Baseline Assessment – Stream Attributes

Reach S-A61 ROW (Pipeline ROW) Ephemeral Spread F Monroe County, West Virginia

Data	Included
Photos	✓
SWVM Form	✓
FCI Calculator and HGM Form	✓
RBP Physical Characteristics Form	✓
Water Quality Data	N/A – No flow
RBP Habitat Form*	✓
RBP Benthic Form	✓
Benthic Identification Sheet	N/A - No flow
Wolman Pebble Count	✓
Reference Reach Software Pebble Count Data	√
Longitudinal Profile and Cross Sections	✓

^{*}Modified RBP - No flow

Photo Type: US View, US Reach Location, Orientation, Photographer Initials: Upstream Reach, Upstream View, AAK/SM/TA

Photo Type: DS View, US Reach Location, Orientation, Photographer Initials: Upstream Reach, Downstream View, AAK/SM/TA

Photo Type: US View, Mid-Reach Location, Orientation, Photographer Initials: Mid-Reach Right of Way, Upstream View, AAK/SM/TA

Photo Type: DS View, Mid-Reach Location, Orientation, Photographer Initials: Mid-Reach Right of Way, Downstream View, AAK/SM/TA

Photo Type: RDB View, Mid-Reach
Location, Orientation, Photographer Initials: Mid-Reach Right of Way, Right Descending Bank View, AAK/SM/TA

Photo Type: LDB View, Mid-Reach
Location, Orientation, Photographer Initials: Mid-Reach Right of Way, Left Descending Bank View, AAK/SM/TA

Photo Type: US View, DS Reach Location, Orientation, Photographer Initials: Downstream Reach, Upstream View, AAK/SM/TA

Photo Type: DS View, DS Reach Location, Orientation, Photographer Initials: Downstream Reach, Downstream View, AAK/SM/TA

 $[&]quot;Q: \label{lem:conditions} \begin{subarray}{l} $"Q: \cite{Charleston} \cite{Conditions} \begin{subarray}{l} ASSESSMENT\ AND\ SURVEY\ PLAN \cite{O02} - Pre-Crossing\ Monitoring \cite{Spread}\ F\cite{S-A61}\ ROW" \end{subarray}$

West Virginia Stream and Wetland Valuation Metric (SWVM) Version 2.1, September 2017

