Reach S-CV27 (Pipeline ROW) Intermittent Spread F Monroe County, West Virginia

Data	Included
Photos	\checkmark
SWVM Form	\checkmark
FCI Calculator and HGM Form	N/A – Intermittent stream (slope <4%)
RBP Physical Characteristics Form	\checkmark
Water Quality Data	N/A – No flow
RBP Habitat Form*	\checkmark
RBP Benthic Form	\checkmark
Benthic Identification Sheet	N/A – No flow
Wolman Pebble Count	\checkmark
Reference Reach Software Pebble Count Data	\checkmark
Longitudinal Profile and Cross Sections	\checkmark

*Modified RBP – No flow

Photo Type: US, US View Location, Orientation, Photographer Initials: Upstream Edge of Right of Way, Upstream View, AK/WP/RA/EW

Photo Type: US, DS View Location, Orientation, Photographer Initials: Upstream Edge of Right of Way, Downstream View, AK/WP/RA/EW

Photo Type: CP, US View Location, Orientation, Photographer Initials: Center Point, Upstream View, AK/WP/RA/EW

Photo Type: CP, DS View Location, Orientation, Photographer Initials: Center Point, Downstream View, AK/WP/RA/EW

Photo Type: DS, US View Location, Orientation, Photographer Initials: Downstream Edge of Right of Way, Upstream View, AK/WP/RA/EW

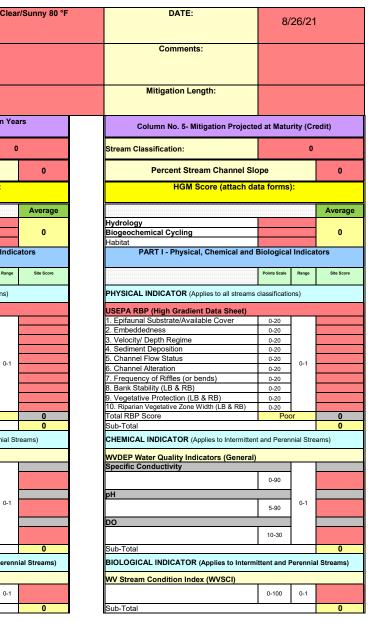
Photo Type: DS, DS View Location, Orientation, Photographer Initials: Downstream Edge of Right of Way, Downstream View, AK/WP/RA/EW

Spread F

Photo Type: Wetland View Location, Orientation, Photographer Initials: View of Wetland, AK/WP/RA/EW

"Q:\Charleston\2021 Projects\21-0244- MVP- STREAM AND WETLAND CONDITIONS ASSESSMENT AND SURVEY PLAN\002 - Pre-Crossing Monitoring\Spread F\S-CV27"

West Virginia Stream and Wetland Valuation Metric (SWVM) Version 2.1, September 2017


