Baseline Assessment – Stream Attributes

Reach S-C39 (Pipeline ROW) Perennial Spread F Monroe County, West Virginia

Data	Included
Photos	✓
SWVM Form	✓
FCI Calculator and HGM Form	N/A – Perennial stream (not shadeable)
RBP Physical Characteristics Form	✓
Water Quality Data	✓
RBP Habitat Form	✓
RBP Benthic Form	✓
Benthic Identification Sheet	✓
Wolman Pebble Count	✓
Reference Reach Software Pebble Count Data	✓
Longitudinal Profile and Cross Sections	✓

Photo Type: DS, US View Location, Orientation, Photographer Initials: Downstream Edge of ROW, Upstream View, AK/TF/TA/WP

Photo Type: DS, DS View Location, Orientation, Photographer Initials: Downstream Edge of ROW, Downstream View, AK/TF/TA/WP

Photo Type: CP, US View Location, Orientation, Photographer Initials: Center ROW, Upstream View, AK/TF/TA/WP

Photo Type: CP, DS View Location, Orientation, Photographer Initials: ROW Center, Downstream View, AK/TF/TA/WP

Photo Type: US, US View, US Riffle Cross-Section, US View
Location, Orientation, Photographer Initials: Upstream Edge of ROW, Upstream View, Upstream Riffle
Cross-Section, Upstream View, AK/TF/TA/WP

Photo Type: US, DS View, US Riffle Cross-Section, DS View
Location, Orientation, Photographer Initials: Upstream Edge of ROW, Downstream View, Upstream Riffle
Cross-Section, Downstream View, AK/TF/TA/WP

Photo Type: US Pool Cross Section, US View Location, Orientation, Photographer Initials: Upstream Pool Cross Section, Upstream View, AK/TF/TA/WP

Photo Type: US Pool Cross Section, Downstream View Location, Orientation, Photographer Initials: Upstream Pool Cross Section, Downstream View, AK/TF/TA/WP

Photo Type: DS Pool Cross Section, US View
Location, Orientation, Photographer Initials: Downstream Pool Cross Section, Upstream View, AK/TF/TA/WP

Photo Type: DS Pool Cross Section, DS View Location, Orientation, Photographer Initials: Downstream Pool Cross Section, Downstream View, AK/TF/TA/WP

Photo Type: DS Riffle Cross Section, US View Location, Orientation, Photographer Initials: Downstream Riffle Cross Section, Upstream View, AK/TF/TA/WP

Photo Type: DS Riffle Cross Section, DS View Location, Orientation, Photographer Initials: Downstream Riffle Cross Section, Downstream View, AK/TF/TA/WP

Photo Type: ROW N Location, Orientation, Photographer Initials: ROW, Facing North, AK/TF/TA/WP

Photo Type: ROW S Location, Orientation, Photographer Initials: ROW, Facing South, AK/TF/TA/WP

 $[&]quot;Q:\label{lem:conditions} \begin{subarray}{l} $\tt "Q:\label{lem:conditions} ASSESSMENT\ AND\ SURVEY\ PLAN\ 0002\ -\ Pre-Crossing\ Monitoring\ Spread\ F\ S-C39" \end{subarray}$

