Baseline Assessment – Stream Attributes

Reach S-A97 (Pipeline ROW) Intermittent Spread C Webster County, West Virginia

Data	Included
Photos	✓
SWVM Form	✓
FCI Calculator and HGM Form	✓
RBP Physical Characteristics Form	✓
Water Quality Data	N/A – No flow
RBP Habitat Form*	✓
RBP Benthic Form	✓
Benthic Identification Sheet	N/A –No flow
Wolman Pebble Count	✓
Reference Reach Software Pebble Count Data	✓
Longitudinal Profile and Cross Sections	✓

^{*}Modified RBP - No flow

Spread C Stream S-A97 (Pipeline ROW) Webster County

Location, Orientation, Photographer Initials: Upstream Edge of Right of Way, Facing Upstream, ABK/AAK/TA

Photo Type: US, DS Facing
Location, Orientation, Photographer Initials: Upstream Edge of Right of Way, Facing Downstream, ABK/AAK/TA

Spread C Stream S-A97 (Pipeline ROW) Webster County

Photo Type: Stream Bed Location, Orientation, Photographer Initials: Stream Bed, ABK/AAK/TA

 $[&]quot;Q: \label{lem:conditions} \begin{subarray}{l} $\tt "Q: \charleston \charge Spread \charge Sprea$

West Virginia Stream and Wetland Valuation Metric (SWVM) Version 2.1, September 2017