USACE FILE NO./ Project Name: (v2.1, Sept 2015)		Nountain Valley Pipeline	IMPACT COORDINATES: (in Decimal Degrees)	Lat.	37.46285	Lon.	-80.669582	WEATHER:		Cle
	AND SITE DESCRIPTION: , unaltered or impairments)	S-CV27 UN	to Hans Creek		MITIGATION STREAM CLASS (watershed size {acrea					
STREAM IMPACT LENGTH:	37 FORM MITIGA		MIT COORDINATES: (in Decimal Degrees)	Lat.		Lon.		PRECIPITATION PAST 48 HRS:		
Column No. 1- Impact Existing	g Condition (Debit)	Column No. 2- Mitigation Existing	Condition - Baseline (Credit)		Column No. 3- Mitigation F Post Completion		Five Years	Column No. 4- Mitigation Proj Post Completion		Ten Ye
Stream Classification:	Intermittent	Stream Classification:			Stream Classification:		0	Stream Classification:		
Percent Stream Channel SI	ope 2.5	Percent Stream Channel St	оре		Percent Stream Channel S	Slope	0	Percent Stream Channel SI	lope	
HGM Score (attach d	ata forms):	HGM Score (attach	data forms):		HGM Score (attac	h data form	s):	HGM Score (attach d	lata form	s):
	Average		Average				Average			
Hydrology Biogeochemical Cycling	0	Hydrology Biogeochemical Cycling	0		Hydrology Biogeochemical Cycling		0	Hydrology Biogeochemical Cycling		
Habitat PART I - Physical, Chemical and	Biological Indicators	Habitat PART I - Physical, Chemical a	nd Biological Indicators		Habitat PART I - Physical, Chemical a	and Biologic	al Indicators	Habitat PART I - Physical, Chemical and	I Biologic	al Indi
	Points Scale Range Site Score		Points Scale Range Site Score			Points Scale	Range Site Score		Points Scale	Range
PHYSICAL INDICATOR (Applies to all streams	s classifications)	PHYSICAL INDICATOR (Applies to all stream	s classifications)		PHYSICAL INDICATOR (Applies to all stream	ns classificatio	ns)	PHYSICAL INDICATOR (Applies to all stream	is classifica	tions)
USEPA RBP (High Gradient Data Sheet)		USEPA RBP (Low Gradient Data Sheet)			USEPA RBP (High Gradient Data Sheet)			USEPA RBP (High Gradient Data Sheet)		
1. Epifaunal Substrate/Available Cover 2. Embeddedness 3. Velocity/ Depth Regime	0-20 0-20 0-20 3	1. Epifaunal Substrate/Available Cover 2. Pool Substrate Characterization 3. Pool Variability	0-20 0-20 0-20		1. Epifaunal Substrate/Available Cover 2. Embeddedness 3. Velocity/ Depth Regime	0-20 0-20 0-20		1. Epifaunal Substrate/Available Cover 2. Embeddedness 3. Velocity/ Depth Regime	0-20 0-20 0-20	-
4. Sediment Deposition 5. Channel Flow Status 6. Channel Alteration	0-20 4 0-20 0-1 19	4. Sediment Deposition 5. Channel Flow Status 6. Channel Alteration	0-20 0-20 0-20 0-1		4. Sediment Deposition 5. Channel Flow Status 6. Channel Alteration	0-20 0-20 0-20	0-1	4. Sediment Deposition 5. Channel Flow Status 6. Channel Alteration	0-20 0-20 0-20	0-1
7. Frequency of Riffles (or bends) 8. Bank Stability (LB & RB)	0-20 0-20 18	7. Channel Sinuosity 8. Bank Stability (LB & RB)	0-20 0-20		7. Frequency of Riffles (or bends) 8. Bank Stability (LB & RB)	0-20 0-20		7. Frequency of Riffles (or bends) 8. Bank Stability (LB & RB)	0-20 0-20	
9. Vegetative Protection (LB & RB) 10. Riparian Vegetative Zone Width (LB & RB)	0-20 18 0-20 14	9. Vegetative Protection (LB & RB) 10. Riparian Vegetative Zone Width (LB & RB)	0-20		9. Vegetative Protection (LB & RB) 10. Riparian Vegetative Zone Width (LB & RB)	0-20		9. Vegetative Protection (LB & RB) 10. Riparian Vegetative Zone Width (LB & RB)	0-20 0-20	-
Total RBP Score Sub-Total	Marginal 76 0.38	Total RBP Score Sub-Total	Poor 0 0		Total RBP Score Sub-Total	Poo	r 0 0	Total RBP Score Sub-Total	Po	oor
CHEMICAL INDICATOR (Applies to Intermitte	nt and Perennial Streams)	CHEMICAL INDICATOR (Applies to Intermitte	nt and Perennial Streams)		CHEMICAL INDICATOR (Applies to Intermitt	ent and Perenr	nial Streams)	CHEMICAL INDICATOR (Applies to Intermitte	ent and Per	ennial \$
WVDEP Water Quality Indicators (General Specific Conductivity	1)	WVDEP Water Quality Indicators (Genera Specific Conductivity)		WVDEP Water Quality Indicators (General Specific Conductivity	al)		WVDEP Water Quality Indicators (General Specific Conductivity	d)	_
100-199 - 85 points	0-90		0-90		opeone conducting	0-90		openne conductivity	0-90	
pH 5.6-5.9 = 45 points	0-80	pH	5-90 0-1		рН	5-90	0-1	pH	5-90	0-1
5.6-5.9 = 45 points		DO			DO			DO	<u> </u>	
	10-30		10-30			10-30			10-30	
Sub-Total BIOLOGICAL INDICATOR (Applies to Intermi	ittent and Perennial Streams)	Sub-Total BIOLOGICAL INDICATOR (Applies to Interm	0		Sub-Total BIOLOGICAL INDICATOR (Applies to Inter	mittont and P	0	Sub-Total BIOLOGICAL INDICATOR (Applies to Intern	mittont and	d Poror
WV Stream Condition Index (WVSCI)	and referring Offedition	WV Stream Condition Index (WVSCI)	uoni anu r erenniai oileanisj		WV Stream Condition Index (WVSCI)	mittent and P		WV Stream Condition Index (WVSCI)	miterit and	reier
	0-100 0-1	WV Stream Condition Index (WVSCI)	0-100 0-1			0-100	0-1		0-100	0-1
0 Sub-Total	0	Sub-Total	0		Sub-Total	1.00	0	Sub-Total		

