Extents and Types (below) "Note!: Reference Instructional handout for the definitions of the Buffer Zone Mitigation Extents and Types (below) "Note!: Reference Instructional handout for the definitions of the Buffer Zone Mitigation Extents and Types (below) "Note!: Reference Instructional handout for the definitions of the Buffer Zone Mitigation Extents and Types (below) "Note!: Reference Instructional handout for the definitions of the Buffer Zone Mitigation Extents and Types (below) "Note!: Reference Instructional handout for the definitions of the Buffer Zone Mitigation Extents and Types (below) "Note!: Reference Instructional handout for the definitions of the Buffer Zone Mitigation Extents and Types (below) "Note!: Reference Instructional handout for the definitions of the Buffer Zone Mitigation Extents and Types (below) "Note!: Reference Instructional handout for the definitions of the Buffer Zone Mitigation Extents and Types (below) "Note!: Reference Instructional handout for the definitions of the Buffer Zone Mitigation Extents and Types (below) "Note!: Reference Instructional handout for the definitions of the Buffer Zone Mitigation Extents an	[NO Net Loss Value]		(Credit)		Post Completion (Credit)	<mark>)</mark>	Post Completion (Credit)		(Credit)	
Extent of Stream Restoration *Note1: Reference the Instructional handout to determine the correct Restoration Levels (below) for your project *Note2: Place an "X" in the appropriate category (only select one). Restoration Level 1 Restoration Level 2 Restoration Level 3 **Restoration Level 3 **Compensatory Mitigation Plan incorporates HUC 12-based watershed approach? (Yes or No) **Note** HUC 12-based watershed approach required to obtain Stream Restoration incentive **Note** Steel ** **Note**	FINAL PROJECTED NET BALANCE					0		0		0
Extent of Stream Restoration *Note1: Reference the Instructional handout to determine the correct Restoration Levels (below) for your project *Note2: Place an "X" in the appropriate category (only select one). Restoration Level 1 Restoration Level 2 Restoration Level 3 **Restoration Level 3 **Compensatory Mitigation Plan incorporates HUC 12-based watershed approach? (Yes or No) **Note** HUC 12-based watershed approach required to obtain Stream Restoration incentive **Note** Steel ** **Note**				Oart VI Mitigation	Considerations (Incention					
*Note!: Reference the Instructional handout to determine the correct Restoration Levels (below) for your project *Note!: Reference Instructional handout to determine the propriet category (only select one). *Note!: Reference Instructional handout to determine the correct Restoration and Types (below) *Note!: Reference Instructional handout for the definitions of the Buffer Zone Mitigation Extents and Types (below) *Note!: Reference Instructional handout for the definitions of the Buffer Zone Mitigation type (below) *Note!: Reference Instructional handout for the definitions of the Buffer width for each channel side (Left Bank and Right Bank) *Note!: Reference Instructional handout for the definitions of the Buffer width for each channel side (Left Bank and Right Bank) *Note!: Reference Instructional handout for the definitions of the Buffer width for each channel side (Left Bank and Right Bank) *Note!: Reference Instructional handout for the definitions of the Buffer width for each channel side (Left Bank and Right Bank) *Note!: Reference Instructional handout for the definitions of the Buffer width for each channel side (Left Bank and Right Bank) *Note!: Reference Instructional handout for the definitions of the Buffer width for each channel side (Left Bank and Right Bank) *Note!: Reference Instructional handout for the definitions of the Buffer width for each channel side (Left Bank and Right Bank) *Note!: Reference Instructional handout for the definitions of the Buffer width for each channel side (Left Bank and Right Bank) *Note!: Reference Instructional handout for the definitions of the Buffer width for each channel side (Left Bank and Right Bank) *Note!: Reference Instructional handout for the definitions of the Buffer width for each channel side (Left Bank and Right Bank) *Note!: Reference Instructional handout for the definition of the Buffer width for each channel side (Left Bank and Right Bank) *Note!: Reference Instructional handout for each channel side (Left Bank and Right Bank) *Note!: Reference				rart vi - Mitigation (Considerations (incentiv	ves)				
*Note: Reference his Instructional handout to determine the correct Restoration Level as and Types (below) *Note: Place an "X" in the appropriate category (only select one). Restoration Level 2 Restoration Level 3 Buffer Width Left Bank Compensatory Mitigation Plan incorporates HUC 12-based watershed approach? (Yes or No) *Note: HUC 12-based watershed approach required to obtain Stream Restoration incentive No Site Unit Yield (Debit) S-K62/ S-A110 9.99625 #DIV/0!		Extent of Stream Re	estoration				Extended	Unland Buffer Zone	2	
Restoration Level 1 Restoration Level 2 Restoration Level 3 Buffer Width O-50 None 10-50 None 10-50 None 10-51-150 None 10-50 None 10-51-150 None 10-50 None 10-50 None 10-51-150 None 10-50 None 10-50 None 10-51-150 None 10-50 None 10-50 None 10-50 None 10-50 None 10-51-150 None 10-50 None 10-51-150 None 10-51-15				oject		*Note ¹ : Referen	ce Instructional handout for the def	initions of the Buffer Zon	ne Mitigation Extents and Type	s (below)
Restoration Level 2 Restoration Level 3 Buffer Width O-50 None 51-150 None Buffer Width Right Bank Compensatory Mitigation Plan incorporates HUC 12-based watershed approach? (Yes or No) "Note: HUC 12-based watershed approach required to obtain Stream Restoration incentive No Site Impact Unit Yield (Debit) Witigation Unit Yield (Credit) S-K62/ S-A110 9.90625 #DIV/0!			satisfies y (emy solution).							
Restoration Level 3 Compensatory Mitigation Plan incorporates HUC 12-based watershed approach? (Yes or No) Note: HUC 12-based watershed approach required to obtain Stream Restoration incentive No					-		11010 : 001001 ::	e appropriate imagation	,,,,,	
Compensatory Mitigation Plan incorporates HUC 12-based watershed approach? (Yes or No) *Note: HUC 12-based watershed approach required to obtain Stream Restoration incentive No Site Impact Unit Yield (Debit) 9.90625 #DIV/0! Unit Yield (Debit) Witigation Unit Yield Witigation Unit Yield Final Mitigation Unit Yield Fina	Restoration Level 2					Buffer Width		Left Bank	(
Compensatory Mitigation Plan incorporates HUC 12-based watershed approach? (Yes or No) Note: HUC 12-based watershed approach required to obtain Stream Restoration incentive No Site Impact Unit Yield (Debit) 9.90625 Mitigation Unit Yield (Polit) #DIV/0! Buffer Width 0-50 None 51-150 None Average Buffer Width/Side 0 Straight Preservation Ratio (v2.1, Sept 2015) Final Mitigation Unit Yield	Restoration Level 3						0-50		None	
Compensatory Mitigation Plan incorporates HUC 12-based watershed approach? (Yes or No) "Note: HUC 12-based watershed approach required to obtain Stream Restoration incentive No Site Impact Unit Yield (Debit) Mitigation Unit Yield (Credit) S-K62/ S-A110 9.90625 #DIV/0!					_	Duffor Width	51-150	Dight Pan		
No Site Impact Unit Yield (Debit) S-K62/ S-A110 No Average Buffer Width/Side O Straight Preservation Ratio (v2.1, Sept 2015) #DIV/0! Final Mitigation Unit Yield					_	Bullet Width		Right Ban		
Site Impact Unit Yield (Debit) Yield (Credit) S-K62/ S-A110 Mitigation Unit Yield (Credit) #DIV/0! Width/Side Width/Side Width/Side Straight Preservation Ratio (v2.1, Sept 2015) Final Mitigation Unit Yield				No		Average Buffer	51-150		None	
S-K62/ S-A110 Unit Yield (Debit) Yield (Credit) #DIV/0! Final Mitigation Unit Yield Final Mitigation Unit Yield	Note: not 12-based watersned	approach required to obtain Stream	am Restoration incentive	NO			0			
S-K62/ S-A110 Unit Yield (Debit) Yield (Credit) #DIV/0! Final Mitigation Unit Yield Final Mitigation Unit Yield	-11		Impact	Mitigation Unit				Stra	ight Preservation Ratio	
	Site									
	S-K62/ S-A110		9.90625	#DIV/0!	1		Final Mitigation Unit Yield			
					J		#DIV/0!			

FCI Calculator for the High-Gradient Headwater Streams in eastern Kentucky and western West Virginia HGM Guidebook

To ensure accurate calculations, the <u>UPPERMOST STRATUM</u> of the plant community is determined based on the calculated value for V_{CCANOPY} (≥20% cover is required for tree/sapling strata). Go to the SAR Data Entry tab and enter site characteristics and data in the yellow cells. For information on determining how to split a project into SARs, see Chapter 5 of the Operational Draft Regional Guidebook for the Functional Assessment of High-gradient Ephemeral and Intermittent Headwater Streams in Western West Virginia and Eastern Kentucky (Environmental Laboratory U.S. Army Corps of Engineers 2010).

Project Name: MVP

Location: S-A110/K62 (Doddridge County, WV)

Sampling Date: 06/01/2016 Project Site Before Project

Subclass for this SAR:

Intermittent Stream

Uppermost stratum present at this SAR: SAR number:

Shrub/Herb Strata

Functional Results Summary: Enter Results in Section A of the Mitigation Sufficiency Calculator

Function	Functional Capacity Index
Hydrology	0.49
Biogeochemical Cycling	0.36
Habitat	0.08

Variable Measure and Subindex Summary:

Variable	Name	Average Measure	Subindex
V _{CCANOPY}	Percent canpoy over channel.	Not Used, <20%	Not Used
V _{EMBED}	Average embeddedness of channel.	1.93	0.44
V _{SUBSTRATE}	Median stream channel substrate particle size.	0.08	0.04
V_{BERO}	Total percent of eroded stream channel bank.	160.00	0.22
V_{LWD}	Number of down woody stems per 100 feet of stream.	0.00	0.00
V_{TDBH}	Average dbh of trees.	Not Used	Not Used
V _{SNAG}	Number of snags per 100 feet of stream.	0.00	0.10
V _{SSD}	Number of saplings and shrubs per 100 feet of stream.	0.00	0.00
V _{SRICH}	Riparian vegetation species richness.	0.00	0.00
V _{DETRITUS}	Average percent cover of leaves, sticks, etc.	0.00	0.00
V _{HERB}			1.00
V _{WLUSE}	Weighted Average of Runoff Score for Catchment.	0.91	0.96

	High-G	Gradient	Headwat				ntucky a alculator		ern Wes	t Virgini	a
	Team:	C Vileno .	I. McGuirk,		Julu Ono	ot and o			M Northing:	39 201316	
Pro	oject Name:		. mocanit,	7 ti Tviorigo:					ΓM Easting:		
	=		2 (Doddridge	e County, W	/V)		_	-	npling Date:		
SA	AR Number:		,	Length (ft):	,	Stream Ty	pe: Intern	nittent Stream			_
	Top Strata:	Sh	rub/Herb Str	ata	(determined	d from perce	ent calculated	d in V _{CCANOR}	₂ Y)		
Site	and Timing:	ng: Project Site Before Project									
Sample	• Variables	1-4 in strea	m channel								
1 V _{CCANOPY} Average percent cover over channel by tree and sapling canopy. Measure at no fewer than 10 roughly equidistant points along the stream. Measure only if tree/sapling cover is at least 20%. (If less than									Not Used, <20%		
	List the per	cent cover r	neasuremer	nts at each p	oint below:						
	0	0	0	0	0	0	0	0	0	0	
2	V_{EMBED}	along the s	tream. Sele	ct a particle	from the be	d. Before n	at no fewer t noving it, det	ermine the	percentage	of the	1.9
							y fine sedime composed of				
			bed is comp					inie seanne	onio, use a i	atting score	
							les (rescaled	d from Platt	s, Megahan	and	•
		Minshall 19				·	`		, ,		
		Rating	Rating Des	cription							,
		5					buried by fin)	ı
		4	5 to 25 perc	cent of surfa	ce covered,	surrounded	l, or buried b	y fine sedin	nent .		i
		3 2					ed, or buried ed, or buried				•
		1					r buried by fi			I surface)	
	List the ration	ngs at each	point below						(0. 0		
	2	2	2	1	2	2	2	3	2	2	
	2	3	2	2	1	2	2	2	1	2	
	2	2	2	2	2	2	2	2	1	2	
3	V _{SUBSTRATE}	Median stre	eam channe	l substrate p	article size.	Measure a	t no fewer th	an 30 roug	hly equidista	int points	0.00:
		along the s	tream; use t	he same po	ints and par	ticles as use	ed in V_{EMBED} .				0.08 in
	Enter partic	le size in in	ches to the r	nearest 0.1	inch at each	point below	(bedrock sh	ould be co	unted as 99	in, asphalt	
	or concrete	as 0.0 in, s	and or finer	particles as	0.08 in):						
	0.08	0.08	0.08	0.08	0.08	0.08	3.10	2.40	0.08	0.08	
	1.90	0.08	0.08	4.30	0.08	3.70	0.08	0.08	0.08	0.08	
	2.40	4.70	0.08	3.90	0.08	0.08	0.08	2.90	0.08	0.08	
4	V_{BERO}	•					tal number c				
				e will be cal	culated If b	oth banks a	re eroded, to	otal erosion	for the stream	am may be	160 %
		up to 200%	Left Bank:	40	0 ft		Right Bank:) ft		
			LUIL Dalik.	10	UIL		night Dalik.	00	<i>)</i>		

Sample	nple Variables 5-9 within the entire riparian/buffer zone adjacent to the stream channel (25 feet from each bank).										
5	V_{LWD}	stream rea	ch. Enter th		om the entir		er and 36 ind ouffer and wi				0.0
		P 0				f downed w	oody stems:		0	,	
6	V_{TDBH}				ly if V _{CCANOP} tree DBHs i		ng cover is at	t least 20%)	. Trees are	at least 4	Not Used
		•	,				n) within the	buffer on ea	ich side of		
	_	the stream		ionio oi inan	riadai ii ooo i	(at lodot 1 li	.,		ion oldo ol		
			Left Side					Right Side			
	0					0					
7	V_{SNAG}				and 36" tall) t per 100 fee		t of stream. culated.	Enter numb	er of snags	on each	0.0
			Left Side:		0		Right Side:		0		
8	V_{SSD}						es dbh) per				
				inter numbe Il be calcula		and shrubs	on each sic	le of the stre	eam, and the	e amount	0.0
		per 100 it c	Left Side:		0		Right Side:		0		
9	V_{SRICH}						m reach. Ch				
							ve species p rom these da		strata. Spe	ecies	0.00
			ip 1 = 1.0	ind the Subh	idex will be	calculated i	ioni inese da		2 (-1.0)		
	Acer rubru		<u> </u>	Magnolia t	ripetala		Ailanthus a		Z (1.0)	Lonicera ja	ponica
	Acer sacci			Nyssa sylv	-		Albizia julib			Lonicera ta	
	Aesculus f	lava	Ш	Oxydendrun			Alliaria peti			Lotus corni	culatus
	Asimina tri	iloba		Prunus sei	rotina		Alternanthe	uro.		Lythrum sa	licaria
	Betula alleg		_	Quercus a			philoxeroid		_	Microstegiun	
	Betula leni	-		Quercus co			Aster tatari	CUS		Paulownia	
	Carya alba			Quercus in			Cerastium			Polygonum o	
	Carya glab			Quercus p			Coronilla va			Pueraria m	
Ш	Carya ovalis			Elaeagnus u	mbellata		Rosa multii	flora			
Ш	Carya ovata			Lespedeza	bicolor		Sorghum h	alepense			
	Cornus florida Sassafras albidum			Lespedeza	cuneata		Verbena br	asiliensis			
Ш	Fagus grandifolia Lilia americana			cana		Ligustrum ob	otusifolium				
	Fraxinus americana Tsuga canadensis		adensis		Ligustrum s	sinense					
Ш	Liriodendron tulipifera Ulmus americana				ericana						
	Magnolia a	acuminata									
		0	Species in	Group 1				0	Species in	Group ?	

					40" x 40", o equidistant				one within	25 feet from	n each
10	V_{DETRITUS}	Average pe	rcent cover	of leaves, s	sticks, or other	er organic n	naterial. Wo	ody debris «	<4" diamete	er and <36"	0.00 %
			Left	•		<u> </u>		t Side		1	
		0				0					
11	V_{HERB}				aceous vege h and 36" ta						
		vegetation	percentages		200% are a						99 %
		each subple		Side		ı	Righ	t Side		1	
		90	100	100	100	100	100	100	100	i	
Sample	Variable 1	2 within the	entire cato	chment of t	the stream.						
12	V_{WLUSE}	Weighted A	verage of R	unoff Score	e for watersh	ied:					0.91
			Land	Use (Choos	se From Dro	p List)			Runoff Score	% in Catch- ment	Running Percent (not >100)
	Forest and n	ative range (>	75% ground	cover)				•	1	90	90
	Open space	(pasture, lawn	ns, parks, etc.),	grass cover	<50%			•	0.1	10	100
	-							-			
	-							_			
	_							_			
	-							_			
	-										
	_							•			
								•			
	Su	mmary					No	tes:			
Vä	ariable	Value	VSI								
V _C	CANOPY	Not Used, <20%	Not Used								
VE	MBED	1.9	0.44								
V _{st}	JBSTRATE	0.08 in	0.04								
V _{BI}	ERO	160 %	0.22								
VLV	WD	0.0	0.00								
V _{TI}	ОВН	Not Used	Not Used								
Vsi	NAG	0.0	0.10								
Vs	SD	0.0	0.00								
V _{SI}	RICH	0.00	0.00								
V _{DI}	ETRITUS	0.0 %	0.00								
V_{HI}	ERB	99 %	1.00								
Vw	LUSE	0.91	0.96								

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (FRONT)

STREAM NAME S-A110/K62	LOCATION Doddridge County, WV			
STATION # RIVERMILE	STREAM CLASS Intermittent			
LAT <u>39.201316</u> LONG <u>-80.553306</u>	RIVER BASIN Little Musk	ingum-Middle Island		
STORET#	AGENCY Tetra Tech			
INVESTIGATORS J. McGuirk, C. Vileno, A	. Mengel			
FORM COMPLETED BY	DATE 06/01/2016	REASON FOR SURVEY		
A. Mengel	^{TIME} 13:00	SWVM		

	Habitat		Condition	ı Category		
	Parameter	Optimal	Suboptimal	Marginal	Poor	
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.	
	SCORE 6	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
n sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.	
ted in	SCORE 5	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast- shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).	
ıram	SCORE 1	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
Par	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.	
	SCORE 3	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.	
L	SCORE 1	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

	Habitat	Condition Category									
	Parameter	Optimal	Suboptimal	Marginal	Poor						
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.						
	score 2	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0						
ling reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.						
samp	SCORE 1	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0						
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.						
oe ev	SCORE 1 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0						
s to l	SCORE 1 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0						
Parameter	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.						
	SCORE 0 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0						
	SCORE 0 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0						
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.						
	SCORE 10(LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0						
	SCORE 2 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0						

Total Score 33

A-8

No / low flow at time of survey. Unable to sample water quality or $\ensuremath{\mathbf{WVSCI}}$.

Photograph Direction $\underline{^{NE}}$

Comments:

STREAM ID S-K43	STREAM NAME Cove Lick
LAT 39.002050 LONG -80.596017	DATE 05/19/2015
CLIENT MVP	PROJECT NAME MVP
INVESTIGATORS A.Bensted, V. Prilepin, J. Bit	tner
FLOW REGIME Perennial Land Intermittent Ephemeral	WATER TYPE TNW RPW NRPW

Perennial 🕹	_ Intermitte	nt Ephem	eral TNW	RPW –	NRPW			
	1		_					
			leasurements		Stream ErosionNone ✓ Moderate	Ноэми		
		-	k Width: 7.0 ft		NoneNoderate	<u> —</u> пеаvy		
		Top of Ban	•		Artificial, Modified or Char	nnelized		
		LB <u>4.0</u>	ft RB <u>4.0</u>	<u>ft</u>	Yes _ <u>✓</u> No			
CHANNEL FE	ATURES	Water Dept	h: 1.00 ft		Dam Present Yes	∠ No		
		Water Widt	h: <u>4.0 ft</u>			<u></u>		
		High Water	Mark: <u>7.0</u> ft		Sinuosity Low	Medium <u>v</u> High		
		Flow Direct	ion: West		Gradient			
					Flat Moderate			
		14/ 4 B				(10 ft/100 ft)		
		Water Pres	sent r, stream bed dry		Proportion of Reach Representation Morphology Types	esented by Stream		
		Stream	·		Riffle 70 % Run 10	%		
FLOW		Standing	g water		Pool 20 %			
CHARACTER	STICS	<u></u> Flowing	water		Turbidity			
		Velocity			Clear Slightly	turbidTurbid		
		•	Moderate		OpaqueStained			
		✓ Slow			Other			
INOR		STRATE CO			RGANIC SUBSTRATE COMPONENTS			
	(should a	add up to 10	•	(0	(does not necessarily add up			
Substrate Type	Diame	ter	% Composition in Sampling Reach	Substrate Type	Characteristic	% Composition in Sampling Area		
Bedrock				Detritus	sticks, wood, coarse			
Boulder		mm (10")			plant materials (CPOM)	10		
Cobble		m (2.5"-10")	40	Muck-Mud	black, very fine organic			
Gravel	2-64 mm	(0.1"-2.5")	25		(FPOM)			
Sand		nm (gritty)	15					
Silt		0.06 mm	5	Marl	grey, shell fragments			
Clay	< 0.004 ı	mm (slick)	15	_				
		Predomina ✓ Forest	ant Surrounding Lan Commer		Indicate the dominant type ✓ Trees Shrub			
		Field/Pa			Grasses Herba			
		Agricult		tial	_			
WATERSHED FEATURES		Other:	_		Floodplain Width ✓ Wide > 30ft Mode	rate 15-30ft		
		Canopy Co	wor		Narrow <16ft			
		<u>✓</u> Partly o	pen Partly sh	aded				
		Shaded			Wetland PresentYes Wetland ID	<u>✓</u> No		
		Indicate th	e dominant type and		Iominant species present			
AQUATIC VE	SETATION			Rooted subme		tingFree floating		
		Floating	g algae	Attached algae	е			
		Stream me	anders within wide flo	odplain on val	ley floor.			
MACROINVER OR OTHER	RTEBRATES							
WILDLIFE								
OBSERVED/C OBSERVATIO								
NOTES								

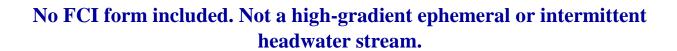
USACE FILE NO./ Project Name: (v2.1, Sept 2015)			illey Pipeline Project WVM v2.1	IMPACT COORDINATES (in Decimal Degrees)	: Lat.	39.002097°	Lon.	-80.595753°	WEATHER:		DATE:	8/10/2015
IMPACT STREAM/SITE ID (watershed size (acreage).				S-K43; Cove Lick Form of Mitigation: Mitigation Bank			MITIGATION STREAM CLASS./SITE ID AND SITE DESCRIPTION: (watershed size (acreage), unalitered or impairments)				Comments:	
STREAM IMPACT LENGTH:	27	FORM OF MITIGATION:	RESTORATION (Levels I-III)	MIT COORDINATES: (in Decimal Degrees)	Lat.		Lon.		PRECIPITATION PAST 48 HRS:	PRECIPITATION PAST 48 HRS:		
Column No. 1- Impact Existing	Condition (Deb	bit)	Column No. 2- Mitigation Existing C	Condition - Baseline (Credit)		Column No. 3- Mitigation	on Projected at loletion (Credit)	ive Years	Column No. 4- Mitigation Pro Post Completion		Column No. 5- Mitigation Project	ted at Maturity (Credit)
Stream Classification:	Perei	nnial	Stream Classification:	Intermittent		Stream Classification:		Intermittent	Stream Classification:	Intermittent	Stream Classification:	Intermittent
Percent Stream Channel SI	оре	3	Percent Stream Channel SI	ope		Percent Stream Chann	nel Slope	0	Percent Stream Channel S	lope 0	Percent Stream Channel S	ilope 0
HGM Score (attach d	ata forms):		HGM Score (attach	data forms):	1	HGM Score (at	ttach data form	s):	HGM Score (attach d	iata forms):	HGM Score (attach d	lata forms):
Hydrology		Average	Hydrology	Average		Hydrology	1	Average	Hydrology	Average	Hydrology	Average
Biogeochemical Cycling Habitat		0	Biogeochemical Cycling Habitat	1 0		Biogeochemical Cycling Habitat	1	0	Biogeochemical Cycling Habitat	1 0	Biogeochemical Cycling Habitat	1 0
PART I - Physical, Chemical and	Biological Indic	ators	PART I - Physical, Chemical an	d Biological Indicators		PART I - Physical, Chemic	cal and Biologic	I Indicators	PART I - Physical, Chemical and	l Biological Indicators	PART I - Physical, Chemical and	l Biological Indicators
	Points Scale Range	Site Score		Points Scale Range Site Score			Points Scale	Range Site Score		Points Scale Range Site Score		Points Scale Range Site Score
PHYSICAL INDICATOR (Applies to all streams	classifications)		PHYSICAL INDICATOR (Applies to all streams	classifications)		PHYSICAL INDICATOR (Applies to all st	treams classification	s)	PHYSICAL INDICATOR (Applies to all stream	s classifications)	PHYSICAL INDICATOR (Applies to all streams	s classifications)
USEPA REP (High Gradient Data Sheet) L. Epflanual Subtratio-(Available Cover 2. Embodschess 3. Velocity Depth Regime 4. Sediment Deposition 5. Channel Flow Status 6. Channel Alteration 7. Frequency of Riffles (or bends) 5. Bank Stability (L.B. & RB) 10. Repairs Vegetative Zore Width (LB & RB) 10. Repairs Vegetative Zore Width (LB & RB) Total RBP Score Sub-Total CHEMICAL INDICATOR (Applies to Intermitter WVDEP Water Quality Indicators (General		14 11 9 9 6 11 15 14 14 11 11 114 0.57	USEPA RBP (High Gradient Data Sheet) 1.Epfluraul Substrate/Available Cover 2. Embeddedness 3. Velocity Depth Regime 4. Sediment Deposition 5. Channel Flow Status 6. Channel Alteration 7. Frequency of Riffles (or bends) 8. Bank Stability (LB & RB) 9. Vegetative Protection (LB & RB) 10. Ripartian Vegetative Zone Width (LB & RB) 10. Ripartian Ve			USEPA RBP (High Gradient Data She L. Epflaunal Substrate/Available Cover. 2. Embeddedness 3. Velocity Depth Regime 4. Sediment Deposition 6. Channel Alteration 7. Frequency of Riffles (or bends) 8. Bank Stability (LB & RB) 9. Vegetalter Protection (LB & RB) 10. Repariar Vegetalive Zone Width (LB & R 104 RBP Scoot Sub-Total CHEMICAL INDICATOR (Applies to Inter- WWDEP Water Quality Indicators (Ge	0-20 0-20 0-20 0-20 0-20 0-20 0-20 0-20	0	USEPA RBP (High Gradient Data Sheet) 1. Epfluraui Substratin/Available Cover 2. Emboddedness 3. Vedocrly Depth Regime 4. Sedment Deposition 5. Channel Flow Status 6. Channel Flow Status 6. Channel Rive Status 6. Sedment Deposition 7. Frequency of Riffles (or bends) 8. Bark Stability (LB & RB) 10. Repartan Vegetative Zone Width (LB & RB) 10. Repartan Vegetative Zone Width (LB & RB) 10. Repartan Vegetative Zone Width (LB & RB) 10. Total RBP Score Sub-Total CHEMICAL INDICATOR (Applies to Internitie WVDEP Water Quality Indicators (Genera		USEPA RBP (High Gradient Data Sheet) 1. Epfiram Substrate Navaliable Cover 2. Embeddedness 3. Veolotyl Opeth Regime 4. Sedment Deposition 5. Channel Flow Satus 6. Channel Alteration 7. Frequency of Riffles (or bends) 8. Bank Stability (LB & RB) 10. Reparten Vepetierie Zore Wirth (LB & RB) 10. Reparten Vepetierie Zore Wirth (LB & RB) 10. Reparten Vepetierie Zore Wirth (LB & RB) 10. Total RBP Score Sub-Total CHEMICAL INDICATOR (Applies to Intermitte WIVDEP Water Quality Indicators (Genera	
Sub-Total	0-90	7.88 8.71	Specific Conductivity DO Sub-Total	0-90 5-90 0-1 0 0		pH DO Sub-Total	0-90 5-90	0 0 0	Specific Conductivity DO Sub-Total	0.90 0.1 0 0 10.30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Specific Conductivity DH DO Sub-Total	5-90
BIOLOGICAL INDICATOR (Applies to Intermit	ent and Perennial S	Streams)	BIOLOGICAL INDICATOR (Applies to Intermitt	ent and Perennial Streams)		BIOLOGICAL INDICATOR (Applies to I	Intermittent and P	erennial Streams)	BIOLOGICAL INDICATOR (Applies to Interr	mittent and Perennial Streams)	BIOLOGICAL INDICATOR (Applies to Intern	nittent and Perennial Streams)
WV Stream Condition Index (WVSCI) Fair Sub-Total	0-100 0-1	54.5 0.445	WV Stream Condition Index (WVSCI) Sub-Total	0-100 0-1 0		WV Stream Condition Index (WVSCI) Sub-Total	0-100	0-1 0	WV Stream Condition Index (WVSCI) Sub-Total	0-100 0-1 0	WV Stream Condition Index (WVSCI) Sub-Total	0-100 0-1
PART II - Index and U	nit Score		PART II - Index and	Unit Score		PART II - Inde	x and Unit Scor		PART II - Index and U	Unit Score	PART II - Index and I	Unit Score
Index	Linear Feet	Unit Score	Index	Linear Feet Unit Score		Index	Linear	eet Unit Score	Index	Linear Feet Unit Score	Index	Linear Feet Unit Score
0.672	27	18.135	0	0 0		0	0	0	0	0 0	0	0 0

		(See instruction p		- Impact Factors ilt values for MITIGATIO	N BANKING and IL	_F)			
Temp	oral Loss-Construction					Long	term Protection		
*Note: Reflects duration of aquatic function		nn impact (debit) and completion of			% Add. Mitigation	on and Monitoring Period		Term Protection (Years)	
	ensatory mitigation (credit).	, , ,			g			Torm Frotoculon (Toulo)	
V		0							
Years Sub-Total		0							
Sub-Total		Ů.							
	nporal Loss-Maturity				0 + 5/	10 Year Monitoring		101	
*Note: Period between completion of compensato	ory mitigation measures and t	the time required for maturity, as it relates			Sub-Total			0	
to function (i.e. maturity of tree stratum to provid	le organic matter and detritus corridor).	within riparian stream or wetland buffer							
	cornaor).					PART IV - Index	to Unit Score Con		
					Final Index Score	Linear Feet	Unit Score	ILF Costs	
% Add. Mitigation		Temporal Loss-Maturity (Years)			(Debit)		(Debit)	(Offsetting Debit	Units)
			0.671666667	27	18.135	\$14,508.00)		
0%		0							
Sub-Total		U							
		PART V	- Comparison of U	nit Scores and Projecte	d Balance				
				Mitimatian Duals at all at					
Final Unit Score (Debit)		Mitigation Existing		Mitigation Projected at Five Years		Mitigation Projected at		Mitigation Projected	
[No Net Loss Value]	18.135	Condition - Baseline		Post Completion		Ten Years		At Maturity	
[NO Net Loss value]		(Credit)		(Credit)		Post Completion (Credit)		(Credit)	
				(Orealt)					
FINAL PROJECTED NET BALANCE					0		0		0
							-		-
		F	Part VI - Mitigation (Considerations (Incentiv	ves)				
	Extent of Stream Re	estoration							
*Note1: Reference the Instructio		correct Restoration Levels (below) for your pr	roiect				Upland Buffer Zone		
	Place an "X" in the appropriate		•		*Note': Referen	ce Instructional handout for the de *Note ² : Enter the buffer width for			s (below)
E Partametian Laural 4							ne appropriate mitigation		
Restoration Level 1						Note : Gelect ti	ie appropriate intigation	туро	
Restoration Level 2					Buffer Width		Left Bank	(
Restoration Level 3						0-50		None	
				J		51-150		None	
					Buffer Width	01 100	Right Ban		
						0-50	<u> </u>	None	
Compensatory Mitigation Plan incorpo	rates HUC 12-based wate	ershed approach? (Yes or No)				51-150		None	
*Note: HUC 12-based watershed	approach required to obtain Strea	am Restoration incentive	No		Average Buffer	0			
					Width/Side				
		Impact	Mitigation Unit				Ctua	ight Preservation Ratio	
Site		Unit Yield (Debit)	Yield (Credit)				Stra	(v2.1, Sept 2015)	
	riela (Orealt)					(12.1., Oopt 2010)			
S-K43		18.135	#DIV/0!			Final Mitigation Unit Yield			
3-1140		10.133	#01970:						
						#DIV/0!			