USACE FILE NO./ Project Name: (v2.1, Sept 2015)		MOU	INTAIN VALLEY F	PIPELINE		COORDINATES: cimal Degrees)	Lat.	38.688329	Lon.		-80.478406	WEATHER:		Sunny	DATE:		8/13/2 ⁻	1
					(= 5	,											0/10/2	•
IMPACT STREAM/SITE ID A (watershed size {acreage}, u				UNT to Left Fo	rk Holly River (S	A97)		MITIGATION STREA (watershe	M CLASS./SITE ID d size {acreage}, unalter						Comments:			
STREAM IMPACT LENGTH:	125	FORM (RESTORATION (Levels I-III)		DORDINATES: cimal Degrees)	Lat.		Lon.			PRECIPITATION PAST 48 H	IRS:		Mitigation Length:			
Column No. 1- Impact Existing	Condition (Deb	oit)	c	Column No. 2- Mitigation Existin	g Condition - Base	line (Credit)		Column No. 3- N Post	Mitigation Projected t Completion (Cred	at Five Yea	ars	Column No. 4- Mitigat Post Com	ion Projected at Ten Y pletion (Credit)	'ears	Column No. 5- Mitigation	Projected at M	aturity (Cred	dit)
Stream Classification:	Interm	nittent	Stream	Classification:				Stream Classification:			0	Stream Classification:		0	Stream Classification:		0	
Percent Stream Channel Slo	pe	21.6		Percent Stream Channel	Slope			Percent Stream	Channel Slope		0	Percent Stream Cha	nnel Slope	0	Percent Stream Cha	nnel Slope		0
HGM Score (attach da	ta forms):			HGM Score (atta	ch data forms):			HGM Sc	ore (attach data fo	orms):		HGM Score (a	ttach data forms):		HGM Score (at	tach data forr	ns):	
		Average				Average					Average			Average				Average
Hydrology Biogeochemical Cycling		0.333333333		chemical Cycling		0		Hydrology Biogeochemical Cycling			0	Hydrology Biogeochemical Cycling		0	Hydrology Biogeochemical Cycling			0
Habitat PART I - Physical, Chemical and I	0.26 Biological Indic	ators	Habitat	PART I - Physical, Chemical	and Biological Inc	licators		PART I - Physical,	Chemical and Biolo	ogical Indic	ators	PART I - Physical, Chem	ical and Biological Ind	licators	Habitat PART I - Physical, Chemic	cal and Biologi	ical Indicato	ors
	Points Scale Range	Site Score			Points Scale Range	Site Score			Points Sc	cale Range	Site Score		Points Scale Rang	ge Site Score		Points Sca	ale Range	Site Score
PHYSICAL INDICATOR (Applies to all streams	classifications)		PHYSIC	AL INDICATOR (Applies to all stream	ıms classifications)			PHYSICAL INDICATOR (Applies	s to all streams classific	cations)		PHYSICAL INDICATOR (Applies to a	all streams classifications)		PHYSICAL INDICATOR (Applies to all	streams classific	ations)	
USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover	0-20			RBP (Low Gradient Data Sheet) unal Substrate/Available Cover	0-20			USEPA RBP (High Gradient Da 1. Epifaunal Substrate/Available		<u> </u>		USEPA RBP (High Gradient Data 1. Epifaunal Substrate/Available Co			USEPA RBP (High Gradient Data S 1. Epifaunal Substrate/Available Cove			
2. Embeddedness	0-20	13		Substrate Characterization	0-20			2. Embeddedness	0-20			Embeddedness	0-20		2. Embeddedness	0-20		
3. Velocity/ Depth Regime	0-20			Variability	0-20			Velocity/ Depth Regime	0-20			Velocity/ Depth Regime	0-20		Velocity/ Depth Regime	0-20		
4. Sediment Deposition	0-20	14		nent Deposition	0-20			Sediment Deposition	0-20			4. Sediment Deposition	0-20		Sediment Deposition	0-20		
5. Channel Flow Status	0-20			nel Flow Status	0-20			5. Channel Flow Status	0-20			5. Channel Flow Status	0-20		5. Channel Flow Status	0-20		
6. Channel Alteration	0-20	9		nel Alteration	0-20 0-1			6. Channel Alteration	0-20			6. Channel Alteration	0-20 0-1		6. Channel Alteration	0-20		
	0-20	9		nel Sinuosity				7. Frequency of Riffles (or bends				7. Frequency of Riffles (or bends)			7. Frequency of Riffles (or bends)			
7. Frequency of Riffles (or bends)		40			0-20								0-20			0-20		
8. Bank Stability (LB & RB)	0-20	12		Stability (LB & RB)	0-20			8. Bank Stability (LB & RB)	0-20			8. Bank Stability (LB & RB)	0-20		8. Bank Stability (LB & RB)	0-20		
9. Vegetative Protection (LB & RB)	0-20	17		tative Protection (LB & RB)	0-20			Vegetative Protection (LB & R				Vegetative Protection (LB & RB)	0-20		Vegetative Protection (LB & RB)	0-20		
10. Riparian Vegetative Zone Width (LB & RB)	0-20	8		rian Vegetative Zone Width (LB & RB)				Riparian Vegetative Zone Width				Riparian Vegetative Zone Width (LE			Riparian Vegetative Zone Width (LB)			
Total RBP Score	Marginal	73		BP Score	Poor	0		Total RBP Score		Poor	0	Total RBP Score	Poor	0	Total RBP Score		Poor	0
Sub-Total CHEMICAL INDICATOR (Applies to Intermittent	t and Perennial Str	0.365 reams)	Sub-Tota CHEMIC	al CAL INDICATOR (Applies to Intermi	ttent and Perennial St	reams)		Sub-Total CHEMICAL INDICATOR (Applies	s to Intermittent and Pe	erennial Strea	o ams)	Sub-Total CHEMICAL INDICATOR (Applies to	Intermittent and Perennial	O Streams)	Sub-Total CHEMICAL INDICATOR (Applies to In	ntermittent and Pe	erennial Stream	ms)
WVDEP Water Quality Indicators (General)		,		Water Quality Indicators (Gene		,		WVDEP Water Quality Indicate			,	WVDEP Water Quality Indicators		,	WVDEP Water Quality Indicators (0			,
Specific Conductivity				Conductivity		0		Specific Conductivity	(Specific Conductivity			Specific Conductivity			
•	0-90			•	0-90				0-90	_			0-90			0-90		
100-199 - 85 points	0-90				0-90				0-90	'			0-90			0-90		
Hq		CIS	На			0		На				Н			pH			
	0-80				5-90 0-1				5-90	0-1			5-90 0-1			5-90	0-1	
5.6-5.9 = 45 points	0-00				5-90				5-90	'			5-90			5-90		
DO			DO			()		DO				DO			DO			
	10-30				10-30				10-3	0			10-30			10-30	,	
	10-50				10-50				10-5	o l			10-50			10-30	,	
Sub-Total			Sub-Tota	al		0		Sub-Total			0	Sub-Total		0	Sub-Total			0
BIOLOGICAL INDICATOR (Applies to Intermitte	ent and Perennial	Streams)	BIOLOG	GICAL INDICATOR (Applies to Inter	mittent and Perennial	Streams)		BIOLOGICAL INDICATOR (App	plies to Intermittent a	nd Perennial	Streams)	BIOLOGICAL INDICATOR (Applies	to Intermittent and Pere	nnial Streams)	BIOLOGICAL INDICATOR (Applies t	o Intermittent ar	nd Perennial	Streams)
WV Stream Condition Index (WVSCI)			WV Stre	eam Condition Index (WVSCI)				WV Stream Condition Index (V				WV Stream Condition Index (WVS			WV Stream Condition Index (WVSC			
0	0-100 0-1				0-100 0-1				0-10	0 0-1			0-100 0-1			0-100	0-1	
Sub-Total	l l	0	Sub-Tota	al		0		Sub-Total	· · · · · · · · · · · · · · · · · · ·		0	Sub-Total	<u> </u>	0	Sub-Total			0
PART II - Index and Ur	nit Score			PART II - Index a	nd Unit Score			PAPT II	I - Index and Unit S	core		PART II - Indi	ex and Unit Score		PART II - Indo	x and Unit Sco	re	
AICT II - III GOX AIIU UI	000.6			ANT II - IIIUEA 6	01111 00010			IANI	uca unu onit o	2310		i Aixi II - IIIu	on and only ocolo		ACT II - IIIGE	. una omit oco		
Index	Linear Feet	Unit Score		Index	Linear Feet	Unit Score		Index	Line	ear Feet	Unit Score	Index	Linear Feet	t Unit Score	Index	Line	ear Feet	Unit Score
0.458	125	57.23958333		0	0	0		0		0	0	0	0	0	0		0	0

FCI Calculator for the High-Gradient Headwater Streams in Appalachia

To ensure accurate calculations, the <u>UPPERMOST STRATUM</u> of the plant community is determined based on the calculated value for V_{CCANOPY} (≥20% cover is required for tree/sapling strata). Go to the SAR Data Entry tab and enter site characteristics and data in the yellow cells. For information on determining how to split a project into SARs, see Chapter 5 of the Operational Draft Regional Guidebook for the Functional Assessment of High-Gradient Headwater Streams and Low-Gradient Perennial Streams in Appalachia (Environmental Laboratory U.S. Army Corps of Engineers 2017).

