S-JJ16a ## Ephemeral Stream Assessment Form (Form 1a) Unified Stream Methodology for use in Virginia | For use in ephemeral streams | | | | | | | | | | | | |---|--------------------------|----------|-----------------|----------|-----------|------|----------------------|------------------|--|--|--| | Project # | Project Name | Locality | Cowardin Class. | HUC | Date | SAR# | Impact/SAR
length | Impact
Factor | | | | | | Mountain Valley Pipeline | Giles | R6 | 05050002 | 8/23/2017 | | 45 | 1 | | | | | Name(s) of Evaluator(s) Stream Name and Information | | | | | | | | | | | | James Cook, Emily Foster S-IJ16-a 2. RIPARIAN BUFFERS: Assess both bank's 100 foot riparian areas along the entire SAR. (rough measurements of length & width may be acceptable) | | | Cor | ditional Cate | gory | | | | NOTES>> Ma | ajority of the | 1 | |---|---|--|--|---|--|---|---|---|----------------|---| | | Optimal | Subo | ptimal | Mar | ginal | Po | oor | impact area | | | | Riparian
Buffers | Tree stratum (dbh > 3 inches) pr
with > 60% tree canopy cover a
non-maintained understory. We
areas. | to 60% tree
lands canopy cover and
containing both
herbaceous and
shrub layers or a
non-maintained
understory. | with tree stratum
(dbh > 3 inches)
present, with
>30% tree canopy | High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. | Low Wargina: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh > 3 inches) present, with https://doi.org/ | vegetated non-
maintained area,
recently seeded
and stabilized, or
other comparable
condition. | Low Poor:
Impervious
surfaces, mine
spoil lands,
denuded surfaces,
row crops, active
feed lots, trails, or
other comparable
conditions. | the permanent road,
though it does cross
perpandicular to the
asset. Bed was dry
during the early spring.
At area of impact, the | | | | Condition | | High | Low | High | Low | High | Low | road surface | | | | Scores | 1.5 | 1.2 | 1.1 | 0.85 | 0.75 | 0.6 | 0.5 | | | | | 1. Delineate riparian areas along each stream bank into Condition Categories and Condition Scores using the descriptors. 2. Determine square footage for each by measuring or estimating length and width. Calculators are provided for you below. 3. Enter the % Riparian Area and Score for each riparian category in the blocks below. Blocks equal 100 | | | | | | | | | | | | D'al (David | % Riparian Area> 80% | 20% | | | | | 100% | | | | | Right Bank | Score > 1.2 | 0.5 | | | | | | | | | | C | | | | | | | | | Scores*0.01)/2 | | | Left Bank | % Riparian Area> 70% | | | | | | 100% | Rt Bank CI > | 1.06 | | | | Score > 1.1 | 0.85 | | | | | | Lt Bank CI > | 1.03 | | REACH CONDITION INDEX and STREAM CONDITION UNITS FOR THIS REACH NOTE: The CIs and RCI should be rounded to 2 decimal places. The CR should be rounded to a whole number. THE REACH CONDITION INDEX (RCI) >> 0.52 RCI= (Riparian CI)/2 COMPENSATION REQUIREMENT (CR) >> 23 CR = RCI X LF X IF INSERT PHOTOS: | DESCRIBE PROPOSED IMPACT: | | | |---------------------------|--|--| ## S-H42 | | | Stre | eam A | ssess | ment | Form | (Forr | n 1) | | | | |---|--|--|---|---|---|---|---|---|---|------------------|------| | | | | | | | or use in Virg | | | | | | | | | | For use i | n wadeable chan | | s intermittent or p | perennial | | Impact/SAD | Impact | | | Project # | Pro | oject Name | | Locality | Cowardin
Class. | HUC | Date | SAR# | Impact/SAR
length | Impact
Factor | | | | | n Valley Pi | | Pittsylvania | | 030101050104 | 11/16/2016 | | 15 | 1 | | | Name | e(s) of Evaluator | (s) | | e and Informa | | | | | | | | | | J.Cook, E.Foster | | | | ent (Transco), | | | | | | | | 1. Channel Co | ondition: Assess the | he cross-secti | on of the stream a | | dition (erosion, age | . , | | | | | | | | Optima | al , | Subo | ptimal | | ginal | Po | oor | Sev | ere | | | | Want ! | ALLE BOOK OF THE SERVICE SERV | | ew areas of active | | less than Severe or stable than Severe | | ned/incised. | Deeply incised vertical/lateral in | | | | Channel
Condition | , | | erosion or unprotected banks. Majority of banks are stable (60-80%). Vegetative protection or natural rock prominent (60-80%) AND/OR Depositional features contribute to stability. The bankfull and low flow channels are well defined. Stream likely has access to bankfull benches, or | | Erosion may be proboth banks. Vegetar 60% of banks. So bevertical or unde 60% of stream is or Sediment may be toontribute instabil contribute to sforming/present. A channels have vegetable to both banks of the sediment | ower bank slopes. essent on 40-60% of tive protection on 40 streambanks may creat. AND/OR 40-overed by sediment. temporary/transient, ity. Deposition that tability, may be AND/OR V-shaped on the sand deposition on tax | widen further. Majority of both banks are near vertical. Erosion present on 60-80% of banks. Vegetative protection present on 20-40% of banks, and is insufficient to prevent erosion. AND/OR 60-80% of the stream is covered by sediment. Sediment is temporary/transient in nature, and contributing to instability. AND/OR V-shaped channels have vegetative protection is present on > 40% of the | | incision, flow contained within the banks. Streambed below average rooting depth, majority of banks or witcal/undercut. Vegetative protectic present on less than 20% of banks, is // not preventing erosion. Obvious banks on 80-100%. AND/OR Aggrading v-channel. Greater than 80% of streambed is covered by deposition. | | CI | | | | | | | features which con | ntribute to stability. | abs | diment deposition is
ent. | thread channels ar | w. | CI | | Score | 3 | | 2 | .4 | | 2 | 1 | .6 | 1 | | 2.4 | | Riparian
Buffers | Optima Tree stratum (dbh > 3 ir with > 60% tree canop non-maintained underst located within the rip | nches) present,
y cover and a
tory. Wetlands | High Suboptimal:
Riparian areas with
tree stratum (dbh >
3 inches) present,
with 30% to 60%
tree canopy cover
and containing both
herbaceous and
shrub layers or a | Low Suboptimal: Riparian areas with tree stratum (dh > 3 inches) present, with > 30% tree canopy cover and a maintained understory. Recent cutover (dense | High Marginal | and tree stratum,
hay production,
ponds, open water.