USACE FILE NO./ Project Name: (v2.1, Sept 2015)		Mountain	n Valley Pipeline		ORDINATES: al Degrees)	Lat.	37.55932	Lon.	-80.710037	WEATHER:	Clear/Sunny 70 °F	DATE:	9/2/21	
IMPACT STREAM/SITE ID (watershed size {acreage}			S-A61 ROW UNT 1	o Slate Run ROV	N		MITIGATION STREAM CLASS. (watershed size {acreage					Comments:		
STREAM IMPACT LENGTH:	81	FORM OF MITIGATION:	RESTORATION (Levels I-III)		RDINATES: al Degrees)	Lat.		Lon.		PRECIPITATION PAST 48 HRS:		Mitigation Length:		
Column No. 1- Impact Existing	g Condition (Deb	oit)	Column No. 2- Mitigation Existing Co	ndition - Baseline	e (Credit)		Column No. 3- Mitigation Pr Post Completio		e Years	Column No. 4- Mitigation Project Post Completion (C		Column No. 5- Mitigation Projec	ted at Maturity (Cre	edit)
Stream Classification:	Ephei	meral	Stream Classification:			St	ream Classification:		0	Stream Classification:	0	Stream Classification:	0	
Percent Stream Channel SI	ope	19.8	Percent Stream Channel Slop	ю			Percent Stream Channel Si	ope	0	Percent Stream Channel Slo	pe 0	Percent Stream Channel S	Slope	0
HGM Score (attach d	ata forms):		HGM Score (attach d	ata forms):			HGM Score (attach	data forms):		HGM Score (attach dat	ta forms):	HGM Score (attach o	data forms):	
		Average			Average				Average		Average			Average
Hydrology Biogeochemical Cycling	0.48 0.18	0.253333333	Hydrology Biogeochemical Cycling		0		drology ogeochemical Cycling		0	Hydrology Biogeochemical Cycling	0	Hydrology Biogeochemical Cycling		0
Habitat PART I - Physical, Chemical and	0.1 Biological Indic	cators	Habitat PART I - Physical, Chemical and	Biological Indicat	tors	Ha	bitat PART I - Physical, Chemical a	nd Biological I	ndicators	Habitat PART I - Physical, Chemical and B	Biological Indicators	Habitat PART I - Physical, Chemical and	d Biological Indicat	tors
	Points Scale Range	Site Score		Points Scale Range	Site Score			Points Scale Ran	ige Site Score		Points Scale Range Site Score		Points Scale Range	Site Score
PHYSICAL INDICATOR (Applies to all stream:	s classifications)		PHYSICAL INDICATOR (Applies to all streams of	lassifications)		Pi	IYSICAL INDICATOR (Applies to all stream:	s classifications)		PHYSICAL INDICATOR (Applies to all streams of	classifications)	PHYSICAL INDICATOR (Applies to all stream	ns classifications)	
USEPA RBP (High Gradient Data Sheet)			USEPA RBP (Low Gradient Data Sheet)			US	SEPA RBP (High Gradient Data Sheet)			USEPA RBP (High Gradient Data Sheet)		USEPA RBP (High Gradient Data Sheet)		
Epifaunal Substrate/Available Cover	0-20		Epifaunal Substrate/Available Cover Description:	0-20			Epifaunal Substrate/Available Cover	0-20			0-20	Epifaunal Substrate/Available Cover	0-20	
Embeddedness Velocity/ Depth Regime	0-20 0-20	5	Pool Substrate Characterization Pool Variability	0-20			Embeddedness Velocity/ Depth Regime	0-20 0-20		Embeddedness Velocity/ Depth Regime	0-20 0-20	Embeddedness Velocity/ Depth Regime	0-20 0-20	
Sediment Deposition	0-20	4	4. Sediment Deposition	0-20		4.	Sediment Deposition	0-20		Sediment Deposition	0-20	4. Sediment Deposition	0-20	
5. Channel Flow Status	0-20		5. Channel Flow Status	0-20		5.	Channel Flow Status	0-20	1	5. Channel Flow Status	0-20	5. Channel Flow Status	0-20	
6. Channel Alteration	0-20	17	6. Channel Alteration	0-20			Channel Alteration	0-20		Channel Alteration	0-20	6. Channel Alteration	0-20	
7. Frequency of Riffles (or bends)	0-20		7. Channel Sinuosity	0-20			Frequency of Riffles (or bends)	0-20		7. Frequency of Riffles (or bends)	0-20	7. Frequency of Riffles (or bends)	0-20	
8. Bank Stability (LB & RB)	0-20	16	8. Bank Stability (LB & RB)	0-20			Bank Stability (LB & RB)	0-20		8. Bank Stability (LB & RB)	0-20	8. Bank Stability (LB & RB)	0-20	
Vegetative Protection (LB & RB) Riparian Vegetative Zone Width (LB & RB)	0-20 0-20	20	Vegetative Protection (LB & RB) Riparian Vegetative Zone Width (LB & RB)	0-20			Vegetative Protection (LB & RB) Riparian Vegetative Zone Width (LB & RB)	0-20 0-20		Vegetative Protection (LB & RB) Riparian Vegetative Zone Width (LB & RB)	0-20 0-20	Vegetative Protection (LB & RB) Riparian Vegetative Zone Width (LB & RB)	0-20	
Total RBP Score	Suboptimal	12 74	Total RBP Score	Poor	0		tal RBP Score	Poor	0	Total RBP Score	Poor 0	Total RBP Score	0-20 Poor	0
Sub-Total		0.616666667	Sub-Total		0	Sı	b-Total		Ö	Sub-Total	0	Sub-Total		0
CHEMICAL INDICATOR (Applies to Intermitte		reams)	CHEMICAL INDICATOR (Applies to Intermittent	and Perennial Stream	ns)		HEMICAL INDICATOR (Applies to Intermitte		Streams)	CHEMICAL INDICATOR (Applies to Intermittent		CHEMICAL INDICATOR (Applies to Intermitte		ams)
WVDEP Water Quality Indicators (General Specific Conductivity)		WVDEP Water Quality Indicators (General) Specific Conductivity				VDEP Water Quality Indicators (General ecific Conductivity)		WVDEP Water Quality Indicators (General) Specific Conductivity		WVDEP Water Quality Indicators (General Specific Conductivity	al)	
Specific Conductivity	0-90		Specific Conductivity	0-90		3	echic Conductivity	0-90		Specific Conductivity	0-90	Specific Conductivity	0-90	
100-199 - 85 points	0-90			0-90				0-90			0-90		0-90	
pH	0-1		pH	0.4	0	pł				рН	0.1	рН	- 0.1	
5.6-5.9 = 45 points	0-80			5-90				5-90			5-90		5-90	
DO		(3)	DO		(8)	D)			DO		DO		
	10-30			10-30				10-30			10-30		10-30	
Sub-Total			Sub-Total		•	<u>.</u>	b-Total		0	Sub-Total		Sub-Total		0
BIOLOGICAL INDICATOR (Applies to Intermi	ttent and Perennial	Streams)	BIOLOGICAL INDICATOR (Applies to Intermitte	nt and Perennial Stre	eams)		OLOGICAL INDICATOR (Applies to Interr	nittent and Pere	· ·	BIOLOGICAL INDICATOR (Applies to Intermi	ittent and Perennial Streams)	BIOLOGICAL INDICATOR (Applies to Inter	mittent and Perennia	
WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)			w	V Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)		WV Stream Condition Index (WVSCI)		
(0-100 0-1		(**************************************	0-100 0-1				0-100 0-	1		0-100 0-1		0-100 0-1	
0	0-100 0-1			0-100 0-1		L		0-100 0-	'		0-100 0-1		0-100 0-1	
Sub-Total		0	Sub-Total		0	Sı	b-Total		0	Sub-Total	0	Sub-Total		0
PART II - Index and U	Jnit Score		PART II - Index and U	Init Score			PART II - Index and	I Unit Score		PART II - Index and Un	iit Score	PART II - Index and	Unit Score	
Index	Linear Feet	Unit Score	Index	Linear Feet	Unit Score		Index	Linear Fee	et Unit Score	Index	Linear Feet Unit Score	Index	Linear Feet	Unit Score
0.481	81	38.9475	0	0	0		0	0	0	0	0 0	0	0	0
	1		<u> </u>			<u> </u>		_1					1	