Project Name: Preliminary Assessment

Location: S-A97 Sampling Date: 8/13/2021

Project Site Before Project

Subclass for this SAR:

Intermittent Stream

Uppermost stratum present at this SAR: SAR number: S-A97

Tree/Sapling Strata

Functional Results Summary: Enter Results in Section A of the Mitigation Sufficiency Calculator

Function	Functional Capacity Index
Hydrology	0.33
Biogeochemical Cycling	0.41
Habitat	0.26

Variable Measure and Subindex Summary:

Variable	Name	Average Measure	Subindex
V _{CCANOPY}	Percent canpoy over channel.	34.00	0.29
V _{EMBED}	Average embeddedness of channel.	2.13	0.51
V _{SUBSTRATE}	Median stream channel substrate particle size.	0.53	0.27
V _{BERO}	Total percent of eroded stream channel bank.	83.33	0.63
V _{LWD}	Number of down woody stems per 100 feet of stream.	0.00	0.00
V _{TDBH}	Average dbh of trees.	0.00	0.00
V _{SNAG}	Number of snags per 100 feet of stream.	0.00	0.10
V _{SSD}	Number of saplings and shrubs per 100 feet of stream.	Not Used	Not Used
V _{SRICH}	Riparian vegetation species richness.	0.00	0.00
V _{DETRITUS}	Average percent cover of leaves, sticks, etc.	36.25	0.44
V _{HERB}	Average percent cover of herbaceous vegetation.	Not Used	Not Used
V _{WLUSE}	Weighted Average of Runoff Score for Catchment.	0.50	0.53

			High-G	radient Field Γ	Headwat Data She					a		
	Team:	AAK/ABK/T	-Δ	i icia L	olia Olic	ct and c	aicc		∟ _atitude/UTI	M Northing:	38 688329	
Pro			Assessme	nt						-	-80.478406	
110	Location:		710000011101						-	pling Date:		<u> </u>
						a. –			106		0/10/2021	× 6
SA	R Number:	S-A97	Reach	Length (ft):	30	Stream Ty	/pe:	Interi	nittent Strear	m		•
•	Top Strata:	Tree	e/Sapling St	rata	(determine	d from perce	ent ca	lculate	ed in V _{CCANO}	_{PY})		
Site a	and Timing:	Project Site				~	Before	e Proje	ct			•
Sample	Variables	1-4 in strea	ım channel									
Sample Variables 1-4 in stream channel 1 V _{CCANOPY} Average percent cover over channel by tree and sapling canopy. Measure at no fewer than 10 roughly equidistant points along the stream. Measure only if tree/sapling cover is at least 20%. (If less than 20%, enter at least one value between 0 and 19 to trigger Top Strata choice.) List the percent cover measurements at each point below:											34.0 %	
	List the per	cent cover r	measureme	nts at each	point below:							-
	0	0	30	40	100							
2	V_{EMBED}			ss of the stre								2.1
				ect a particle								2.1
				unding the ping table. If								
				bed is com						iiiic scaiiii	onto, asc a	
				for gravel, c	•					ts. Megaha	n. and	
		Minshall 19		3 , .						, . .	,	
		Rating	Rating Des	scription								
		5		of surface of	overed, sur	rounded, or	burie	d by fii	ne sedimen	t (or bedroc	k)	•
		4		cent of surfa								
		3		rcent of sur								
		2		rcent of sur							-1	
	1:24 46 2 424	1		t of surface	coverea, su	irrounaea, c	or buri	ea by	rine seaime	nt (or artific	ai surrace)	
			point below		2	4						1
	5	1	3	2	2	1						
	5	-	1									
	3	1	1	3	2	3 1						
		1	•			1						
3	3	Modian str	2	3 I substrate p	2	Moosuro	at no f	fower t	han 20 roug	ably oquidic	tant points	
3	VSUBSTRATE			the same po						grily equius	tarit poirits	0.53 in
		_		-	-				=	tad 0	0 :	
	•			nearest 0.1 I or finer par		•	w (bed	urock s	snould be co	bunted as 9	9 111,	
	0.40	0.08	4.40	3.50	0.08	0.95						
	0.79	0.08	0.08	3.15	2.70	1.05						
	1.30	0.08	0.08	2.60	4.00	0.63						
	3.65	0.30	0.08	2.15	0.08	0.20						
A	1.65	0.08	0.08	0.08	4.80	0.43	otel :-	100 h -	of fact - f	rodod b = -1	on one	
4	V_{BERO}			d stream cha entage will b								83 %
		may be up	-	Jinage Will L	o diculated	a ii bolii ba	ino di	610	aca, iciai Ei	1001011101 111	o suballi	03 %

Left Bank:

15 ft

Right Bank:

10 ft

Sample	e Variables	5-9 within t	the entire r	iparian/buffer zone a	djacent to t	he stream channel (25	feet from e	each bank).			
5	V_{LWD}	stream read	ch. Enter tl			eter and 36 inches in le buffer and within the c			0.0		
		•		Number		oody stems:	0				
6	V_{TDBH}					ing cover is at least 20°	%). Trees a	re at least 4	0.0		
		•	•	neter. Enter tree DBH		in) with in the buffer on		•			
		the stream		nents of individual tree	es (at least 4	in) within the buffer on	each side of	Ī			
			Left Side			Right Sid	е				
7	V_{SNAG}	Number of	snags (at le	east 4" dbh and 36" ta	ll) per 100 fe	et of stream. Enter nur	nher of snac	rs on each			
,	V SNAG			d the amount per 100			Tibel of Shag	JS OIT COOIT	0.0		
			Left Side:			Right Side:					
8	V_{SSD}					ches dbh) per 100 feet on the court of the c			Not Used		
				tream will be calculate		abs on each side of the	s stream, am	a trie	1401 0300		
		D: :	Left Side:		0.6 1.6 1	Right Side:	.				
9	V_{SRICH}					am reach. Check all spaive species present in			0.00		
				and the subindex will I					0.00		
		Grou	p 1 = 1.0			Group 2 (-1.0)					
	Acer rubru	m		Magnolia tripetala		Ailanthus altissima		Lonicera ja	ponica		
	Acer saccl	harum		Nyssa sylvatica		Albizia julibrissin		Lonicera ta	ntarica		
	Aesculus f	lava		Oxydendrum arboreun	ו	Alliaria petiolata		Lotus corni			
	Asimina tri	loba		Prunus serotina		Alternanthera		Lythrum sa	licaria		
	Betula alleg	ghaniensis		Quercus alba		philoxeroides		Microstegiun	n vimineum		
	Betula lent	ta		Quercus coccinea		Aster tataricus		Paulownia	tomentosa		
	Carya alba	ì		Quercus imbricaria		Cerastium fontanum		Polygonum (cuspidatum		
	Carya glab	ora		Quercus prinus		Coronilla varia		Pueraria m	ontana		
	Carya ova	lis		Quercus rubra		Elaeagnus umbellata		Rosa multi	flora		
	Carya ova	ta		Quercus velutina		Lespedeza bicolor		Sorghum h	alepense		
	Cornus flo	rida		Sassafras albidum		Lespedeza cuneata		Verbena bi	rasiliensis		
	Fagus gra	ndifolia		Tilia americana		Ligustrum obtusifolium					
	Fraxinus a	mericana		Tsuga canadensis		Ligustrum sinense			•		
	Liriodendroi	n tulipifera		Ulmus americana							
	Magnolia a	acuminata									
		0	Species in	Group 1		0	Species in	n Group 2			

Sample	Variables	10-11 withi	n at least 8	subplots (40" x 40", c	or 1m x 1m)	in the ripa	rian/buffer	zone within	n 25 feet fro	m each
_		plots shou	ıld be place	ed roughly	equidistant	tly along ea	ch side of	the stream	•		
10	V _{DETRITUS}			of leaves, s Enter the p						er and	36.25 %
			Left	Side			Righ	Side			
		25	30			45	45			1	
11	V _{HERB}	include woo	ody stems a percentage:	over of herba it least 4" db s up through	h and 36" ta	all. Because	there may	be several l	ayers of gro	ound cover	Not Used
				Side			Righ	Side			
		40	85			90	90				
Sample	Variable 1	2 within the	e entire cat	chment of t	he stream.						
12	V_{WLUSE}	Weighted A	Average of F	Runoff Score	for watersl	hed:					0.50
			Land	Use (Choos	e From Dro	p List)			Runoff Score	% in Catch- ment	Running Percent (not >100)
	Forest and n	ative range (5	60% to 75% g	round cover)				•	0.7	67.46	67.46
	Open space (pasture, lawns, parks, etc.), grass cover <50%									32.54	100
								•			
	-							_			
								•			
	▼										
								_			
								_			
		S-A97					No	tes:			
Va	ariable	Value	VSI	Land Cove	er Analysis	was comp	leted using	the 2019	National L	and Cover	Database
Vcc	CANOPY	34 %	0.29	,		t satellite ir es are bas	0 ,			•	
VE	MBED	2.1	0.51		2 0 0 0						
Vsu	JBSTRATE	0.53 in	0.27								
V _{BI}	≣RO	83 %	0.63								
V_{LV}	VD	0.0	0.00								
V _{TI}	овн	0.0	0.00								
Vs	NAG	0.0	0.10								
Vss	SD	Not Used	Not Used								
Vsi	RICH	0.00	0.00								
V _{DI}	ETRITUS	36.3 %	0.44								
V _H	ERB	Not Used	Not Used								
	LUSE	0.5	0.53								

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

STREAM NAME UNT to L	.eft Fork Holly River	LOCATION S-A97 Spread	d C
STATION#R	IVERMILE	STREAM CLASS Intermitt	tent
LAT_38.688329 LC	ONG80.478406	COUNTY Webster	
STORET#		AGENCY Potesta	
INVESTIGATORS AK/AK/			
FORM COMPLETED BY	A. Kincaid	DATE 8-13-2021 TIME 9-30 AM	REASON FOR SURVEY Preliminary Assessment
WEATHER CONDITIONS	rain (showers %cl	(heavy rain) steady rain) so (intermittent) oud cover ear/sunny	Has there been a heavy rain in the last 7 days? Yes No Air Temperature 80 F ° C Other
SITE LOCATION/MAP	Draw a map of the site	e and indicate the areas sam	pled (or attach a photograph)
	ROU	ent sump	pled (or attach a photograph)
STREAM CHARACTERIZATION	Stream Subsystem ☐Perennial ☐Inte	ermittent Tidal	Stream Type □Coldwater ☑Warmwater
	Stream Origin Glacial Non-glacial montane Swamp and bog	Spring-fed Mixture of origins Other	Catchment Areakm²