Insects	Count	Tolerance	TV	Insects	Count	Tolerance	TV	Non-Insects	Count	Tolerance	TV	1	
Ephemeroptera		•	4	Odonata			3	Crustacea			0		
Ameletidae	1	2	0	Aeshnidae		3	0	Asellidae		7	0		
Baetidae		4	0	Calopterygidae		6	0	Cambaridae		5	0	1	
Beatiscidae		4	0	Coenagrionidae		7	0	Gammaridae		5	0	1	
Caenidae		5	0	Cordulegastridae		3	0	Palaemonidae		5	0	1	
Ephemerellidae		3	0	Gomphidae	3	5	15	Annelida			0		
Ephemeridae		5	0	Lestidae		7	0	Hirudinea		10	0		
Heptageniidae	2	3	6	Libellulidae		7	0	Nematoda		10	0		
Isonychiidae		3	0	Coleoptera			3	Nematomorpha		10	0		
Leptophlebiidae	2	4	8	Chrysomelidae		7	0	Oligochaeta		10	0		
Potamanthidae		5	0	Dryopidae		5	0	Turbellaria			0		
Siphlonuridae		3	0	Dytiscidae		6	0	Turbellaria		7	0		
Tricorythidae		5	0	Elmidae	3	4	12	Bivalvia			0		
Plecoptera			0	Gyrinidae		5	0	Corbiculidae		6	0		
Capniidae		2	0	Haliplidae		7	0	Sphaeriidae		5	0		
Chloroperlidae		2	0	Hydrophilidae		7	0	Unionidae		4	0		
Leuctridae		2	0	Psephenidae		3	0	Gastropoda			0		
Nemouridae		2	0	Ptilodactylidae		5	0	Ancylidae		7	0		
Peltoperlidae		1	0	Hemiptera			0	Hydrobiidae		4	0		
Perlidae		1	0	Belostomatidae		8	0	Physidae		7	0		
Perlodidae		1	0	Corixidae		8	0	Planorbidae		5	0		
Pteronarcyidae		1	0	Gerridae		10	0	Pleuroceridae		5	0		
Taeniopterygidae		2	0	Hydrometridae		8	0	Viviparidae		5	0		
Trichoptera			4	Nepidae		8	0	Miscellaneous			0		
Brachycentridae		2	0	Notonectidae		8	0	Collembola		6	0		
Glossosomatidae		2	0	Megaloptera			1	Lepidoptera		5	0		
Helicopsychidae		3	0	Corydalidae	1	3	3	Neuroptera		5	0		
Hydropsychidae	4	5	20	Sialidae		6	0	Hydrachnidae		6	0		
Hydroptilidae		3	0	Diptera	-		14	Totals	Totalı	number	29		
Lepidostomatidae		3	0	Athericidae		3	0	Totals	Total f	amilies	7		
Leptoceridae		3	0	Blephariceridae		2	0			Metric	calculations		
Limnephilidae		4	0	Ceratopogonidae		8	0		Richnes	ss		Additional metri	cs
Molannidae		3	0	Chironomidae		9	0	Total Taxa		7	31.8	Ephemeroptera Taxa	2
Philopotamidae		4	0	Culicidae		10	0	EPT Taxa		3	23.1	Plecoptera Taxa	0
Phryganeidae		4	0	Dixidae		6	0		Toleran	ce		Trichoptera Taxa	1
Polycentropodidae		5	0	Empididae		7	0	Biotic Index		4.62	76.8	Long-lived Taxa	5
Psychomiidae		3	0	Psychodidae		8	0	% Tolerant		0.0	100.0	Odonata Taxa	1
Rhyacophilidae		3	0	Ptychopteridae		8	0		Composit	ion		Diptera Taxa	1
Uenoidae		2	0	Simuliidae		6	0	% EPT Abundance		27.6	30.7	COET Taxa	5
	Total Tol	erance Value	134	Stratiomyidae		10	0	% Dominance		48.3	64.7	% Sensitive	10.3
West Vi	rginia Save O	ur Streams		Syrphidae 10 0 % Net-spinners 13.8 NA %				% Chironomidae	0.0				
601 57th Stre	et, SE, Charle	ston WV 253	304	Tabanidae		7	0	Stream (Condition Ind		54.5	% Clingers	24.1
http://	/www.dep.w	v.gov/sos		Tipulidae	14	5	70	Integrity Ra	ating	Mar	ginal	More diversity meas	sures

Note: There may be instances when families are collected that are not listed above. In those cases choose a similar family/tolerance value if known, to calculate the metrics. You should contact the WV Save Our Streams Coordinator to confirm your choice. Provide as much detail as possible so that family-level identification can be determined.

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (FRONT)


STREAM NAME S-K43	LOCATION Lewis County	LOCATION Lewis County, WV				
STATION # RIVERMILE	STREAM CLASS Perennial					
LAT <u>39.002097°</u> LONG <u>-80.595753°</u>	RIVER BASIN Headwater	RIVER BASIN Headwaters Sand Fork				
STORET#	AGENCY Tetra Tech					
INVESTIGATORS J.McGuirk, C.Stoliker	_					
FORM COMPLETED BY	DATE 09/07/2016	REASON FOR SURVEY				
J.McGuirk	TIME 2:00PM					

	Habitat	Condition Category									
	Parameter	Optimal	Suboptimal	Marginal	Poor						
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.						
	SCORE 14	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0						
ı sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.						
ted in	SCORE 11	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0						
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).						
ıram	SCORE 9	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0						
P ₂	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.						
	SCORE 9	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0						
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.						
	SCORE 6	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0						

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

	II-lia-a		Condition	Category			
	Habitat Parameter	Optimal	Suboptimal	Marginal	Poor		
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.		
	SCORE 11	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
ling reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.		
samp	SCORE 15	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.		
e eva	SCORE 7 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0		
to b	SCORE 7 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0		
Parameter	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.		
	SCORE 7 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0		
	SCORE 7 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0		
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.		
	SCORE 4 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0		
	SCORE 7 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0		

Total Score 114

Photograph Direction SW

Comments:

STREAM ID S-163	STREAM NAME Sand Fork
LAT 38.969345 LONG -80.593157	DATE 05/16/2015
CLIENT MVP	CLIENT MVP
INVESTIGATORS SET SJC GS	
FLOW REGIME Perennial ✓ Intermittent Ephemeral —	WATER TYPE TNW RPW ✓ NRPW

CHANNEL FEATURES	relellillal =	_	nt <u> — Epnem</u>	erai rivvv	RPW —	NRPW —			
Top of Bank Width: 20.0 ft Top of Bank Height: Top of Bank Height: Artificial, Modified or Channelized Water Depth: 18.00 in Water Width: 12.0 ft High Water Mark: 2.0 ft Flow Direction: W Flow Direction: W Water Present No No water, stream bed dry Stream bed dry Stream bed moist Standing water Flow Fresent No No water, stream bed dry Stream bed moist Standing water Flowing water Flowing water Velocity Flowing The Water Water Reveal water Velocity Flowing water Velocity Flowing Water Velocity Clear Slightly turbid Turbidity Clear Slightly turbid Velocity Clear Slightly turbid Velocity Clear Slightly Velocity									
Top of Bank Height: LB 3.0 ft RB 4.0 ft Yes _ No Water Depth: 18.00 in Water Width: 12.0 ft High Water Mark: 2.0 ft Flow Direction: W							Harris		
CHANNEL FEATURES Channel Features Water property 18.00 in Water Width; 12.0 ft Dam Present Yes No						None/ Moderate	Heavy		
CHANNEL FEATURES LB 3.0			Top of Ban	k Height:		Artificial. Modified or Channelized			
Water Width: 12.0 ft High Water Mark: 2.0 ft Flow Direction: W Flow Direction: W Water Present No water, stream bed dry Stream hed moist Standing water Flow CHARACTERISTICS Flow CHARACTERISTICS Water Present No water, stream bed dry Stream hed moist Standing water Flowing water Velocity Flowing water Velocity Flowing water Velocity Sinus SIBSTRATE COMPONENTS (should add up to 100%) Substrate Sampling Reach Type Bedrock Boulder Sampling Reach Boulder Server Boulder Server Server Sampling Reach Type Bedrock Boulder Server Many Maderate Server Server Server Server Server Server Server Server Many Many macroinverts, songbirds, butterflies Sinusity Velocity Server Many macroinverts, songbirds, butterflies Sinusity Velow Medium — High Server			LB <u>3.0</u>	ft RB <u>4.0</u>	•.				
Water Width: 12.0 ft High Water Mark: 2.0 ft Sinuosity	CHANNEL FE	ATURES	Water Dep	th: 18.00 in					
High Water Mark: 2.0 ft Flow Direction: W Sinuosity v Low Medium High Flow Direction: W Flow Direction	CHANNEL FE	ATURES	Water Widt	h: 12.0 ft		Dam PresentYes _	<u>∕</u> No		
Flow Direction: W Cardient Flow Direction: W Car						Sinuosity V Low	Medium High		
Water Present			Ū				_ •		
Water Present			Flow Direct	IIOI1. <u>**</u>			Sovoro		
No water, stream bed dry Stream bed moist St									
FLOW CHARACTERISTICS Stream bed moist Standing water			Water Pres	sent		Proportion of Reach Repre	esented by Stream		
Standing water							-		
CHARACTERISTICS Flowing water Flow							%		
Velocity				•		P001 15 %			
INORGANIC SUBSTRATE COMPONENTS (should add up to 100%) Substrate Type	CHARACTER	ISTICS	<u>v</u> Flowing	water		Turbidity			
Slow			Velocity						
INORGANIC SUBSTRATE COMPONENTS (should add up to 100%) Composition in Type Diameter Sampling Reach Sampling Area Sampling Area Sampling Reach Sampling Area Sampling Area Sampling Area Sampling Area Sampling Reach Sampling Area Sampling Area Sampling Area Sampling Reach Sampling Reach Sampling Area Sampli				Moderate					
Substrate Diameter Sampling Reach Type Characteristic Sampling Area			<u>✓</u> Slow			Otner			
Substrate Type Diameter Sampling Reach Type Detritus	INOR								
Bedrock Sampling Reach Type Characteristic Sampling Area	Substrate	, 5:		% Composition in	Substrate	0, , , ,	% Composition in		
Boulder > 256 mm (10") Detritus Detritus		Diame	ter			Characteristic			
Cobble 64-256 mm (2.5"-10") 45 Gravel 2-64 mm (0.1"-2.5") 10 Sand 0.06-2mm (gritty) Silt 0.004-0.06 mm 45 Clay < 0.004 mm (slick) Predominant Surrounding Landuse Field/Pasture Industrial Agricultural Residential Other: Road on right bank, boat laun Canopy Cover Partly open Partly shaded Shaded Open AQUATIC VEGETATION Mary Mick-Mud black, very fine organic (FPOM) Mary grey, shell fragments Indicate the dominant type (Check one) Trees Shrubs Grasses Herbaceous Floodplain Width Wide > 30ft Moderate 15-30ft Narrow <16ft Wetland Present Yes No Wetland ID Indicate the dominant type and record the dominant species present Rooted submergent Rooted slubmergent Rooted floating Free floating Floating algae Attached algae Many macroinverts, songbirds, butterflies			(4011)		Detritus		10		
Gravel 2-64 mm (0.1"-2.5") 10 Muck-Mud (FPOM) 10			` ,			piant materials (CPOW)	10		
Sand 0.06-2mm (gritty) Silt 0.004-0.06 mm 45 Clay < 0.004 mm (slick) Predominant Surrounding Landuse Field/Pasture Industrial Residential Agricultural Residential Canopy Cover Partly open Partly shaded Shaded Open Matl Gresses Field Present Wetland Present Wetland ID Indicate the dominant species present Rooted emergent Floating algae Many macroinverts, songbirds, butterflies Macroinverterebrates Macroinverterebrates Macroinverterebrates OBSERVED/OTHER OTHER OTH			,	45	Muck-Mud		10		
Silt 0.004-0.06 mm 45 Marl grey, shell fragments O			,	10		(FPOM)	10		
Clay < 0.004 mm (slick) Predominant Surrounding Landuse Indicate the dominant type (Check one)							0		
## Predominant Surrounding Landuse	Silt			45	Marl	grey, shell fragments			
WATERSHED FEATURES WATERSHED FEATURES WATERSHED FEATURES Watershed — Agricultural — Residential — Agricultural — Residential — Other: Road on right bank, boat laun — Canopy Cover — Partly open — Partly shaded — Shaded — Open Wetland Present — Yes ✓ No Wetland ID Indicate the dominant type and record the dominant species present — Rooted emergent — Rooted submergent — Rooted floating — Free floating — Floating algae — Attached algae MACROINVERTEBRATES OR OTHER WILDLIFE OBSERVED/OTHER OBSERVATIONS AND	Clay	< 0.004 i	` ′						
WATERSHED FEATURES Field/Pasture									
WATERSHED FEATURES AgriculturalResidentialV Other: Road on right bank, boat launV Wide > 30ft Moderate 15-30ftV Narrow <16ftV Partly openPartly shadedShadedOpenPopenPopenPopenNarrow <16ftV No Wetland IDNarrow <16ftNarrow <16ftNar			_						
WATERSHED FEATURES Other: Road on right bank, boat laun Canopy Cover Partly open Shaded Open Partly shaded Wetland Present Wetland ID Indicate the dominant type and record the dominant species present Rooted emergent Floating algae Attached algae Many macroinverts, songbirds, butterflies MACROINVERTEBRATES OR OTHER WILDLIFE OBSERVED/OTHER OBSERVATIONS AND							00000		
Canopy Cover Partly open Partly shaded Shaded Open Wetland ID Indicate the dominant type and record the dominant species present Rooted emergent Rooted submergent Rooted floating Free floating Floating algae Attached algae MACROINVERTEBRATES OR OTHER WILDLIFE OBSERVED/OTHER OBSERVATIONS AND			— ·		oat laun		45 20#		
Partly openPartly shadedOpen Wetland PresentYesNo Wetland ID Indicate the dominant type and record the dominant species presentRooted emergentRooted submergentRooted floatingFree floatingFloating algaeAttached algae MACROINVERTEBRATES OR OTHER WILDLIFE OBSERVED/OTHER OBSERVATIONS AND	PEATURES			_			rate 15-301t		
AQUATIC VEGETATION Indicate the dominant type and record the dominant species present Rooted emergent Floating algae Macroinverts, songbirds, butterflies MACROINVERTEBRATES OR OTHER WILDLIFE OBSERVED/OTHER OBSERVATIONS AND					adod	Nanow stole			
Indicate the dominant type and record the dominant species present Rooted emergent Floating algae Attached algae Macroinvertebrates OR OTHER OBSERVATIONS AND Metiand ID Wetland ID Wetland ID Wetland ID Wetland ID Wetland ID Wetland ID Wetland ID Rooted species present Rooted floating Attached algae Free floating Attached algae			-	. — <u> </u>			<u>✓</u> No		
AQUATIC VEGETATIONRooted emergentRooted submergentRooted floatingFree floatingFree floatingRooted floatingFree floatingRooted floatingFree floatingFree floatingRooted floatingFree floatingFree floatingFree floatingRooted floatingFree floatingRooted floatingFree floatingRooted floatingFree floatingRooted floatingFree floatingRooted floatingFree floating									
MACROINVERTEBRATES OR OTHER WILDLIFE OBSERVED/OTHER OBSERVATIONS AND	A CHATIC VE	SETATION					ina Eroo flooting		
Many macroinverts, songbirds, butterflies MACROINVERTEBRATES OR OTHER WILDLIFE OBSERVED/OTHER OBSERVATIONS AND	AQUATIC VEC	SEIAIION				_	ingriee iloating		
MACROINVERTEBRATES OR OTHER WILDLIFE OBSERVED/OTHER OBSERVATIONS AND					, titaonoa aigat				
MACROINVERTEBRATES OR OTHER WILDLIFE OBSERVED/OTHER OBSERVATIONS AND			Many maar	oinvorto conghirdo h	uttorflico				
OR OTHER WILDLIFE OBSERVED/OTHER OBSERVATIONS AND			Ivially Illaci	oinverts, sorigolius, t	utternies				
OR OTHER WILDLIFE OBSERVED/OTHER OBSERVATIONS AND	MACROINVE	RTFRRATES							
OBSERVED/OTHER OBSERVATIONS AND	OR OTHER								
OBSERVATIONS AND		THER							
	OBSERVATIO								

West Virginia Stream and Wetland Valuation Metric (SWVM) Version 2.1, September 2015

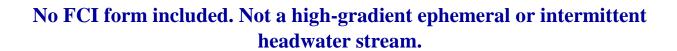
		n Valley Pipeline Project SWVM v2.1	SWVM v2.1 (in Decimal Degrees)				-80.593157	WEATHER:	Sunny, 80°	DATE:	September 7, 2016	
IMPACT STREAM/SITE ID (watershed size {acreage},			S-I63; Sand Fork; Form of Mitigation			MITIGATION STREAM CLASS (watershed size {acrea					Comments:	Low water flow at time of survey. Unable to sample WVSCI
STREAM IMPACT LENGTH:	26	FORM OF MITIGATION	: RESTORATION (Levels I-III)	MIT COORDINATES: (in Decimal Degrees)	Lat.		Lon.		PRECIPITATION PAST 48 HRS:	0	Mitigation Length:	
Column No. 1- Impact Existing	Condition (Del	oit)	Column No. 2- Mitigation Existing Co	ondition - Baseline (Credit)		Column No. 3- Mitigation F Post Completi		Years	Column No. 4- Mitigation Project Post Completion (C		Column No. 5- Mitigation Proje	cted at Maturity (Credit)
Stream Classification:	Pere	nnial	Stream Classification:	Intermittent		Stream Classification:	In	termittent	Stream Classification:	Intermittent	Stream Classification:	Intermittent
Percent Stream Channel Slo	ppe	1	Percent Stream Channel Slo	ре		Percent Stream Channel	Slope	0	Percent Stream Channel Slo	pe 0	Percent Stream Channel	Slope 0
HGM Score (attach da	ata forms):		HGM Score (attach o	lata forms):		HGM Score (attac	h data forms):		HGM Score (attach dat	ta forms):	HGM Score (attach	data forms):
		Average		Average				Average		Average		Average
Hydrology			Hydrology	1		Hydrology	1		Hydrology	1	Hydrology	1
Biogeochemical Cycling		0	Biogeochemical Cycling	1 0		Biogeochemical Cycling	1	0	Biogeochemical Cycling	1 0	Biogeochemical Cycling	1 0
Habitat			Habitat	1		Habitat	1		Habitat	1	Habitat	1
PART I - Physical, Chemical and	Biological Indic	ators	PART I - Physical, Chemical and	Biological Indicators		PART I - Physical, Chemical	and Biological I	ndicators	PART I - Physical, Chemical and B	Biological Indicators	PART I - Physical, Chemical ar	nd Biological Indicators
	Points Scale Range	Site Score		Points Scale Range Site Score			Points Scale Rang	ge Site Score		Points Scale Range Site Score		Points Scale Range Site Score
PHYSICAL INDICATOR (Applies to all stream:	s classifications)		PHYSICAL INDICATOR (Applies to all streams	classifications)		PHYSICAL INDICATOR (Applies to all stream	ms classifications		PHYSICAL INDICATOR (Applies to all streams	classifications)	PHYSICAL INDICATOR (Applies to all stream	ams classifications)
USEPA RBP (High Gradient Data Sheet)			USEPA RBP (High Gradient Data Sheet)			USEPA RBP (High Gradient Data Sheet)			USEPA RBP (High Gradient Data Sheet)		USEPA RBP (High Gradient Data Sheet)	
Epifaunal Substrate/Available Cover	0-20	17	Epifaunal Substrate/Available Cover	0-20 0		Epifaunal Substrate/Available Cover	0-20	0	Epifaunal Substrate/Available Cover	0-20	Epifaunal Substrate/Available Cover	0-20
2. Embeddedness	0-20	10	2. Embeddedness	0-20		2. Embeddedness	0-20	0	2. Embeddedness	0-20	2. Embeddedness	0-20
3. Velocity/ Depth Regime	0-20	11	3. Velocity/ Depth Regime	0-20 0		Velocity/ Depth Regime Sediment Deposition	0-20	0	Velocity/ Depth Regime Sediment Deposition	0-20 0 0	3. Velocity/ Depth Regime	0-20
Sediment Deposition Channel Flow Status	0-20	8	Sediment Deposition Channel Flow Status	0-20 0 0		5. Channel Flow Status	0-20	0	Sediment Deposition Channel Flow Status	0-20 0 0	Sediment Deposition Channel Flow Status	0-20
6. Channel Alteration	0-20 0-20 0-1	15	6. Channel Alteration	0-20 0-1 0		6. Channel Alteration	0-20 0-20	0	6. Channel Alteration	0-20 0-1 0	6. Channel Alteration	0-20 0-1
7. Frequency of Riffles (or bends)	0-20	11	7. Frequency of Riffles (or bends)	0-20 0		7. Frequency of Riffles (or bends)	0-20	0	7. Frequency of Riffles (or bends)	0-20 0	7. Frequency of Riffles (or bends)	0-20
8. Bank Stability (LB & RB)	0-20	14	8. Bank Stability (LB & RB)	0-20 0		8. Bank Stability (LB & RB)	0-20	0	8. Bank Stability (LB & RB)	0-20 0	8. Bank Stability (LB & RB)	0-20
9. Vegetative Protection (LB & RB)	0-20	16	9. Vegetative Protection (LB & RB)	0-20 0		9. Vegetative Protection (LB & RB)	0-20	0	9. Vegetative Protection (LB & RB)	0-20 0	9. Vegetative Protection (LB & RB)	0-20
10. Riparian Vegetative Zone Width (LB & RB)	0-20	13	10. Riparian Vegetative Zone Width (LB & RB)	0-20 0		10. Riparian Vegetative Zone Width (LB & RB)		0	10. Riparian Vegetative Zone Width (LB & RB)	0-20	10. Riparian Vegetative Zone Width (LB & RB)	
Total RBP Score	Suboptimal	128	Total RBP Score	Poor 0		Total RBP Score	Poor	0	Total RBP Score	Poor 0	Total RBP Score	Poor 0
Sub-Total		0.64	Sub-Total	0		Sub-Total	-	0	Sub-Total	0	Sub-Total	0
CHEMICAL INDICATOR (Applies to Intermitte	nt and Perennial S	treams)	CHEMICAL INDICATOR (Applies to Intermitten	t and Perennial Streams)		CHEMICAL INDICATOR (Applies to Intermi	ttent and Perennia	Streams)	CHEMICAL INDICATOR (Applies to Intermitten	t and Perennial Streams)	CHEMICAL INDICATOR (Applies to Intermi	ttent and Perennial Streams)
WVDEP Water Quality Indicators (General)		WVDEP Water Quality Indicators (General)			WVDEP Water Quality Indicators (General	ral)		WVDEP Water Quality Indicators (General)		WVDEP Water Quality Indicators (Gene	ral)
Specific Conductivity			Specific Conductivity	0		Specific Conductivity			Specific Conductivity		Specific Conductivity	
100-199 - 85 points	0-90			0-90			0-90	0		0-90		0-90
рн	0-1		рн	0-1 0		рн	0-	1 0	рн	0-1 0	рн	0-1
5.6-5.9 = 45 points	0-80			5-90			5-90			5-90		5-90
DO		100	DO			DO			DO		DO	
	10-30			10-30			10-30	0		10-30		10-30
Sub-Total			Sub-Total	0		Sub-Total		0	Sub-Total	0	Sub-Total	
BIOLOGICAL INDICATOR (Applies to Intermit	ttent and Perennia	l Streams)	BIOLOGICAL INDICATOR (Applies to Intermitt	ent and Perennial Streams)		BIOLOGICAL INDICATOR (Applies to Inte	rmittent and Pere		BIOLOGICAL INDICATOR (Applies to Intermi	ttent and Perennial Streams)	BIOLOGICAL INDICATOR (Applies to Inte	ermittent and Perennial Streams)
WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)		WV Stream Condition Index (WVSCI)	
TVV Gardan Gorialatin mack (VVGG)		66.0	TV Cucam Condition mack (VVCCI)	0 100		TVV Gudan Condition mack (VVCC)	0.400	. 0	WY Gueam Condition mack (WYCO)	0-100 0-1 0	WW Caream Condition mack (WVCO)	0.400
Grey Zone	0-100 0-1	66.9		0-100 0-1			0-100 0-			0-100 0-1		0-100 0-1
Sub-Total		0.669	Sub-Total	0		Sub-Total		0	Sub-Total	0	Sub-Total	0
PART II - Index and U	nit Score		PART II - Index and	Jnit Score		PART II - Index ar	nd Unit Score		PART II - Index and Un	it Score	PART II - Index and	Unit Score
Index	Linear Feet	Unit Score	Index	Linear Feet Unit Score		Index	Linear Fee	t Unit Score	Index	Linear Feet Unit Score	Index	Linear Feet Unit Score
0.703	26	18.278	0	0 0		0	0	0	0	0 0	0	0 0

		(See instruction pa		- Impact Factors It values for MITIGATIO	ON BANKING and I	LF)			
Temn	oral Loss-Construction	(111 1111)	9			<u> </u>	-term Protection		
*Note: Reflects duration of aquatic function		n impact (debit) and completion of			% Add. Mitigation	on and Monitoring Period		Term Protection (Years)	
сотре	ensatory mitigation (credit).					<u> </u>		, , , , , , , , , , , , , , , , , , ,	
Years Sub-Total		0							
Sub-Total		· ·							
Tel	mporal Loss-Maturity				0 + 5/	10 Year Monitoring		101	
*Note: Period between completion of compensate	ory mitigation measures and the				Sub-Total	Ç		0	
to function (i.e. maturity of tree stratum to provide	_	within riparian stream or wetland buffer							
	corridor).					PART IV - Index	to Unit Score Con	nversion	
					Final Index Score	Linear Feet	Unit Score	ILF Costs	
% Add. Mitigation		Temporal Loss-Maturity (Years)			(Debit)		(Debit)	(Offsetting Debit	t Units)
					0.703	26	18.278	\$14,622.40	0
0%		0							
Sub-Total		0							
		PART V	- Comparison of U	nit Scores and Projecte	ed Balance				
		.,							
				Mitigation Projected at					
Final Unit Score (Debit)		Mitigation Existing		Five Years		Mitigation Projected at		Mitigation Projected	
[No Net Loss Value]	18.278	Condition - Baseline		Post Completion		Ten Years		At Maturity	
[110,1100,2000,1100,1		(Credit)		(Credit)		Post Completion (Credit)		(Credit)	
				` ′					
FINAL PROJECTED NET BALANCE					0		0		0
		Р	art VI - Mitigation (Considerations (Incenti	ives)				
			_	·					
	Extent of Stream Re	storation							
*Note1: Reference the Instruction		orrect Restoration Levels (below) for your pr	oiect				Upland Buffer Zone		
	Place an "X" in the appropriate		-1		*Note1: Reference	ce Instructional handout for the def			es (below)
Parts and and an I amed 4						*Note ² : Enter the buffer width for	each channel side (Left ne appropriate mitigation		
Restoration Level 1						Note : Geleet ti	ie appropriate magation	турс	
Restoration Level 2							Left Bank	,	
					Buffer Width		Leit Dallk		
Restoration Level 3						0-50		None	
	!			1		51-150		None	
					Buffer Width		Right Ban		
				1		0-50		None	
Compensatory Mitigation Plan incorports *Note: HUC 12-based watershed			No		Avoraga Duffer	51-150		None	
"Note: HUC 12-based watershed	approach required to obtain Strea	IIII Nestoration incentive	NO	I	Average Buffer Width/Side	0			
				1	width/Side				
	Impact						Stra	ight Preservation Ratio	
Site	Site Unit Yield (Debit)						Julia	(v2.1, Sept 2015)	
ome nou (posit)			Yield (Credit)						
S-I63		18.278	#DIV/0!			Final Mitigation Unit Yield			
						#DIV/0!			