FCI Calculator for the High-Gradient Headwater Streams in Appalachia

To ensure accurate calculations, the <u>UPPERMOST STRATUM</u> of the plant community is determined based on the calculated value for V_{CCANOPY} (≥20% cover is required for tree/sapling strata). Go to the SAR Data Entry tab and enter site characteristics and data in the yellow cells. For information on determining how to split a project into SARs, see Chapter 5 of the Operational Draft Regional Guidebook for the Functional Assessment of High-Gradient Headwater Streams and Low-Gradient Perennial Streams in Appalachia (Environmental Laboratory U.S. Army Corps of Engineers 2017).

Project Name: MVP - Preliminary Assessment

Location: S-A61 ROW Spread F

Sampling Date: 9-2-2021 Project Site Before Project

Subclass for this SAR:

Ephemeral Stream

Uppermost stratum present at this SAR: SAR number: S-A61 ROW

Shrub/Herb Strata

Functional Results Summary: Enter Results in Section A of the Mitigation Sufficiency Calculator

Function	Functional Capacity Index
Hydrology	0.48
Biogeochemical Cycling	0.18
Habitat	0.10

Variable Measure and Subindex Summary:

Variable	Name	Average Measure	Subindex
V _{CCANOPY}	Percent canpoy over channel.	Not Used, <20%	Not Used
V_{EMBED}	Average embeddedness of channel.	1.00	0.10
V _{SUBSTRATE}	Median stream channel substrate particle size.	0.08	0.04
V_{BERO}	Total percent of eroded stream channel bank.	0.00	1.00
V_{LWD}	Number of down woody stems per 100 feet of stream.	0.00	0.00
V_{TDBH}	Average dbh of trees.	Not Used	Not Used
V_{SNAG}	Number of snags per 100 feet of stream.	0.00	0.10
V _{SSD}	Number of saplings and shrubs per 100 feet of stream.	0.00	0.00
V _{SRICH}	Riparian vegetation species richness.	0.00	0.00
V _{DETRITUS}	Average percent cover of leaves, sticks, etc.	36.25	0.44
V_{HERB}	Average percent cover of herbaceous vegetation.	100.00	1.00
V _{WLUSE}	Weighted Average of Runoff Score for Catchment.	0.89	0.94