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

WATERS	HED	Predon	inant Surrounding Lan	duse	Local Watershed NPS	
FEATURI	ES	Fores Field	Pasture Commer	rcial al	□ No evidence ☑ Son	ne potential sources
		Agric Resid	cultural Other_		Obvious sources Local Watershed Eros	ion
					☑None ☐Moderate	Heavy
RIPARIA	N TION	Indicat	e the dominant type and	record the do	minant species present ☑ Grasses ☐ He	urba a a a a a
VEGETA (18 meter			ant species present			roaceous
						-
INSTREA FEATURI			ted Reach Length 75 f		Canopy Cover ☐ Partly open ☐ Part	ly shaded Shaded
	we sen i	200	ted Stream Width 1.5		High Water Mark	m
		Sampli	ng Reach Area	m²	Proportion of Reach R	epresented by Stream
		No. 25 Tax		km ²	Morphology Types Riffle % Pool %	Run %
		Estimat	ted Stream Depth	m	Pool%	WATERIAN I
		Surface	Velocitym	/sec	Channelized ☐Yes	□No
		Stream	weg) Dry 🗹		Dam Present ☐Yes	☑No
LARGE V DEBRIS	VOODY	LWD	m^2			
DEBRIS		I	of LWDm	12/km² (LWD/	reach area)	
AQUATIO	C	Indicat	e the dominant type and	record the do	minant species present	
VEGETA	TION	Roote	ed emergent Ro	ooted submerge tached Algae	minant species present nt Rooted floating	☐Free floating
			ant species present NA			
		l	of the reach with aquat		0/2	
	edentaren oktobro		•			
WATER (QUALITY		rature0 C		Water Odors □Normal/None □Sewage	e
		529	: Conductance		Petroleum Fishy	Chemical Other
		Dissolv	ed Oxygen		Water Surface Oils	
		pH			Slick Sheen None Other	Globs Flecks
			ity		Turbidity (if not measu	ured)
		WQ Ins	strument Used DRY		Clear Slightly tu	rbid Turbid Other
SEDIMEN SUBSTRA		Odors ✓ Norm Chem	nal Sewage nical Anaerobic	Petroleum None	Deposits ☐Sludge ☐Sawdust_	☐Paper fiber ☐Sand ☐Other_
		Chen Other	nical LAnaerobic	☐ None		
		Oils			are the undersides blac	ch are not deeply embedded, ck in color?
		✓ Abse	nt Slight Moderat	e Profus	se Yes No	
INC	DRCANIC SUBS	TRATE	COMPONENTS		ORGANIC SUBSTRATE O	OMPONENTS
1.00	(should a				(does not necessarily add	
Substrate Type	Diamet	er	% Composition in Sampling Reach	Substrate Type	Characteristic	% Composition in Sampling Area
Bedrock			0	Detritus	sticks, wood, coarse plant	E
Boulder	> 256 mm (10")		0		materials (CPOM)	5
Cobble	64-256 mm (2.5	"-10")	10	Muck-Mud	black, very fine organic	
Gravel	2-64 mm (0.1"-2	2.5")	50		(FPOM)	-
Sand	0.06-2mm (gritt	y)	10	Marl	grey, shell fragments	
Silt	0.004-0.06 mm		0	1		_
Clay	< 0.004 mm (sli	ck)	30	9 		

HABITAT ASSESSMENT FIELD DATA SHEET - HG - USE ON ALL STREAMS (FRONT)

STREAM NAME UNT to Left Fork Holly River	LOCATION S-A97 Spread C					
STATION # RIVERMILE	_ STREAM CLASS Intermittent					
LAT 38.688329 LONG -80.478406	_ COUNTY Webster					
STORET#	AGENCY Potesta					
INVESTIGATORS AK/AK/TA						
FORM COMPLETED BY A. Kincaid	DATE 8-13-2021 TIME 9:30 AM PM REASON FOR SURVEY Preliminary Assessment					

	Habitat		Condition	Category				
	Parameter	Optimal	Suboptimal	Marginal	Poor			
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.			
	_{SCORE} 0	that are <u>not</u> new fall and <u>not</u> transient). 20 19 18 17 16	colonization (may rate at high end of scale).	10 9 8 7 6	5 4 3 2 1 0			
ے	SCORE *		15 14 13 12 11					
ı sampling reacl	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.			
ted in	SCORE 13	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime N/A	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast- shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).			
ıram	score 0	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
P ₂	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.			
	SCORE 14	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
	5. Channel Flow Status N/A	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.			
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			

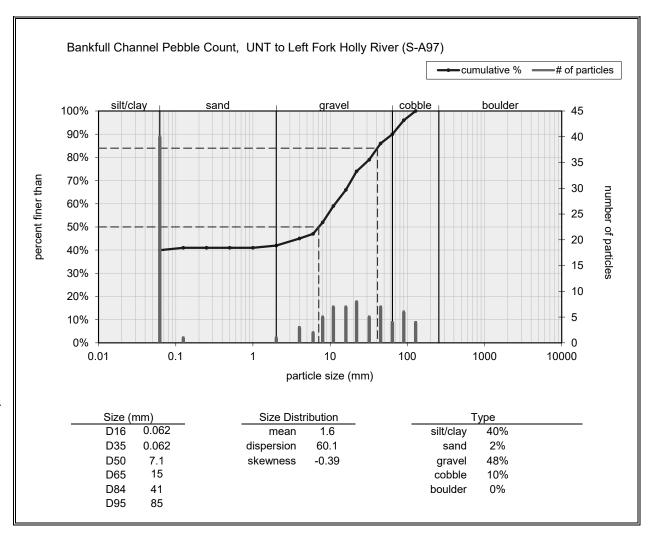
No water. Modified RBP.