HABITAT ASSESSMENT FIELD DATA SHEET—LOW GRADIENT STREAMS (FRONT)

STREAM NAME S-163	LOCATION Lewis County	/, WV		
STATION # RIVERMILE	STREAM CLASS Perennia	I		
LAT <u>38.969302°</u> LONG <u>-80.593172°</u>	RIVER BASIN Headwaters Sand Fork			
STORET#	AGENCY Tetra Tech			
INVESTIGATORS C. Vileno, J. Bittner				
FORM COMPLETED BY C. Vileno, J. Bittner	DATE 09/07/2016 TIME 1:00	REASON FOR SURVEY Proposed pipeline		

	Habitat		Condition	ı Category			
	Parameter	Optimal	Suboptimal	Marginal	Poor		
	1. Epifaunal Substrate/ Available Cover	Greater than 50% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	30-50% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	10-30% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 10% stable habitat; lack of habitat is obvious; substrate unstable or lacking.		
each	SCORE 17	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
Parameters to be evaluated in sampling reach	2. Pool Substrate Characterization	Mixture of substrate materials, with gravel and firm sand prevalent; root mats and submerged vegetation common.	Mixture of soft sand, mud, or clay; mud may be dominant; some root mats and submerged vegetation present.	All mud or clay or sand bottom; little or no root mat; no submerged vegetation.	Hard-pan clay or bedrock; no root mat or vegetation.		
uate	SCORE 10	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
rs to be eval	3. Pool Variability	Even mix of large- shallow, large-deep, small-shallow, small-deep pools present.	Majority of pools large-deep; very few shallow.	Shallow pools much more prevalent than deep pools.	Majority of pools small- shallow or pools absent.		
mete	SCORE 11	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
Para	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than <20% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 20-50% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 50-80% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 80% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.		
	SCORE 13	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.		
	SCORE 8	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		


HABITAT ASSESSMENT FIELD DATA SHEET—LOW GRADIENT STREAMS (BACK)

	Habitat		Condition	Category			
	Parameter	Optimal	Suboptimal	Marginal	Poor		
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.		
	SCORE 15	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
npling reach	7. Channel Sinuosity	The bends in the stream increase the stream length 3 to 4 times longer than if it was in a straight line. (Note - channel braiding is considered normal in coastal plains and other low-lying areas. This parameter is not easily rated in these areas.)	The bends in the stream increase the stream length 1 to 2 times longer than if it was in a straight line.	The bends in the stream increase the stream length 1 to 2 times longer than if it was in a straight line.	Channel straight; waterway has been channelized for a long distance.		
san	score 11	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank)	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.		
e eva	SCORE 7 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0		
to be	SCORE 7 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0		
Parameters	9. Vegetative Protection (score each bank) Note: determine left or right side by facing downstream.	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.		
	SCORE 8 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0		
	SCORE 8 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0		
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12- 18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.		
	SCORE $\frac{5}{2}$ (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0		
	SCORE 8 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0		

Total Score 128

Insects	Count	Tolerance	TV	Insects	Count	Tolerance	TV	Non-Insects	Count	Tolerance	TV	1	
Ephemeroptera		•	10	Odonata			2	Crustacea			0	1	
Ameletidae		2	0	Aeshnidae		3	0	Asellidae		7	0	1	
Baetidae		4	0	Calopterygidae		6	0	Cambaridae		5	0	1	
Beatiscidae		4	0	Coenagrionidae		7	0	Gammaridae		5	0	1	
Caenidae	1	5	5	Cordulegastridae		3	0	Palaemonidae		5	0	1	
Ephemerellidae		3	0	Gomphidae	2	5	10	Annelida			0		
Ephemeridae	3	5	15	Lestidae		7	0	Hirudinea		10	0		
Heptageniidae	5	3	15	Libellulidae		7	0	Nematoda		10	0		
Isonychiidae		3	0	Coleoptera			1	Nematomorpha		10	0		
Leptophlebiidae		4	0	Chrysomelidae		7	0	Oligochaeta		10	0		
Potamanthidae		5	0	Dryopidae		5	0	Turbellaria			0		
Siphlonuridae	1	3	3	Dytiscidae		6	0	Turbellaria		7	0		
Tricorythidae		5	0	Elmidae		4	0	Bivalvia			0		
Plecoptera			0	Gyrinidae		5	0	Corbiculidae		6	0		
Capniidae		2	0	Haliplidae		7	0	Sphaeriidae		5	0		
Chloroperlidae		2	0	Hydrophilidae		7	0	Unionidae		4	0		
Leuctridae		2	0	Psephenidae	1	3	3	Gastropoda			0		
Nemouridae		2	0	Ptilodactylidae		5	0	Ancylidae		7	0		
Peltoperlidae		1	0	Hemiptera	-	-	0	Hydrobiidae		4	0		
Perlidae		1	0	Belostomatidae		8	0	Physidae		7	0		
Perlodidae		1	0	Corixidae		8	0	Planorbidae		5	0		
Pteronarcyidae		1	0	Gerridae		10	0	Pleuroceridae		5	0		
Taeniopterygidae		2	0	Hydrometridae		8	0	Viviparidae		5	0		
Trichoptera			0	Nepidae		8	0	Miscellaneous			0		
Brachycentridae		2	0	Notonectidae		8	0	Collembola		6	0		
Glossosomatidae		2	0	Megaloptera			0	Lepidoptera		5	0		
Helicopsychidae		3	0	Corydalidae		3	0	Neuroptera		5	0		
Hydropsychidae		5	0	Sialidae		6	0	Hydrachnidae		6	0		
Hydroptilidae		3	0	Diptera			2	Totals	Totalı	number	15		
Lepidostomatidae		3	0	Athericidae		3	0	Totals	Total f	amilies	8		
Leptoceridae		3	0	Blephariceridae		2	0			Metric	calculations		
Limnephilidae		4	0	Ceratopogonidae		8	0		Richnes	SS		Additional metri	cs
Molannidae		3	0	Chironomidae		9	0	Total Taxa		8	36.4	Ephemeroptera Taxa	4
Philopotamidae		4	0	Culicidae		10	0	EPT Taxa		4	30.8	Plecoptera Taxa	0
Phryganeidae		4	0	Dixidae		6	0		Toleran	ce		Trichoptera Taxa	0
Polycentropodidae		5	0	Empididae		7	0	Biotic Index		4.27	81.9	Long-lived Taxa	3
Psychomiidae		3	0	Psychodidae	1	8	8	% Tolerant		6.7	95.2	Odonata Taxa	1
Rhyacophilidae		3	0	Ptychopteridae		8	0		Composit	ion		Diptera Taxa	2
Uenoidae		2	0	Simuliidae		6	0	% EPT Abundance		66.7	74.1	COET Taxa	6
	Total To	lerance Value	64	Stratiomyidae		10	0	% Dominance		33.3	83.3	% Sensitive	46.7
West Vi	irginia Save O	ur Streams		Syrphidae		10	0	% Net-spinners		0.0	NA	% Chironomidae	0.0
601 57th Stre	et, SE, Charle	eston WV 253	304	Tabanidae		7	0	Stream	Condition Ind	ex	66.9	% Clingers	40.0
http:/	/www.dep.w	v.gov/sos		Tipulidae	1	5	5	Integrity R	ating	Subo	ptimal	More diversity mea	sures

Note: There may be instances when families are collected that are not listed above. In those cases choose a similar family/tolerance value if known, to calculate the metrics. You should contact the WV Save Our Streams Coordinator to confirm your choice. Provide as much detail as possible so that family-level identification can be determined.

S-UV11

Photograph Direction SW

Comments:

STREAM ID	S-UV11		STREAM NA	AME Oil Cre	eek			
CLIENT EQ			PROJECT N					
LAT 38.89314		ONG -80.555856			COUNTY Lewis			
INVESTIGATO	ORS C. St	oliker J. Niergartl	h L. McCarrell					
WATER TYPE		NRPW	FLOW REG Perennial		ittent Ephemeral			
		Estimate Mea	suraments		Sinuosity & Low	Medium High		
CHANNEL FE	ATURES	Top of Bank W Top of Bank H LB <u>10.0</u> ft Water Depth: _ Water Width: _ Ordinary High	/idth:30.0ft eight:	<u>15.0</u> _ft	Gradient <u>✓</u> FlatMo	nelized <u>~</u> No		
FLOW CHARACTER	ISTICS	Stream bed Standing water Flowing water	ream bed dry moist ater		Proportion of Reach Represented by Stream Morphology Types (Only enter if water present) Riffle 25 % Run 25 % Pool 50 % Turbidity ClearSlightly turbidTurbid Other			
INOR	_	JBSTRATE CON			ORGANIC SUBSTRATE COM (does not necessarily add u	-		
Substrate Type	,	meter	% Composition in Sampling Reach	Substrat Type	· ·	% Composition in Sampling Area		
Bedrock				Dotrituo	sticks, wood, coarse			
Boulder	> 25	56 mm (10")	20	Detritus	plant materials (CPOM)	5		
Cobble	64-256	mm (2.5"-10")	50	Muck-Muc	black, very fine organic			
Gravel	2-64 r	nm (0.1"-2.5")	25	WIUCK-WIUC	(FPOM)			
Sand	0.06	-2mm (gritty)	5					
Silt	0.00	4-0.06 mm		Marl	grey, shell fragments			
Clay	< 0.00	4 mm (slick)						
WATERSHED FEATURES		Predominant ✓ Forest — Field/Pastu — Agricultura — ROW Canopy Cove — Open ✓ Shaded	Residentia Other:	al	Floodplain Width Wide > 30ft Modera Narrow <15ft	ate 15-30ft		
MAC	ROINVER	TEBRATES/OTH	HER WILDLIFE OBS	SERVED OR	OTHER NOTES AND OBSER	RVATIONS		
Observed crayfish, small fish, and other macroinvertebrates within stream								

USACE FILE NO./ Project Name: (v2.1, Sept 2015)		Mour	ntain Valley SWVN	Pipeline Project I v2.1		COORDINATES: cimal Degrees)	Lat.	38.892980°	Lon.	-80.556210°		WEATHER:			DATE:	8/10/2	2015
IMPACT STREAM/SITE ID (watershed size {acreage}				S-UV1 Form of Mitigat	1; Oil Creek	Bank		MITIGATION STREAM CLASS. (watershed size {acreag			i:				Comments:		
STREAM IMPACT LENGTH:	25	FORM MITIGAT		RESTORATION (Levels I-III)		OORDINATES: cimal Degrees)	Lat.		Lon.			PRECIPITATION PAST 48 HRS:			Mitigation Length:		
Column No. 1- Impact Existin	ng Condition (De	ebit)		Column No. 2- Mitigation Existing	Condition - Base	eline (Credit)		Column No. 3- Mitigation Projected at Five Years Post Completion (Credit)			Ĺ	Column No. 4- Mitigation Projected at Ten Years Post Completion (Credit)			Column No. 5- Mitigation Projected at Maturity (Credit)		
Stream Classification:	Per	ennial	S	tream Classification:	Inte	ermittent		Stream Classification:	Inte	ermittent		Stream Classification:	Intern	nittent	Stream Classification:	Intermi	ittent
Percent Stream Channel S	<u> </u>	7		Percent Stream Channel S	<u> </u>			Percent Stream Channel S		0		Percent Stream Channel S	<u> </u>	0	Percent Stream Channel Sto	<u> </u>	0
HGM Score (attach o	data forms):			HGM Score (attack	n data forms):			HGM Score (attack	h data forms):			HGM Score (attach data forms):			HGM Score (attach da	a forms):	
II. daylara		Average		hada da sa	4	Average		II. deele le me	4	Average		Harder Laws	-	Average	The desired of the second	4	Average
Hydrology Biogeochemical Cycling		0		lydrology Biogeochemical Cycling	1	0		Hydrology Biogeochemical Cycling	1	0		Hydrology Biogeochemical Cycling	1	0	Hydrology Biogeochemical Cycling	1	0
Habitat PART I - Physical, Chemical and	d Biological Indi	cators	F	PART I - Physical, Chemical a	and Biological Inc	dicators		Habitat PART I - Physical, Chemical a	1 and Biological Inc	dicators		Habitat PART I - Physical, Chemical and	1 I Biological Indic	cators	Habitat PART I - Physical, Chemical and I	1 Biological Indica	ators
	Points Scale Range	Site Score			Points Scale Range	Site Score			Points Scale Range	Site Score			Points Scale Range	Site Score		Points Scale Range	Site Score
PHYSICAL INDICATOR (Applies to all stream	ms classifications)		P	HYSICAL INDICATOR (Applies to all strea	ns classifications)			PHYSICAL INDICATOR (Applies to all stream	ms classifications)			PHYSICAL INDICATOR (Applies to all stream	ns classifications)		PHYSICAL INDICATOR (Applies to all streams	classifications)	
USEPA RBP (Low Gradient Data Sheet)				SEPA RBP (High Gradient Data Sheet)				USEPA RBP (High Gradient Data Sheet)				USEPA RBP (High Gradient Data Sheet)			USEPA RBP (High Gradient Data Sheet)		
Epifaunal Substrate/Available Cover Pool Substrate Characterization	0-20	17 15	- ⊩	. Epifaunal Substrate/Available Cover . Embeddedness	0-20	0		Epifaunal Substrate/Available Cover Embeddedness	0-20	0	I II-	Epifaunal Substrate/Available Cover Embeddedness	0-20	0	Epifaunal Substrate/Available Cover Embeddedness	0-20	
3. Pool Variability	0-20	15	II-	. Velocity/ Depth Regime	0-20	0		Velocity/ Depth Regime	0-20	0	-	Velocity/ Depth Regime	0-20	0	Velocity/ Depth Regime	0-20	
4. Sediment Deposition	0-20	13		. Sediment Deposition	0-20	0		4. Sediment Deposition	0-20	0		Sediment Deposition	0-20	0	4. Sediment Deposition	0-20	
5. Channel Flow Status	0-20	5	5	. Channel Flow Status	0-20	0		5. Channel Flow Status	0-20	0	I II-	5. Channel Flow Status	0-20	0	5. Channel Flow Status	0-20	
6. Channel Alteration	0-20	17	6	. Channel Alteration	0-20 0-1	0		6. Channel Alteration	0-20	0		6. Channel Alteration	0-20	0	6. Channel Alteration	0-20	
7. Channel Sinuosity	0-20	14	7	. Frequency of Riffles (or bends)	0-20	0		7. Frequency of Riffles (or bends)	0-20	0		7. Frequency of Riffles (or bends)	0-20	0	7. Frequency of Riffles (or bends)	0-20	
8. Bank Stability (LB & RB)	0-20	16	II-	. Bank Stability (LB & RB)	0-20	0		8. Bank Stability (LB & RB)	0-20	0	I 11-	8. Bank Stability (LB & RB)	0-20	0	8. Bank Stability (LB & RB)	0-20	
9. Vegetative Protection (LB & RB)	0-20	15	9	. Vegetative Protection (LB & RB)	0-20	0		9. Vegetative Protection (LB & RB)	0-20	0		9. Vegetative Protection (LB & RB)	0-20	0	9. Vegetative Protection (LB & RB)	0-20	
10. Riparian Vegetative Zone Width (LB & RB)		16		Riparian Vegetative Zone Width (LB & RB)		0		10. Riparian Vegetative Zone Width (LB & RB)		0		10. Riparian Vegetative Zone Width (LB & RB)		0	10. Riparian Vegetative Zone Width (LB & RB)	0-20	
Total RBP Score	Suboptimal	143	II-	otal RBP Score	Poor	0		Total RBP Score	Poor	0	⊩	Total RBP Score	Poor	0	Total RBP Score	Poor	0
Sub-Total CHEMICAL INDICATOR (Applies to Intermitt	tent and Perennial	0.715 Streams)		sub-Total CHEMICAL INDICATOR (Applies to Intermit	ent and Perennial S	O Streams)		Sub-Total CHEMICAL INDICATOR (Applies to Intermit	tent and Perennial S	0 Streams)	l li	Sub-Total CHEMICAL INDICATOR (Applies to Intermitte	ent and Perennial S	O Streams)	Sub-Total CHEMICAL INDICATOR (Applies to Intermitter	nt and Perennial St	O Streams)
WVDEP Water Quality Indicators (General		outcums)		VVDEP Water Quality Indicators (Gener		ou cama)		WVDEP Water Quality Indicators (General		Succinity .		WVDEP Water Quality Indicators (Genera		ou cums)	WVDEP Water Quality Indicators (General)		reams)
Specific Conductivity				pecific Conductivity		0		Specific Conductivity				Specific Conductivity			Specific Conductivity		
<=99 - 90 points	0-90	0.191			0-90	0			0-90	0			0-90	0		0-90	
pH	0-80	7.63	P	H	5-90 0-1	0		pH	5-90 0-1	0	ľ	pH	5-90 0-1	0	pH	5-90 0-1	
6.0-8.0 = 80 points	0-00	7.03		00	3-30			DO	5-50		l	DO	3-30		DO	3-30	
>5.0 = 30 points	10-30	98.5			10-30	0			10-30	0			10-30	0		10-30	
Sub-Total		1		ub-Total		0		Sub-Total		0		Sub-Total		0	Sub-Total		0
BIOLOGICAL INDICATOR (Applies to Interm	nittent and Perenni	al Streams)		BIOLOGICAL INDICATOR (Applies to Interr	nittent and Perennia	al Streams)		BIOLOGICAL INDICATOR (Applies to Inter	rmittent and Pereni	nial Streams)		BIOLOGICAL INDICATOR (Applies to Inter	mittent and Peren	nial Streams)	BIOLOGICAL INDICATOR (Applies to Interm	ttent and Perenni	ial Streams)
WV Stream Condition Index (WVSCI)	0-100 0-1	55.9	<u> </u>	W Stream Condition Index (WVSCI)	0-100 0-1	0		WV Stream Condition Index (WVSCI)	0-100 0-1	0	ľ	WV Stream Condition Index (WVSCI)	0-100 0-1	0	WV Stream Condition Index (WVSCI)	0-100 0-1	
Fair Sub-Total	0-100	0.459	s	sub-Total	0-100 0-1	0		Sub-Total	0-100 0-1	0		Sub-Total	0-100 0-1	0	Sub-Total	0-100 0-1	0
<u> </u>							L	1			· E	, 			<u>u</u>		
PART II - Index and	Unit Score			PART II - Index an	d Unit Score			PART II - Index an	d Unit Score			PART II - Index and U	Jnit Score		PART II - Index and Ui	it Score	
Index	Linear Feet	Unit Score		Index	Linear Feet	Unit Score		Index	Linear Feet	Unit Score		Index	Linear Feet	Unit Score	Index	Linear Feet	Unit Score
0.725	25	18.1166667		0	0	0		0	0	0		0	0	0	0	0	0

		(See instruction p		- Impact Factors ilt values for MITIGATIO	N BANKING and IL	_F)			
Temp	oral Loss-Construction					Long	term Protection		
*Note: Reflects duration of aquatic function		n impact (debit) and completion of			% Add. Mitigation	on and Monitoring Period		Term Protection (Years)	
	ensatory mitigation (credit).	,			J		209	Tomi Trottodion (Touro)	
Years		0							
Sub-Total		0							
	nporal Loss-Maturity					10 Year Monitoring		101	
*Note: Period between completion of compensato	ry mitigation measures and t	he time required for maturity, as it relates			Sub-Total			0	
to function (i.e. maturity of tree stratum to provid		within riparian stream or wetland buffer							
	corridor).					PART IV - Index	to Unit Score Con	version	
					Final Index Score	Linear Feet	Unit Score	ILF Costs	
% Add. Mitigation		Temporal Loss-Maturity (Years)			(Debit)		(Debit)	(Offsetting Debit	Units)
-					0.724666667	25	18.11666667	\$14,493.33	
					0.724000007	25	10.11000007	\$14,493.55	'
0%		0							
Sub-Total		0							
		PART V	/- Comparison of U	nit Scores and Projecte	d Balance				
				Mitigation Projected at					
Final Unit Score (Debit)		Mitigation Existing		Five Years		Mitigation Projected at		Mitigation Projected	
[No Net Loss Value]	18.11666667	Condition - Baseline		Post Completion		Ten Years		At Maturity	
[NO Net Loss Value]		(Credit)		(Credit)		Post Completion (Credit)		(Credit)	
				(Orealt)					
FINAL PROJECTED NET BALANCE									
THALT ROOLOTED HET BALANCE					0		0		0
		F	Part VI - Mitigation (Considerations (Incentiv	/es)				
	Extent of Stream Re	storation							
*Note1: Peference the Instruction		orrect Restoration Levels (below) for your pr	rolant			Extended	Upland Buffer Zone	9	
	lace an "X" in the appropriate		oject		*Note1: Referen	ce Instructional handout for the def			s (below)
						*Note ² : Enter the buffer width for			
Restoration Level 1						*Note ³ : Select th	ne appropriate mitigation	type	
Restoration Level 2					Buffer Width		Left Bank	í	
Restoration Level 3						0.50		None	
				j		0-50		None	
					D #	51-150	F F	None	
					Buffer Width	0-50	Right Ban		
Commence Middle District		on the discourage of the control of		1		51-150		None None	
Compensatory Mitigation Plan incorpo *Note: HUC 12-based watershed a	rates HUC 12-based wate	rsneu approacn? (Yes or No)	No		Average Buffer			None	
Note. HOC 12-based watershed a	approach required to obtain Strea	in Nestoration incentive	NO	ı	Width/Side	0			
				1					
Site		Impact	Mitigation Unit				Strai	ight Preservation Ratio	
Site		Unit Yield (Debit)	Yield (Credit)					(v2.1, Sept 2015)	
S-UV11		18.11666667	#DIV/0!			Final Mitigation Unit Yield			
		10.1100001	#DIVIO						
·		· ·				#DIV/0!			

HABITAT ASSESSMENT FIELD DATA SHEET—LOW GRADIENT STREAMS (FRONT)

STREAM NAME S-UV11	LOCATION Lewis County	v, WV		
STATION # RIVERMILE	STREAM CLASS Perennia	l		
LAT <u>38.892980°</u> LONG <u>-80.556210°</u>	RIVER BASIN Oil Creek			
STORET#	AGENCY Tetra Tech			
INVESTIGATORS J. Bittner, C.Vileno				
FORM COMPLETED BY J. Bittner	DATE _09/06/2016 TIME 14:40	REASON FOR SURVEY Proposed pipeline		

	Habitat		Condition	Category			
	Parameter	Optimal	Suboptimal	Marginal	Poor		
	1. Epifaunal Substrate/ Available Cover	Greater than 50% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	30-50% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	10-30% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 10% stable habitat; lack of habitat is obvious; substrate unstable or lacking.		
each	SCORE 17	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
Parameters to be evaluated in sampling reach	2. Pool Substrate Characterization	Mixture of substrate materials, with gravel and firm sand prevalent; root mats and submerged vegetation common.	Hard-pan clay or bedrock; no root mat or vegetation.				
uated	SCORE 15	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
rs to be eval	3. Pool Variability	Even mix of large- shallow, large-deep, small-shallow, small-deep pools present.	Majority of pools large-deep; very few shallow.	Shallow pools much more prevalent than deep pools.	Majority of pools small-shallow or pools absent.		
mete	SCORE 15	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
Para	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than <20% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 20-50% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 50-80% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 80% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.		
	SCORE 13	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.		
	score 5	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		

HABITAT ASSESSMENT FIELD DATA SHEET—LOW GRADIENT STREAMS (BACK)

	Habitat		Condition	Category			
	Parameter	Optimal	Suboptimal	Marginal	Poor		
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.		
	SCORE 17	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
pling reach	7. Channel Sinuosity	The bends in the stream increase the stream length 3 to 4 times longer than if it was in a straight line. (Note - channel braiding is considered normal in coastal plains and other low-lying areas. This parameter is not easily rated in these areas.)	The bends in the stream increase the stream length 1 to 2 times longer than if it was in a straight line.	The bends in the stream increase the stream length 1 to 2 times longer than if it was in a straight line.	Channel straight; waterway has been channelized for a long distance.		
sam	SCORE 14	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank)	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.		
eva	SCORE 7 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0		
to be	SCORE 9 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0		
Parameters	9. Vegetative Protection (score each bank) Note: determine left or right side by facing downstream.	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.		
	SCORE 6 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0		
	SCORE 9 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0		
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12- 18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.		
	SCORE 8 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0		
	SCORE 8 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0		

Total Score 143

Insects	Count	Tolerance	TV	Insects	Count	Tolerance	TV	Non-Insects	Count	Tolerance	TV	1	
Ephemeroptera	•		64	Odonata	•	•	5	Crustacea		•	10	1	
Ameletidae		2	0	Aeshnidae	4	3	12	Asellidae		7	0	1	
Baetidae		4	0	Calopterygidae	1	6	6	Cambaridae	10	5	50	1	
Beatiscidae		4	0	Coenagrionidae		7	0	Gammaridae		5	0	1	
Caenidae		5	0	Cordulegastridae		3	0	Palaemonidae		5	0]	
Ephemerellidae		3	0	Gomphidae		5	0	Annelida			0		
Ephemeridae		5	0	Lestidae		7	0	Hirudinea		10	0		
Heptageniidae	64	3	192	Libellulidae		7	0	Nematoda		10	0		
Isonychiidae		3	0	Coleoptera			0	Nematomorpha		10	0		
Leptophlebiidae		4	0	Chrysomelidae		7	0	Oligochaeta		10	0		
Potamanthidae		5	0	Dryopidae		5	0	Turbellaria			0		
Siphlonuridae		3	0	Dytiscidae		6	0	Turbellaria		7	0		
Tricorythidae		5	0	Elmidae		4	0	Bivalvia			0		
Plecoptera			0	Gyrinidae		5	0	Corbiculidae		6	0		
Capniidae		2	0	Haliplidae		7	0	Sphaeriidae		5	0		
Chloroperlidae		2	0	Hydrophilidae		7	0	Unionidae		4	0		
Leuctridae		2	0	Psephenidae		3	0	Gastropoda	-		0		
Nemouridae		2	0	Ptilodactylidae		5	0	Ancylidae		7	0		
Peltoperlidae		1	0	Hemiptera			0	Hydrobiidae		4	0		
Perlidae		1	0	Belostomatidae		8	0	Physidae		7	0		
Perlodidae		1	0	Corixidae		8	0	Planorbidae		5	0		
Pteronarcyidae		1	0	Gerridae		10	0	Pleuroceridae		5	0		
Taeniopterygidae		2	0	Hydrometridae		8	0	Viviparidae		5	0		
Trichoptera			0	Nepidae		8	0	Miscellaneous			0		
Brachycentridae		2	0	Notonectidae		8	0	Collembola		6	0		
Glossosomatidae		2	0	Megaloptera			0	Lepidoptera		5	0		
Helicopsychidae		3	0	Corydalidae		3	0	Neuroptera		5	0		
Hydropsychidae		5	0	Sialidae		6	0	Hydrachnidae		6	0		
Hydroptilidae		3	0	Diptera			0	Totals		number	79		
Lepidostomatidae		3	0	Athericidae		3	0	Totals	Total f	amilies	4		
Leptoceridae		3	0	Blephariceridae		2	0				calculations		
Limnephilidae		4	0	Ceratopogonidae		8	0		Richnes	S		Additional metri	cs
Molannidae		3	0	Chironomidae		9	0	Total Taxa		4	18.2	Ephemeroptera Taxa	1
Philopotamidae		4	0	Culicidae		10	0	EPT Taxa		1	7.7	Plecoptera Taxa	0
Phryganeidae		4	0	Dixidae		6	0		Toleran			Trichoptera Taxa	0
Polycentropodidae		5	0	Empididae		7	0	Biotic Index		3.29	95.8	Long-lived Taxa	3
Psychomiidae		3	0	Psychodidae		8	0	% Tolerant		0.0	100.0	Odonata Taxa	2
Rhyacophilidae		3	0	Ptychopteridae		8	0		Composit	ion		Diptera Taxa	0
Uenoidae		2	0	Simuliidae		6	0	% EPT Abundance 81.0 90.0		90.0	COET Taxa	3	
	Total To	lerance Value	260	Stratiomyidae		10	0	% Dominance		81.0	23.7	% Sensitive	86.1
	rginia Save O			Syrphidae		10	0	% Net-spinners		0.0	NA	% Chironomidae	0.0
601 57th Stre	et, SE, Charle	eston WV 253	304	Tabanidae		7	0	Stream (Condition Ind		55.9	% Clingers	81.0
http:/	/www.dep.w	v.gov/sos		Tipulidae		5	0	Integrity Ra	ating	Mar	ginal	More diversity meas	sures

Note: There may be instances when families are collected that are not listed above. In those cases choose a similar family/tolerance value if known, to calculate the metrics. You should contact the WV Save Our Streams Coordinator to confirm your choice. Provide as much detail as possible so that family-level identification can be determined.