			High-G		Headwat Data She					a		
	Team:	Potesta (Al	(TA) Edge		Jata Onc	ct and o	aicc		• Latitude/UTI	M Northina	37 55932	
Pro	oject Name:								ongitude/U1	_		37
1 10	=	S-A61 ROV	•	Cooment					-	pling Date:		,,
	Location.	3-A01 KOV							Sali	ipility Date.	9-2-2021	-
SA	AR Number:	S-A61 ROW	Reach	Length (ft):	81	Stream Ty	/pe:	Ephe	meral Stream			~
	Top Strata:	Shi	rub/Herb Str	ata	(determine	d from perce	ent ca	lculate	ed in V _{CCANC}	_{PY})		
Site	and Timing:	Project Site				~	Before	e Proje	ct			~
Sample	e Variables	1-4 in strea	ım channel									
1	equidistant points along the stream. Measure only if tree/sapling cover is at least 20%. (If less than 20%, enter at least one value between 0 and 19 to trigger Top Strata choice.)											
	List the per	cent cover r	measureme	nts at each	point below:							-
	0	0	0	0	0							
	0	0	0	0	0							
2	V_{EMBED}		nbeddednes									1.0
	along the stream. Select a particle from the bed. Before moving it, determine the percentage of the											
	surface and area surrounding the particle that is covered by fine sediment, and enter the rating according to the following table. If the bed is an artificial surface, or composed of fine sediments, use a											
			o the following of 1. If the							Tine sealme	ents, use a	
					•	•				u - M		Ī i
		Minshall 19	ness rating : 183)	for gravei, c	obbie and b	oulder parti	cies (i	rescai	ed from Plai	its, iviegana	n, and	
		Rating	Rating Des	scription								
		5			overed, sur	rounded, or	burie	d bv fi	ne sedimen	t (or bedroc	k)	
		4			ace covered						/	
		3			face covere							
		2	51 to 75 pe	rcent of sur	face covere	d, surround	ed, or	burie	d by fine sec	diment		
		1			covered, su	ırrounded, c	r buri	ed by	fine sedime	nt (or artifici	al surface)	
	List the rati	ngs at each	point below	<i>I</i> :								-
	1	1	1	1	1	1						
	1	1	1	1	1	1						
	1	1	1	1	1	1						
	1	1	1	1	1	1						
	1	1	1	1	1	1						
3	V _{SUBSTRATE}	Median stre	eam channe	l substrate	particle size	. Measure a	at no f	fewer t	than 30 roud	ghly equidis	tant points	
	CODOTRATE		tream; use t									0.08 in
	Enter partic	cle size in in		•	•				_	ounted as 0	9 in	
		concrete as				•	(50	arook (oriodia bo o	ouritou do o	O 111,	
	0.08	0.08	0.08	0.08	0.08	0.08						Ì
	0.08	0.08	0.08	0.08	0.08	0.08						
	0.08	0.08	0.08	0.08	0.08	0.08						
	0.08	0.08	0.08	0.08	0.08	0.08						
	0.08	0.08	0.08	0.08	0.08	0.08						
4		0.08 Total perce		0.08 d stream cha	annel bank.	0.08 Enter the to						0 %

Left Bank:

0 ft

Right Bank:

0 ft

Sample	e Variables	5-9 within t	the entire r	iparian/buffer	zone ad	jacent to th	ne stream c	hannel (25	feet from e	ach bank).	
5	V_{LWD}	stream read	ch. Enter tl	ly stems (at lea he number fror will be calcula	n the enti						0.0
						downed w	oody stems:		0		
6	V_{TDBH}			measure only			ng cover is a	at least 20%	b). Trees ar	e at least 4	Not Used
		,	•	neter. Enter tre				h			
		the stream		nents of individ	iuai trees	(at least 4 i	n) within the	butter on e	each side of		
			Left Side					Right Side			
7	\/	Number of	anaga (at l	east 4" dbh and	d 26" toll)	por 100 for	at of atroom	Enter num	har of anage	on ooch	
,	V_{SNAG}			d the amount p				Enter num	ber or snags	s on each	0.0
			Left Side:				Right Side:		0		
8	V_{SSD}			nd shrubs (woo Enter numbei							0.0
				tream will be c			ibs on each	side of the	Stream, and	uie	0.0
	.,		Left Side:				Right Side:		0		
9	V_{SRICH}			ecies richness stratum. Checl							0.00
				and the subind					otrata. Op	00.00	0.00
		Grou	p 1 = 1.0			Group 2 (-1.0)					
	Acer rubru	ım		Magnolia trip	etala		Ailanthus a	ltissima		Lonicera ja	ponica
	Acer saccl	harum		Nyssa sylvati	ica		Albizia julib	orissin		Lonicera ta	ntarica
	Aesculus f	flava		Oxydendrum a	arboreum		Alliaria peti	iolata		Lotus corni	iculatus
	Asimina tri	iloba		Prunus serot	ina		Alternanthe	era		Lythrum sa	licaria
	Betula alleg	ghaniensis		Quercus alba	1		philoxeroid	es		Microstegiur	m vimineum
	Betula lent	ta		Quercus coc	cinea		Aster tatari	cus		Paulownia	tomentosa
	Carya alba	9		Quercus imb	ricaria		Cerastium	fontanum		Polygonum o	cuspidatum
	Carya glab	ora		Quercus prin	us		Coronilla va	aria		Pueraria m	ontana
	Carya ova	lis		Quercus rubr	a		Elaeagnus u	mbellata		Rosa multi	flora
	Carya ova	ta		Quercus velu	ıtina		Lespedeza	bicolor		Sorghum h	alepense
	Cornus flo	rida		Sassafras alk	oidum		Lespedeza	cuneata		Verbena bi	rasiliensis
	Fagus gra	ndifolia		Tilia america	na		Ligustrum ol	otusifolium			
	Fraxinus a			Tsuga canad	ensis		Ligustrum s	sinense			
	Liriodendroi	n tulipifera		Ulmus americ							
	Magnolia a										
<u> </u>	-								_	_	
		0	Species in	Group 1				0	Species in	Group 2	