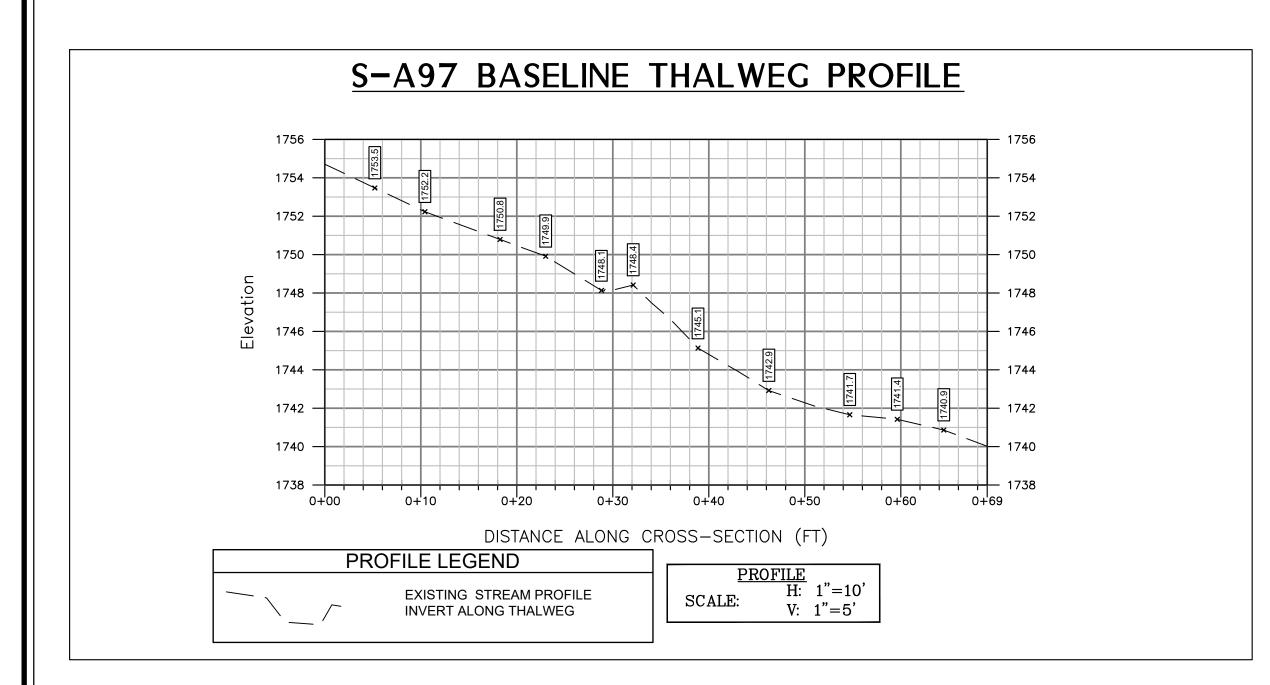
HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

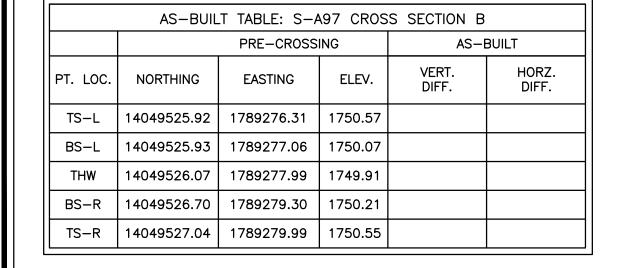
Habitat	Condition Category										
Parameter	Optimal	Suboptim	al	N	1argina	ıl		Poor			
6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelizat present, usually in of bridge abutmer evidence of past channelization, i. dredging, (greater past 20 yr) may be present, but recent channelization is present.	n areas nts; e., than e	Channeliz extensive or shoring present on and 40 to reach cha disrupted	; emban g structu n both b 80% of nnelized	kments ires anks; stream	Banks sh or cemen the strear channeliz disrupted habitat gremoved	t; over 8 n reach red and l. Instrea reatly al	am tered or		
6. Channel Alteration SCORE 7. Frequency of Riffles (or bends) V N/A SCORE 8. Bank Stability (score each bank) Note: determine left or right side by facing decorate and some score of sco	20 19 18 17 16	<u> </u>	12 11	10 9	8	7 6	5 4 3 2 1 0				
 Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of rifinfrequent; distant between riffles ditthe width of the sbetween 7 to 15.	fles ce vided by	Occasion bottom ec some hab between i the width between	al riffle ontours itat; dis- riffles di of the s	or bend; provide tance vided by tream is	Generally shallow r habitat; of riffles dis width of ratio of >	y all flat iffles; polistance rided by the strea	water or oor between the		
SCORE 0	20 19 18 17 16	15 14 13	12 11	10 9	8	7 6	5 4	3 2	1 0		
(score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable infrequent, small erosion mostly he over. 5-30% of breach has areas of	areas of aled ank in	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.			Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.				
SCORE 6	Left Bank 10 9	8 7	6	5	4	3	2	1	0		
SCORE 6	Right Bank 10 9	8 7	6	5	4	3	2	1	0		
Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfacovered by native vegetation, but or of plants is not we represented; disruevident but not af full plant growth to any great exter than one-half of the potential plant studies height remaining.	ne class hell- ption fecting potential ht; more he	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.			Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.				
	Left Bank 10 9	8 7	6	5	4	3	2	1	0		
SCORE 8	Right Bank 10 9	8 7	6	5	4	3	2	1	0		
10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian 12-18 meters; hu activities have im zone only minima	nan pacted	Width of 12 meters activities zone a gr	s; humai have im	n ipacted	Width of meters: li riparian v human a	ttle or n regetatio	o on due to		
SCORE 4	Left Bank 10 9	8 7	6	5	4	3	2	1	0		