Photograph Direction $\underline{^{NE}}$

Comments:

West Virginia Stream and Wetland Valuation Metric (SWVM) Version 2.1, September 2015

USACE FILE NO./ Project Name: (v2.1, Sept 2015)			y Pipeline Project /M v2.1	IMPACT COOR (in Decimal D		38.880121	Lon80.563499	WEATHER:	Sunny, 85 degrees	DATE:	8/10/2015
IMPACT STREAM/SITE ID (watershed size {acreage}	O AND SITE DESCRIPTION, unaltered or impairments)	ION:	S-L61; Crooke Form of Mitigation	•			BITE ID AND SITE DESCRIPTION , unaltered or impairments)	:		Comments:	
STREAM IMPACT LENGTH:		FORM OF IITIGATION:	RESTORATION (Levels I-III)	MIT COORD (in Decimal D			Lon.	PRECIPITATION PAST 48 HRS:		Mitigation Length:	
Column No. 1- Impact Existin	ng Condition (Debit)		Column No. 2- Mitigation Existing Co	ondition - Baseline (C	redit)	Column No. 3- Mitigation Pro Post Completion		Column No. 4- Mitigation Proje Post Completion (Column No. 5- Mitigation Project	ed at Maturity (Credit)
Stream Classification:	Intermittent		Stream Classification:	Intermitte	nt	Stream Classification:	Intermittent	Stream Classification:	Intermittent	Stream Classification:	Intermittent
Percent Stream Channel S	lope 5	5	Percent Stream Channel Slo	ре		Percent Stream Channel Slo	ope 0	Percent Stream Channel Sle	ope 0	Percent Stream Channel S	Slope 0
HGM Score (attach d	data forms):		HGM Score (attach d	ata forms):		HGM Score (attach	data forms):	HGM Score (attach da	ata forms):	HGM Score (attach d	ata forms):
	Aver	rage		-	Average		Average		Average		Average
Hydrology Biogeochemical Cycling	0.82 0.86 0.7	77	Hydrology Biogeochemical Cycling	1	0	Hydrology Biogeochemical Cycling	1 0	Hydrology Biogeochemical Cycling	1 0	Hydrology Biogeochemical Cycling	1 0
Habitat PART I - Physical, Chemical and	0.63 d Biological Indicators		Habitat PART I - Physical, Chemical and	1 Biological Indicators	s	Habitat PART I - Physical, Chemical an	d Biological Indicators	Habitat PART I - Physical, Chemical and	Biological Indicators	Habitat PART I - Physical, Chemical and	Biological Indicators
	Points Scale Range Site Sc	Score		Points Scale Range	Site Score		Points Scale Range Site Score		Points Scale Range Site Score		Points Scale Range Site Score
PHYSICAL INDICATOR (Applies to all stream	ms classifications)		PHYSICAL INDICATOR (Applies to all streams	classifications)		PHYSICAL INDICATOR (Applies to all streams	s classifications)	PHYSICAL INDICATOR (Applies to all stream	s classifications)	PHYSICAL INDICATOR (Applies to all stream	ns classifications)
USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover	0-20 14	4	USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover	0.00	0	USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover		USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover		USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover	0.00
Epilaunai Substrate/Available Cover Embeddedness	0-20 14		Epilauriai Substrate/Available Cover Embeddedness	0-20 0-20	0	Epilaunai Substrate/Available Cover Embeddedness	0-20 0 0	Epilauriai Substrate/Available Cover Embeddedness	0-20 0 0	Epilaunal Substrate/Available Cover Embeddedness	0-20
3. Velocity/ Depth Regime	0-20		Velocity/ Depth Regime	0-20	0	Velocity/ Depth Regime	0-20	Velocity/ Depth Regime	0-20 0	3. Velocity/ Depth Regime	0-20
Sediment Deposition	0-20		Sediment Deposition	0-20	0	Sediment Deposition	0-20	Sediment Deposition	0-20	4. Sediment Deposition	0-20
5. Channel Flow Status	0-20 0-1		5. Channel Flow Status	0-20 0-1	0	5. Channel Flow Status	0-20 0-1	5. Channel Flow Status	0-20 0-1 0	5. Channel Flow Status	0-20 0-1
6. Channel Alteration		5	6. Channel Alteration	0-20	0	6. Channel Alteration	0-20 0	6. Channel Alteration	0-20 0 0	6. Channel Alteration	0-20
7. Frequency of Riffles (or bends) 8. Bank Stability (LB & RB)	0-20 0 0-20 8		7. Frequency of Riffles (or bends) 8. Bank Stability (LB & RB)	0-20 0-20	0	7. Frequency of Riffles (or bends) 8. Bank Stability (LB & RB)	0-20 0 0	7. Frequency of Riffles (or bends) 8. Bank Stability (LB & RB)	0-20 0 0	7. Frequency of Riffles (or bends) 8. Bank Stability (LB & RB)	0-20 0-20
9. Vegetative Protection (LB & RB)		0	9. Vegetative Protection (LB & RB)	0-20	0	9. Vegetative Protection (LB & RB)	0-20 0	9. Vegetative Protection (LB & RB)	0-20 0	9. Vegetative Protection (LB & RB)	0-20
10. Riparian Vegetative Zone Width (LB & RB)			10. Riparian Vegetative Zone Width (LB & RB)	0-20	0	10. Riparian Vegetative Zone Width (LB & RB)	0-20	10. Riparian Vegetative Zone Width (LB & RB)	0-20	10. Riparian Vegetative Zone Width (LB & RB)	
Total RBP Score	Marginal 78		Total RBP Score	Poor	0	Total RBP Score	Poor 0	Total RBP Score	Poor 0	Total RBP Score	Poor 0
Sub-Total	0.3		Sub-Total		0	Sub-Total	0	Sub-Total	0	Sub-Total	0
CHEMICAL INDICATOR (Applies to Intermitt	<u> </u>		CHEMICAL INDICATOR (Applies to Intermittent	and Perennial Streams))	CHEMICAL INDICATOR (Applies to Intermitter	· · · · · · · · · · · · · · · · · · ·	CHEMICAL INDICATOR (Applies to Intermitte		CHEMICAL INDICATOR (Applies to Intermitte	
WVDEP Water Quality Indicators (General Specific Conductivity	al)		WVDEP Water Quality Indicators (General) Specific Conductivity			WVDEP Water Quality Indicators (General Specific Conductivity)	WVDEP Water Quality Indicators (General Specific Conductivity	1)	WVDEP Water Quality Indicators (General Specific Conductivity	.1)
	0-90			0-90	0		0-90		0-90	Specific Control of the Control of t	0-90
100-199 - 85 points	1		n11			n11		-11	• • •	-11	
рп	0-80 0-1		рп	0-1	0	рп	0-1	рп	6 00 0-1 0	рп	0-1
5.6-5.9 = 45 points	0-80			5-90			5-90		5-90		5-90
DO			DO		0	DO		DO		DO	
	10-30			10-30	0		10-30		10-30		10-30
Sub-Total			Sub-Total		0	Sub-Total	0	Sub-Total	0	Sub-Total	0
BIOLOGICAL INDICATOR (Applies to Interm	nittent and Perennial Streams	s)	BIOLOGICAL INDICATOR (Applies to Intermitte	ent and Perennial Stream	ns)	BIOLOGICAL INDICATOR (Applies to Interm	nittent and Perennial Streams)	BIOLOGICAL INDICATOR (Applies to Intern	nittent and Perennial Streams)	BIOLOGICAL INDICATOR (Applies to Interr	nittent and Perennial Streams)
WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)		WV Stream Condition Index (WVSCI)		WV Stream Condition Index (WVSCI)	
0	0-100 0-1			0-100 0-1	0		0-100 0-1 0		0-100 0-1 0		0-100 0-1
Sub-Total	0	0	Sub-Total		0	Sub-Total	0	Sub-Total	0	Sub-Total	0
PART II - Index and I	Unit Score		PART II - Index and U	Jnit Score		PART II - Index and	Unit Score	PART II - Index and U	nit Score	PART II - Index and U	Jnit Score
Index	Linear Feet Unit S	Score	Index	Linear Feet U	nit Score	Index	Linear Feet Unit Score	Index	Linear Feet Unit Score	Index	Linear Feet Unit Score
0.683	58 39.5	585	0	0	0	0	0 0	0	0 0	0	0 0
										<u> </u>	

		(See instruction page		- Impact Factors It values for MITIGATIO	N BANKING and II	LF)			
Tempo	oral Loss-Construction					<u> </u>	term Protection		
*Note: Reflects duration of aquatic function	al loss between the time of ar	n impact (debit) and completion of			% Add. Mitigation	on and Monitoring Period		Term Protection (Years)	
compe	ensatory mitigation (credit).					-			
Years Sub-Total		0							
Sub-10tal		0	•						
Ten	nporal Loss-Maturity				0 + 5/1	0 Year Monitoring		101	
*Note: Period between completion of compensator	ry mitigation measures and th	ne time required for maturity, as it relates			Sub-Total	o real mennesmig		0	
to function (i.e. maturity of tree stratum to provide		within riparian stream or wetland buffer							
	corridor).					PART IV - Index	to Unit Score Con	version	
					Final Index Score	Linear Feet	Unit Score	ILF Costs	
% Add. Mitigation		Temporal Loss-Maturity (Years)			(Debit)		(Debit)	(Offsetting Debit	Units)
					0.6825	58	39.585	\$31,668.00	
					0.0020			401,000.00	
0%		0							
Sub-Total		0							
		PART V	- Comparison of U	nit Scores and Projecte	d Balance				
					<u> </u>			<u> </u>	
		Midiration Eviation		Mitigation Projected at		Mitigation Dupingtod of		Mitimation Duplantad	
Final Unit Score (Debit)	39.585	Mitigation Existing Condition - Baseline		Five Years		Mitigation Projected at Ten Years		Mitigation Projected At Maturity	
[No Net Loss Value]	39.303	(Credit)		Post Completion		Post Completion (Credit)		(Credit)	
		(Orealt)		(Credit)		1 ost completion (orealt)		(Orcuit)	
EINAL DRO JECTED NET DALANCE									
FINAL PROJECTED NET BALANCE					0		0		0
		Р	art VI - Mitigation C	Considerations (Incenti	ves)				
				ı					
	Extent of Stream Res	storation				Freto and a d	Unland Duffer Zana		
		orrect Restoration Levels (below) for your pr	oject		*Noto1: Poforone	Extended ce Instructional handout for the def	Upland Buffer Zone		s (bolow)
*Note2: P	lace an "X" in the appropriate of	category (only select one).			Note . Reference	*Note ² : Enter the buffer width for			s (below)
Restoration Level 1							e appropriate mitigation		
Restoration Level 2					5 66 180 101		Left Bank		
					Buffer Width				
Restoration Level 3						0-50		None	
						51-150		None	
					Buffer Width		Right Banl		
				Ī		0-50		None	
Compensatory Mitigation Plan incorpo *Note: HUC 12-based watershed a			No		Average Buffer	51-150		None	
Note: NOC 12-based watershed a	approach required to obtain Strea	III Restoration incentive	INO		Width/Side	0			
				1	TTIGUI/OIGE				
		Impact	Mitigation Unit				Strai	ght Preservation Ratio	
Site		Unit Yield (Debit)	Yield (Credit)					(v2.1, Sept 2015)	
	2 (2.00.0)	(2.24.4)					, , , , , , , , , , , , , , , , , , , ,		
S-L61		39.585	#DIV/0!			Final Mitigation Unit Yield			
						#DIV/0!			

STREAM ID S-L61	STREAM NAME Crooked Run
LAT 38.880121 LONG -80.563499	DATE 05/16/2015
PROJEC MVP	CLIENT MVP
INVESTIGATORS Sean Kite, Ashley Hatfield	
FLOW REGIME Perennial Intermittent ✓ Ephemeral	WATER TYPE TNW RPW_✓ NRPW

Perennial _	_ Intermitter	nt <u> —</u> Ephem	eral TNW	RPW <u>→</u>	NRPW		
			_				
			/leasurements k Width: <u>10.0 ft</u>		Stream Erosion None ✓ Moderate	Незуу	
					NoneNoderate	rieavy	
		Top of Ban	ŭ		Artificial, Modified or Channelized		
		LB <u>3.0</u>		<u>π</u>	Yes No		
CHANNEL FE	ATURES		th: 3.00 in		Dam PresentYes _	✓ No	
		Water Widt	h: 2.0 ft		_ _		
		High Water	Mark: <u>1.0 ft</u>		Sinuosity Low	Medium High	
		Flow Direct	tion: W		Gradient		
					Flat Moderate (2 ft/100 ft)		
		Water Pres	- ont		Proportion of Reach Repre	, ,	
			r, stream bed dry		Morphology Types	ssented by Stream	
		Stream I			Riffle 70 % Run 10	%	
FLOW		Standing	•		Pool 20 %		
CHARACTER	ISTICS	<u></u> Flowing	water		Turbidity		
		Velocity			✓ ClearSlightly		
			✓ Moderate		OpaqueStained		
		Slow		ı	Other		
INOR		STRATE CO add up to 10	MPONENTS 0%)		RGANIC SUBSTRATE CON loes not necessarily add u		
Substrate Type	Diame	ter	% Composition in Sampling Reach	Substrate Type	Characteristic	% Composition ir Sampling Area	
Bedrock				Detritus	sticks, wood, coarse		
Boulder	> 256 r	mm (10")		Detritus	plant materials (CPOM)	10	
Cobble	64-256 mi	m (2.5"-10")	70	Muck-Mud	black, very fine organic		
Gravel	2-64 mm	(0.1"-2.5")	20		(FPOM)		
Sand		nm (gritty)	5				
Silt).06 mm	5	Marl	grey, shell fragments		
Clay	< 0.004 r	nm (slick)					
		Predomina ✓ Forest	ant Surrounding Lar Commer	iduse rcial	Indicate the dominant type ✓ Trees Shrub		
		_	astureIndustria		Grasses Herba		
MATEROUER		Agricult	tural Residen		Eleadalain Width		
WATERSHED FEATURES		Other:			Floodplain Width Wide > 30ft ✓ Mode	rate 15-30ft	
		Canopy Co	over		Narrow <16ft		
		Partly o	penPartly sh	aded	Wetland Present Yes	√ No	
		<u>✓</u> Shaded	Open		Wetland ID	<u>v</u> No	
		Indicate th	e dominant type and	d record the d	Iominant species present		
AQUATIC VE	GETATION		_	Rooted subme	_	tingFree floating	
		Floating	g algae	Attached algae	e 		
		1					
		Salamande	ers observed.				
MACROINVER	TERRATES	original S-L	.61				
OR OTHER	VIEDKA159						
WILDLIFE OBSERVED/C							
OBSERVATIONS AND NOTES							

FCI Calculator for the High-Gradient Headwater Streams in eastern Kentucky and western West Virginia HGM Guidebook

To ensure accurate calculations, the <u>UPPERMOST STRATUM</u> of the plant community is determined based on the calculated value for V_{CCANOPY} (≥20% cover is required for tree/sapling strata). Go to the SAR Data Entry tab and enter site characteristics and data in the yellow cells. For information on determining how to split a project into SARs, see Chapter 5 of the Operational Draft Regional Guidebook for the Functional Assessment of High-gradient Ephemeral and Intermittent Headwater Streams in Western West Virginia and Eastern Kentucky (Environmental Laboratory U.S. Army Corps of Engineers 2010).

Project Name: MVP

Location: S-L61 (Lewis County)

Sampling Date: 9/7/2016 Project Site Before Project

Subclass for this SAR:

Intermittent Stream

Uppermost stratum present at this SAR: SAR number:

Tree/Sapling Strata

Functional Results Summary: Enter Results in Section A of the Mitigation Sufficiency Calculator

Function	Functional Capacity Index
Hydrology	0.82
Biogeochemical Cycling	0.86
Habitat	0.63

Variable Measure and Subindex Summary:

Variable	Name	Average Measure	Subindex
V _{CCANOPY}	Percent canpoy over channel.	64.50	0.69
V _{EMBED}	Average embeddedness of channel.	3.28	0.92
V _{SUBSTRATE}	Median stream channel substrate particle size.	1.00	0.50
V _{BERO}	Total percent of eroded stream channel bank.	40.00	0.86
V_{LWD}	Number of down woody stems per 100 feet of stream.	9.00	1.00
V _{TDBH}	Average dbh of trees.	8.40	0.94
V _{SNAG}	Number of snags per 100 feet of stream.	4.00	0.90
V _{SSD}	Number of saplings and shrubs per 100 feet of stream.	Not Used	Not Used
V _{SRICH}	Riparian vegetation species richness.	0.00	0.00
V _{DETRITUS}	Average percent cover of leaves, sticks, etc.	16.25	0.20
V _{HERB}	Average percent cover of herbaceous vegetation.	Not Used	Not Used
V _{WLUSE}	Weighted Average of Runoff Score for Catchment.	0.84	0.88

	High-G	radient l	Headwat		ms in ea Data She			y and west tor	tern Wes	t Virgini	a	
	Team:	C.Vileno, J	. Bittner					Latitude/UTI	M Northina:	38.881097°		
Pro	ject Name:							Longitude/U	•			
	-	S-L61 (Lew	is County)					-	pling Date:			
0.4		0 201 (201	<u>, , , , , , , , , , , , , , , , , , , </u>	l	400	Ot T-			-	0/1/2010	12	
SA	R Number:		Reacn	Length (ft):	100	Stream Ty	ype: Ir	ntermittent Strea	m			
	Top Strata:	Tre	e/Sapling St	rata	(determine	d from perc	ent calcu	lated in V _{CCANC}	_{PY})			
Site a	and Timing:	g: Project Site Before Project										
Sample Variables 1-4 in stream channel												
1	V _{CCANOPY}	Average percent cover over channel by tree and sapling canopy. Measure at no fewer than 10 roughly equidistant points along the stream. Measure only if tree/sapling cover is at least 20%. (If less than 20%, enter at least one value between 0 and 19 to trigger Top Strata choice.)										
					point below:		10	1 40	00	00		
	50	40	40	60	80	90	40	40	80	80		
	90	90	70	60	40	80	80	60	70	50		
2	V_{EMBED}	Average embeddedness of the stream channel. Measure at no fewer than 30 roughly equidistant points along the stream. Select a particle from the bed. Before moving it, determine the percentage of the surface and area surrounding the particle that is covered by fine sediment, and enter the rating										
	according to the following table. If the bed is an artificial surface, or composed of fine sediments, use a											
					posed of be					•		
		Embeddedness rating for gravel, cobble and boulder particles (rescaled from Platts, Megahan, and Minshall 1983)										
		Rating	Rating Des	crintion								
		5			covered. sur	rounded. or	buried b	y fine sedimen	t (or bedroc	k)		
		4						ed by fine sedi		,		
		3						ried by fine sec				
		2						ried by fine sed				
		1			covered, su	ırrounded, d	or buried	by fine sedime	nt (or artific	ial surface)		
		ngs at each									1	
	3	3	4	4	3	3	3	3	3	4		
	3	3	3	3	3	4	4	3	3	3		
	3	3	4	4	3	3	4	3	4	3		
	3	3	3	3	3	3	3	3	3	3		
	3	3	3	3	3	4	4	4	4	4		
3	V _{SUBSTRATE}				particle size pints and pa			rer than 30 rouç _{MBED} .	ghly equidis	tant points	1.00 in	
					inch at eacl		w (bedro	ck should be c	ounted as 9	9 in,		
	3.00	5.00	2.00	1.00	1.00	1.00	0.50	2.00	2.00	1.00		
	1.00	0.50	0.50	0.50		0.25	0.25	1.00		1.00		
	1.00	1.00	1.00	1.00	0.50 2.00	2.00	2.00	0.25	1.00 0.25	0.25		
	0.25	0.25	1.00	1.00	2.00	2.00	2.00		2.00	2.00		
		2.00				1.00		2.00				
4	2.00		2.00	2.00	2.00		otal num	1.00 ber of feet of e	1.00	1.00 on each		
7	V_{BERO}	•	e total perce					eroded, total e			40 %	
			Left Bank:	20) ft		Right Baı	nk: 20) ft	ı		

Sampl	Sample Variables 5-9 within the entire riparian/buffer zone adjacent to the stream channel (25 feet from each bank).												
5	V_{LWD}	Number of down woody stems (at least 4 inches in diameter and 36 inches in length) per 100 feet of stream reach. Enter the number from the entire 50'-wide buffer and within the channel, and the amount per 100 feet of stream will be calculated.											
		Number of downed woody stems: 9											
6	V_{TDBH}	Average dbh of trees (measure only if V _{CCANOPY} tree/sapling cover is at least 20%). Trees are at least 4 inches (10 cm) in diameter. Enter tree DBHs in inches.											
		List the dbh measurements of individual trees (at least 4 in) within the buffer on each side of the stream below:											
		the stream below: Left Side Right Side											
	6	5	8	6	5	24	10	5	10	8			
	5	7	10	12	5	24	10	3	10	0			
		•			Ů								
	\ /	<u> </u>	(1 1		1.00" (11)	100 (1.6.1	F .					
7	V _{SNAG} Number of snags (at least 4" dbh and 36" tall) per 100 feet of stream. Enter number of snags on each side of the stream, and the amount per 100 feet will be calculated.									4.0			
	Left Side: 2 Right Side: 2												
8	V_{SSD}	Number of saplings and shrubs (woody stems up to 4 inches dbh) per 100 feet of stream (measure only											
					per of sapiin e calculated.		ibs on each	side of the	stream, and	tne	Not Used		
		аро.	Left Side:				Right Side:			'			
9	V_{SRICH}						am reach. C						
							ive species p from these o		II strata. Sp	ecies	0.00		
			p 1 = 1.0	and the Subi	ndex will be	l	nom these t		2 (-1.0)				
	Acer rubru		F 1 - 1.0	Magnolia ti	rinetala		nonica						
-	Acer sacc			Nyssa sylv		☐ Ailanthus altissima ☐ Lonicera ☐ Albizia julibrissin ✓ Lonicera				Lonicera ta	•		
	Aesculus			Oxydendrun						Lotus corni	culatus		
65	Asimina tr			Prunus ser			Alternanthe			Lythrum sa	licaria		
8:	Betula alle		5	Quercus al			philoxeroid		✓	Microstegiun			
(5)==3	Betula len	_		Quercus co			Aster tatari		-	Paulownia			
	Carya alba			Quercus in			Cerastium			Polygonum o			
	Carya glal			Quercus pi			Coronilla va			Pueraria m			
	Carya ova			Quercus ru		~	Elaeagnus u			Rosa multii			
	Carya ova			Quercus ve			Lespedeza			Sorghum h			
4	Cornus flo			Sassafras			Lespedeza			Verbena br	-		
	Fagus gra			Tilia ameri			Ligustrum ob						
	Fraxinus a			Tsuga can			Ligustrum s						
6==	Liriodendro			Ulmus ame			-						
52-5	Magnolia			2									
27	wagnona	ucummata											
		0	Species in	Group 1				3	Species in	Group 2			

	e Variables The four sul									n 25 feet fro	om each			
10		Average pe	rcent cover	of leaves,	sticks, or othercent cove	ner organic r	material. W	oody debris	<4" diamet	er and	16.25 %			
			Left	Side			Righ	t Side]				
		30	20	10	10	10	20	10	10	ļ				
11	V _{HERB}	20 Average pe	30 ercentage co	10 over of herb	10 aceous veg	10 etation (mea	20 asure only if	tree cover i	20 is <20%). D	o <i>not</i>				
	HERO	include woo	ody stems a percentage:	t least 4" db	oh and 36" ta h 200% are	all. Because	there may	be several l	ayers of gro	ound cover	Not Used			
			Left	Left Side Right Side										
01	- Mariabla 4	0	4: 4		41					<u> </u>				
	e Variable 1													
12	V_{WLUSE}	vveignted A	verage of F	Runott Score	e for watersl	nea:					0.84			
	Land Use (Choose From Drop List) Runoff Score % in Catchment													
	Forest and native range (>75% ground cover) 1 80													
	Open space	(pasture, lawr	0.3	10	90									
	Residential c	listricts, 1/4 -	0.1	10	100									
								~						
								~						
								~						
								~						
								_						
	Su	mmary					No	tes:						
V	ariable	Value	VSI											
Vc	CANOPY	65 %	0.69											
VE	MBED	3.3	0.92											
Vs	UBSTRATE	1.00 in	0.50											
V _B	ERO	40 %	0.86											
VL	WD	9.0	1.00											
V _T	DВН	8.4	0.94											
Vs	NAG	4.0	0.90											
Vs	SD	Not Used	Not Used											
Vs	RICH	0.00	0.00											
V _D	ETRITUS	16.3 %	0.20											
V _H	ERB	Not Used	Not Used											
V _w	/LUSE	0.84	0.88											

No / low flow at time of survey. Unable to sample water quality or $\ensuremath{\mathbf{WVSCI}}$.

Stream ID S-L57

Photograph Direction East

Date: 05/15/2015

Comments: 2015 stream identification.

Photograph Direction East

Date: 09/25/2019

Comments: 2019 stream identification confirmation.