-	mple Variables 10-11 within at least 8 subplots (40" x 40", or 1m x 1m) in the riparian/buffer zone within 25 feet from each nk. The four subplots should be placed roughly equidistantly along each side of the stream.									
				of leaves, sticks, or ot					er and	
		<36" long a	re include.	Enter the percent cove	er of the detr	ital layer at	each subplo	ot.		36.25 %
				Side			t Side		<u>'</u>	
		40	40		40	30			l	
11	V_{HERB}	30 Average pe	40 ercentage co	over of herbaceous veg	40 letation (mea	30 asure only if	tree cover i	s <20%). [o not	
		include woo	ody stems a	t least 4" dbh and 36" t	all. Because	there may	be several l	ayers of gro	ound cover	100 %
		vegetation at each sub		s up through 200% are	accepted. I	Enter the pe	rcent cover	of ground v	egetation	100 /0
		at odori oda		Side		Right	t Side]	
		100	100		100	100				
		100	100		100	100				
Sample				chment of the stream						
12 V _{WLUSE} Weighted Average of Runoff Score for watershed:									0.89	
								Runoff	% in	Running
			Land	Use (Choose From Dro	p List)			Score	Catch- ment	Percent (not >100)
	Forest and n	ative range (>	75% ground	cover)			-	1	87.51	87.51
	Open space (pasture, lawns, parks, etc.), grass cover <50%					_	0.1	12.49	100	
	▼									
							▼			
							_			
	S-A6	S1 ROW					tes:			
Va	ariable	Value	VSI	Land Cover Analysis (NLCD), from Landa						Database
Vcc	CANOPY	Not Used, <20%	Not Used	Watershed boundar		• .				
VEN	MBED	1.0	0.10							
Vsu	JBSTRATE	0.08 in	0.04							
V_{BE}	≣RO	0 %	1.00							
V_{LV}	VD	0.0	0.00							
V _{TE}	рвн	Not Used	Not Used							
Vsi	NAG	0.0	0.10							
Vss	SD	0.0	0.00							
	RICH	0.00	0.00							
	ETRITUS	36.3 %	0.44							
V _{HE}		100 %	1.00							
	LUSE	0.89	0.94							

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

STREAM NAMES-A	S1 ROW	LOCATION UNT to Flate Ru	in ROW	
STATION #	RIVERMILE	STREAM CLASS Epheme	eral	~
LAT 37.55932	LONG -80.710037	_ COUNTY Monroe		▼
STORET#		AGENCYPotesta/Edge		
INVESTIGATORSAK	/SM/TA			
FORM COMPLETED	^{BY} AK	DATE 9-2-2021 TIME 1110	REASON FOR SURVEY Preliminary	y Assessment
WEATHER CONDITIONS	rai	prin (heavy rain) in (steady rain) vers (intermittent) %cloud cover clear/sunny	Has there been a heavy rain in the l ✓ Yes No Air Temperature 70 F 0 C Other	ast 7 days?
SITE LOCATION/MA	P Draw a map of the	site and indicate the areas sam	pled (or attach a photograph)	
		W W W Levased Timber COS	de West of the Wes	
STREAM	Stream Subsystem	Intermittent Tidal	Stream Type	