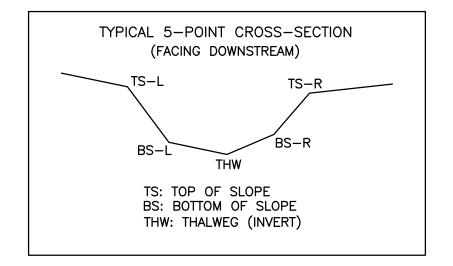
Total Score No water. Modified RBP.

BENTHIC MACROINVERTEBRATE FIELD DATA SHEET


STREAM NAME UN	IT to	Left	For	k Ho	lly Ri	er LOCAT	TION S-A9	S	pread	С							
STATION #	R	IVE	RM	LE_		STREA	M CLASS	Inte	rmitte	ent							
LAT 38.688329	L	ONO	j <u>-80</u>	47840	i	COUN	TY V	ebs	ter								
STORET#						AGEN	CY Potesta										
INVESTIGATORS	AK/AK	(/TA				(0.50)					LOT	NUMBER					
FORM COMPLETE	D BY	A	. ŀ	(ir	nca	id DATE TIME	8-13-2021 9:30 AM			37.3	REA:	SON FOR SURVEY Pr	elimir	nary	Asse	ssm	ent
HABITAT TYPES		lCob	ble	•	%	ge of each had Snags_ hytes%	oitat type p	/ege	tated	Ban	ıks	%	%				
SAMPLE	G	ear	used		D-fra	ne 🔲 kick-ne	t										
COLLECTION																	
	"	ow v	vere	the	sampl	es collected?	wadii	ıg		fro	m bar	nk from boa	t				
		Cob	ble			of jabs/kicks ta ☐ Snags hytes	aken in eac	/ege	bitat tated Other	Ban	ks	Sand)	_				
								tr —	ור —		S —	not col	le —	<u>C</u>	[E	-C	l. -
QUALITATIVE Indicate estimate Dominant Periphyton) = A		bserved,		Rar		2 = C	ommon, 3= Abuno		1		3	4
Filamentous Algae					0	1 2 3 4	1	Ma	acroi	inve	rtebi	rates	0	1	2	3	4
Macrophytes					0	1 2 3 4	1	Fis	sh				0	1	2	3	4
					0 = A orga	bsent/Not Onisms), 3= A	bserved,					rganisms), 2 = Cor , 4 = Dominant (>5				s)	
Porifera			2			Anisoptera						Chironomidae		1	2		
Hydrozoa	0	1	2	3	4	Zygoptera	0	1	2	3	4	Ephemeroptera	0	1	2	3	4
Platyhelminthes	0	1	2	3	4	Hemiptera	0	1	2	3	4	Trichoptera	0	1	2	3	4
Turbellaria	0	1	2	3	4	Coleoptera	0	1	2	3	4	Other	0	1	2	3	
Hirudinea	0	1	2	3	4	Lepidoptera	0	1	2	3	4						4
Oligochaeta		1	2	3	4	Sialidae	0	1	2	3	4						4
Isopoda	0	1		_	- 1				_	-							4
-	0	1	2	3	4	Corydalidae	0	1	2	3	4						4
Amphipoda	0	1 1	2	3	4 4	Tipulidae	0	1 1	2	3	4						4
Amphipoda Decapoda	0 0 0	1 1 1	2 2 2	3	4 4 4	Tipulidae Empididae	0	1 1 1	2	3	4 4						4
Amphipoda Decapoda Gastropoda	0 0 0 0	1 1 1	2 2 2 2	3 3 3	4 4 4 4	Tipulidae Empididae Simuliidae	0 0 0	1 1 1	2 2 2	3 3 3	4 4 4						4
Amphipoda Decapoda	0 0 0	1 1 1	2 2 2	3	4 4 4	Tipulidae Empididae	0	1 1 1	2	3	4 4						4

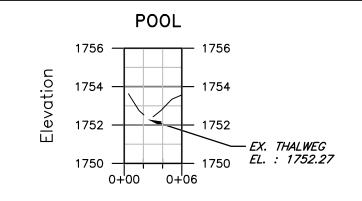

C AGY	
ITE ID:	
NTE: 8-13-13	
DLLECTOR(S): A VIVCCU C	
olman Pebble Count (Reach Wide)	NOTES:
10 62 112 88 075 24 662 45 38 10)
20 6.062 6.062 60 108 27 600 20 160 6.06	2
33 2.062 1.062 65 4 16 2.062 5 85 1.06	
93 8 1062 55 2062 5 1062 1067 17 106	
42 L.062 LOGZ L.OGZ TZZ II 47 L.062 8 L.06	7
14 62 62 62 19 6062 19 78 6,062 33 16	
21 3 1062 0.062 14 20 0 6,067 2.067 1.06	7
11 4 662 38 1.0 4862 12 32 8 21	
10 6262 6.067 67 19 6.062 8 11 6.062 6.06	Z'
26 Lab 121 42 15 Lab 6 8 LOG 2.06	7
le Pebble Count	NOTES:
	-
	-
	-
	_
	_
	_
	_
	_
	_
	NOTES:
	MOTES.