West Virginia Stream and Wetland Valuation Metric (SWVM) Version 2.1, September 2015

USACE FILE NO./ Project Name: (v2.1, Sept 2015)		Mounta	ain Valley Pipeline Proje SWVM v2.1	ect		COORDINATES: cimal Degrees)	Lat.	38.828304	Lon.	-80.525748	WEATHER:	С	Cloudy, 50°	DATE:	September 21, 2016
IMPACT STREAM/SITE ID (watershed size {acreage}				S-L57; UNT to Barbecue Run Form of Mitigation: Mitigation Bank				MITIGATION STREAM CLASS./SITE ID AND SITE DESCRIPTION: (watershed size {acreage}, unaltered or impairments)						Comments:	No/low water flow at time of survey. Unable to sample water quality or WVSCI
STREAM IMPACT LENGTH:	26	FORM OF MITIGATION		ATION (Levels I-III)		OORDINATES: cimal Degrees)	Lat.		Lon.		PRECIPITATION PAST 48 HRS:			Mitigation Length:	
Column No. 1- Impact Existin	g Condition (Deb	bit)	Column N	o. 2- Mitigation Existing	Condition - Base	eline (Credit)		Column No. 3- Mitigation Projected at Five Years Post Completion (Credit)				Column No. 4- Mitigation Projected at Ten Years Post Completion (Credit)			ted at Maturity (Credit)
Stream Classification:	Epher	meral	Stream Classific	Stream Classification: Intermittent		s	Stream Classification: Intermittent		Stream Classification: Intermittent		Stream Classification:	Intermittent			
Percent Stream Channel S	ercent Stream Channel Slope 15		Per	ent Stream Channel S	lope			Percent Stream Channe	l Slope	0	Percent Stream Channel	Slope	0	Percent Stream Channel S	lope 0
HGM Score (attach data forms):			HGM Score (attach data forms):			HGM Score (atta	ich data forms):		HGM Score (attach	data forms):		HGM Score (attach d	ata forms):		
		Average				Average				Average			Average		Average
Hydrology	0.36 0.65	0.41666667	Hydrology	O P		0		ydrology		0	Hydrology			Hydrology	
Biogeochemical Cycling Habitat	0.65	0.4166667	Biogeochemical Habitat	Cycling		- °		iogeochemical Cycling abitat		•	Biogeochemical Cycling Habitat		١	Biogeochemical Cycling Habitat	-
PART I - Physical, Chemical and	Biological Indic	ators	PART	I - Physical, Chemical a	nd Biological Ind	licators		PART I - Physical, Chemica	l and Biological	Indicators	PART I - Physical, Chemical a	nd Biological Indic	cators	PART I - Physical, Chemical and	Biological Indicators
	Points Scale Range	Site Score			Points Scale Range	Site Score			Points Scale Rar	nge Site Score		Points Scale Range	Site Score		Points Scale Range Site Score
PHYSICAL INDICATOR (Applies to all stream	ns classifications)		PHYSICAL INDIC	CATOR (Applies to all stream	ns classifications)		P	HYSICAL INDICATOR (Applies to all str	eams classifications	s)	PHYSICAL INDICATOR (Applies to all stre	eams classifications)		PHYSICAL INDICATOR (Applies to all stream	ns classifications)
USEPA RBP (High Gradient Data Sheet)				gh Gradient Data Sheet)				SEPA RBP (High Gradient Data Shee	et)		USEPA RBP (High Gradient Data Shee	t)		USEPA RBP (High Gradient Data Sheet)	
Epifaunal Substrate/Available Cover	0-20	4	<u> </u>	trate/Available Cover	0-20		II—	Epifaunal Substrate/Available Cover	0-20		Epifaunal Substrate/Available Cover Example 2	0-20		Epifaunal Substrate/Available Cover	0-20
Embeddedness Velocity/ Depth Regime	0-20 0-20	0	2. Embeddednes 3. Velocity/ Depth		0-20 0-20		II—	Embeddedness	0-20 0-20		2. Embeddedness	0-20 0-20		Embeddedness Velocity/ Depth Regime	0-20
4. Sediment Deposition	0-20	10	4. Sediment Dept		0-20			Velocity/ Depth Regime Sediment Deposition	0-20		Velocity/ Depth Regime Sediment Deposition	0-20		4. Sediment Deposition	0-20
5. Channel Flow Status	0-20	0	5. Channel Flow		0-20		II—	Channel Flow Status	0-20		5. Channel Flow Status	0-20		5. Channel Flow Status	0-20
6. Channel Alteration	0-20 0-1	6	6. Channel Altera		0-20 0-1			Channel Alteration	0-20	-1	6. Channel Alteration	0-20 0-1		6. Channel Alteration	0-20
7. Frequency of Riffles (or bends)	0-20	0	7. Frequency of F	Riffles (or bends)	0-20		7.	Frequency of Riffles (or bends)	0-20		7. Frequency of Riffles (or bends)	0-20		7. Frequency of Riffles (or bends)	0-20
8. Bank Stability (LB & RB)	0-20	8	8. Bank Stability (0-20			Bank Stability (LB & RB)	0-20		8. Bank Stability (LB & RB)	0-20		8. Bank Stability (LB & RB)	0-20
9. Vegetative Protection (LB & RB)	0-20	4	9. Vegetative Pro	tection (LB & RB)	0-20		9.	Vegetative Protection (LB & RB)	0-20		9. Vegetative Protection (LB & RB)	0-20		9. Vegetative Protection (LB & RB)	0-20
10. Riparian Vegetative Zone Width (LB & RB)		6		ative Zone Width (LB & RB)	0-20). Riparian Vegetative Zone Width (LB & R	B) 0-20		10. Riparian Vegetative Zone Width (LB & RE			10. Riparian Vegetative Zone Width (LB & RB)	
Total RBP Score	Marginal	42	Total RBP Score		Poor	0	II—	otal RBP Score	Poor	0	Total RBP Score	Poor	0	Total RBP Score	Poor 0
Sub-Total		0.35	Sub-Total			0		ub-Total		0	Sub-Total		0	Sub-Total	0
CHEMICAL INDICATOR (Applies to Intermitte		Streams)		CATOR (Applies to Intermit		streams)		HEMICAL INDICATOR (Applies to Interr		al Streams)	CHEMICAL INDICATOR (Applies to Intern		Streams)	CHEMICAL INDICATOR (Applies to Intermitte	
WVDEP Water Quality Indicators (General Specific Conductivity	il)		Specific Conduc	uality Indicators (Generativity	al)			VDEP Water Quality Indicators (Gen pecific Conductivity	eral)		WVDEP Water Quality Indicators (Gene Specific Conductivity	eral)		WVDEP Water Quality Indicators (General Specific Conductivity	<u>"</u>
Specific Conductivity	0-90		Specific Collude	tivity	0-90		2	becine conductivity	0-90		Specific Conductivity	0-90		Specific Conductivity	0-90
100-199 - 85 points	0-90				0-90				0-90			0-90			0-90
рН	0.1		рН		0-1	0	p	Н		-1 56	рН	0.1		рН	0-1
5.6-5.9 = 45 points	0-80				5-90				5-90	5.0		5-90			5-90
DO		53	DO			U U	D	0			DO			DO	
	10-30				10-30				10-30			10-30			10-30
Sub-Total			Sub-Total			0	9	ub-Total		0	Sub-Total		0	Sub-Total	
BIOLOGICAL INDICATOR (Applies to Interm	ittent and Perennial	l Streams)		DICATOR (Applies to Intern	nittent and Perennial	l Streams)		IOLOGICAL INDICATOR (Applies to In	termittent and Per	ennial Streams)	BIOLOGICAL INDICATOR (Applies to Int	ermittent and Perenr	nial Streams)	BIOLOGICAL INDICATOR (Applies to Intern	mittent and Perennial Streams)
		,				,				,					,
WV Stream Condition Index (WVSCI)	0-100 0-1		ww Stream Con	dition Index (WVSCI)	0-100 0-1	0	V.	V Stream Condition Index (WVSCI)	0-100 0-	1	WV Stream Condition Index (WVSCI)	0-100 0-1		WV Stream Condition Index (WVSCI)	0-100 0-1
0	0-100 0-1	0	0.1.7.1.1		0-100			1. 7.4.1	0-100		O. T. A. I	0-100		2.1.7.4.1	
Sub-Total		0	Sub-Total			0	<u> S</u>	ub-Total		0	Sub-Total		0	Sub-Total	0
PART II - Index and I	Init Score	_		PART II - Index an	d Unit Score			PART II - Index	and Unit Score		PART II - Index and	d Unit Score		PART II - Index and U	Init Score
PACT II - III GEX AND C	J.II. GC0/6			I AIXI II - IIIUEX dii	a Jill ocore			FAILT II - IIIUUX	una onit ocore		FART II - Muex and	2 Onit Goole		FAILT II - III.09X and C	55016
Index	Linear Feet	Unit Score		Index	Linear Feet	Unit Score		Index	Linear Fee	et Unit Score	Index	Linear Feet	Unit Score	Index	Linear Feet Unit Score
0.496	26	12.8916667		0	0	0		0	0	0	0	0	0	0	0 0

		(See instruction p		- Impact Factors It values for MITIGATIO	N BANKING and I	ILF)			
Temp	oral Loss-Construction	(<u> </u>	-term Protection		
*Note: Reflects duration of aquatic function		an impact (debit) and completion of			% Add. Mitigation	on and Monitoring Period		-Term Protection (Years)	
Years	, ,	0							
Sub-Total		0							
	mporal Loss-Maturity				0 + 5/	10 Year Monitoring		101	
*Note: Period between completion of compensato to function (i.e. maturity of tree stratum to provid					Sub-Total			0	
to ranction (i.e. maturity of tree stratum to provid	corridor).	within riparian stream of wettand buner				PART IV - Index	to Unit Score Cor	nversion	
2/ 1 1 1 1 1 1		1 -			Final Index Score	Linear Feet	Unit Score	ILF Costs	
% Add. Mitigation	% Add. Mitigation Temporal Loss-Maturity (Years) (Debit)					(Debit)	(Offsetting Debit		
					0.495833333	26	12.89166667	\$10,313.33	3
0%		0							
Sub-Total		U							
		DARTY		-'' O I D - ' (-	d Delever				
		PARIV	- Comparison of U	nit Scores and Projecte	ed Balance				
Final Unit Score (Debit) [No Net Loss Value]	12.89166667	Mitigation Existing Condition - Baseline (Credit)		Mitigation Projected at Five Years Post Completion (Credit)		Mitigation Projected at Ten Years Post Completion (Credit)		Mitigation Projected At Maturity (Credit)	
FINAL PROJECTED NET BALANCE					0		0		0
		D	Part VI Mitigation (Considerations (Incenti	wool				
			art vi - Miligation C	Considerations (incenti	ves)				
	Extent of Stream Renal handout to determine the collace an "X" in the appropriate	correct Restoration Levels (below) for your pr	roject		*Note ¹ : Referen	ce Instructional handout for the def *Note ² : Enter the buffer width for		ne Mitigation Extents and Type Bank and Right Bank)	es (below)
Restoration Level 2				-			Left Bank	,	
				-	Buffer Width		Leit Dalli		
Restoration Level 3						0-50		None	
					Buffer Width	51-150	Right Ban	None	
					Buildi VVIUIII	0-50	Nigiit ban	None	
Compensatory Mitigation Plan incorpo]		51-150		None	
*Note: HUC 12-based watershed	approach required to obtain Strea	am Restoration incentive	No		Average Buffer Width/Side	0			
Site		Impact Unit Yield (Debit)	Mitigation Unit Yield (Credit)				Stra	ight Preservation Ratio (v2.1, Sept 2015)	
S-L57		12.89166667	#DIV/0!			Final Mitigation Unit Yield			
			l	1		#DIV/0!			

STREAM ID S-L57	STREAM NAME UNT to Barbecue Run
LAT 38.828304 LONG -80.525748	DATE 05/15/2015
PROJEC MVP	CLIENT MVP
INVESTIGATORS Sean Kite, Ashley Hatfield	
FLOW REGIME Perennial Intermittent Ephemeral ✓	WATER TYPE TNW RPW NRPW_✓

Perennial_	Intermitte	nt Epheme	eral √ TNW	RPW	NRPW <u></u> ✓			
1	'		<i>l</i> leasurements		Stream Erosion			
		Top of Ban	k Width: 4.0 ft		None _ <u>✓</u> Moderate	Heavy		
		Top of Ban	k Height:		Artificial, Modified or Char	nnelized		
		LB <u>8.0</u>	in RB <u>8.0</u>		Yes ✓ No			
CHANNEL FE	ATUDES	Water Dept	th: <u>1.00 in</u>		_ _			
CHANNELFE	ATURES	Water Widt	h: 1.0 ft		Dam PresentYes	<u>/_</u> No		
			Mark: <u>4.0 in</u>		Sinuosity Low	Medium High		
		Flow Direct	<u></u>					
		I low blied			Gradient Flat✓ Moderate	Severe		
						(10 ft/100 ft)		
		Water Pres	sent		Proportion of Reach Repre	esented by Stream		
			r, stream bed dry		Morphology Types	0/		
			bed moist		Riffle 80 % Run Pool 20 %	%		
FLOW	107100	✓ Standing Flowing			70 70			
CHARACTER	ISTICS				Turbidity			
		Velocity			✓ Clear — Slightly			
		Fast Slow	Moderate		OpaqueStainedOther			
INOR		STRATE CO add up to 10			ORGANIC SUBSTRATE COMPONE (does not necessarily add up to 10			
Substrate	1	<u> </u>	% Composition in			% Composition in		
Туре	Diame	ter	Sampling Reach	Туре	Characteristic	Sampling Area		
Bedrock				Detritus	sticks, wood, coarse			
Boulder	> 256	mm (10")		Detritus	plant materials (CPOM)	10		
Cobble	64 - 256 m	m (2.5"-10")	5	Muck-Mud	black, very fine organic			
Gravel	2-64 mm	(0.1"-2.5")	10	IVIUCK-IVIUU	(FPOM)			
Sand	0.06-2r	nm (gritty)	5					
Silt	0.004-0	0.06 mm	10	Marl	grey, shell fragments			
Clay	< 0.004	mm (slick)	70					
	·		ant Surrounding Lan	iduse	Indicate the dominant type			
		✓ Forest Field/Pa	Commer asture Industrial		✓ Trees — Shrub Grasses — Herba			
		Agricult				ocous		
WATERSHED)	Other:	_		Floodplain Width	45 20 5		
FEATURES					Wide > 30ft Mode ✓ Narrow <16ft	rate 15-30ft		
		Canopy Co ✓ Partly o		adod	V Nariow Toll			
		Shaded		aucu	Wetland PresentYes	<u>√</u> No		
					Wetland ID			
AQUATIC VE	GETATION			d record the c Rooted subme	lominant species present ergent Rooted float	ting Free floating		
A QUATIO VE	OLIAIION		_	Attached algae				
		Information	listed on this form ro	nresents the d	ata collected in 2015. The st	ream was revisited		
					nnel and OHWM was confirm			
MACROINVE	RTEBRATES		-					
OR OTHER WILDLIFE								
OBSERVED/C	WILDLIFE OBSERVED/OTHER OBSERVATIONS AND							
NOTES	UNA CNU							

FCI Calculator for the High-Gradient Headwater Streams in eastern Kentucky and western West Virginia HGM Guidebook

To ensure accurate calculations, the <u>UPPERMOST STRATUM</u> of the plant community is determined based on the calculated value for V_{CCANOPY} (≥20% cover is required for tree/sapling strata). Go to the SAR Data Entry tab and enter site characteristics and data in the yellow cells. For information on determining how to split a project into SARs, see Chapter 5 of the Operational Draft Regional Guidebook for the Functional Assessment of High-gradient Ephemeral and Intermittent Headwater Streams in Western West Virginia and Eastern Kentucky (Environmental Laboratory U.S. Army Corps of Engineers 2010).

Project Name: MVP

Location: S-L57 (Braxton County)

Sampling Date: 11/06/2019 Project Site Before Project

Subclass for this SAR:

Ephemeral Stream

Uppermost stratum present at this SAR: SAR number:

Tree/Sapling Strata

Functional Results Summary: Enter Results in Section A of the Mitigation Sufficiency Calculator

Function	Functional Capacity Index
Hydrology	0.36
Biogeochemical Cycling	0.65
Habitat	0.24

Variable Measure and Subindex Summary:

Variable	Name	Average Measure	Subindex
V _{CCANOPY}	Percent canpoy over channel.	27.14	0.19
V _{EMBED}	Average embeddedness of channel.	3.00	0.82
V _{SUBSTRATE}	Median stream channel substrate particle size.	0.25	0.13
V _{BERO}	Total percent of eroded stream channel bank.	0.00	1.00
V_{LWD}	Number of down woody stems per 100 feet of stream.	0.00	0.00
V _{TDBH}	Average dbh of trees.	8.88	1.00
V _{SNAG}	Number of snags per 100 feet of stream.	0.00	0.10
V _{SSD}	Number of saplings and shrubs per 100 feet of stream.	Not Used	Not Used
V _{SRICH}	Riparian vegetation species richness.	1.60	0.76
V _{DETRITUS}			0.14
V _{HERB}	V _{HERB} Average percent cover of herbaceous vegetation.		Not Used
V _{WLUSE}	Weighted Average of Runoff Score for Catchment.	0.62	0.65

High-Gradient Headwater Streams in eastern Kentucky and western West Virginia Field Data Sheet and Calculator								a				
	Team:	C. Vileno, F	2 Abor	rielu L	dia Sile	et and C	aicui		. ₋atitude/UTN	/ Northing:	38 838304	
Pro	oject Name:		V. Abei							•	-80.525748	
110	-		xton County)				_			11/06/2019	
SA	R Number:	2 20 (210)		Length (ft):	100	Stream Ty	ne.	Enha	meral Stream		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
O,	ar rambor.		rtodori	Longar (it).	100	ou oum 1)	, ρυ.	Ерпе	merai stream	<u> </u>		
	Top Strata:	Tree	e/Sapling St	rata	(determined	d from perce	ent calc	culate	ed in V _{CCANO}	_{PY})		
Site a	and Timing:	Project Site	A .			~	Before	Proje	ct			•
Sample	Variables	1-4 in strea	m channel									
1		equidistant		g the stream	n. Measure	only if tree/	sapling	cove	asure at no fer is at least choice.)			27.1 %
	List the per	cent cover r	measureme	nts at each	point below:							
	60	20	0	0	20	40	50)				
		-										
2		points along	g the stream	n. Select a _l	particle from	the bed. E	Before r	novir	than 30 roung it, determediment, an	ine the perd	entage of	3.0
									omposed of			
		rating score	of 1. If the	bed is com	posed of be	drock, use	a rating	g sco	re of 5.			
		Embedded Minshall 19		for gravel, c	obb l e and b	ou l der parti	cles (re	escal	ed from Plat	ts, Megahai	n, and	
		Rating	Rating Des	scription								
		5							ne sedimen		k)	
		4							by fine sedi			
		3 2							d by fine sec			
									fine sedime		al surface)	
	List the rati							<u>, </u>		(== ===================================		
	3	3	3	3	3	3	3		3	3	3	
	3	3	3	3	3	3	3		3	3	3	
	3	3	3	3	3	3	3		3	3	3	
3	V _{SUBSTRATE}		eam channe tream; use t							ghly equidist	tant points	0.25 in
			ches to the 0.0 in, sand				w (bedı	rock :	should be co	ounted as 9	9 in,	
	0.10	0.25	0.25	0.10	0.10	0.10	0.1	0	0.10	0.25	1.00	
	0.25	0.25	0.25	0.25	0.25	0.25	0.1		0.10	0.10	0.10	
	0.10	0.10	0.25	0.25	0.25	0.25	0.2		0.25	0.25	0.25	
4			e total perce						of feet of er ded, total e			0 %
		ماند د تا ۱	Left Bank	0	ft	ī	Riaht B	ank [.]	0	ft	ı	

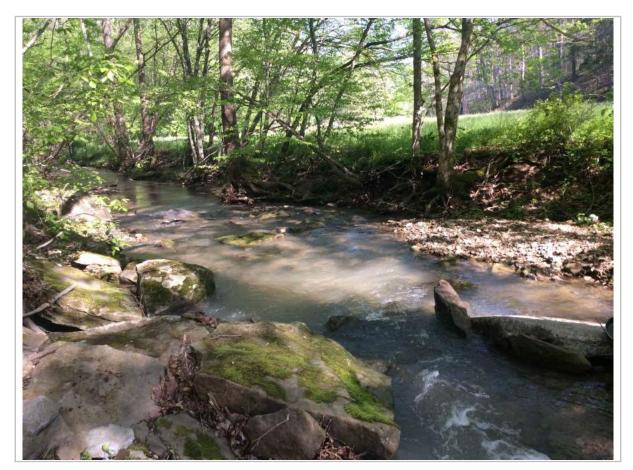
Sampl	Sample Variables 5-9 within the entire riparian/buffer zone adjacent to the stream channel (25 feet from each bank).										
5	V_{LWD}	Number of down woody stems (at least 4 inches in diameter and 36 inches in length) per 100 feet of stream reach. Enter the number from the entire 50'-wide buffer and within the channel, and the amount per 100 feet of stream will be calculated.						0.0			
		·			Number of	downed wo	oody stems:		0		
6	V_{TDBH}	Average dbh of trees (measure only if V _{CCANOPY} tree/sap inches (10 cm) in diameter. Enter tree DBHs in inches.					ng cover is a	at least 20%	6). Trees ar	e at least 4	8.9
		List the dbh measurements of individual trees (at least 4 in) within the buffer on each side					each side of				
		the stream									
		_	Left Side					Right Side			
	8	10	10	7		8	10	10	8		
					1.00" (11)	100.6					
7	V_{SNAG}				and 36" tall) it per 100 fe		et of stream. alculated.	Enter num	iber of snag	s on each	0.0
			Left Side:		0		Right Side:		0		
8	V_{SSD}						hes dbh) pei				
					per of saplin e calculated.		ubs on each	side of the	stream, and	the	Not Used
			Left Side:				Right Side:				
9	V_{SRICH}						am reach. C				
							ive species from these (ill strata. Sp	ecies	1.60
			ip 1 = 1.0			l			2 (-1.0)		
V	Acer rubru			Magnolia ti	ripetala					Lonicera ja	ponica
	Acer sacci	harum		Nyssa sylv	•				Lonicera ta	•	
	Aesculus i	flava		Oxydendrun		BL	Alliaria peti		DE	Lotus corni	culatus
	Asimina tri	iloba	1	Prunus sei	rotina	(H)	Alternanthe		0	Lythrum sa	licaria
2-3	Betula alleg			Quercus a			philoxeroid		V	Microstegiun	
	Betula len	=		Quercus co			Aster tatari	cus	DE -3	Paulownia	
	Carya alba			Quercus in			Cerastium		H -	Polygonum o	
	Carya glal			Quercus p		634	Coronilla va		04	Pueraria m	•
	Carya ova		4	Quercus ru			Elaeagnus u	mbellata		Rosa multii	
	Carya ova			Quercus velutina		84	Lespedeza bicolor		04	Sorghum h	
	Cornus flo			Sassafras albidum			Lespedeza bicolor Lespedeza cuneata			Verbena br	•
✓	Fagus gra			Tilia ameri			Ligustrum ol				
	Fraxinus a			Tsuga canadensis		(3) 1	Ligustrum s				
	Liriodendroi			Ulmus ame			=				
	Magnolia a										
13l	.nagriona (
		4	Species in	Group 1				2	Species in	Group 2	

-				-	•	or 1m x 1m) tly along ea	-			n 25 feet fro	om each
10	V _{DETRITUS}					ner organic r r of the detri				er and	11.67 %
	Left Side			Righ	t Side						
		15	10	10		15	10	10			
11	V_{HERB}	Average pe	ercentage co	over of herb	aceous veg	etation (mea	asure only it	tree cover	is <20%). [o not	
	TIERO	include woo	ody stems a	t least 4" db	oh and 36" ta	all. Because accepted. E	there may	be several l	layers of gro	und cover	Not Used
		at each sub		s up tillougi	11 200 % are	accepted. E	inter the pe	iceni cover	or ground v	egetation -	
			Left	Side			Righ	t Side			
Sample	e Variable 1	2 within the	e entire cat	chment of	the stream.						
12	V _{WLUSE}				e for watersl						
	- WLUSE										0.62
			Land	Use (Choos	se From Dro	p List)			Runoff Score	% in Catch-	Running Percent
	Forest and native range (50% to 75% ground cover)						~	0.7	ment 80	(not >100) 80	
		ative range (<		n	9			·	0.7	10	90
					× E 00/						
	Open space (pasture, lawns, parks, etc.), grass cover <50%							0.1	10	100	
		mmary					No	tes:			
Va	ariable	Value	VSI								
V _C	CANOPY	27 %	0.19								
VEI	MBED	3.0	0.82								
Vsı	JBSTRATE	0.25 in	0.13								
V _{BI}	ERO	0 %	1.00								
V_{LV}	WD	0.0	0.00								
V_{TDBH} 8.9 1.00											
Vsı	NAG	0.0	0.10								
Vs		Not Used	Not Used								
	RICH	1.60	0.76								
	ETRITUS	11.7 %	0.14								
	ERB	Not Used	Not Used								
V _w	LUSE	0.62	0.65								

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (FRONT)

STREAM NAME S-L57	LOCATION Braxton County		
STATION # RIVERMILE	STREAM CLASS Ephemeral		
LAT <u>38.828304</u> LONG <u>-80.525748</u>	RIVER BASIN Burnsville Lake-Little Kanawha River		
STORET#	AGENCY Tetra Tech		
INVESTIGATORS CV, RA			
FORM COMPLETED BY	DATE 11/06/2019	REASON FOR SURVEY	
C.Vileno	TIME 2:15	Proposed pipeline	

	Habitat	Condition Category									
	Parameter	Optimal	Suboptimal	Marginal	Poor						
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are <u>not</u> new fall and <u>not</u> transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale). 20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.		Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.						
	SCORE 4	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0						
Parameters to be evaluated in sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.						
	SCORE 8	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0						
	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).						
ıram	score 0	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0						
Par	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.						
	SCORE 10	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0						
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.						
	SCORE 0	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0						


HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

	Habitat	Condition Category								
	Parameter Parameter	Optimal	Suboptimal	Marginal	Poor					
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.					
	_{SCORE} 6	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0					
ding reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.					
amp	score 0	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0					
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.					
e ev	SCORE 4 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0					
s to b	SCORE 4 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0					
Parameter	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.					
	SCORE 2 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0					
	SCORE 2 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0					
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.					
	SCORE 3 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0					
	SCORE 3 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0					

40	DO:
Total Score 46	pH:
	SC·

A-8

No / low flow at time of survey. Unable to sample water quality or $\ensuremath{\mathbf{WVSCI}}$.