USACE FILE NO./ Project Name: (v2.1, Sept 2015)		Mountai	in Valley Pipeline	IMPACT COORDINATES: (in Decimal Degrees)	Lat.	37.426686	Lon.	-80.694499	WEATHER:	Storm/l	Heavy Rain 78 °F	DATE:	8/	17/21
IMPACT STREAM/SITE II (watershed size {acreage			S-C39 Pai	inter Run		MITIGATION STREAM CLA (watershed size {a	ASS./SITE ID AND S acreage}, unaltered or impa					Comments:		
STREAM IMPACT LENGTH:	109	FORM OF MITIGATION:	RESTORATION (Levels I-III)	MIT COORDINATES: (in Decimal Degrees)	Lat.		Lon.		PRECIPITATION PAST 48 HRS:			Mitigation Length:		
Column No. 1- Impact Existin	ng Condition (Del	bit)	Column No. 2- Mitigation Existing Co	ondition - Baseline (Credit)	•	Column No. 3- Mitigati Post Comp	ion Projected at Five Y	ears ears	Column No. 4- Mitigation Prost Completio		ars	Column No. 5- Mitigation Project	ed at Maturity	(Credit)
Stream Classification:	Pere	ennial	Stream Classification:			Stream Classification:		0	Stream Classification:		0	Stream Classification:		0
Percent Stream Channel S	lope	2.8	Percent Stream Channel Slo	pe		Percent Stream Chann	nel Slope	0	Percent Stream Channel	Slope	0	Percent Stream Channel S	lope	0
HGM Score (attach	data forms):		HGM Score (attach d	lata forms):		HGM Score (a	ttach data forms):		HGM Score (attach	data forms):		HGM Score (attach d	ata forms):	
		Average		Average				Average			Average			Average
Hydrology		0	Hydrology	0		Hydrology		0	Hydrology		0	Hydrology		0
Biogeochemical Cycling Habitat		- 0	Biogeochemical Cycling Habitat	U		Biogeochemical Cycling Habitat		0	Biogeochemical Cycling Habitat		•	Biogeochemical Cycling Habitat	+	•
PART I - Physical, Chemical and	d Biological Indic	cators	PART I - Physical, Chemical and	Biological Indicators		PART I - Physical, Chemi	ical and Biological Ind	licators	PART I - Physical, Chemical at	nd Biological Indic	cators	PART I - Physical, Chemical and	Biological In	dicators
	Points Scale Range	Site Score		Points Scale Range Site Score			Points Scale Range	Site Score		Points Scale Range	Site Score		Points Scale Ra	ange Site Score
PHYSICAL INDICATOR (Applies to all stream	ns classifications)		PHYSICAL INDICATOR (Applies to all streams of	classifications)		PHYSICAL INDICATOR (Applies to all s	streams classifications)		PHYSICAL INDICATOR (Applies to all stream	ams classifications)		PHYSICAL INDICATOR (Applies to all stream	s classifications')
USEPA RBP (High Gradient Data Sheet)			USEPA RBP (Low Gradient Data Sheet)			USEPA RBP (High Gradient Data Sh			USEPA RBP (High Gradient Data Sheet			USEPA RBP (High Gradient Data Sheet)		
Epifaunal Substrate/Available Cover Embeddedness	0-20	14	Epifaunal Substrate/Available Cover Pool Substrate Characterization	0-20		Epifaunal Substrate/Available Cover Embeddedness	r 0-20 0-20		Epifaunal Substrate/Available Cover Embeddedness	0-20 0-20		Epifaunal Substrate/Available Cover Embeddedness	0-20 0-20	
Velocity/ Depth Regime	0-20	16	3. Pool Variability	0-20		Velocity/ Depth Regime	0-20		Velocity/ Depth Regime	0-20		Velocity/ Depth Regime	0-20	
Sediment Deposition	0-20	15	Sediment Deposition	0-20		Sediment Deposition	0-20		Sediment Deposition	0-20		Sediment Deposition	0-20	
Channel Flow Status	0-20 0-1	16	5. Channel Flow Status	0-20 0-1		5. Channel Flow Status	0-20 0-1		5. Channel Flow Status	0-20 0-1		Channel Flow Status	0-20)-1