PART II - Index and Unit Score		
Index	Linear Feet	Unit Score
0.590	37	21.83

PART II - Index and Unit Score			
Index	Linear Feet	Unit Score	
0	0	0	

PART II - Index and Unit Score			
Index	Linear Feet	Unit Score	
0	0	0	

WV Stream Condition Index (WVSCI)		
	0-100	0-1
Sub-Total		
PART II - Index and U	nit Score	
Index	Linear	Feet
0	0	

PART II - Index and Unit Score		
Index	Linear Feet	Unit Score
0	0	0

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

STREAM NAME UNT to Hans Creek	LOCATION S-CV27 Monroe/F		
STATION # RIVERMILE	STREAM CLASS Intermittent		
LAT <u>37.46285</u> LONG <u>-80.669582</u>	COUNTY Monroe		
STORET #	AGENCYPotesta/Edge		
INVESTIGATORSABK/RA/WP/EW			
FORM COMPLETED BY A. Kincaid	DATE 8/26/2021 TIME 1200 PM	REASON FOR SURVEY Preliminary Assessment	

WEATHER CONDITIONS	Now Past 24 hours Has there been a heavy rain in the last 7 days?
SITE LOCATION/MAP	Draw a map of the site and indicate the areas sampled (or attach a photograph)
STREAM CHARACTERIZATION	Stream Subsystem Stream Type Perennial Intermittent Tidal Stream Origin Coldwater Warmwater Glacial Spring-fed Mixture of origins Non-glacial montane Other Other

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

WATERSHED FEATURES	Predominant Surrounding Landuse Forest Commercial Field/Pasture Industrial Agricultural Other Residential	Local Watershed NPS Pollution No evidence Some potential sources Obvious sources Local Watershed Erosion None Moderate
RIPARIAN VEGETATION (18 meter buffer)	Indicate the dominant type and record the domin Trees Shrubs Dominant species present	Grasses Herbaccous
INSTREAM FEATURES	Estimated Reach Length 37 m m Estimated Stream Width 10 m m Sampling Reach Area 37 #2 m ² Area in km ² (m ² x1000) km ² Estimated Stream Depthm Surface Velocitym/sec (at thalweg)	Canopy Cover Partly open □Partly shaded □Shaded High Water Markm Proportion of Reach Represented by Stream Morphology Types Riffle [∞] % Run [∞] % Pool [∞] % Channelized □Yes ☑No
LARGE WOODY DEBRIS	Stream Dry 🗹 LWDm ² Density of LWDm ² /km ² (LWD/ read	Dam Present 🛛 Yes 🗹 No ch area)
AQUATIC VEGETATION N/A Dry	Indicate the dominant type and record the domin Rooted emergent Floating Algae Dominant species present Portion of the reach with aquatic vegetation 9	
WATER QUALITY	Temperature ⁰ C Specific Conductance Dissolved Oxygen pH Turbidity WQ Instrument Used	Water Odors Normal/None Sewage Petroleum Chemical Fishy Other Water Surface Oils Globs Slick Sheen None Other Turbidity (if not measured) Turbid Clear Slightly turbid Opaque Stained
SEDIMENT/ SUBSTRATE	Odors ☑ Normal ☐ Chemical Other Other Oils ☑ Absent ☐ Slight ☐ Moderate ☐ Profuse	Deposits Sludge Sawdust Paper fiber Sand Relict shells Other Lpoking at stones which are not deeply embedded, are the undersides black in color? Yes ☑ No
	STRATE COMPONENTS OI	RGANIC SUBSTRATE COMPONENTS (does not necessarily add up to 100%)