Photograph Direction NW

Comments:

STREAM ID S-IJ27-ordinary			STREAM	STREAM NAME Little Knawl Creek						
CLIENT MV	Р		PROJEC	TNAME MV	Р					
LAT 38.808		ONG -80.54627				COUNTY Braxton				
INVESTIGATO	ORS E. Fo	oster, S. Therkild	son							
WATER TYPE	RPW [NRPW	FLOW R Perennial	EGIME Inter	mittent	t Ephemeral				
					1 0:		4 8 18 1			
CHANNEL FE	ATURES	Top of Bank H LB2.0fl Water Depth: Water Width:_ Ordinary High	Vidth: 20.0 ft Height: t RB 2.0 3.00 in 10.0 ft Water Mark (Wid	th): <u>20.0</u> ft	Gra Str Art - Wif	adient Flat <u>✔</u> Mo	100 ft) (10 ft/100 ft) Heavy nelized			
FLOW CHARACTER	ISTICS	Stream bed Standing w Flowing wa Velocity	tream bed dry I moist vater		Mo Riff Po	pportion of Reach Represorphology Types (Only enternation of the Sound S	r if water present) %			
INOR	-	UBSTRATE CO				GANIC SUBSTRATE COM es not necessarily add up				
Substrate Type	Dia	meter	% Composition Sampling Read			Characteristic	% Composition in Sampling Area			
Bedrock				Detritus		sticks, wood, coarse				
Boulder		56 mm (10")	20	200		plant materials (CPOM)				
Cobble		6 mm (2.5"-10")	30	Muck-M	lud	black, very fine organic				
Gravel		nm (0.1"-2.5")	30			(FPOM)				
Sand		-2mm (gritty)	20	N41		anno alball for our cont				
Silt		04-0.06 mm		Marl		grey, shell fragments				
Clay WATERSHED FEATURES		D4 mm (slick) Predominant ✓ Forest ✓ Field/Past — Agricultura — ROW Canopy Cove — Open ✓ Shaded	Resider Other:	rcial al ntial	Flo	odplain Width Wide > 30ft <u>✓</u> Modera Narrow <15ft	te 15-30ft			
		<u> </u>								
		TEDD ATENIA	UED WILL DUISE O	DOEDVED (\D	HED NOTES AND SOCIE	24ATIONS			
						HER NOTES AND OBSER				

West Virginia Stream and Wetland Valuation Metric (SWVM) Version 2.1, September 2015

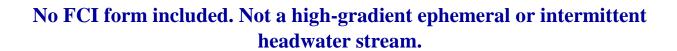
USACE FILE NO./ Project Name: (v2.1, Sept 2015)		Mountain	v Valley Pipeline Project SWVM v2.1		COORDINATES: cimal Degrees)	Lat.	38.809619 38.808958 38.808539	Lon.	-80.541463 -80.543128 -80.547202	WEATHER:		Cloudy, 85°	DATE:	September 8, 2016
IMPACT STREAM/SITE ID (watershed size {acreage}			S-IJ27; Little K Multiple stream crossing im See site description for Form of Mitigat	pacts combine additional imp on: Mitigation	ed on SWVM form act locations Bank		MITIGATION STREAM CLASS./ (watershed size {acreage			Additional Impa 38.808242, 38.808197,	-80.546896	S:	Comments:	
STREAM IMPACT LENGTH:	84	FORM OF MITIGATION:	RESTORATION (Levels I-III)		OORDINATES: cimal Degrees)	Lat.		Lon.		PRECIPITATION PAST 48 HRS:		0	Mitigation Length:	
Column No. 1- Impact Existin	g Condition (Del	bit)	Column No. 2- Mitigation Existing	Condition - Bas	eline (Credit)	•	Column No. 3- Mitigation Pr Post Completio		Years	Column No. 4- Mitigation Proj Post Completion (ears	Column No. 5- Mitigation Project	ed at Maturity (Credit)
Stream Classification:	Pere	nnial	Stream Classification:	P	erennial		Stream Classification:	Pe	erennial	Stream Classification:	Pere	ennial	Stream Classification:	Perennial
Percent Stream Channel Si	<u> </u>	1	Percent Stream Channel S	·			Percent Stream Channel S		0	Percent Stream Channel Si	<u> </u>	0	Percent Stream Channel Si	•
HGM Score (attach d	lata forms):		HGM Score (attach	data forms):			HGM Score (attach	data forms):		HGM Score (attach d	ata forms):		HGM Score (attach da	ata forms):
		Average			Average				Average			Average		Average
Hydrology			Hydrology				Hydrology			Hydrology			Hydrology	
Biogeochemical Cycling		0	Biogeochemical Cycling		0		Biogeochemical Cycling		0	Biogeochemical Cycling		0	Biogeochemical Cycling	0
PART I - Physical, Chemical and	l Biological Indic	cators	Habitat PART I - Physical, Chemical a	nd Biological In	dicators		PART I - Physical, Chemical a	nd Biological In	dicators	Habitat PART I - Physical, Chemical and	Biological Indi	icators	Habitat PART I - Physical, Chemical and	Biological Indicators
	Points Scale Range	Site Score		Points Scale Range	Site Score			Points Scale Range	Site Score		Points Scale Range	Site Score		Points Scale Range Site Score
PHYSICAL INDICATOR (Applies to all stream	ns classifications)		PHYSICAL INDICATOR (Applies to all stream	ns classifications)			PHYSICAL INDICATOR (Applies to all stream	ns classifications)		PHYSICAL INDICATOR (Applies to all stream	ns classifications)		PHYSICAL INDICATOR (Applies to all stream	s classifications)
USEPA RBP (High Gradient Data Sheet)			USEPA RBP (High Gradient Data Sheet)				USEPA RBP (High Gradient Data Sheet)			USEPA RBP (High Gradient Data Sheet)			USEPA RBP (High Gradient Data Sheet)	
Epifaunal Substrate/Available Cover	0-20	17	Epifaunal Substrate/Available Cover	0-20			Epifaunal Substrate/Available Cover	0-20		Epifaunal Substrate/Available Cover	0-20		Epifaunal Substrate/Available Cover	0-20
2. Embeddedness	0-20	15	2. Embeddedness	0-20			2. Embeddedness	0-20		2. Embeddedness	0-20		2. Embeddedness	0-20
3. Velocity/ Depth Regime	0-20	3	3. Velocity/ Depth Regime	0-20			3. Velocity/ Depth Regime	0-20		3. Velocity/ Depth Regime	0-20		3. Velocity/ Depth Regime	0-20
4. Sediment Deposition	0-20	13	4. Sediment Deposition	0-20			4. Sediment Deposition	0-20		4. Sediment Deposition	0-20		4. Sediment Deposition	0-20
5. Channel Flow Status	0-20 0-1	9	5. Channel Flow Status	0-20 0-1			5. Channel Flow Status	0-20 0-1		5. Channel Flow Status	0-20 0-1		5. Channel Flow Status	0-20 0-1
6. Channel Alteration 7. Frequency of Riffles (or bends)	0-20	4	6. Channel Alteration	0-20			6. Channel Alteration 7. Frequency of Riffles (or bends)	0-20		6. Channel Alteration 7. Frequency of Riffles (or bends)	0-20		Channel Alteration Frequency of Riffles (or bends)	0-20
8. Bank Stability (LB & RB)	0-20	16	7. Frequency of Riffles (or bends) 8. Bank Stability (LB & RB)	0-20 0-20			8. Bank Stability (LB & RB)	0-20		8. Bank Stability (LB & RB)	0-20 0-20		8. Bank Stability (LB & RB)	0-20
9. Vegetative Protection (LB & RB)	0-20	12	9. Vegetative Protection (LB & RB)	0-20			9. Vegetative Protection (LB & RB)	0-20		9. Vegetative Protection (LB & RB)	0-20		9. Vegetative Protection (LB & RB)	0-20
10. Riparian Vegetative Zone Width (LB & RB)		14	10. Riparian Vegetative Zone Width (LB & RB)				10. Riparian Vegetative Zone Width (LB & RB)			10. Riparian Vegetative Zone Width (LB & RB)			10. Riparian Vegetative Zone Width (LB & RB)	0-20
Total RBP Score	Marginal	107	Total RBP Score	Poor	0		Total RBP Score	Poor	0	Total RBP Score	Poor	0	Total RBP Score	Poor 0
Sub-Total		0.535	Sub-Total	_	0		Sub-Total		0	Sub-Total	•	0	Sub-Total	0
CHEMICAL INDICATOR (Applies to Intermitte		Streams)	CHEMICAL INDICATOR (Applies to Intermitt		Streams)		CHEMICAL INDICATOR (Applies to Intermitte		Streams)	CHEMICAL INDICATOR (Applies to Intermitte		Streams)	CHEMICAL INDICATOR (Applies to Intermitte	· · · · · · · · · · · · · · · · · · ·
WVDEP Water Quality Indicators (General	al)		WVDEP Water Quality Indicators (General Specific Conductivity	ıl)			WVDEP Water Quality Indicators (General Specific Conductivity	<u>.l)</u>		WVDEP Water Quality Indicators (General Specific Conductivity	ıl)		WVDEP Water Quality Indicators (General Specific Conductivity	<u>) </u>
Specific Conductivity	T	0.110	Specific Conductivity	T			Specific Conductivity	T		Specific Conductivity			Specific Conductivity	
<=99 - 90 points	0-90	0.149		0-90				0-90			0-90			0-90
рН		0.0	рН				рН			рН			рН	
6.0-8.0 = 80 points	0-80	6.89		5-90 0-1				5-90 0-1	5.6		5-90 0-1			5-90 0-1
0.0-8.0 – 80 points			no				DO	_		DO			DO.	
	10-30	50.08		10-30				10-30			10-30			10-30
>5.0 = 30 points	10-30	30.00		10-50				10-30			10-30			10-50
Sub-Total		1	Sub-Total		0		Sub-Total		0	Sub-Total		0	Sub-Total	0
BIOLOGICAL INDICATOR (Applies to Interm	nittent and Perennia	il Streams)	BIOLOGICAL INDICATOR (Applies to Interm	ittent and Perenni	al Streams)		BIOLOGICAL INDICATOR (Applies to Interi	nittent and Pereni	nial Streams)	BIOLOGICAL INDICATOR (Applies to Inter	mittent and Perer	nnial Streams)	BIOLOGICAL INDICATOR (Applies to Intern	ittent and Perennial Streams)
WV Stream Condition Index (WVSCI)	1 1		WV Stream Condition Index (WVSCI)	1 1			WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)	1 1		WV Stream Condition Index (WVSCI)	
Good	0-100 0-1	71.5		0-100 0-1				0-100 0-1			0-100 0-1			0-100 0-1
Sub-Total		0.715	Sub-Total		0		Sub-Total		0	Sub-Total	1 1	0	Sub-Total	0
PART II - Index and l	Unit Score		PART II - Index an	d Unit Score			PART II - Index and	I Unit Score		PART II - Index and L	Init Score		PART II - Index and U	nit Score
Index	Linear Feet	Unit Score	Index	Linear Feet	Unit Score		Index	Linear Feet	Unit Score	Index	Linear Feet	Unit Score	Index	Linear Feet Unit Score
0.750	84	63	0	0	0		0	0	0	0	0	0	0	0 0

		(See instruction n		- Impact Factors It values for MITIGATIO	N RANKING and I	I F)			
Temn	oral Loss-Construction	(See matraction pa	ge to misert delau	it values for will loaf to		<u> </u>	term Protection		
*Note: Reflects duration of aquatic function	al loss between the time of a	n impact (debit) and completion of			% Add. Mitigation	on and Monitoring Period		Term Protection (Years)	
compe	ensatory mitigation (credit).								
Years		0							
Sub-Total		0							
Tor	nporal Loss-Maturity				0 + 5/1	10 Year Monitoring		101	
*Note: Period between completion of compensato		ne time required for maturity, as it relates			Sub-Total	TO Year Monitoring		0	
to function (i.e. maturity of tree stratum to provide	e organic matter and detritus corridor).	within riparian stream or wetland buffer							
	comaor).						to Unit Score Cor		
% Add. Mitigation		Temporal Loss-Maturity (Years)			Final Index Score (Debit)	Linear Feet	Unit Score (Debit)	ILF Costs (Offsetting Debit	
70 Add. Mitigation		Temporal Loss-Maturity (Tears)			0.75	84	63	\$50,400.00	
					0.75	04		\$50,400.00	,
0%		0							
Sub-Total		0							
		PART V	- Comparison of U	nit Scores and Projecte	ed Balance				
				Г	ı	T			
		Mitigation Existing		Mitigation Projected at		Mitigation Projected at		Mitigation Projected	
Final Unit Score (Debit) [No Net Loss Value]	63	Condition - Baseline		Five Years Post Completion		Ten Years		At Maturity	
[NO Net Loss Value]		(Credit)		(Credit)		Post Completion (Credit)		(Credit)	
				` '					
FINAL PROJECTED NET BALANCE					0		0		0
		_							
		ř	art VI - Mitigation C	Considerations (Incenti	ves)				
	Extent of Stream Re	ataration							
*Note1: Reference the Instruction		Storation orrect Restoration Levels (below) for your pr	oject		1		Upland Buffer Zone		
	Place an "X" in the appropriate				*Note : Reference	ce Instructional handout for the def *Note ² : Enter the buffer width for			s (below)
Restoration Level 1							e appropriate mitigation		
Restoration Level 2							Left Bank	,	
					Buffer Width		Leit Balli		
Restoration Level 3						0-50		None	
					D. 66 - 1. 141-	51-150	Dialet Dan	None	
					Buffer Width	0-50	Right Ban	None None	
Compensatory Mitigation Plan incorpo]		51-150		None	
*Note: HUC 12-based watershed	approach required to obtain Strea	m Restoration incentive	No		Average Buffer Width/Side	0			
				1	Width/Side				
Site		Impact	Mitigation Unit				Stra	ight Preservation Ratio	
Oite		Unit Yield (Debit)	Yield (Credit)					(v2.1, Sept 2015)	
S-IJ27		63	#DIV/0!			Final Mitigation Unit Yield			
				1		#DIV/0!			

Insects	Count	Tolerance	TV	Insects	Count	Tolerance	TV	Non-Insects	Count	Tolerance	TV	7	
Ephemeroptera			25	Odonata			0	Crustacea			2		
Ameletidae		2	0	Aeshnidae		3	0	Asellidae		7	0		
Baetidae		4	0	Calopterygidae		6	0	Cambaridae	2	5	10		
Beatiscidae		4	0	Coenagrionidae		7	0	Gammaridae		5	0		
Caenidae		5	0	Cordulegastridae		3	0	Palaemonidae		5	0		
Ephemerellidae		3	0	Gomphidae		5	0	Annelida	•	•	0		
Ephemeridae	3	5	15	Lestidae		7	0	Hirudinea		10	0		
Heptageniidae	18	3	54	Libellulidae		7	0	Nematoda		10	0		
Isonychiidae		3	0	Coleoptera			13	Nematomorpha		10	0		
Leptophlebiidae	4	4	16	Chrysomelidae		7	0	Oligochaeta		10	0		
Potamanthidae		5	0	Dryopidae		5	0	Turbellaria	•	•	0		
Siphlonuridae		3	0	Dytiscidae		6	0	Turbellaria		7	0		
Tricorythidae		5	0	Elmidae	6	4	24	Bivalvia	•	•	0		
Plecoptera			4	Gyrinidae		5	0	Corbiculidae		6	0		
Capniidae		2	0	Haliplidae		7	0	Sphaeriidae		5	0		
Chloroperlidae		2	0	Hydrophilidae		7	0	Unionidae		4	0		
Leuctridae		2	0	Psephenidae	7	3	21	Gastropoda			0		
Nemouridae		2	0	Ptilodactylidae		5	0	Ancylidae		7	0		
Peltoperlidae		1	0	Hemiptera			0	Hydrobiidae		4	0		
Perlidae	4	1	4	Belostomatidae		8	0	Physidae		7	0		
Perlodidae		1	0	Corixidae		8	0	Planorbidae		5	0		
Pteronarcyidae		1	0	Gerridae		10	0	Pleuroceridae		5	0		
Taeniopterygidae		2	0	Hydrometridae		8	0	Viviparidae		5	0		
Trichoptera			6	Nepidae		8	0	Miscellaneous			0		
Brachycentridae		2	0	Notonectidae		8	0	Collembola		6	0		
Glossosomatidae		2	0	Megaloptera			0	Lepidoptera		5	0		
Helicopsychidae		3	0	Corydalidae		3	0	Neuroptera		5	0		
Hydropsychidae		5	0	Sialidae		6	0	Hydrachnidae		6	0		
Hydroptilidae		3	0	Diptera			0	Totals	Totalı	number	50		
Lepidostomatidae	6	3	18	Athericidae		3	0	Totals	Total f	amilies	8		
Leptoceridae		3	0	Blephariceridae		2	0				calculations		
Limnephilidae		4	0	Ceratopogonidae		8	0		Richnes	S		Additional metri	cs
Molannidae		3	0	Chironomidae		9	0	Total Taxa		8	36.4	Ephemeroptera Taxa	3
Philopotamidae		4	0	Culicidae		10	0	EPT Taxa		5	38.5	Plecoptera Taxa	1
Phryganeidae		4	0	Dixidae		6	0		Toleran	ce		Trichoptera Taxa	1
Polycentropodidae		5	0	Empididae		7	0	Biotic Index		3.24	96.6	Long-lived Taxa	5
Psychomiidae		3	0	Psychodidae		8	0	% Tolerant		0.0	100.0	Odonata Taxa	0
Rhyacophilidae		3	0	Ptychopteridae		8	0		Composit	ion		Diptera Taxa	0
Uenoidae		2	0	Simuliidae		6	0	% EPT Abundance		70.0	77.8	COET Taxa	6
		erance Value	162	Stratiomyidae		10	0	% Dominance		36.0	80.0	% Sensitive	70.0
	irginia Save O			Syrphidae		10	0	% Net-spinners		0.0	NA	% Chironomidae	0.0
601 57th Stre			04	Tabanidae		7	0		Condition Ind		71.5	% Clingers	90.0
http:/	/www.dep.w	v.gov/sos		Tipulidae		5	0	Integrity R	ating	Subo	ptimal	More diversity meas	<u>sures</u>

Note: There may be instances when families are collected that are not listed above. In those cases choose a similar family/tolerance value if known, to calculate the metrics. You should contact the WV Save Our Streams Coordinator to confirm your choice. Provide as much detail as possible so that family-level identification can be determined.

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (FRONT)


STREAM NAME S-IJ27	LOCATION Braxton County, WV				
STATION # RIVERMILE	STREAM CLASS Perennial				
Lat <u>38.808539</u> long <u>-80.547202</u>	RIVER BASIN Burnsville I	_ake-Little Kanawha River			
STORET#	AGENCY Tetra Tech				
INVESTIGATORS Jason McGuirk, Cody St	oliker				
FORM COMPLETED BY	DATE 09/08/2016	REASON FOR SURVEY			
C. Stoliker	TIME 13:00 Proposed Pipeline				

	Habitat	Condition Category								
	Parameter	Optimal	Suboptimal	Marginal	Poor					
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.					
	SCORE 17	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0					
ı sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.					
ted in	SCORE 15	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0					
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/depth regime (usually slow-deep).					
ıram	SCORE 3	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0					
Pe	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.					
	SCORE 13	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0					
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.					
	SCORE 4	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0					

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

	Habitat		Condition	Category	
	Parameter Parameter	Optimal	Suboptimal	Marginal	Poor
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
	SCORE 9	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
ling reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.
samp	SCORE 4	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.
e eva	SCORE 8 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
to b	SCORE 8 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0
Parameter	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
	SCORE 6 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE 6 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.
	SCORE 7 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE 7 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0

Total Score 107

Photograph Direction SW

Comments:

STREAM ID			STREAM NA	STREAM NAME UNT to Little Knawl Creek						
CLIENT MV	P		PROJECT N							
LAT 38.8096		ONG -80.53723	1 DATE 05/07/	/2016	COUNTY Braxton					
INVESTIGATO	ORS E. Fo	ster, S. Therkild	son							
TNW	RPW [NRPW [FLOW REG Perennial	IME Intermitte	ent Ephemeral 🗸					
CHANNEL FE	ATURES	Top of Bank H LBfl Water Depth: Water Width:_ Ordinary High Ordinary High Flow Direction	Vidth:5.0ft Height: t	ft : 1.0 ft : 6.0 in 1	Gradient Flat Mo (0.5/100 ft) (2 ft) Stream Erosion ✓ None Moderate Artificial, Modified or Chang ✓ Yes No Within Roadside Ditch — Yes ✓ No Culvert Present Yes Culvert Material: Culvert Size:in	nelized				
FLOW CHARACTER	ISTICS	Stream bed Standing w Flowing wa	tream bed dry I moist vater		Proportion of Reach Repres Morphology Types (Only enter Riffle % Run Pool % Turbidity Clear Slightly to Other	sented by Stream er if water present) % urbidTurbid				
INOR	-	JBSTRATE CO		_	RGANIC SUBSTRATE COM	IPONENTS				
	(shou	ld add up to 100	0%) 100	(0	does not necessarily add u	p to 100%)				
Substrate Type		ld add up to 100 meter	% Composition in Sampling Reach	Substrate Type	Characteristic					
	Dia	meter	% Composition in	Substrate Type	Characteristic sticks, wood, coarse	% Composition in				
Type Bedrock Boulder	Dia > 25	meter 56 mm (10")	% Composition in	Substrate	Characteristic	% Composition in				
Type Bedrock Boulder Cobble	Dia > 29 64-256	meter 56 mm (10") 5 mm (2.5"-10")	% Composition in Sampling Reach 30 30	Substrate Type	Characteristic sticks, wood, coarse plant materials (CPOM) black, very fine organic	% Composition in Sampling Area				
Type Bedrock Boulder Cobble Gravel	Dia > 28 64-256 2-64 r	meter 56 mm (10") 5 mm (2.5"-10") nm (0.1"-2.5")	% Composition in Sampling Reach 30 30 30	Substrate Type Detritus	Characteristic sticks, wood, coarse plant materials (CPOM)	% Composition in Sampling Area				
Type Bedrock Boulder Cobble Gravel Sand	> 29 64-256 2-64 r	meter 56 mm (10") 5 mm (2.5"-10") mm (0.1"-2.5") -2mm (gritty)	% Composition in Sampling Reach 30 30	Substrate Type Detritus Muck-Mud	Characteristic sticks, wood, coarse plant materials (CPOM) black, very fine organic (FPOM)	% Composition in Sampling Area				
Type Bedrock Boulder Cobble Gravel Sand Silt	> 25 64-256 2-64 r 0.06 0.00	meter 56 mm (10") 5 mm (2.5"-10") mm (0.1"-2.5") -2mm (gritty) 14-0.06 mm	% Composition in Sampling Reach 30 30 30	Substrate Type Detritus	Characteristic sticks, wood, coarse plant materials (CPOM) black, very fine organic	% Composition in Sampling Area				
Type Bedrock Boulder Cobble Gravel Sand	> 29 64-256 2-64 r 0.06 0.00 < 0.00	meter 56 mm (10") 5 mm (2.5"-10") nm (0.1"-2.5") -2mm (gritty) 14-0.06 mm 14 mm (slick)	% Composition in Sampling Reach 30 30 30 10 Surrounding Landu — Commercia ure — Industrial al — Residential — Other:	Substrate Type Detritus Muck-Mud Marl	Characteristic sticks, wood, coarse plant materials (CPOM) black, very fine organic (FPOM) grey, shell fragments	% Composition in Sampling Area				
Type Bedrock Boulder Cobble Gravel Sand Silt Clay	> 29 64-256 2-64 r 0.06 0.00 < 0.00	meter 56 mm (10") 5 mm (2.5"-10") nm (0.1"-2.5") -2mm (gritty) 14-0.06 mm 14 mm (slick) Predominant Forest Field/Past Agricultura ROW Canopy Cove	% Composition in Sampling Reach 30 30 30 10 Surrounding Landu — Commercia — Industrial — Residential — Other:	Substrate Type Detritus Muck-Mud Marl	Characteristic sticks, wood, coarse plant materials (CPOM) black, very fine organic (FPOM) grey, shell fragments Floodplain Width Wide > 30ft Modera	% Composition in Sampling Area 40				

West Virginia Stream and Wetland Valuation Metric (SWVM) Version 2.1, September 2015

USACE FILE NO./ Project Name: Mountai (v2.1, Sept 2015)	n Valley Pipeline Project IMPACT COORDINATES SWVM v2.1 (in Decimal Degrees)	S: Lat.	38.809457	Lon.	-80.537428	WEATHER:	Cloudy, 85°	DATE:	September 8, 2016
IMPACT STREAM/SITE ID AND SITE DESCRIPTION: (watershed size {acreage}, unaltered or impairments)	S-IJ32; UNT to Little Knawl Creek; 7.35ac Form of Mitigation: Mitigation Bank		MITIGATION STREAM CLASS./ (watershed size {acreage					Comments:	No/low water flow at time of survey. Unable to sample water quality or WVSCI
STREAM IMPACT LENGTH: 26 FORM OF MITIGATION	I: RESTORATION (Levels I-III) MIT COORDINATES: (in Decimal Degrees)	Lat.		Lon.		PRECIPITATION PAST 48 HRS:	0	Mitigation Length:	
Column No. 1- Impact Existing Condition (Debit)	Column No. 2- Mitigation Existing Condition - Baseline (Credit)		Column No. 3- Mitigation Pr Post Completion		ve Years	Column No. 4- Mitigation Proje Post Completion (C		Column No. 5- Mitigation Project	ted at Maturity (Credit)
Stream Classification: Ephemeral	Stream Classification: Ephemeral		Stream Classification:		Ephemeral	Stream Classification:	Ephemeral	Stream Classification:	Ephemeral
Percent Stream Channel Slope 15	Percent Stream Channel Slope		Percent Stream Channel SI	ope	0	Percent Stream Channel Slo	pe 0	Percent Stream Channel S	Slope 0
HGM Score (attach data forms):	HGM Score (attach data forms):		HGM Score (attach	data forms):	HGM Score (attach da	ta forms):	HGM Score (attach	data forms):
Average	Hydrology Biogeochemical Cycling Habitat PART I - Physical, Chemical and Biological Indicators		Hydrology Biogeochemical Cycling Habitat PART I - Physical, Chemical ar		0	Hydrology Biogeochemical Cycling Habitat PART I - Physical, Chemical and E	0	Hydrology Biogeochemical Cycling Habitat PART I - Physical, Chemical an	0
Points Scale Range Site Score	Points Scale Range Site Score			Points Scale	Range Site Score		Points Scale Range Site Score		Points Scale Range Site Score
PHYSICAL INDICATOR (Applies to all streams classifications)	PHYSICAL INDICATOR (Applies to all streams classifications)		PHYSICAL INDICATOR (Applies to all streams	classification	5)	PHYSICAL INDICATOR (Applies to all streams	classifications)	PHYSICAL INDICATOR (Applies to all stream	ns classifications)
1. Epifaunal Substrate/Available Cover	USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover		USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover 2. Embeddedness 3. Velocity/ Depth Regime 4. Sediment Deposition 5. Channel Flow Status 6. Channel Alteration 7. Frequency of Riffles (or bends) 8. Bank Stability (LB & RB) 9. Vegetative Protection (LB & RB) 10. Riparian Vegetative Zone Width (LB & RB) Total RBP Score Sub-Total CHEMICAL INDICATOR (Applies to Intermitter WYDEP Water Quality Indicators (General Specific Conductivity DO Sub-Total		0	USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover 2. Embeddedness 3. Velocity/ Depth Regime 4. Sediment Deposition 5. Channel Flow Status 6. Channel Alteration 7. Frequency of Riffles (or bends) 8. Bank Stability (LB & RB) 9. Vegetative Protection (LB & RB) 10. Riparian Vegetative Zone Width (LB & RB) Total RBP Score Sub-Total CHEMICAL INDICATOR (Applies to Intermitten WYDEP Water Quality Indicators (General) Specific Conductivity DO Sub-Total		USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover 2. Embeddedness 3. Velocity/ Depth Regime 4. Sediment Deposition 5. Channel Flow Status 6. Channel Alteration 7. Frequency of Riffles (or bends) 8. Bank Stability (LB & RB) 9. Vegetative Protection (LB & RB) 10. Riparian Vegetative Zone Width (LB & RB) Total RBP Score Sub-Total CHEMICAL INDICATOR (Applies to Intermitt WYDEP Water Quality Indicators (General Specific Conductivity PH DO Sub-Total	
BIOLOGICAL INDICATOR (Applies to Intermittent and Perennial Streams)	BIOLOGICAL INDICATOR (Applies to Intermittent and Perennial Streams)		BIOLOGICAL INDICATOR (Applies to Intern	nittent and Pe	rennial Streams)	BIOLOGICAL INDICATOR (Applies to Intermi	ittent and Perennial Streams)	BIOLOGICAL INDICATOR (Applies to Inter	mittent and Perennial Streams)
WV Stream Condition Index (WVSCI) 0 0-100 0-1 Sub-Total 0	WV Stream Condition Index (WVSCI) 0-100 0-1 Sub-Total 0		WV Stream Condition Index (WVSCI) Sub-Total	0-100	0-1	WV Stream Condition Index (WVSCI) Sub-Total	0-100 0-1	WV Stream Condition Index (WVSCI) Sub-Total	0-100 0-1
PART II - Index and Unit Score	PART II - Index and Unit Score		PART II - Index and	I Unit Score		PART II - Index and Ur	nit Score	PART II - Index and	Unit Score
Index Linear Feet Unit Score	Index Linear Feet Unit Score		Index	Linear F	eet Unit Score	Index	Linear Feet Unit Score	Index	Linear Feet Unit Score
0.670 26 17.42	0 0 0		0	0	0	0	0 0	0	0 0

		(See instruction page		- Impact Factors It values for MITIGATIO	N BANKING and II	_F)			
Temp	poral Loss-Construction					Long	term Protection		
*Note: Reflects duration of aquatic functional loss	between the time of an impac mitigation (credit).	ct (debit) and completion of compensatory			% Add. Mitigation	on and Monitoring Period		-Term Protection (Years)	
	miligation (credit).								
Years		0							
Sub-Total		0							
Tei	mporal Loss-Maturity				0 + 5/1	10 Year Monitoring		101	
*Note: Period between completion of compensator	ry mitigation measures and the				Sub-Total			0	
function (i.e. maturity of tree stratum to provide	e organic matter and detritus w corridor).	within riparian stream or wetland buffer				DADT IV Indox	to Unit Score Cor	wordion	
	comacij.				Final Index Score			ILF Costs	
% Add. Mitigation		Temporal Loss-Maturity (Years)			(Debit)	Linear Feet	Unit Score (Debit)	(Offsetting Debit	
		. ,			0.67	26	17.42	\$13,936.00	
0%		0							
Sub-Total Sub-Total		U							
		PART V	- Comparison of U	nit Scores and Projecte	ed Balance				
Final Unit Score (Debit)	47.40	Mitigation Existing		Mitigation Projected at		Mitigation Projected at Ten		Mitigation Projected At	
[No Net Loss Value]	17.42	Condition - Baseline (Credit)		Five Years Post Completion (Credit)		Years Post Completion (Credit)		Maturity (Credit)	
		(Credit)		Fost Completion (Credit)		Post Completion (Credit)		(Gredit)	
FINAL PROJECTED NET BALANCE					0		0		0
				•	•				
		P	art VI - Mitigation (Considerations (Incentiv	ves)				
	Extent of Stream Re	estoration				E to the			
		correct Restoration Levels (below) for your pr	oject		*Note1: Referen	Extended ce Instructional handout for the def	Upland Buffer Zone		s (below)
*Note2: F	Place an "X" in the appropriate	category (only select one).			Note : Neicron	*Note ² : Enter the buffer width for			is (below)
Restoration Level 1						*Note ³ : Select th	e appropriate mitigation	ı type	
Restoration Level 2				1	Buffer Width		Left Bank	(
Restoration Level 3				1					
				J		0-50 51-150		None None	
					Buffer Width	31-130	Right Ban		
						0-50		None	
Compensatory Mitigation Plan incorport *Note: HUC 12-based watershed			No		Average Buffer	51-150		None	
Note: FIGU 12-based watershed	approach required to obtain offer	an restoration incentive	NO		Width/Side	0			
		Impact	Mitigation Unit				Stra	ight Preservation Ratio	
Site		Unit Yield (Debit)	Yield (Credit)				Stra	(v2.1, Sept 2015)	
S-IJ32		17.42	#DIV/0!	1		Final Mitigation Unit Yield			
0 1032		11.72	#DIV/0:			#DIV/0!			
						#DIV/0:			

FCI Calculator for the High-Gradient Headwater Streams in eastern Kentucky and western West Virginia HGM Guidebook

To ensure accurate calculations, the <u>UPPERMOST STRATUM</u> of the plant community is determined based on the calculated value for V_{CCANOPY} (≥20% cover is required for tree/sapling strata). Go to the SAR Data Entry tab and enter site characteristics and data in the yellow cells. For information on determining how to split a project into SARs, see Chapter 5 of the Operational Draft Regional Guidebook for the Functional Assessment of High-gradient Ephemeral and Intermittent Headwater Streams in Western West Virginia and Eastern Kentucky (Environmental Laboratory U.S. Army Corps of Engineers 2010).