Channel Alteration Frequency of Riffles (or bends)	0-20	14	Channel Alteration Channel Sinuosity	0-20		Channel Alteration Frequency of Riffles (or bends)	0-20 0-20		Channel Alteration Frequency of Riffles (or bends)	0-20		Channel Alteration Frequency of Riffles (or bends)	0-20	
8. Bank Stability (LB & RB)	0-20	15 13	8. Bank Stability (LB & RB)	0-20		8. Bank Stability (LB & RB)	0-20		8. Bank Stability (LB & RB)	0-20		8. Bank Stability (LB & RB)	0-20	
9. Vegetative Protection (LB & RB)	0-20	16	9. Vegetative Protection (LB & RB)	0-20		9. Vegetative Protection (LB & RB)	0-20		9. Vegetative Protection (LB & RB)	0-20		9. Vegetative Protection (LB & RB)	0-20	
10. Riparian Vegetative Zone Width (LB & RB)	0-20	14	10. Riparian Vegetative Zone Width (LB & RB)	0-20		10. Riparian Vegetative Zone Width (LB &	RB) 0-20		 Riparian Vegetative Zone Width (LB & RB 			 Riparian Vegetative Zone Width (LB & RB) 	0-20	
Total RBP Score	Suboptimal	147	Total RBP Score	Poor 0		Total RBP Score	Poor	0	Total RBP Score	Poor	0	Total RBP Score	Poor	0
Sub-Total CHEMICAL INDICATOR (Applies to Intermitt	ent and Perennial St	0.735	Sub-Total CHEMICAL INDICATOR (Applies to Intermittent	and Perennial Streams)		Sub-Total CHEMICAL INDICATOR (Applies to Inte	ermittent and Perennial Str	reams)	Sub-Total CHEMICAL INDICATOR (Applies to Interm	ittent and Perennial S	0	Sub-Total CHEMICAL INDICATOR (Applies to Intermittee	ent and Perennia	0 I Streams)
WVDEP Water Quality Indicators (General		d danis)	WVDEP Water Quality Indicators (General)	and r distinual streams)		WVDEP Water Quality Indicators (Ge		camo	WVDEP Water Quality Indicators (Gene		a came)	WVDEP Water Quality Indicators (Genera		r ou cumb)
Specific Conductivity			Specific Conductivity			Specific Conductivity			Specific Conductivity			Specific Conductivity		
400 400 05 !	0-90	193.3		0-90			0-90			0-90			0-90	
100-199 - 85 points			nH			nH			nH			nH		
6.0-8.0 = 80 points	0-80	7.48	p	5-90 0-1		,	5-90 0-1		,	5-90 0-1			5-90	D-1
DO			DO			DO			DO			DO		
>5.0 = 30 points	10-30	8.1		10-30			10-30			10-30		2.7	10-30	
Sub-Total BIOLOGICAL INDICATOR (Applies to Intern	nittent and Perennial	0.975	Sub-Total BIOLOGICAL INDICATOR (Applies to Intermittee	ent and Perennial Streams)		Sub-Total BIOLOGICAL INDICATOR (Applies to	Intermittent and Perenn	ial Streams)	Sub-Total BIOLOGICAL INDICATOR (Applies to Int	ermittent and Peren	0	Sub-Total BIOLOGICAL INDICATOR (Applies to Interr	nittent and Per	ennial Streams)
WV Stream Condition Index (WVSCI)		,	WV Stream Condition Index (WVSCI)	,		WV Stream Condition Index (WVSCI		,	WV Stream Condition Index (WVSCI)		,	WV Stream Condition Index (WVSCI)		,
Very Good	0-100 0-1	85	The Guidant Condition mask (1970c)	0-100 0-1		TO COLOUR CONTROL MACK (TV CC)	0-100 0-1		TT GUGAIN CONGRESS MACK (TTCC)	0-100 0-1		We distant contains made (West,	0-100)-1
Sub-Total		0.85	Sub-Total	0		Sub-Total	1 1	0	Sub-Total		0	Sub-Total		0
						g								
PART II - Index and	Unit Score		PART II - Index and L	Jnit Score		PART II - Index and Unit Score			PART II - Index and Unit Score			PART II - Index and Unit Score		
Index	Linear Feet	Unit Score	Index	Linear Feet Unit Score		Index	Linear Feet	Unit Score	Index	Linear Feet	Unit Score	Index	Linear Fee	et Unit Score
0.853	109	93.0133333	0	0 0		0	0	0	0	0	0	0	0	0