Spring-fed
Mixture of origins
Other Storm Event

Catchment Area_

 km^2

Stream Origin
Glacial
Non-glacial montane
Swamp and bog

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

WATERS FEATURI		Predominant Surrounding L ✓ Forest Com ✓ Field/Pasture Indus Agricultural Othe Residential		duse reial al	Local Watershed NPS ☑ No evidence ☐ Sor ☐ Obvious sources		
		Resid	ential		Local Watershed Eros ✓ None		
RIPARIA VEGETA (18 meter	TION		e the dominant type and S Int species present Fes	record the do hrubs scues, Gold	ord the dominant species present Grasses Grasses Golden rod, Iron weed		
INSTREA FEATURI		Estimate Samplin Area in Estimate Surface (at that	ng Reach Area km² (m²x1000) ded Stream Depth Velocity N/A 0.7 56.7 to 60.7 to	ft m ft m ft^2 m² km² ft_m //sec	5202050 FEBRUARY (1911 - 1912)	Run%	
LARGE V DEBRIS	VOODY	LWD Density	$ \begin{array}{ccc} \underline{0} & \underline{m^2} \\ \text{of LWD} & \underline{0} & \underline{m} \end{array} $	n²/km² (LWD /	reach area)		
AQUATIC VEGETATION Indicate the dominant type and record the dominant species present Rooted emergent Attached Algae Dominant species present No aquatic vegetation Operation of the reach with aquatic vegetation Operation No Accorded to the dominant species present Rooted floating Free floating Algae Portion of the reach with aquatic vegetation Operation Operati							
WATER (QUALITY	Specific Dissolv pH Turbidi	cature C conductance ed Oxygen sity strument Used			Chemical Other	
SEDIMEN SUBSTRA		Odors Norm Chem Other	nical Anaerobic	Petroleum None	_	Paper fiber Sand Other th are not deeply embedded, in color?	
		Abser	nt Slight Moderat	te Profu	se Yes No		
INC		STRATE of the state of the stat	COMPONENTS (00%)		ORGANIC SUBSTRATE C (does not necessarily add		
Substrate Type	Diamet	er	% Composition in Sampling Reach	Substrate Type	Characteristic	% Composition in Sampling Area	
Bedrock			0	Detritus	sticks, wood, coarse plant materials (CPOM)	0	
Boulder	> 256 mm (10"))	0		materials (CFOW)	U	
Cobble	64-256 mm (2.5	5"-10")	0	Muck-Mud	black, very fine organic (FPOM)		
Gravel	2-64 mm (0.1"-	2.5")	0		(F1 OWI)	U	
Sand	0.06-2mm (gritt	y)	0	Marl	grey, shell fragments	0	
Silt	0.004-0.06 mm		0				
Clay	< 0.004 mm (sli	ick)	100	1			

HABITAT ASSESSMENT FIELD DATA SHEET - HG - USE ON ALL STREAMS (FRONT)

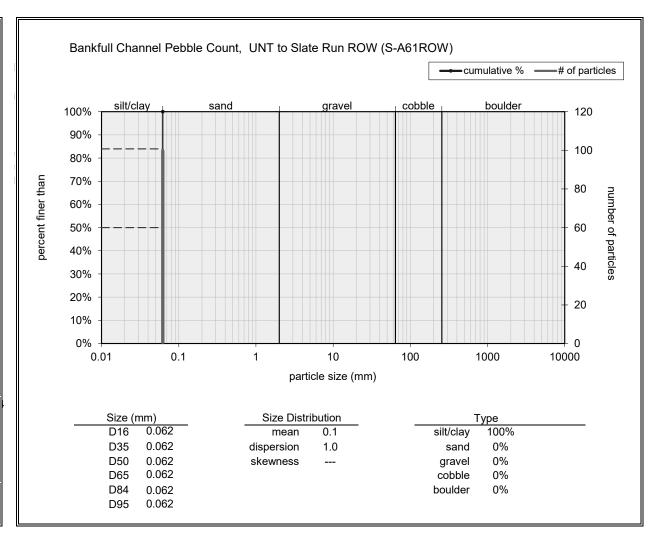
STREAM NAMES	LOCATION				
STATION #	RIVERMILE	STREAM CLASS Ephemeral			
LAT 37.55932	LONG -80.710037	COUNTY Monroe			
STORET#		AGENCY Potesta/Edge			
INVESTIGATORS	SAK/SM/TA				
FORM COMPLET AK	ED BY	DATE 9-2-2021 TIME 1110 AM PM REASON FOR SURVEY Preliminary Assessment			

	Habitat	in the second se	Condition	Category	
	Parameter Parameter	Optimal	Suboptimal	Marginal	Poor
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
	✓ N/A	to allow full colonization potential (i.e., logs/snags that are <u>not</u> new fall and <u>not</u> transient).	form of newfall, but not yet prepared for colonization (may rate at high end of scale).		
	SCORE 0	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
ı sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.
ted in	score 5 ▼	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime N/A	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast- shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).
aram	_{SCORE} 0 ▼	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
ä	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
	SCORE 4 ▼	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
	5. Channel Flow Status N/A	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
	SCORE U	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0