...


Inches	PARTICLE	Millimeters	
	Sitt / Clay	< .062	S/C
	Very Fine	.062125	\sim
	Fine	.12525	5
	Medium	.2550	S A N D
	Coarse	.50 - 1.0	D
0408	Very Coarse	1.0 - 2	
.0816	Very Fine	2-4	
.1622	Fine	4 - 5.7	
2231	Fine	5.7 - 8	G
3144	Medium	8 - 11,3	R
.4463	Medium	11.3 - 16	
.6389	Coarse	16-226	g E
B9-13	Coarse	22.6 - 32	U
1,3 - 1,8	Very Coarse	32 - 45	
1.8 - 2.5	Very Coarse	45 - 64	SEE
2.5 - 3.5	Small	64 - 90	Fall
3.5 - 5.0	Small	90 - 128	COBB
5.0 - 7.1	Large	128 - 190	
7.1 - 10.1	Large	180 - 256	8.18
10,1 - 14,3	Small	256 - 362	B
14.3 - 20	Small	362 - 512	Ņ.
20 - 40	Medium	512 - 1024	PE
40 - 80	Large-Vry Large	1024 - 2048	R
	Bedrock		BDRK

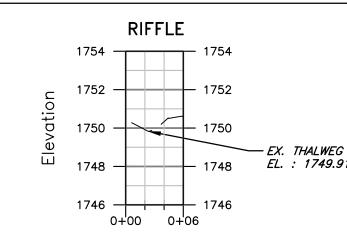
Bankfull Channel	
Material Size Range (mm)	Count
silt/clay 0 - 0.062	40
very fine sand 0.062 - 0.125	1
fine sand 0.125 - 0.25	
medium sand 0.25 - 0.5	
coarse sand 0.5 - 1	
very coarse sand 1 - 2	1
very fine gravel 2 - 4	3
fine gravel 4 - 6	2
fine gravel 6 - 8	5
medium gravel 8 - 11	7
medium gravel 11 - 16	7
coarse gravel 16 - 22	8
coarse gravel 22 - 32	5
very coarse gravel 32 - 45	7
very coarse gravel 45 - 64	4
small cobble 64 - 90	6
medium cobble 90 - 128	4
large cobble 128 - 180	
very large cobble 180 - 256	
small boulder 256 - 362	
small boulder 362 - 512	
medium boulder 512 - 1024	
large boulder 1024 - 2048	
very large boulder 2048 - 4096	
total particle count:	100
bedrock	
clay hardpan	
detritus/wood	
artificial	
total count:	100
Note:	

LEGEND


EXISTING SURVEY-LOCATED THALWEG

1176.87 +EXISTING SURVEYED GROUND SHOT ELEVATION

SURVEY NOTES:


- 1. THIS MAP HAS BEEN ORIENTED TO NAD 1983 UTM ZONE 17N, AND VERTICALLY TO THE NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD 88), USING REAL TIME DGPS. FIELD LOCATIONS WERE COMPLETED ON
- 3. SURVEY POINTS FOR CROSS SECTIONS AND THALWEG PROFILES COLLECTED IN 2021 HAVE BEEN USED IN PRE-CROSSING SURFACE SHOWN IN PLAN. DUE TO NATURAL EROSIONAL STREAM PROCESSES THAT OCCUR OVER TIME, MINOR ADJUSTMENTS TO THE PROFILE ALIGNMENTS MAY HAVE BEEN REQUIRED IN ORDER TO GENERATE A CLEAN PRE-CROSSING SURFACE.
- 4. ALL SECTION VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.
- 5. POST-CROSSING SURVEY INFORMATION SHOWN IN RED. DATA PENDING.
- 6. POST-CROSSING SURVEY POINTS FOR CROSS SECTIONS AND THALWEG ARE PROJECTED ONTO PRE-CROSSING SECTION AND PROFILE VIEWS FOR COMPARISON.

S-A97 BASELINE CROSS-SECTION A

DISTANCE ALONG CROSS-SECTION (FT)

S-A97 BASELINE CROSS-SECTION B

DISTANCE ALONG CROSS-SECTION (FT)

CROSS SECTION LEGEND — EXISTING GRADE

NOTE: ALL SECTION VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.

PRE-CROSSING PHOTOS

PHOTO TAKEN LOOKING DOWNSTREAM FROM UPSTREAM IMPACT LIMITS

PHOTO TAKEN LOOKING UPSTREAM FROM DOWNSTREAM IMPACT LIMITS

POST-CROSSING PHOTOS

PENDING CROSSING

PHOTO TAKEN LOOKING DOWNSTREAM UPSTREAM FROM IMPACT LIMITS

PENDING CROSSING

PHOTO TAKEN LOOKING UPSTREAM FROM UPSTREAM IMPACT LIMITS

PRE-CROSSING

Checked

BB/JLY Approved

NOTED Scale:

SEPT. 2021 Date:

Drawing No