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

STREAM NAME Pain	iter Run	LOCATION 8	S-C39 Monroe/F	
STATION#	RIVERMILE	STREAM CLA	SS Perennial	
LAT <u>37.426686</u>	LONG80.694499	COUNTY	Monroe	▼
STORET#		AGENCYPot	esta	
INVESTIGATORSTim	n Ferguson/Allyson Kind	caid		
FORM COMPLETED	BY Tim Ferguson/Allyson Kincaid	DATE 8/18/202 TIME 4/20 PM	1	REASON FOR SURVEY Preliminary Assessment

WEATHER CONDITIONS	Now Past 24 Has there been a heavy rain in the last 7 days?
CONDITIONS	storm (heavy rain) rain (steady rain) showers (intermittent) %cloud cover clear/sunny hours Yes No Air Temperature 78 °F ° C Other Other
SITE LOCATION/MAP	Draw a map of the site and indicate the areas sampled (or attach a photograph)
	700
	Los M
	VV W
	Shruhs
	Tall Wy
	Hein Conerar Pool W
	The state of the s
	TE TO THE TENT
	Bridge.
STREAM CHARACTERIZATION	Stream Subsystem Perennial Intermittent Tidal Stream Type Coldwater Warmwater
	Stream Origin

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

WATERS FEATURI		Predon Fores Field Agric Resid	Pasture Industria	duse rcial al cated in Pipeline ROW	Local Watershed NPS □ No evidence □ Son □ Obvious sources □ Local Watershed Eros □ None □ Moderate	ne potential sources					
RIPARIA VEGETA (18 meter	N TION buffer)		e the dominant type and s S ant species present		minant species present ☐ Grasses	erbaceous					
INSTREA FEATURI		Estimate Samplin Area in Estimate	km² (m²x1000) ted Stream Depth velocity weg) some Field Note m	m m² km² m	High Water Mark Proportion of Reach R Morphology Types Riffle 40 Pool 30 Channelized Yes	Partly open					
LARGE V DEBRIS	VOODY	LWD Density	o m² of LWD o m	1 ² /km ² (LWD/	reach area)						
AQUATIO VEGETA		☐Roote ☐Float Domina	Indicate the dominant type and record the dominant species present Rooted emergent								
WATER (QUALITY	Specific Dissolv pH 7.4 Turbid	crature 20.7 ° C c Conductance 193.3 ed Oxygen 8.10mg/L 8 su ity 39.3 ntu	Chemical Other Globs Flecks Ired) rbid Turbid Other							
SEDIMEN SUBSTRA		Odors Norm Chen Other	nical Anaerobic	Petroleum None	Epoking at stones which	Paper fiber Sand Other note deeply embedded, ck in color?					
	. n.c 111.c ov m			_ _ _							
INC		dd up to	COMPONENTS 100%)		ORGANIC SUBSTRATE C (does not necessarily add						
Substrate Type	Diamet	er	% Composition in Sampling Reach	Substrate Type	Characteristic	% Composition in Sampling Area					
Bedrock			0	Detritus	sticks, wood, coarse plant materials (CPOM)	0					
Boulder	> 256 mm (10")		10								
Cobble			20	Muck-Mud	black, very fine organic (FPOM)	0					
Gravel	2-64 mm (0.1"-2		50	36.1	1.11.6						
Sand	0.06-2mm (gritt	у)	15	Marl	grey, shell fragments						
Silt	0.004-0.06 mm	.15	2	1							
Clay	< 0.004 mm (sli	ck)	3		I	I					

HABITAT ASSESSMENT FIELD DATA SHEET - HG - USE ON ALL STREAMS (FRONT)

STREAM NAME P	ainter Run	LOCATION S-C39	
STATION #	RIVERMILE	STREAM CLASS Perennial	•
LAT 37.426686	LONG -80.694499	COUNTY Monroe	•
STORET#		AGENCYPotesta	_
INVESTIGATORS	Tim Ferguson/Allyson Kind	caid	_
FORM COMPLETE Tim Ferguso	двү n/Allyson Kincaid	DATE 3/18/2021 REASON FOR SURVEY Preliminary Assessment	

Г	Habitat		Condition	Category					
	Parameter	Optimal	Suboptimal	Marginal	Poor				
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.				
	□ N/A	stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are <u>not</u> new fall and <u>not</u> transient).	additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).						
	SCORE 14▼	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0				
n sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.				
led in	SCORE 14▼	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0				
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime N/A	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast- shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).				
I an	_{SCORE} 16 ▼	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0				
rd .	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.				
	SCORE 15▼	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0				
	5. Channel Flow Status N/A	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.				
	SCORE 10	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0				

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

	Habitat		Condition	ı Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
	score 14 ▼	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
ing reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.
ampl	score 15▼	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing deuranteen.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.
e eva	SCORE 7	Left Bank 10 9	8 7 6	5 4 3	2 1 0
to b	SCORE 6 ▼	Right Bank 10 9	8 7 6	5 4 3	2 1 0
Parameters	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
	SCORE 8	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE 8 ▼,	Right Bank 10 9	8 7 6	5 4 3	2 1 0
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.
	SCORE 7	Left Bank 10 9	8 0 6	5 4 3	2 1 0
	SCORE 7	Right Bank 10 9	8 7 6	5 4 3	2 1 0