Project Name: MVP

Location: S-IJ32 (Braxton County, WV)

Sampling Date: 09/08/2016 Project Site Before Project

Subclass for this SAR:

Ephemeral Stream

Uppermost stratum present at this SAR: SAR number:

Tree/Sapling Strata

Functional Results Summary: Enter Results in Section A of the Mitigation Sufficiency Calculator

Function	Functional Capacity Index
Hydrology	0.65
Biogeochemical Cycling	0.68
Habitat	0.79

Variable Measure and Subindex Summary:

Variable	Name	Average Measure	Subindex
V _{CCANOPY}	Percent canpoy over channel.	93.50	1.00
V _{EMBED}	Average embeddedness of channel.	2.40	0.60
V _{SUBSTRATE}	Median stream channel substrate particle size.	13.35	0.53
V _{BERO}	Total percent of eroded stream channel bank.	70.00	0.70
V _{LWD}	Number of down woody stems per 100 feet of stream.	8.00	1.00
V _{TDBH}	Average dbh of trees.	13.20	1.00
V _{SNAG}	Number of snags per 100 feet of stream.	0.00	0.10
V _{SSD}	Number of saplings and shrubs per 100 feet of stream.	Not Used	Not Used
V _{SRICH}	Riparian vegetation species richness.	2.70	1.00
V _{DETRITUS}	Average percent cover of leaves, sticks, etc.	88.44	1.00
V _{HERB}	Average percent cover of herbaceous vegetation.	Not Used	Not Used
V _{WLUSE}	Weighted Average of Runoff Score for Catchment.	0.51	0.54

	High-G	radient l	Headwat		ms in ea Data She			_		tern Wes	st Virgini	a
	Team:	J. McGuirk	C. Stoliker	i ieiu L	Jala Sile	et and C	aicu		∎ Latitude/UTI	M Northing:	38 809457	
Pro	ject Name:		O. Otolikoi				•			•		
110	•		xton County	/. WV)			Longitude/UTM Easting: -80.537428 Sampling Date: 09/08/2016					
67	R Number:	2 .002 (2.0			100	Stroom Ti	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			. •	00/00/2010	
SA	ik Number.		Reacii	Length (ft):	100	Stream Ty	/pe.	Ephe	meral Stream			
	Top Strata:	Tre	e/Sapling St	rata	(determine	d from perce	ent cal	culate	ed in V _{CCANO}	_{PY})		
	and Timing:	Project Site	5			~	Before	e Proje	ct			•
Sample			m channel								40 11	
1	20%, enter at least one value between 0 and 19 to trigger Top Strata choice.)										93.5 %	
ĺ	List the percent cover measurements at each point below:											
	95	95	100	100	100	100	6		70	70	95	
2	100	100	95	100	90	100	at no		100 than 30 rou	100	100	
2	V_{EMBED}	points alon	g the stream	n. Select a	particle from	n the bed. E	Before	movir	ng it, determ sediment, an	ine the per	centage of	2.4
									omposed of			
		rating score	of 1. If the	bed is com	posed of be	edrock, use	a ratin	g sco	re of 5.			
			•	for gravel, c	obble and b	oulder parti	cles (r	escal	ed from Plat	tts, Megaha	n, and	
		Minshall 19	183)									
		Rating	Rating Des									
		5 4							ne sedimen by fine sedi		k)	
		3							d by fine sec			
		2							d by fine sec			
		1	>75 percen	t of surface	covered, su	ırrounded, c	r burie	ed by	fine sedime	nt (or artific	ial surface)	
ı	List the rati	ngs at each	point below									
	3	2	3	3	3	1	2	2	1	1	1	
	3	3	3	2	2	1	1	<u> </u>	2	2	3	
	3	3	3	3	3	3	3	3	3	3	3	
_	\/	Maralian atu		ll44-	4:-1:	M	- 4		41 00		4 4 4	
3	V _{SUBSTRATE}		eam cnanne tream; use t						than 30 rouզ _D .	gniy equidis	tant points	13.35 in
			ches to the 0.0 in, sand				w (bed	lrock	should be co	ounted as 9	9 in,	
	32.70	7.10	48.50	21.00	5.10	0.08	2.3	30	7.50	14.80	31.20	
	1.70	0.01	0.01	8.50	14.10	12.60	25.		28.20	0.08	8.70	
	99.00	99.00	99.00	42.00	39.10	8.70	3.2		24.30	99.00	3.30	
_												
4	V_{BERO}	•	e total perce						of feet of er oded, total e			70 %
		,/P	Left Bank	3() ft	I	Riaht F	Rank:	40) ft	ı	

Samp	le Variables	s 5-9 within	the entire r	iparian/buf	fer zone ad	jacent to t	he stream c	hannel (25	feet from e	ach bank).		
5	V_{LWD}	stream rea		ne number f	rom the enti		eter and 36 ir buffer and w				8.0	
		•	Number of downed woody stems: 8									
6	V_{TDBH}		oh of trees (cm) in diam				ing cover is a	at least 20%	6). Trees ar	e at least 4	13.2	
				nents of indi	vidual trees	(at least 4	in) within the	buffer on e	each side of			
		the stream	Left Side			1		Diaht Cida			i	
	21	4	36	4	4	4	4	Right Side	28	18	ł	
	21	4	30	4	4	4	+	9	20	10		
7	V_{SNAG}	Number of	snags (at le	ast 4" dbh	and 36" tall)	per 100 fe	et of stream.	Enter num	hber of snag	s on each		
	SINAG		stream, and								0.0	
			Left Side:		0		Right Side:		0			
8	V_{SSD}						hes dbh) per ubs on each				Not Used	
			r 100 ft of st				ubs on each	side of the	Stream, and	ı uı c	Not Osed	
			Left Side:				Right Side:					
9	V_{SRICH}						am reach. C sive species p				0.70	
							from these of		an suata. Op	Jecies	2.70	
		Grou	ıp 1 = 1.0			Group 2 (-1.0)						
1	Acer rubru	ım	(a) (Magnolia ti	ripetala	20 to 10 to	Ailanthus a	Itissima		Lonicera ja	ponica	
	Acer sacc	harum		Nyssa sylv	atica		Albizia julib	rissin		Lonicera ta	tarica	
	Aesculus	flava		Oxydendrun	n arboreum		Alliaria peti	olata		Lotus corni	iculatus	
	Asimina tı	riloba		Prunus ser	otina	7,5	Alternanthe	era		Lythrum sa	licaria	
	Betula alle	ghaniensis		Quercus a	'ba		philoxeroid		1	Microstegiur	n vimineum	
	Betula len	ta		Quercus co	occinea		Aster tatari	cus		Paulownia	tomentosa	
	Carya alb	а		Quercus in	nbricaria		Cerastium	fontanum		Polygonum (cuspidatum	
	Carya gla	bra		Quercus pi	rinus		Coronilla va	aria		Pueraria m	ontana	
3.000	Carya ova	alis	1	Quercus ru	ıbra		Elaeagnus u	mbellata		Rosa multi	flora	
1	Carya ova	ata		Quercus ve	elutina		Lespedeza	bicolor		Sorghum h	alepense	
(A)	Cornus flo			Sassafras	albidum		Lespedeza			Verbena bi	-	
~	Fagus gra			Tilia ameri			Ligustrum ob		_			
	Fraxinus a			Tsuga can	adensis		Ligustrum s					
	Liriodendro	n tulipifera		Ulmus ame								
		acuminata										
	- 5											
		4	Species in	Group 1				1	Species in	Group 2		

Compl	e Variables	10 11 withi	n at lagat 9	oubplote /	/40" v 40" /	v 1m v 1m)	in the rine	rian/huffar	zono withi	n 25 foot fre	m oooh
-	e variables The four su			-	•	-	-			ii 25 leet iid	Jili eacii
10	V _{DETRITUS}	Average pe	rcent cover	of leaves,	sticks, or oth	ner organic r	naterial. W	oody debris	<4" diamet	er and	88.44 %
			Left	Side			Right	t Side]	
		70	90	65	100	70	90	95	90		
		100	90	95	80	100	80	100	100		
11	V_{HERB}				aceous vego oh and 36" ta						
					h 200% are						Not Used
		at each sub	<u> </u>	<u> </u>		1				•	
			Left	Side			Right	t Side			
										·	
Compl	e Variable 1	2 within the	o ontiro oot	obmont of	the etreem						
_											
12	V _{WLUSE}	vveignted A	Average of F	Runott Score	e for watersl	nea:					0.51
										% in	Running
			Land	Use (Choos	se From Dro	p List)			Runoff Score	Catch- ment	Percent (not >100)
	Open space	(pasture, lawr	ns, parks, etc.), grass cover	50% - 75%			-	0.2	15	15
	Forest and n	ative range (<	<50% ground	cover)				~	0.5	60	75
	Forest and native range (50% to 75% ground cover)									25	100
								~			
								~			
								~			
								~			
								-			
	Su	mmary					No	tes:			
V	ariable	Value	VSI								
Vc	CANOPY	94 %	1.00								
VE	MBED	2.4	0.60								
Vs	SUBSTRATE	13.35 in	0.53								
V _B	BERO	70 %	0.70								
VL	.WD	8.0	1.00								
V _T	V _{TDBH} 13.2 1.00										
Vs	NAG	0.0	0.10								
Vs	SD	Not Used	Not Used								
Vs	RICH	2.70	1.00								
V _D	ETRITUS	88.4 %	1.00								
V _H	IERB	Not Used	Not Used								
V _v	VLUSE	0.51	0.54								

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (FRONT)

STREAM NAME S-IJ32	LOCATION Braxton County, WV			
STATION # RIVERMILE	STREAM CLASS Ephemeral			
Lat <u>38.809457</u> long <u>-80.537428</u>	RIVER BASIN Burnsville I	RIVER BASIN Burnsville Lake-Little Kanawha River		
STORET#	AGENCY Tetra Tech			
INVESTIGATORS J. McGuirk, C. Stoliker				
FORM COMPLETED BY	DATE 09/08/2016	REASON FOR SURVEY		
J. McGuirk	TIME Proposed Pipeline			

	Habitat		Condition	ı Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
	SCORE 0	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
n sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.
ted in	score 0	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast- shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).
ıram	score 0	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
P ₂	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
	SCORE 11	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
	SCORE 0	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

	Habitat		Condition	ı Category		
	Parameter Parameter	Optimal	Suboptimal	Marginal	Poor	
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.	
	SCORE 9	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
ding reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.	
samp	score 0	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.	
e eva	SCORE 5 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0	
to b	SCORE 5 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0	
Parameters	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.	
	SCORE 5 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0	
	SCORE 5 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0	
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.	
	SCORE 8 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0	
	SCORE 8 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0	

Total Score 56

No / low flow at time of survey. Unable to sample water quality or $\ensuremath{\mathbf{WVSCI}}$.

Photograph Direction SW

Comments:

West Virginia Stream and Wetland Valuation Metric (SWVM) Version 2.1, September 2015

(v2.1, Sept 2015)		Mountaii	n Valley Pipeline Project SWVM v2.1	(in Decimal Degrees)	Lat.	38.642046	Lon.	-80.484571	WEATHER:	Sunny, 55°	DATE:	November 10, 2016
IMPACT STREAM/SITE ID (watershed size {acreage},			S-B62; UNT to Right Fork Hol	y River; 1013.24 ac watershed Bank		MITIGATION STREAM CLASS (watershed size {acrea					Comments:	
STREAM IMPACT LENGTH:	29	FORM OF MITIGATION	: RESTORATION (Levels I-III)	MIT COORDINATES: (in Decimal Degrees)	Lat.		Lon.		PRECIPITATION PAST 48 HRS:	0.40"	Mitigation Length:	
Column No. 1- Impact Existing	g Condition (Deb	pit)	Column No. 2- Mitigation Existing Co	ondition - Baseline (Credit)		Column No. 3- Mitigation F Post Completi		e Years	Column No. 4- Mitigation Project Post Completion (C		Column No. 5- Mitigation Project	ted at Maturity (Credit)
Stream Classification:	Pere	nnial	Stream Classification:	Intermittent		Stream Classification:	lr	ntermittent	Stream Classification:	Intermittent	Stream Classification:	Intermittent
Percent Stream Channel SI	lope	2	Percent Stream Channel Slo	ре		Percent Stream Channel	Slope	0	Percent Stream Channel Slo	pe 0	Percent Stream Channel S	lope 0
HGM Score (attach d	lata forms):		HGM Score (attach o	lata forms):		HGM Score (attac	ch data forms):		HGM Score (attach dat	a forms):	HGM Score (attach d	ata forms):
		Average		Average				Average		Average		Average
Hydrology			Hydrology	1		Hydrology	1		Hydrology	1	Hydrology	1
Biogeochemical Cycling		0	Biogeochemical Cycling	1 0		Biogeochemical Cycling	1	0	Biogeochemical Cycling	1 0	Biogeochemical Cycling	1 0
Habitat			Habitat	1		Habitat	1		Habitat	1	Habitat	1
PART I - Physical, Chemical and	l Biological Indic	ators	PART I - Physical, Chemical and	Biological Indicators		PART I - Physical, Chemical	and Biological	ndicators	PART I - Physical, Chemical and B	iological Indicators	PART I - Physical, Chemical and	Biological Indicators
	Points Scale Range	Site Score		Points Scale Range Site Score			Points Scale Ran	ge Site Score		Points Scale Range Site Score		Points Scale Range Site Score
PHYSICAL INDICATOR (Applies to all stream	ns classifications)		PHYSICAL INDICATOR (Applies to all streams	classifications)		PHYSICAL INDICATOR (Applies to all stream	ams classifications)	PHYSICAL INDICATOR (Applies to all streams	classifications)	PHYSICAL INDICATOR (Applies to all stream	ns classifications)
USEPA RBP (High Gradient Data Sheet)			USEPA RBP (High Gradient Data Sheet)			USEPA RBP (High Gradient Data Sheet)		USEPA RBP (High Gradient Data Sheet)		USEPA RBP (High Gradient Data Sheet)	
Epifaunal Substrate/Available Cover	0-20	17	Epifaunal Substrate/Available Cover	0-20		Epifaunal Substrate/Available Cover	0-20	0	Epifaunal Substrate/Available Cover	0-20	Epifaunal Substrate/Available Cover	0-20
2. Embeddedness	0-20	17	2. Embeddedness	0-20		2. Embeddedness	0-20	0	2. Embeddedness	0-20	2. Embeddedness	0-20
3. Velocity/ Depth Regime	0-20	13	3. Velocity/ Depth Regime	0-20		3. Velocity/ Depth Regime	0-20	0	Velocity/ Depth Regime	0-20	Velocity/ Depth Regime	0-20
4. Sediment Deposition	0-20	11	4. Sediment Deposition	0-20		4. Sediment Deposition	0-20	0	4. Sediment Deposition	0-20	4. Sediment Deposition	0-20
5. Channel Flow Status	0-20 0-1	14 19	5. Channel Flow Status	0-20 0-1 0		5. Channel Flow Status	0-20 0-	1 0	5. Channel Flow Status	0-20 0-1 0	5. Channel Flow Status	0-20 0-1
6. Channel Alteration	0-20	16	6. Channel Alteration	<u> </u>		6. Channel Alteration	0-20	0	6. Channel Alteration		6. Channel Alteration	0-20
7. Frequency of Riffles (or bends)	0-20	18	7. Frequency of Riffles (or bends)	020		7. Frequency of Riffles (or bends)	0-20	0	7. Frequency of Riffles (or bends)	0-20 0	7. Frequency of Riffles (or bends)	0-20
8. Bank Stability (LB & RB)	0-20	18	8. Bank Stability (LB & RB)	V-20		8. Bank Stability (LB & RB)	0-20	0	8. Bank Stability (LB & RB)	, _,	8. Bank Stability (LB & RB)	0-20
Vegetative Protection (LB & RB) Riparian Vegetative Zone Width (LB & RB)	0-20 0-20	14	Vegetative Protection (LB & RB) Region 10. Riparian Vegetative Zone Width (LB & RB)	0-20 0 0		Vegetative Protection (LB & RB) Regetative Zone Width (LB & RB)	0-20	0	Vegetative Protection (LB & RB) Riparian Vegetative Zone Width (LB & RB)	0-20 0 0-20 0	Vegetative Protection (LB & RB) Riparian Vegetative Zone Width (LB & RB)	0-20
Total RBP Score	Suboptimal	157	Total RBP Score	Poor 0		Total RBP Score	Poor	0	Total RBP Score	Poor 0	Total RBP Score	Poor 0
Sub-Total		0.785	Sub-Total	0		Sub-Total		0	Sub-Total	0	Sub-Total	0
CHEMICAL INDICATOR (Applies to Intermitte	ent and Perennial S	treams)	CHEMICAL INDICATOR (Applies to Intermitten	t and Perennial Streams)		CHEMICAL INDICATOR (Applies to Intermi	ittent and Perennia	l Streams)	CHEMICAL INDICATOR (Applies to Intermitten	t and Perennial Streams)	CHEMICAL INDICATOR (Applies to Intermitte	ent and Perennial Streams)
WVDEP Water Quality Indicators (Genera	al)		WVDEP Water Quality Indicators (General)			WVDEP Water Quality Indicators (Gene	ral)		WVDEP Water Quality Indicators (General)		WVDEP Water Quality Indicators (Genera	an a
Specific Conductivity			Specific Conductivity	0		Specific Conductivity	,		Specific Conductivity		Specific Conductivity	.,
<=99 - 90 points	0-90	0.038		0-90			0-90	0	-	0-90		0-90
pH			рН			рН			рН		рН	
6080-00	0-80	7.12		5-90 O-1 O			5-90	1 0		5-90 0-1 0		5-90 0-1
6.0-8.0 = 80 points			DO			DO			DO		DO	
B0	10.00	45	50	0		<u> </u>	40.00	0		40.00	B0	10.00
>5.0 = 30 points	10-30	15		10-30			10-30			10-30		10-30
Sub-Total		1	Sub-Total	0		Sub-Total		0	Sub-Total	0	Sub-Total	0
BIOLOGICAL INDICATOR (Applies to Interm	ittent and Perennial	l Streams)	BIOLOGICAL INDICATOR (Applies to Intermitt	ent and Perennial Streams)		BIOLOGICAL INDICATOR (Applies to Inte	ermittent and Pere	ennial Streams)	BIOLOGICAL INDICATOR (Applies to Intermi	ttent and Perennial Streams)	BIOLOGICAL INDICATOR (Applies to Interr	mittent and Perennial Streams)
WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)		WV Stream Condition Index (WVSCI)	
01	0-100 0-1	72.8		0-100 0-1			0-100 0-	1 0		0-100 0-1 0		0-100 0-1
Good Sub-Total		0.728	Sub-Total	0		Sub-Total		0	Sub-Total	0	Sub-Total	0
		<u>"</u>		"				<u>'</u>		<u> </u>	<u> </u>	
PART II - Index and L	Jnit Score		PART II - Index and	Unit Score		PART II - Index a	nd Unit Score		PART II - Index and Un	it Score	PART II - Index and L	Jnit Score
Index	Linear Feet	Unit Score	Index	Linear Feet Unit Score		Index	Linear Fee	unit Score	Index	Linear Feet Unit Score	Index	Linear Feet Unit Score
0.838	29	24.2923333	0	0 0		0	0	0	0	0 0	0	0 0

		(See instruction p		- Impact Factors It values for MITIGATIO	N BANKING and I	ILF)			
Temp	oral Loss-Construction	(<u> </u>	-term Protection		
*Note: Reflects duration of aquatic function		an impact (debit) and completion of			% Add. Mitigation	on and Monitoring Period		-Term Protection (Years)	
Years	, ,	0							
Sub-Total		0							
	mporal Loss-Maturity				0 + 5/	10 Year Monitoring		101	
*Note: Period between completion of compensato to function (i.e. maturity of tree stratum to provid					Sub-Total			0	
to ranction (i.e. maturity of tree stratum to provid	corridor).	within riparian stream of wettand buller				PART IV - Index	to Unit Score Cor	nversion	
2/ 1 1 1 1 1 1		1 -			Final Index Score	Linear Feet	Unit Score	ILF Costs	
% Add. Mitigation		Temporal Loss-Maturity (Years)			(Debit)	00	(Debit)	(Offsetting Debit	
					0.837666667	29	24.29233333	\$19,433.87	/
0% Sub-Total		0							
Sub-1 otal		U							
		DARTV	. Composicon of II	nit Coores and Drainate	nd Dolongo				
		PARIV	- Companson of U	nit Scores and Projecte	eu Dalalice				
Final Unit Score (Debit) [No Net Loss Value]	24.29233333	Mitigation Existing Condition - Baseline (Credit)		Mitigation Projected at Five Years Post Completion (Credit)		Mitigation Projected at Ten Years Post Completion (Credit)		Mitigation Projected At Maturity (Credit)	
FINAL PROJECTED NET BALANCE					0		0		0
		D	Part VI Mitigation (Considerations (Incenti	wool				
			art vi - Miligation C	Considerations (Incenti	ves)				
	Extent of Stream Renal handout to determine the collace an "X" in the appropriate	correct Restoration Levels (below) for your pr	roject		*Note ¹ : Referen	ce Instructional handout for the def *Note ² : Enter the buffer width for		ne Mitigation Extents and Type Bank and Right Bank)	es (below)
Restoration Level 2							Left Bank	<u> </u>	
Restoration Level 3				-	Buffer Width				
10301au011 Level 3]		0-50 51-150		None None	
					Buffer Width	51-150	Right Ban		
				_	_ 3.1.0.	0-50	7.1.g.1.t Dull	None	
Compensatory Mitigation Plan incorpo						51-150		None	
*Note: HUC 12-based watershed	approach required to obtain Strea	am Restoration incentive	No	I	Average Buffer Width/Side	0			
Site		Impact Unit Yield (Debit)	Mitigation Unit Yield (Credit)				Stra	ight Preservation Ratio (v2.1, Sept 2015)	
S-B62		24.29233333	#DIV/0!			Final Mitigation Unit Yield			
			l	1		#DIV/0!			

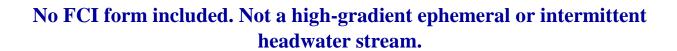
STREAM ID S-B62	STREAM NAME Narrows Run									
LAT 38.642046 LONG -80.484571	DATE 05/06/2015									
CLIENT MVP	PROJECT NAME Mountain Valley Pipeline									
INVESTIGATORS E. Foster, K. Lamontagne, C	INVESTIGATORS E. Foster, K. Lamontagne, C. Ansari									
FLOW REGIME Perennial Intermittent Ephemeral	WATER TYPE TNW RPW ⊻ NRPW									

i elelillai =	_ 11110111111110	nt <u> — Epnem</u>	erai INVV	RPW —	NRPW —	
_						
			Measurements		Stream Erosion ✓ None Moderate	Цооли
		·	k Width: 30.0 ft		<u>✓ None</u> Moderate	пеачу
		Top of Ban	=		Artificial, Modified or Char	nnelized
		LB <u>5.0</u>	ft RB <u>15.0</u>	<u>ft</u>	Yes _ <u>✔</u> No	
CHANNEL FE	ATURES	Water Dep	th: 3.00 in		Dam PresentYes _	✓ No
		Water Widt	th: 15.0 ft			_
		High Water	Mark: <u>7.0 in</u>		Sinuosity <u>v</u> Low	Medium High
		Flow Direct	tion: Northeast		Gradient	
						✓ Severe
		\\/-4 D	4		(0.5/100 ft (2 ft/100 ft)	,
		Water Pres No wate	senτ r, stream bed dry		Proportion of Reach Repre Morphology Types	esented by Stream
			bed moist		Riffle 40 % Run 40	%
FLOW		Standin	•		Pool 20 %	
CHARACTER	ISTICS	<u>✓</u> Flowing	water		Turbidity	
		Velocity			<u>✓</u> ClearSlightly	turbidTurbid
		Fast	✓ Moderate		OpaqueStained	
		Slow			Other	
INOR		STRATE CO add up to 10	MPONENTS	_	MPONENTS p to 100%)	
Substrate	`		% Composition in	Substrate		% Composition in
Туре	Diame	ter	Sampling Reach		Characteristic	Sampling Area
Bedrock			70	Detritus	sticks, wood, coarse	
Boulder		mm (10") 10		Dountad	plant materials (CPOM)	10
Cobble		nm (2.5"-10") 10		Muck-Mud	black, very fine organic	
Gravel		(0.1"-2.5")	10		(FPOM)	
Sand		nm (gritty)				
Silt		0.06 mm		Marl	grey, shell fragments	
Clay	< 0.004 1	mm (slick)			In all a set a file and a section and to see	(2)
		✓ Forest	ant Surrounding Lar Commer		Indicate the dominant type ✓ Trees Shrub	
		Field/Pa				iceous
WATERCHER		Agricult	tural Residen	tial	Floodplain Width	
WATERSHED FEATURES		Other:				rate 15-30ft
		Canopy Co	over		Narrow <16ft	
		Partly o		aded	Wetland PresentYes	✓ No
		Shaded	Open		Wetland ID	<u> </u>
		Indicate th	e dominant type and	d record the d	lominant species present	
AQUATIC VE	GETATION		_	Rooted subme	<u> </u>	tingFree floating
		Floating	g algae	Attached algae	e 	
		1				
MACROINVERTEBRATE:						
OR OTHER	DIVA153					
WILDLIFE OBSERVED/C						
OBSERVATION NOTES	NS AND					

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (FRONT)

STREAM NAME W-B62	LOCATION Webster County, WV				
STATION # RIVERMILE	STREAM CLASS Perennial				
LAT <u>38.643910</u> LONG <u>-80.485213</u>	RIVER BASIN Outlet Right Fork Holly River				
STORET#	AGENCY Tetra Tech				
INVESTIGATORS C. Vileno, C. Stoliker					
FORM COMPLETED BY C. Vileno	DATE 11/10/2016 TIME 12:15pm	REASON FOR SURVEY SWVM			

	Habitat		Condition	ı Category		
	Parameter	Optimal	Suboptimal	Marginal	Poor	
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are <u>not</u> new fall and <u>not</u> transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.	
	SCORE 17	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
ı sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.	
ted in	SCORE 17	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).	
ıram	SCORE 13	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
P ₂	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.	
	SCORE 11	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.	
	SCORE 14	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	


HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

	II-1:4-4		Condition	Category			
	Habitat Parameter	Optimal	Suboptimal	Marginal	Poor		
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.		
	SCORE 19	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
ding reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.		
amp	SCORE 16	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.		
e ev	SCORE 9 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0		
to p	SCORE 9 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0		
Parameters	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.		
	SCORE 9 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0		
	SCORE 9 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0		
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.		
	SCORE 7 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0		
	SCORE 7 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0		

Total Score 157

Insects	Count	Tolerance	TV	Insects	Count	Tolerance	TV	Non-Insects	Count	Tolerance	TV	1	
Ephemeroptera	•	•	11	Odonata	•	•	1	Crustacea		•	0		
Ameletidae		2	0	Aeshnidae		3	0	Asellidae		7	0	1	
Baetidae		4	0	Calopterygidae		6	0	Cambaridae		5	0	1	
Beatiscidae		4	0	Coenagrionidae		7	0	Gammaridae		5	0	Ī	
Caenidae		5	0	Cordulegastridae		3	0	Palaemonidae		5	0		
Ephemerellidae		3	0	Gomphidae	1	5	5	Annelida			0		
Ephemeridae	3	5	15	Lestidae		7	0	Hirudinea		10	0		
Heptageniidae	6	3	18	Libellulidae		7	0	Nematoda		10	0		
Isonychiidae		3	0	Coleoptera			0	Nematomorpha		10	0		
Leptophlebiidae	2	4	8	Chrysomelidae		7	0	Oligochaeta		10	0		
Potamanthidae		5	0	Dryopidae		5	0	Turbellaria			0		
Siphlonuridae		3	0	Dytiscidae		6	0	Turbellaria		7	0		
Tricorythidae		5	0	Elmidae		4	0	Bivalvia			0		
Plecoptera			1	Gyrinidae		5	0	Corbiculidae		6	0	1	
Capniidae		2	0	Haliplidae		7	0	Sphaeriidae		5	0	1	
Chloroperlidae		2	0	Hydrophilidae		7	0	Unionidae		4	0		
Leuctridae		2	0	Psephenidae		3	0	Gastropoda			0	1	
Nemouridae		2	0	Ptilodactylidae		5	0	Ancylidae		7	0		
Peltoperlidae		1	0	Hemiptera			0	Hydrobiidae		4	0		
Perlidae		1	0	Belostomatidae		8	0	Physidae		7	0		
Perlodidae		1	0	Corixidae		8	0	Planorbidae		5	0		
Pteronarcyidae	1	1	1	Gerridae		10	0	Pleuroceridae		5	0		
Taeniopterygidae		2	0	Hydrometridae		8	0	Viviparidae		5	0		
Trichoptera			2	Nepidae		8	0	Miscellaneous			0		
Brachycentridae		2	0	Notonectidae		8	0	Collembola		6	0		
Glossosomatidae		2	0	Megaloptera			0	Lepidoptera		5	0		
Helicopsychidae		3	0	Corydalidae		3	0	Neuroptera		5	0		
Hydropsychidae		5	0	Sialidae		6	0	Hydrachnidae		6	0		
Hydroptilidae	2	3	6	Diptera			1	Totals	Total r	number	16		
Lepidostomatidae		3	0	Athericidae		3	0	Totals	Total f	amilies	7		
Leptoceridae		3	0	Blephariceridae		2	0			Metric	calculations		
Limnephilidae		4	0	Ceratopogonidae		8	0		Richnes	SS		Additional metri	cs
Molannidae		3	0	Chironomidae		9	0	Total Taxa		7	31.8	Ephemeroptera Taxa	3
Philopotamidae		4	0	Culicidae		10	0	EPT Taxa		5	38.5	Plecoptera Taxa	1
Phryganeidae		4	0	Dixidae		6	0		Toleran	ce		Trichoptera Taxa	1
Polycentropodidae		5	0	Empididae		7	0	Biotic Index		3.63	91.1	Long-lived Taxa	4
Psychomiidae		3	0	Psychodidae		8	0	% Tolerant		0.0	100.0	Odonata Taxa	1
Rhyacophilidae		3	0	Ptychopteridae		8	0		Composit	ion		Diptera Taxa	1
Uenoidae		2	0	Simuliidae		6	0	% EPT Abundance		87.5	97.2	COET Taxa	5
	Total To	erance Value	58	Stratiomyidae		10	0	% Dominance		37.5	78.1	% Sensitive	56.3
West Vi	rginia Save O	ur Streams		Syrphidae		10	0	% Net-spinners	% Net-spinners 0.0		NA	% Chironomidae	0.0
601 57th Stre	601 57th Street, SE, Charleston WV 25304			Tabanidae		7	0	Stream (Condition Ind	ex	72.8	% Clingers	56.3
http://	/www.dep.w	v.gov/sos		Tipulidae	1	5	5	Integrity Ra	ating	Subo	ptimal	More diversity meas	sures

Note: There may be instances when families are collected that are not listed above. In those cases choose a similar family/tolerance value if known, to calculate the metrics. You should contact the WV Save Our Streams Coordinator to confirm your choice. Provide as much detail as possible so that family-level identification can be determined.