If present, tree | High Poor: Lawns,
mowed, and
maintained areas,
nurseries; no-till | Low Poor:
Impervious
surfaces, mine
spoil lands,
denuded surfaces,
row crops, active
feed lots, trails, or
other comparable
conditions. | | | | | | | | non-maintained understory. High | vegetation). | High | with <30% tree
canopy cover with
maintained
understory. | comparable condition. | Low | | | | | Condition
Scores | 1.5 | | 1.2 | 1.1 | 0.85 | 0.75 | 0.6 | 0.5 | | | | | 2. Determine squ | riparian areas along each stream bank into Condition Categories and Condition Scores using the descriptors. Ensure the sums square footage for each by measuring or estimating length and width. Calculators are provided for you below. of % Riparian | | | | | | | | | | | | 3. Enter the % Rip | iparian Area and Scor
% Riparian Area> | e for each ripa | arian category in t | ne blocks below. | | | Blocks e | 100% | | | | | Right Bank | % Riparian Area> | 1.5 | | | | | | 100% | | | | | | | | | | | | | | CI= (Sum % RA * S | cores*0.01)/2 | | | Left Bank | % Riparian Area> | 100% | | | | | | 100% | Rt Bank CI > | 1.50 | CI | | Score > 1.5 Lt Bank Cl > 1.50 | | | | | | | | | | iks and | 1.50 | | | SAV; riffle poole com | plexes, stable | reatures. | Conditional Cate | | | | | | | | | banks; root mats; | | | ı | | | | _ | | water velocit | | | | | Optima Habitat elements are ty in greater than 50% of | rpically present | Stable habitat ele
present in 30-50%
adequate for i | Conditiona
ptimal ments are typically of the reach and are maintenance of ations. | Stable habitat eler
present in 10-30% adequate for r | ginal ments are typically of the reach and are maintenance of ations. | Habitat elements
lacking or are u
elements are typic | s listed above are
nstable. Habitat
ally present in less
of the reach. | water velocit
depths. Riffle
complexes. | | CI | | Stream Impact Assessment Form Page 2 | | | | | | | | | | | | |--|--|--|-----------------------|-----------|--|--|--|--------------|--------------|--|--| | Project # | Project # Applicant Locality Cowardin Class. HUC Date Data Point SAR length Impact Factor | 500 | 1 | | | | 4. CHANNEL ALTERATION: Stream crossings, riprap, concrete, gabions, or concrete blocks, straightening of channel, channelization, embankments, spoil piles, constrictions, livestock Conditional Category | | | | | | | | | | | | | | Negligible | Mir | nor | Mode | | Se | vere | | | | | | Channel
Alteration | Channelization, dredging, alteration, or hardening absent. Stream has an unaltered pattern or has naturalized. | Less than 20% of
the stream reach is
disrupted by any of
the channel
alterations listed in
the parameter
guidelines. | the channel | | 60 - 80% of reach is disrupted by any of the channel alterations listed in the parameter guidelines. If stream has been channelized, normal stable stream meander pattern has not recovered. | by any of the chan
in the parameter of
80% of banks sh | of reach is disrupted
nel alterations listed
guidelines AND/OR
nored with gabion,
or cement. | | | | | | SCORE | 1.5 | 1.3 | 1.1 | 0.9 | 0.7 | 0 |).5 | | | | | | | REACH (| CONDITION I | NDEX and S | TREAM CON | NDITION UNI | TS FOR THI | SREACH | | | | | | NOTE: The Cls and RO | CI should be rounded to 2 decimal places. Th | ne CR should be rounde | ed to a whole number. | | | | THE REACH | CONDITION IN | DEX (RCI) >> | | | RCI= (Sum of all CI's)/5 COMPENSATION REQUIREMENT (CR) >> 21 CR = RCI X LF X IF | DESCRIBE PROPOSED IMPACT: | | | |---------------------------|--|---| · | | | | |