Total Score 147

BENTHIC MACROINVERTEBRATE FIELD DATA SHEET

LOCATION

STREAM NAME Painter Run

STATION #	R	IVE	ERM	ILE_			.	STR	EAM	CLAS	SS F	Pere	nnia	ıl							
LAT 37.426686	L	ONG -80 894499 COUNTY Monroe										•									
STORET#								AGI	ENCY	Pote	sta										_
INVESTIGATORSŢ	m F	erg	uso	n/A	llyso	n K	inca	aid						1	LOT	NUMBER					
FORM COMPLETED	BY				Allyson			DA' TIM		18/2021 120 PM	2			1	REA	SON FOR SURVEY Pre	eliminar	ry Ass	sessm	nent	
HABITAT TYPES		dica C Sub	ate tl obbl merg	he p le_ged !	ercen	tage 6 phyt	of e Sna es_	ach igs_	habita %	at type	Jν	eget	it ated other			%	_%				
SAMPLE	G	ear	used		D-fr	ame	V	kick	-net		100		ther	_							
COLLECTION	.,			th.		lan n	alla		•	П	dia.	~		1 £	n bar	nk 🔲 from boa					
	l "	ow i	were	tne	samp	nes c	one	ctea	•	✓ wa	idin	8	0.00	Inoi	n oai	ikirom boa	1				
	~	Cot	ble2		umbe - Macro		Snag	kiel gs	ks take	en in e [□v	eget	oitat ated other	Ban	ks	Sand)	_				
QUALITATIVE I Indicate estimated Dominant										erved	, 1	= I	Raro	e, 2	= C	ommon, 3= Abuno	lant,	4 =	=		
Periphyton					0	1	2	3	4			Sli	mes				0	1	2	3	4
Filamentous Algae					0	1	2	3	4			Ma	croi	nve	rtebi	rates	0	1	2	3	4
Macrophytes					0	1	2	3	4			Fis	h	and the feet		2000 CT - 900	0	1	2	3	4
FIELD OBSERVA Indicate estimated					0 =	Abs	ent	No:	t Obs							rganisms), 2 = Cor , 4 = Dominant (>5				ıs)	
Porifera	0	1	2	3	4	Ar	nisoj	pter	a		0	1	2	3	4	Chironomidae	0	1	2	3	4
Hydrozoa	0	1	2	3	4	Zy	gop	tera			0	1	2	3	4	Ephemeroptera	0	1	2	3	4
Platyhelminthes	0	1	2	3	4	Не	emip	otera	a		0	1	2	3	4	Trichoptera	0	1	2	3	4
Turbellaria	0	1	2	3	4		leo				0	1	2	3	4	Other	0	1	2	3	4
Hirudinea	0	1	2	3	4		pido	_	ra		0	1	2	3	4						
Oligochaeta	0	1	2	3	4		alida				0	1	2	3	4						
Isopoda	0	1	2	3	4		ryd		ae		0	1	2	3	4						
Amphipoda	0	1	2	3	4		puli				0	1	2	3	4	Caddisfly, water penny, S	alamar	nder,	Fish,	Crayf	ish
Decapoda	0	1	2	3	4		npic				0	1	2	3	4						
Gastropoda	0	1	2	3	4		mul		e		0	1	2	3	4						
Divolvio	Λ	1	2	2	1	Т	1	1			0	1	2	2	4	ı					

S-C3a Painter Ron

BENTHIC MACROINVERTEBRATE FIELD DATA SHEET

STREAM NAME	Ginter Run	LOCATION 5-C	39	Monroe.	F
\$TATION#	RIVERMILE	STREAM CLASS	ennal		
LAT	LONG	RIVER BASIN			
STORET#		AGENCY O	P5 4		
INVESTIGATORS	TFAL		LOT	NUMBER	
FORM COMPLETED	TF AL	DATE 8 18 2 AM	/~	ason for survey c-Comstruction	Sulvey
HABITAT TYPES	Indicate the percentage of Cobble_30 % □ Submerged Macrophytes_	each habitat type present	ted Banks_ her (grave	% Na Sand 1	<u>0</u> %
SAMPLE	Gear used D-frame	kick-net 🗆 Ot	her		
COLLECTION	How were the samples coll	natad? Auradina	☐ from bar	-b D61	
Ï	II .	,		unk 🖵 from box	at
	Indicate the number of jab	s/kicks taken in each habi	tat type.	□ Sand	
	Cobble 2 Sus	OH	her (grave	12)	
GENERAL COMMENTS	Water level is riffle approx	up. H Kichs 20 ft, 45	takin from	high ove	large
	LISTING OF AQUATIC l abundance: 0 = Absent		are, 2= <i>C</i>	Common, 3= Abun	dant, 4=
Periphyton	0 1 2	3 4 Slim	es		(0) 1 2 3 4
Filamentous Algae	Q 1 2	3 4 Mac	roinvertebi	rates	0 1 2 (3) 4
Macrophytes	(0) 1 2	3 4 Fish			0 1 (2) 3 4
	ATIONS OF MACROBEN abundance: 0 = Absent organisms		are (1-3 o		
Porifera	0 1 2 3 4 Aniso	ptera 0 1	2 3 4	Chironomidae	0 1 2 3 4
Hydrozoa	0 1 2 3 4 Zygoj		2 3 4	Ephemeroptera	0 1 2 3 4
Platyhelminthes	0 1 2 3 4 Hemi		2 3 4	Trichoptera	0 1 2 3 4
Turbellaria	0 1 2 3 4 Coleo		2 3 4	Other	0 1 2 3 4
Hirudinea	1 -	•	2 3 4	1	
Oligochaeta	0 1 2 3 4 Sialid		2 3 4		1
Isopoda Amphipoda	0 1 2 3 4 Coryd		2 3 4		
			4 T 41 I		