Modified RBP

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

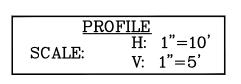
	Habitat		Condition	ı Category		
	Habitat Parameter	Optimal	Suboptimal	Marginal	Poor	
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.	
	SCORE 17	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
ampling reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.	
	SCORE 0 ▼	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing demonstrate.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.	
e evs	SCORE 8	Left Bank 10 9	8 7 6	5 4 3	2 1 0	
to b	SCORE 8 ▼	Right Bank 10 9	8 7 6	5 4 3	2 1 0	
Parameters to	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.	
	SCORE 10	Left Bank 10 9	8 7 6	5 4 3	2 1 0	
	SCORE 10 ▼,	Right Bank 🚺 9	8 7 6	5 4 3	2 1 0	
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.	
	SCORE 6	Left Bank 10 9	8 7 6	5 4 3	2 1 0	
	SCORE 6 ▼)	Right Bank 10 9	8 7 6	5 4 3	2 1 0	


Total Score _____ Modified RBP

BENTHIC MACROINVERTEBRATE FIELD DATA SHEET

STREAM NAMES-A61 ROW							LOCATION													
STATION #	TION # RIVERMILE							STREAM CLASS Ephemeral										▼		
LAT 37.55932	LONG -80.710037							COUNTY Monroe								$\overline{}$	•			
STORET#							AGI	ENCY	Pote	esta	/Ed	ge								_
INVESTIGATORSAK/SM/TA							LOT NUMBER							_						
FORM COMPLETED BY AK							FE 9-							SON FOR SURVEY						
HABITAT TYPES	In	dica C Sub	ate the obble of the observation	ne pe eged N	ercen % Macro	tage of	each nags_	habita %	at typ	e pr	esen eget	it ated Other	Ban	ks	%	%				
SAMPLE COLLECTION	Gear used □D-frame □kick-net □Other How were the samples collected? □wading □ from bank □ from boat																			
	<u> </u> E	Indicate the number of jabs/kicks taken in each habitat type. □ Cobble Snags Vegetated Banks Sand □ Submerged Macrophytes Other ()																		
GENERAL COMMENTS			vat ab			sent	, un	able	e to	CC	lle	ect	be	nth	ics. Unsuitabl	e su	ıbs	tra	te	
Dominant					0 = 2	Absen	t/Not	Obse						; = C	ommon, 3= Abun					
Periphyton		0 1 2								Slimes Macroinvertebrates						-	1	_	3	-
Filamentous Algae 0 1 2 Macrophytes 0 1 2						2 3 2 3				Ma Fis		nve	rtebi	rates		1		3		
FIELD OBSERV				e:	(AC) 0 =	ROBE Abser	NTH	OS t Obs							rganisms), 2 = Coi , 4 = Dominant (>				ıs)	
Porifera	0	1	2	3	4	Anis	opter	a		0	1	2	3	4	Chironomidae	0	1	2	3	4
Hydrozoa	0	1	2	3	4		ptera			0	1	2	3	4	Ephemeroptera	0	1	2	3	4
Platyhelminthes	0	1	2	3	4	Hem	iptera	ı		0	1	2	3	4	Trichoptera	0	1	2	3	4
Turbellaria	0	1	2	3	4	Cole	opter	a		0	1	2	3	4	Other	0	1	2	3	4
Hirudinea	0	1	2	3	4	Lepi	dopte	ra		0	1	2	3	4						
Oligochaeta	0	1	2	3	4	Siali				0	1	2	3	4						
Isopoda	0	1	2	3	4	-	dalid	ae		0	1	2	3	4						
Amphipoda	0	1	2	3	4	_	lidae			0	1	2	3	4						
Decapoda	0	1	2	3	4	_	idida			0	1	2	3	4						
Gastropoda	0	1	2	3	4		ıliida			0	1	2	3	4						
Bivalvia	Bivalvia 0 1 2 3 4 Ta					nidae			0	1	2	3	4							
						Culc	idae			0	1	2	3	4						

SITE ID: 5-A61 ROW UNT to Slate Run Row 5	ipread F
DATE: 9-2-21 11:10	
COLLECTOR(S): 5 M	
Colc Coll Colc Colc Colc Colc Colc Colc	Vegetation Millameters Mills M
Riffle Pebble Count	NOTES: 10 10 10 10 10 10 10 1
	NOTES:


Bankfull Channel	▼	
Material S	ize Range (mm)	Count
silt/clay	0 - 0.062	100
very fine sand 0	.062 - 0.125	
	.125 - 0.25	
medium sand	0.25 - 0.5	
coarse sand	0.5 - 1	
very coarse sand	1 - 2	
very fine gravel	2 - 4	
fine gravel	4 - 6	
fine gravel	6 - 8	
medium gravel	8 - 11	
medium gravel	11 - 16	
coarse gravel	16 - 22	
coarse gravel	22 - 32	
very coarse gravel	32 - 45	
very coarse gravel	45 - 64	
small cobble	64 - 90	
medium cobble	90 - 128	
large cobble	128 - 180	
very large cobble	180 - 256	
small boulder	256 - 362	
small boulder	362 - 512	
medium boulder	512 - 1024	
	1024 - 2048	
, ,	2048 - 4096	
total	particle count:	100
bedrock		
clay hardpan		
detritus/wood		
artificial		
	total count:	100
Note:		

S-A61 ROW BASELINE THALWEG PROFILE

DISTANCE ALONG CROSS-SECTION (FT)

PROFILE LEGEND **EXISTING STREAM PROFILE** INVERT ALONG THALWEG

AS-BUILT TABLE: S-A61 ROW CROSS SECTION A								
		PRE-CROSS	AS-BUILT					
PT. LOC.	NORTHING	EASTING	ELEV.	VERT. DIFF.	HORZ. DIFF.			
TS-L	13638301.31	1724423.88	1629.35					
BS-L	13638302.49	1724423.55	1627.64					
THW	13638303.15	1724423.45	1627.69					
BS-R	13638305.42	1724423.19	1627.72					
TS-R	13638306.13	1724422.94	1628.17					

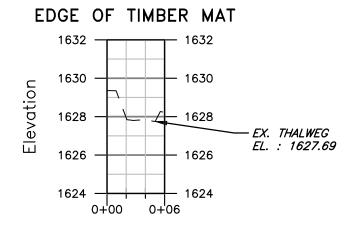
LEGEND

STUDY AREA (EASEMENT)

EXISTING SURVEY-LOCATED THALWEG

1176.87 **+** EXISTING SURVEYED GROUND SHOT ELEVATION

SURVEY NOTES:


- 1. THIS MAP HAS BEEN ORIENTED TO NAD 1983 UTM ZONE 17N, AND VERTICALLY TO THE NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD 88), USING REAL TIME DGPS. FIELD LOCATIONS WERE COMPLETED ON
- 2. EASEMENT LINES SHOWN ON PLAN VIEW WERE PROVIDED BY MOUNTAIN VALLEY PIPELINE.
- 3. SURVEY POINTS FOR CROSS SECTIONS AND THALWEG PROFILES COLLECTED IN 2021 HAVE BEEN USED IN COMBINATION WITH SURVEY POINTS AND COLLECTED PREVIOUSLY IN 2020 IN ORDER TO GENERATE THE PRE-CROSSING SURFACE SHOWN IN PLAN. DUE TO NATURAL EROSIONAL STREAM PROCESSES THAT OCCUR OVER TIME, MINOR ADJUSTMENTS TO THE PROFILE ALIGNMENTS MAY HAVE BEEN REQUIRED IN ORDER TO GENERATE A CLEAN PRE-CROSSING SURFACE.
- 4. ALL SECTION VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.
- 5. POST-CROSSING SURVEY INFORMATION SHOWN IN RED. DATA PENDING.

CROSS SECTION LEGEND

— EXISTING GRADE

6. POST-CROSSING SURVEY POINTS FOR CROSS SECTIONS AND THALWEG ARE PROJECTED ONTO PRE-CROSSING SECTION AND PROFILE VIEWS FOR COMPARISON.

S-A61 ROW BASELINE CROSS-SECTION A

DISTANCE ALONG CROSS-SECTION (FT)

FROM UPSTREAM IMPACT LIMITS

PRE-CROSSING PHOTOS

PHOTO TAKEN LOOKING UPSTREAM FROM

PHOTO TAKEN LOOKING UPSTREAM FROM UPSTREAM IMPACT LIMITS

PRE-CROSSING

Checked

BB/JLY Approved

SEPT. 2021Date:

DOWNSTREAM IMPACT LIMITS

POST-CROSSING PHOTOS

PENDING CROSSING

PHOTO TAKEN LOOKING DOWNSTREAM UPSTREAM FROM IMPACT LIMITS

PENDING CROSSING

Drawing No

NOTE: ALL SECTION VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.