S-H107

Stream ID S-H107

Photograph Direction West

Date: 05/02/2015

Comments: 2015 stream identification.

Photograph Direction North

Date: 10/08/2019

Comments: 2019 stream identification confirmation.

STREAM ID S-H107	STREAM NAME UNT to Camp Creek
LAT 38.548459 LONG -80.540022	DATE 05/02/2015
CLIENT MVP	PROJECT NAME MVP
INVESTIGATORS A. Grech, S. Kelly, M. Whitte	en
FLOW REGIME Perennial — Intermittent ✓ Ephemeral —	WATER TYPE TNW — RPW ✓ NRPW —

Perennial _	Intermitte	nt <u> </u>	eral TNW	RPW <u>✓</u>	NRPW				
	1		leasurements		Stream Erosion				
		Top of Bank	k Width: 1.5 ft		✓ NoneModerate	Heavy			
		Top of Bank	k Height:		Artificial, Modified or Char	nnelized			
		LB <u>6.0</u> i	n RB <u>6.0</u>	<u>in</u>	Yes _ <u>✓</u> No				
CHANNEL FE	ATURES	Water Dept	h: <u>0.50 in</u>			c No			
		Water Widtl	n: <u>1.0 ft</u>		Dam PresentYes	<u>/_</u> No			
		High Water	Mark: 3.0 in		Sinuosity ✓ Low	Medium High			
		Flow Direct	ion: Northwest		Gradient				
						✓ Severe			
					(0.5/100 ft (2 ft/100 ft)	(10 ft/100 ft)			
	·	Water Pres			Proportion of Reach Repre	sented by Stream			
		No water Stream b	r, stream bed dry		Morphology Types Riffle 90 % Run	%			
		Standing			Pool 10 %	,,			
FLOW CHARACTER	ISTICS	✓ Flowing \	•						
O I A I A I A I A I A I A I A I A I A I	101100				Turbidity Clear✓_Slightly	turbidTurbid			
		Velocity Fast	Moderate		OpaqueStained				
		✓ Slow	Woderate		Other				
INOR	GANIC SUB	STRATE COI	MPONENTS	ORGANIC SUBSTRATE COMPONENTS					
		add up to 100		_	does not necessarily add u				
Substrate Type	Diame	ter	er % Composition in Sampling Reach		Characteristic	% Composition in Sampling Area			
Bedrock				Detritus	sticks, wood, coarse				
Boulder	> 256	mm (10")		Detilius	plant materials (CPOM)	20			
Cobble	64-256 m	m (2.5"-10")	5	Muck-Mud	black, very fine organic	10			
Gravel	2-64 mm	1 (0.1"-2.5")	10	Widok Wida	(FPOM)	10			
Sand	0.06-2n	nm (gritty)	35	Marl					
Silt		0.06 mm	30		grey, shell fragments				
Clay	< 0.004	mm (slick)	20						
		Predomina ✓ Forest	nt Surrounding Lar Commer		Indicate the dominant type	t type (Check one)			
		Field/Pa			Trees Shrubs Herbaceous				
		Agricult		tial					
WATERSHED FEATURES)	Other:			Floodplain Width Wide > 30ft Mode	rate 15-30ft			
1 2711 61126		Canany Ca			✓ Narrow <16ft	rate to con			
		Canopy Co Partly o		aded	_				
		Shaded			Wetland PresentYes Wetland ID	<u>√</u> No			
		Indicate the	a dominant type an	d record the c	dominant species present				
AQUATIC VE	GETATION			Rooted subme		ting Free floating			
		Floating	algae	Attached alga	e	<u> </u>			
		Information	listed on this form re	presents the d	ata collected in 2015. The st	ream was revisited			
	MACROINVERTEBRATES OR OTHER	on 10/08/20	119. The presence of	a stream char	nnel and OHWM was confirm	ied.			
WILDLIFE									
OBSERVED/C									
NOTES	_								

West Virginia Stream and Wetland Valuation Metric (SWVM) Version 2.1, September 2015

JSACE FILE NO./ Project Name: v2.1, Sept 2015)		Mount	tain Valley Pipeli SWVM v2.1			COORDINATES: imal Degrees)			-80.540050	WEATHER:	WEATHER: Rain, 50°			DATE:	November 9, 2	<u>!</u> 016	
IMPACT STREAM/SITE ID A (watershed size {acreage}, u				S-H107; UNT to Camp Form of Mitigation	Ť			MITIGATION STREAM CLASS./S (watershed size (acreage							Comments:	No/low water flow of survey. Unab sample water qua WVSCI	ole to
TREAM IMPACT LENGTH:	30	FORM O MITIGATIO		RESTORATION (Levels I-III)		ORDINATES: imal Degrees)	Lat.		Lon.		PRECIPITATION PAST 48	HRS:	0.40"		Mitigation Length:		
Column No. 1- Impact Existing	lumn No. 1- Impact Existing Condition (Debit)			Column No. 2- Mitigation Existing Condition - Baseline (Credit)				Column No. 3- Mitigation Pro Post Completion		ve Years		ation Projected at Ten Y mpletion (Credit)	ears		Column No. 5- Mitigation Projecte	d at Maturity (Credit)	
Stream Classification:	Interm	ittent	Stream	Classification:	Inte	rmittent		Stream Classification:		Intermittent	Stream Classification:	Inte	rmittent	Stre	eam Classification:	Intermittent	
Percent Stream Channel Slo	ре	8		Percent Stream Channel Slo	ppe			Percent Stream Channel Slo	pe	0	Percent Stream C	hannel Slope	0		Percent Stream Channel Slo	рре	0
HGM Score (attach da	ta forms):			HGM Score (attach	data forms):			HGM Score (attach	data forms)	:	HGM Score	(attach data forms):			HGM Score (attach data forms):		
		Average	· · ·			Average				Average			Average	.			verage
lydrology	0.24 0.26	0.40666667	Hydrolo	gy		0		Hydrology		0	Hydrology		0		drology		0
Biogeochemical Cycling Habitat	0.26	0.196666667	Habitat	chemical Cycling		U		Biogeochemical Cycling Habitat		•	Biogeochemical Cycling Habitat		•	Habi	ogeochemical Cycling bitat		U
PART I - Physical, Chemical and E	Biological Indica	ators		PART I - Physical, Chemical an		cators		PART I - Physical, Chemical an	_	Indicators	PART I - Physical, Che	mical and Biological Inc	icators		PART I - Physical, Chemical and	_	
	Points Scale Range	Site Score			Points Scale Range	Site Score			Points Scale R	ange Site Score		Points Scale Range	ge Site Score			Points Scale Range S	Site Score
PHYSICAL INDICATOR (Applies to all streams of	classifications)		PHYSIC	AL INDICATOR (Applies to all streams	classifications)			PHYSICAL INDICATOR (Applies to all streams	classifications)	PHYSICAL INDICATOR (Applies to	o all streams classifications)		PHY	YSICAL INDICATOR (Applies to all streams	classifications)	
SEPA RBP (High Gradient Data Sheet)				RBP (High Gradient Data Sheet)				USEPA RBP (High Gradient Data Sheet)			USEPA RBP (High Gradient Dat				EPA RBP (High Gradient Data Sheet)		
. Epifaunal Substrate/Available Cover	0-20	8		unal Substrate/Available Cover	0-20			Epifaunal Substrate/Available Cover	0-20		Epifaunal Substrate/Available C				pifaunal Substrate/Available Cover	0-20	
. Embeddedness . Velocity/ Depth Regime	0-20	2		ity/ Depth Regime	0-20			Embeddedness Velocity/ Depth Regime	0-20		Embeddedness Velocity/ Depth Regime	0-20 0-20			Embeddedness /elocity/ Depth Regime	0-20 0-20	
. Sediment Deposition	0-20	6		nent Deposition	0-20			Velocity/ Depth Regime Sediment Deposition	0-20		4. Sediment Deposition	0-20			Sediment Deposition	0-20	
. Channel Flow Status	0-20	7		nel Flow Status	0-20			5. Channel Flow Status	0-20		5. Channel Flow Status	0-20			Channel Flow Status	0-20	
. Channel Alteration	0-20 0-1	8		nel Alteration	0-20			6. Channel Alteration	0-20	0-1	6. Channel Alteration	0-20			Channel Alteration	0-20	
. Frequency of Riffles (or bends)	0-20	6	7. Frequ	ency of Riffles (or bends)	0-20			7. Frequency of Riffles (or bends)	0-20		7. Frequency of Riffles (or bends)			7. Fr	requency of Riffles (or bends)	0-20	
. Bank Stability (LB & RB)	0-20	10		Stability (LB & RB)	0-20			8. Bank Stability (LB & RB)	0-20		8. Bank Stability (LB & RB)	0-20			Bank Stability (LB & RB)	0-20	
. Vegetative Protection (LB & RB)	0-20	9	9. Veget	tative Protection (LB & RB)	0-20			9. Vegetative Protection (LB & RB)	0-20		Vegetative Protection (LB & RE				/egetative Protection (LB & RB)	0-20	
Riparian Vegetative Zone Width (LB & RB)	0-20	9		rian Vegetative Zone Width (LB & RB)	0-20			10. Riparian Vegetative Zone Width (LB & RB)	0-20		Riparian Vegetative Zone Width				Riparian Vegetative Zone Width (LB & RB)	0-20	
otal RBP Score	Marginal	72		BP Score	Poor	0		Total RBP Score	Poor	0	Total RBP Score	Poor	0		al RBP Score	Poor	0
Sub-Total CHEMICAL INDICATOR (Applies to Intermittent	and Perennial Stre	0.36 eams)	Sub-Tot CHEMIC	al CAL INDICATOR (Applies to Intermitter	t and Perennial Stre	eams)		Sub-Total CHEMICAL INDICATOR (Applies to Intermitter	t and Perennia	l Streams)	Sub-Total CHEMICAL INDICATOR (Applies	to Intermittent and Perennial	Streams)		p-Total EMICAL INDICATOR (Applies to Intermitten	and Perennial Streams)	0
WDEP Water Quality Indicators (General)			WVDER	Water Quality Indicators (General)			WVDEP Water Quality Indicators (General)			WVDEP Water Quality Indicators (General)			WVDEP Water Quality Indicators (General)				
Specific Conductivity				Conductivity				Specific Conductivity			Specific Conductivity	s (General)			ecific Conductivity		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0-90			,	0-90				0-90		.,	0.00			,	0-90	
100-199 - 85 points • H			рН		0-90			рН			рН	0-90		pH			
5.6-5.9 = 45 points	0-80		20		5-90 0-1			DO.	5-90	0-1 5.6	DO.	5-90		-		5-90 0-1	
	10-30		טט		10-30			<u> Бо</u>	10-30		DO	10-30		סם		10-30	
Sub-Total			Sub-Tot	al	1	0		Sub-Total		0	Sub-Total		0	Sub-	o-Total		0
BIOLOGICAL INDICATOR (Applies to Intermitte	ent and Perennial S	Streams)	BIOLOG	GICAL INDICATOR (Applies to Intermit	tent and Perennial S	Streams)		BIOLOGICAL INDICATOR (Applies to Interm	ittent and Per	ennial Streams)	BIOLOGICAL INDICATOR (Appl	es to Intermittent and Pere	nnial Streams)	ВЮ	DLOGICAL INDICATOR (Applies to Interm	ttent and Perennial Stre	eams)
/ Stream Condition Index (WVSCI)		WV Stre	eam Condition Index (WVSCI)				WV Stream Condition Index (WVSCI)			WV Stream Condition Index (W	/SCI)		wv	Stream Condition Index (WVSCI)			
0	0-100 0-1				0-100 0-1				0-100	0-1		0-100 0-				0-100 0-1	
Sub-Total	l l	0	Sub-Tot	al	1	0		Sub-Total	1I	0	Sub-Total	1 1	0	Sub-	o-Total		0
						_								-			
PART II - Index and Ur	it Score			PART II - Index and	Unit Score			PART II - Index and	Unit Score		PART II - Ir	PART II - Index and Unit Score			PART II - Index and Unit Score		
Index	Linear Feet	Unit Score		Index	Linear Feet	Unit Score		Index	Linear Fe	eet Unit Score	Index	Linear Fee	Unit Score		Index	Linear Feet Uni	nit Score
0.388	30	11.65		0	0	0		0	0	0	0	0	0		0	0	0

		(See instruction page		 Impact Factors It values for MITIGATIO 	N BANKING and I	LF)			
Temp	oral Loss-Construction					Long	term Protection		
*Note: Reflects duration of aquatic functional loss		ct (debit) and completion of compensatory			% Add. Mitigati	ion and Monitoring Period		-Term Protection (Years)	
Years									
Sub-Total		0							
	mporal Loss-Maturity				0 + 5/	10 Year Monitoring		101	
*Note: Period between completion of compensator function (i.e. maturity of tree stratum to provide			Sub-Total			0			
lunction (i.e. maturity of tree stratum to provide	corridor).	within riparian stream of wettand burier				PART IV - Index	to Unit Score Cor	nversion	
					Final Index Score	Linear Feet	Unit Score	ILF Costs	
% Add. Mitigation		Temporal Loss-Maturity (Years)			(Debit)		(Debit)	(Offsetting Debit	
					0.388333333	30	11.65	\$9,320.00	
0%		0							
Sub-Total		0							
		PART V	- Comparison of U	nit Scores and Projecte	ed Balance				
		Mitigation Eviating		Mitigation Deciseted at		Mitigation Drainated at Tan		Mitigation Drainated At	
Final Unit Score (Debit)	11.65	Mitigation Existing Condition - Baseline		Mitigation Projected at Five Years		Mitigation Projected at Ten Years		Mitigation Projected At Maturity	
[No Net Loss Value]		(Credit)		Post Completion (Credit))	Post Completion (Credit)		(Credit)	
FINAL PROJECTED MET DALANCE									
FINAL PROJECTED NET BALANCE					0		0		0
		Р	art VI - Mitigation	Considerations (Incentiv	ves)				
	Extent of Stream Re	estoration				Fistended	Upland Buffer Zon		
		correct Restoration Levels (below) for your pr	oject		*Note ¹ : Referen	Extended note Instructional handout for the de			s (below)
	Place an "X" in the appropriate	category (only select one).				*Note ² : Enter the buffer width for			
Restoration Level 1						*Note*: Select ti	ne appropriate mitigation	i type	
Restoration Level 2					Buffer Width		Left Banl	<	
Restoration Level 3						0-50		None	
				•	D (6 MC H)	51-150	51.175	None	
					Buffer Width	0-50	Right Ban	None	
Compensatory Mitigation Plan incorpo						51-150		None	
*Note: HUC 12-based watershed	approach required to obtain Strea	am Restoration incentive	No	J	Average Buffer Width/Side	0			
Impact			Mitigation Unit]			Stra	ight Preservation Ratio	
Site		Unit Yield (Debit)	Yield (Credit)				Otra	(v2.1, Sept 2015)	
0.114.07		44.05	#DIV/01	•		Final Mitiration Unit Vist			
S-H107 11.65			#DIV/0!]		Final Mitigation Unit Yield			
						#DIV/0!			

FCI Calculator for the High-Gradient Headwater Streams in eastern Kentucky and western West Virginia HGM Guidebook

To ensure accurate calculations, the <u>UPPERMOST STRATUM</u> of the plant community is determined based on the calculated value for V_{CCANOPY} (≥20% cover is required for tree/sapling strata). Go to the SAR Data Entry tab and enter site characteristics and data in the yellow cells. For information on determining how to split a project into SARs, see Chapter 5 of the Operational Draft Regional Guidebook for the Functional Assessment of High-gradient Ephemeral and Intermittent Headwater Streams in Western West Virginia and Eastern Kentucky (Environmental Laboratory U.S. Army Corps of Engineers 2010).

Project Name: MVP

Location: S-H107 Sampling Date: 11/9/2016

Project Site Before Project

Subclass for this SAR:

Intermittent Stream

Uppermost stratum present at this SAR: SAR number:

Shrub/Herb Strata

Functional Results Summary:

Enter Results in Section A of the Mitigation Sufficiency Calculator

Function	Functional Capacity Index
Hydrology	0.24
Biogeochemical Cycling	0.26
Habitat	0.09

Variable Measure and Subindex Summary:

Variable	Name	Average Measure	Subindex
V _{CCANOPY}	Percent canpoy over channel.	Not Used, <20%	Not Used
V_{EMBED}	Average embeddedness of channel.	1.93	0.44
V _{SUBSTRATE}	Median stream channel substrate particle size.	0.10	0.05
V _{BERO}	Total percent of eroded stream channel bank.	40.00	0.86
V_{LWD}	Number of down woody stems per 100 feet of stream.	0.00	0.00
V _{TDBH}	Average dbh of trees.	Not Used	Not Used
V _{SNAG}	Number of snags per 100 feet of stream.	0.00	0.10
V _{SSD}	Number of saplings and shrubs per 100 feet of stream.	15.00	0.23
V _{SRICH}	Riparian vegetation species richness.	3.00	1.00
V _{DETRITUS}	Average percent cover of leaves, sticks, etc.	20.00	0.24
V_{HERB}	Average percent cover of herbaceous vegetation.	12.22	0.16
V _{WLUSE}	Weighted Average of Runoff Score for Catchment.	0.44	0.46

	High-G	Gradient	Headwat				entucky a alculator		tern Wes	t Virgini	a
	Team:	C. Vileno, C	C. Stoliker		3.10. 0.10				M Northing:	38.548463	
Pro	oject Name:						•		TM Easting:		
	Location:							-	npling Date:		
SA	AR Number:		Reach	Length (ft):	100	Stream Ty	/pe: Interi	mittent Stream			•
	Top Strata:	Shi	rub/Herb Str	rata	(determined	d from perce	ent calculate	d in V _{CCANOI}	_{PY})		
Site a	and Timing:	Project Site					Before Proje	ct			•
Sample	Variables •	1-4 in strea	m channel								
1		Average percent cover over channel by tree and sapling canopy. Measure at no fewer than 10 roughly equidistant points along the stream. Measure only if tree/sapling cover is at least 20%. (If less than 20%, enter at least one value between 0 and 19 to trigger Top Strata choice.) To cent cover measurements at each point below:									
	List the per				oint below:					1	
	10	20	20	20	10	10	20	10	20	20	
2	V_{EMBED}								ghly equidist percentage		1.9
									ter the rating		
									ents, use a r		
			-	osed of bed					•	J	
						_		d from Platt	s, Megahan,	, and	
		Minshall 19	83)			·					
		Rating	Rating Des	cription							
		5	<5 percent	of surface c	overed, suri	rounded, or	buried by fir	e sediment	(or bedrock)	
		4					d, or buried b				
		3					ed, or buried				
		2					ed, or buried			l ourfood)	
	List the ratio	ngs at each			covered, su	rrounaea, o	r buried by i	ine seaimer	nt (or artificia	ii suriace)	
	2	3	2	2	3	3	2	2	2	2	
	2	2	1	1	1	1	1	1	2	3	
	3	3	2	2	2	2	2	2	1	1	
	3	3								'	
3							it no fewer the ed in V _{EMBED}		hly equidista	ant points	0.10 in
	Enter partic	le size in ind	ches to the r	nearest 0.1 i	inch at each	point below	/ (bedrock sl	hould be co	unted as 99	in, asphalt	
		as 0.0 in, sa					(,,	
	1.00	0.08	0.20	0.10	0.10	0.08	0.08	0.25	0.08	0.20	
	0.20	0.20	0.20	0.20	0.10	0.10	0.08	0.08	0.25	0.25	
	0.25	0.25	0.10	0.10	0.08	0.08	0.08	0.05	0.05	0.25	
4	V_{BERO}	Total perce	nt of eroded	stream cha	nnel bank.	Enter the to	tal number o	of feet of erd	oded bank o	n each side	
	BLIVO		al percentag						for the stream		40 %
			Left Bank:	20) ft		Right Bank:	20) ft		

Sampl	e Variables	5-9 within t	he entire r	iparian/buff	fer zone adj	acent to th	e stream cha	annel (25 f	eet from ea	ch bank).			
5	V_{LWD}	stream read	ch. Enter th	ne number f	rom the entir		ter and 36 inc				0.0		
		per 100 ree	t or stream	will be calcu		f downed w	oody stems:		0				
6	V_{TDBH}	Average db	h of trees (measure on			ng cover is at	least 20%)	. Trees are	at least 4	NetHead		
		inches (10	cm) in diam	neter. Enter	tree DBHs in	n inches.					Not Used		
				nents of indi	vidual trees	(at least 4 ir	n) within the b	ouffer on ea	ach side of				
		the stream	below: Left Side			Right Side							
			Leit Side			4	4	3	3	0			
						7	7		J	0			
7	V_{SNAG}	Number of	snags (at le	east 4" dbh a	and 36" tall)	per 100 fee	t of stream.	Enter numb	er of snags	on each			
	011/10				it per 100 fee				· ·		0.0		
			Left Side		0		Right Side:		0				
8	V_{SSD}	Number of			-	up to 4 inch	nes dbh) per		~	asure only if			
						and shrubs	s on each sid	e of the str	eam, and the	e amount	15.0		
		per 100 ft o	it stream wi Left Side	Il be calcula	ted.		Right Side:		15				
9	V _{SRICH}	Riparian ve			ess per 100 f	eet of strea	m reach. Ch		-	from			
							ve species pr		strata. Spe	cies	3.00		
			p 1 = 1.0	and the subi	ndex will be	calculated	from these da		2 (1 0)				
2	Acer rubru		p i = i.u	Magnolia t	rinetala		Ailanthus ai		2 (-1.0)	Lonicera ja	nonica		
	Acer sacc			_						Lonicera ta			
	Acer sacc			Nyssa sylv	n arboreum		Albizia julib						
Ш				,			Alliaria petid	Jiala		Lotus corni			
	Asimina tr			Prunus se			Alternanthe			Lythrum sa			
		ghaniensis		Quercus a			philoxeroide			Microstegiun			
Ш	Betula len	ta		Quercus c	occinea		Aster tatario	cus		Paulownia	tomentosa		
Ш	Carya alba	а		Quercus ir	mbricaria	Ш	Cerastium f	ontanum		Polygonum (cuspidatum		
	Carya gla	bra		Quercus p	rinus		Coronilla va	aria		Pueraria m	ontana		
	Carya ova	Carya ovalis 🖳 Quercus rubra		\Box	Elaeagnus ui	mbellata		Rosa multi	flora				
	Carya ova	Carya ovata Quercus velutina			Lespedeza	bicolor		Sorghum h	alepense				
	Cornus flo	Cornus florida Sassafras albidum			Lespedeza	cuneata		Verbena bi	asiliensis				
4	Fagus gra	gus grandifolia L Tilia americana		Ш	Ligustrum ob	tusifolium							
Ш	Fraxinus a	americana		Tsuga can	adensis		Ligustrum s	inense					
	Liriodendro	n tulipifera		Ulmus am	ericana		-						
		acuminata	_										
_													
		3	Species in	Group 1				0	Species in	Group 2			

0.00 % 112 %
12 %
0.44
0.44
0.44
0.44
0.44
0.44
unning
ercent ot >100)
80
100

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (FRONT)

STREAM NAME S-H107	LOCATION Webster Co., WV				
STATION # RIVERMILE	STREAM CLASS Intermittent				
Lat <u>38.548463</u> long <u>-80.540050</u>	RIVER BASIN Elk River				
STORET#	AGENCY Tetra Tech				
INVESTIGATORS C. Vileno, C. Stoliker					
FORM COMPLETED BY C. Stoliker	DATE 11/09/2016 TIME 5:30pm	REASON FOR SURVEY			

	Habitat	Condition Category				
Parameters to be evaluated in sampling reach	Parameter Parameter	Optimal	Suboptimal	Marginal	Poor	
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.	
	SCORE 8	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.	
	score 2	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast- shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/depth regime (usually slow-deep).	
ıram	SCORE 7	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
Pa	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.	
	SCORE 6	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.	
	SCORE 7	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

	Habitat		Condition Category			
Parameters to be evaluated broader than sampling reach	Parameter	Optimal	Suboptimal	Marginal	Poor	
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in area of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.	
	_{SCORE} 8	20 19 18 17 16	15 14 13 12	1 10 9 8 7 6	5 4 3 2 1 0	
	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided the width of the stream between 7 to 15.		Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.	
	SCORE 6	20 19 18 17 16	15 14 13 12	1 10 9 8 7 6	5 4 3 2 1 0	
	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas erosion mostly healed over. 5-30% of bank in reach has areas of erosi	areas of erosion; high erosion potential during	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.	
eva	SCORE 5 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0	
to be	SCORE 5 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0	
Parameters	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one clas of plants is not well-represented; disruption evident but not affectin full plant growth poten to any great extent; mo than one-half of the potential plant stubble height remaining.	patches of bare soil or closely cropped vegetation common; less than one- ial half of the potential plant	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.	
	SCORE 2 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0	
	SCORE 7 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0	
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacte zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.	
	SCORE 1 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0	
	SCORE 8 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0	

Total Score 72

No / low flow at time of survey. Unable to sample water quality or $\ensuremath{\mathbf{WVSCI}}$.