water penny Salamander Fish (Yayfish

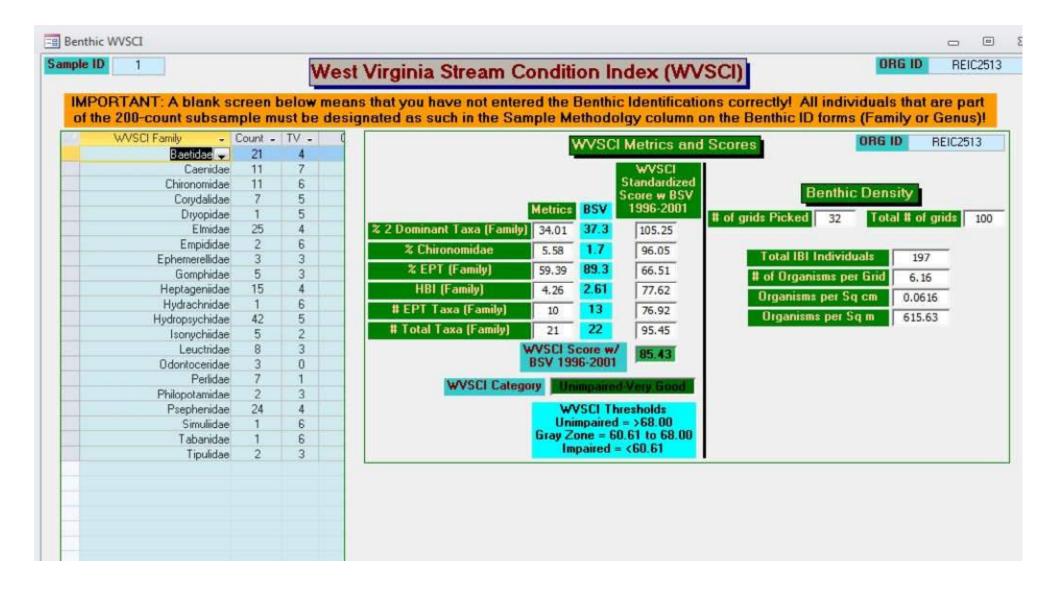
Decapoda

Bivalvia

Gastropoda

2 3 4

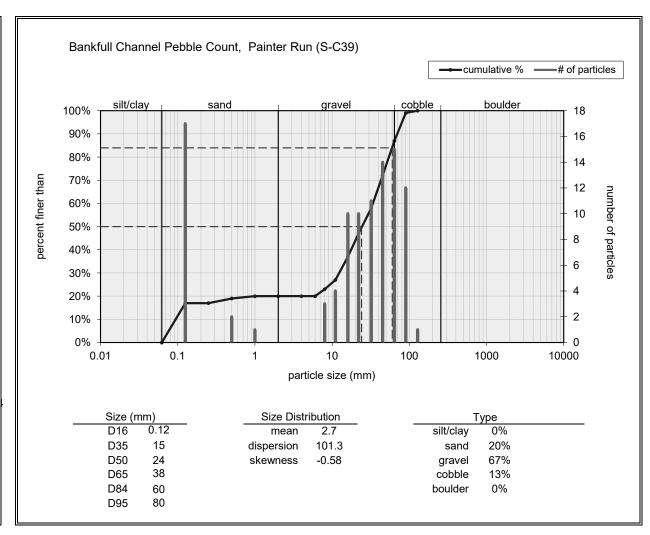
Empididae


Simuliidae

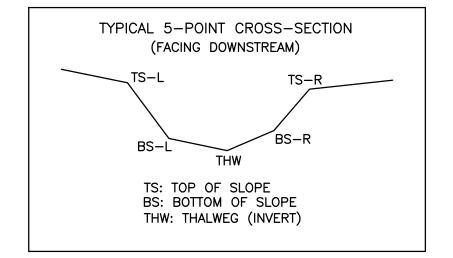
Tabinidae

3

4


2 3

TE: \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		S-C.	29	(P.)	~ ter	RUN					
MOTES: The Motes Motes	ITE ID:			(INI							
Man Pebble Count (Reach Wide) S	ATE:	1 1									
33 48 53 12 67 10 66 30 42 20 40 83 76 17 0.1 6 66 42 45 36 47 10 13 70 0.1 0.1 31 22 90 0.1 BY 12 0.1 49 16 7 1215 95 60 35 FO .25 8 30 63 68 55 26 65 81 85 .10 12 0.1 0.1 45 0.1 40 0.1 20 20 30 0.1 12 57 .1 0.1 45 0.1 65 56 35 0.1 12 57 .1 0.1 45 0.1 65 56 35 0.1 12 62 12 55 0.12 0.1 65 56 35 0.1 13	OLLECTOR	R(S):	JAK								
23 48 53 12 67 10 66 30 42 20 46 40 83 76 17 0.1 6 66 42 45 36 41 47 10 13 70 0.1 0.1 31 22 90 6.1 47 10 13 70 0.1 0.1 31 22 90 6.1 49 14 7. 1215 95 60 35 60 25 8 30 65 60 25 26 65 82 85 10 12 0.1 40 0.1 20 20 30 0.1 12 57 11 0.1 40 0.1 20 20 30 0.1 12 57 11 0.1 45 0.1 65 56 35 0.1 12 60 25 7 10 30 0.1 12 30 12 12 12 12 12 12 12 12 12 12 12 12 12	Volman Peb	ible Count (Re	ach Wide)	April Marie Company				A- 250	No Bal		NOTES:
12 51 49 14 7 12 5 75 60 35 60 35 60 35 60 35 60 35 60 35 60 35 60 35 60 35 60 35 60 35 60 35 60 35 60 35 60 35 60 35 60 35 60 35 60 60 60 60 60 60 60 6	33			12	67	10	606	30	42	20	
12 51 49 14 7 12 5 75 60 35 60 35 60 35 60 35 60 35 60 35 60 35 60 35 60 35 60 35 60 35 60 35 60 35 60 35 60 35 60 35 60 35 60 35 60 60 60 60 60 60 60 6	40			17	0.1	0	66	42		36	MANNET 13 TIME
12 51 49 14 7 12 5 75 60 35 60 35 60 35 60 35 60 35 60 35 60 35 60 35 60 35 60 35 60 35 60 35 60 35 60 35 60 35 60 35 60 35 60 35 60 60 60 60 60 60 60 6						0-1	31			6	with water. Some
35 .10 12 0.1 0.1 US US 12 31 60 9 .25 15 0.1 UO 0.1 20 20 30 0.1 12 57 .1 0.1 45 0.1 0.1 UO 21 55 55 62 12 55 0.12 0.1 05 56 35 0.1 18 6 25 7 10 30 0.1 12 30 12 NOTES:	74			49			-2125		60		esosion on IDB
12 57 1 0.1 45 0.1 60 20 21 55 55 62 12 55 0.12 0.1 65 56 35 0.1 (2 6 25 7 10 30 0.1 12 30 12 NOTES:	70				60		55	26			
12 57 1 0.1 45 0.1 60 20 21 55 55 62 12 55 0.12 0.1 65 56 35 0.1 (2 6 25 7 10 30 0.1 12 30 12 NOTES:	35				0.1		45	12		60	Y KUB.
55 62 12 55 0.12 0.1 65 56 35 0.1 12 6 25 7 (D 30 0.1 12 30 12	13		15	011						0,1	
55 62 12 55 0.12 0.1 65 56 35 0.1 18 6 25 7 10 30 0.1 12 30 12 NOTES:	15		_ ,}				6			55	
18 6 25 7 10 30 0.1 12 30 12 NOTES:	55	62		55				56	35		
NOTES:	18	6	25	7	10	30	0.1	12	30		
NOTES:	iffle Pebble	e Count									NOTES:
NOTES:											
NOTES:											
NOTES:	/				V.						
NOTES:											
NOTES:									-		
				11200	R Breit		STATES.	1		T. V. Valle	NOTES:


Inches	PARTICLE	Millimeters	
	Silt / Clay	< .082	\$/C
	Very Pine	.062125	0
	Fine	.12525	S
	Medium	.2550	A
	Coarse	.50 - 1.0	D
.0408	Very Coarse	10-2	_
.0816	Very Fine	2-4	Yar.
.1622	Fine	4 - 5.7	
.2231	Fine	5.7 - 8	G
.3144	Medium	8 - 11.3	R
.44 - ,63	Medium	11,3 - 16	₽Ç.
.6389	Coarse	16 - 22.5	E
.89 - 1.3	Coarse	22.6 - 32	U
1.3 - 1.6	Very Coarse	32 - 45	
1.8 - 2.5	Very Coarse	45-64	
2.5 - 3.5	Small	84 - 90	C
3.5 - 5.0	Small	90 - 128	
5.0 - 7.1	Large	128 - 180	
7.1 - 10.1	Large	180 - 256	8
10.1 - 14.3	Small	256 - 362	8
14.3 - 20	Small	362 - 512	Ŭ
20 - 40	Medium	512 - 1024	ME
40 - 80	Large-Vry Large	1024 - 2048	R
	Bedrock		BDRK

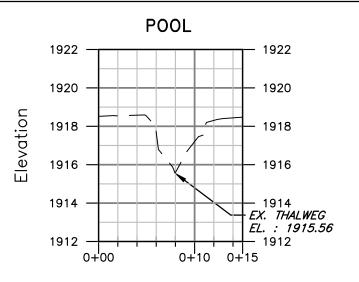
Bankfull Channel	
Material Size Range (mm)	Count
silt/clay 0 - 0.062	Oount
very fine sand 0.062 - 0.125	17
fine sand 0.125 - 0.25	•••
medium sand 0.25 - 0.5	2
coarse sand 0.5 - 1	1
very coarse sand 1 - 2	
very fine gravel 2 - 4	
fine gravel 4 - 6	
fine gravel 6 - 8	3
medium gravel 8 - 11	4
medium gravel 11 - 16	10
coarse gravel 16 - 22	10
coarse gravel 22 - 32	11
very coarse gravel 32 - 45	14
very coarse gravel 45 - 64	15
small cobble 64 - 90	12
medium cobble 90 - 128	1
large cobble 128 - 180	
very large cobble 180 - 256	
small boulder 256 - 362	
small boulder 362 - 512	
medium boulder 512 - 1024	
large boulder 1024 - 2048	
very large boulder 2048 - 4096	
total particle count:	100
bedrock	
clay hardpan	
detritus/wood	
artificial	
total count:	100
Note:	

S-C39

	AS-BUIL	T TABLE: S-C	C39 CROS	S SECTION B	
	PRE-CROSSING AS-BUILT		PRE-CROSSING		BUILT
PT. LOC.	NORTHING	EASTING	ELEV.	VERT. DIFF.	HORZ. DIFF.
TS-L	13590000.17	1729082.28	1917.82		
BS-L	13590000.69	1729082.81	1916.34		
THW	13590006.17	1729085.20	1915.74		
BS-R	13590006.74	1729085.21	1915.88		
TS-R	13590007.90	1729084.96	1918.39		

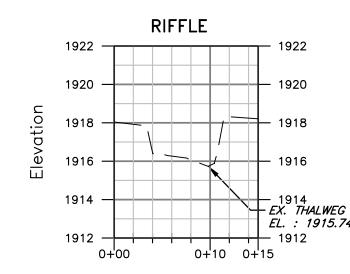
LEGEND

STUDY AREA (EASEMENT) EXISTING SURVEY-LOCATED THALWEG


EXISTING SURVEYED GROUND SHOT ELEVATION

1176.87 +

SURVEY NOTES:


- 1. THIS MAP HAS BEEN ORIENTED TO NAD 1983 UTM ZONE 17N, AND VERTICALLY TO THE NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD 88), USING REAL TIME DGPS. FIELD LOCATIONS WERE COMPLETED ON
- 2. EASEMENT LINES SHOWN ON PLAN VIEW WERE PROVIDED BY MOUNTAIN VALLEY PIPELINE.
- 3. SURVEY POINTS FOR CROSS SECTIONS AND THALWEG PROFILES COLLECTED IN 2021 HAVE BEEN USED IN COMBINATION WITH SURVEY POINTS AND COLLECTED PREVIOUSLY IN 2020 IN ORDER TO GENERATE THE PRE-CROSSING SURFACE SHOWN IN PLAN. DUE TO NATURAL EROSIONAL STREAM PROCESSES THAT OCCUR OVER TIME, MINOR ADJUSTMENTS TO THE PROFILE ALIGNMENTS MAY HAVE BEEN REQUIRED IN ORDER TO GENERATE A CLEAN PRE-CROSSING SURFACE.
- 4. ALL SECTION VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.
- 5. POST-CROSSING SURVEY INFORMATION SHOWN IN RED. DATA PENDING.
- 6. POST-CROSSING SURVEY POINTS FOR CROSS SECTIONS AND THALWEG ARE PROJECTED ONTO PRE-CROSSING SECTION AND PROFILE VIEWS FOR COMPARISON.

S-C39 BASELINE CROSS-SECTION A

DISTANCE ALONG CROSS-SECTION (FT)

S-C39 BASELINE CROSS-SECTION B

DISTANCE ALONG CROSS-SECTION (FT)

CROSS SECTION LEGEND — EXISTING GRADE

NOTE: ALL SECTION VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.

PRE-CROSSING PHOTOS

PHOTO TAKEN LOOKING DOWNSTREAM FROM UPSTREAM IMPACT LIMITS

PHOTO TAKEN LOOKING UPSTREAM FROM DOWNSTREAM IMPACT LIMITS

POST-CROSSING PHOTOS

PENDING CROSSING

PHOTO TAKEN LOOKING DOWNSTREAM UPSTREAM FROM IMPACT LIMITS

PENDING CROSSING

PHOTO TAKEN LOOKING UPSTREAM FROM UPSTREAM IMPACT LIMITS

PRE-CROSSING

Checked

Approved NOTED Scale:

SEPT. 2021 Date:

21-0244-005 Project No.

Drawing No.