(should add up to 100%)			(does not necessarily add up to 100%)			
Substrate Type	Diameter	% Composition in Sampling Reach	Substrate Type	Characteristic	% Composition in Sampling Area	
Bedrock		0	Detritus	sticks, wood, coarse plant	20	
Boulder	> 256 mm (10")	0		materials (CPOM)	30	
Cobble	64-256 mm (2.5"-10")	0	Muck-Mud	black, very fine organic	0	
Gravel	2-64 mm (0.1"-2.5")	0		(FPOM)	0	
Sand	0.06-2mm (gritty)	0	Marl	grey, shell fragments	0	
Silt	0.004-0.06 mm	100]			
Clay	< 0.004 mm (slick)	0]			

HABITAT ASSESSMENT FIELD DATA SHEET - HG - USE ON ALL STREAMS (FRONT)

STREAM NAME UNT to Hans Creek	LOCATION S-CV27		
STATION # RIVERMILE	STREAM CLASS Intermittent		
LAT 37.46285 LONG -80.669582	COUNTY Monroe		
STORET #	AGENCY Potesta/Edge		
INVESTIGATORSABK/RA/WP/EW			
FORM COMPLETED BY A. Kincaid	DATE 3/26/2021 TIME 1200 PM AM PM REASON FOR SURVEY Preliminary Assessment		

	Habitat		Condition	Category			
	Parameter	Optimal	Suboptimal	Marginal	Poor		
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.		
		stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are <u>not</u> new fall and <u>not</u> transient).	additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).				
	_{score} 0	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
ı sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.		
ted i	score 3 ▼	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime V/A	All four velocity/depth regimes present (slow- deep, slow-shallow, fast- deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast- shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).		
aram	_{SCORE} 0	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
P	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.		
	$_{\text{SCORE}} 4$	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 🖪 3 2 1 0		
	5. Channel Flow Status V N/A	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.		
	SCORE U	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		

Sediment Disposition: all sustrate was fine sediment/silt Modified RBP

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

	Habitat		Conditio	n Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabio or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
	score 19▼	20 🚺 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water of shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.
•	$_{\text{SCORE}} 0$	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
	8. Bank Stability (score each bank) Note: determine left or right side by facing deumonome.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30- 60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing 60-100% of bank has erosional scars.
	SCORE 9	Left Bank 10 🕘	8 7 6	5 4 3	2 1 0
	SCORE 9	Right Bank 10 🕘	8 7 6	5 4 3	2 1 0
	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well- represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambanl vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
	$\frac{9}{1}$	Left Bank 10 😕	8 7 6	5 4 3	2 1 0
	score 9 💽,	Right Bank 10 🧕	8 7 6	5 4 3	2 1 0
	10. Riparian Vegetative Zone Width (score each bank riparian zone) SCORE 7	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone - meters: little or no riparian vegetation due human activities.
	$\frac{\text{SCORE}}{\text{SCORE}} \frac{7}{5}$	Left Bank 10 9 Right Bank 10 9	8 7 6	5 4 3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
			8 👩 6	5 4 3	

BENTHIC MACROINVERTEBRATE FIELD DATA SHEET

STREAM NAME UN	T to Hans Creek	LOCATION							
STATION #	RIVERMILE	STREAM CLASS Intermitten	nt 🔽						
LAT 37.46285	LONG -80.669582	COUNTY Monroe							
STORET #		AGENCYPotesta/Edge							
INVESTIGATORSAL	BK/RA/WP/EW		LOT NUMBER						
FORM COMPLETED	^{BY} A. Kincaid	DATE 8/28/2021 TIME 1200 PM	REASON FOR SURVEY Preliminary Assessment						
HABITAT TYPES	Indicate the percentage of Cobble_% S Submerged Macrophytes	each habitat type present nags% □Vegetated B % □Other (
SAMPLE COLLECTION		lected? □wading □f s/kicks taken in each habitat ty ags □Vegetated B	anks Sand						
GENERAL COMMENTS	No Benthic samp	le collected due to l	ack of Habitat/no water						

QUALITATIVE LISTING OF AQUATIC BIOTA

Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare, 2 = Common, 3= Abundant, 4 = Dominant

Periphyton	0	1	2	3	4	Slimes	0	1	2	3	4
Filamentous Algae	0	1	2	3	4	Macroinvertebrates	0	1	2	3	4
Macrophytes	0	1	2	3	4	Fish	0	1	2	3	4

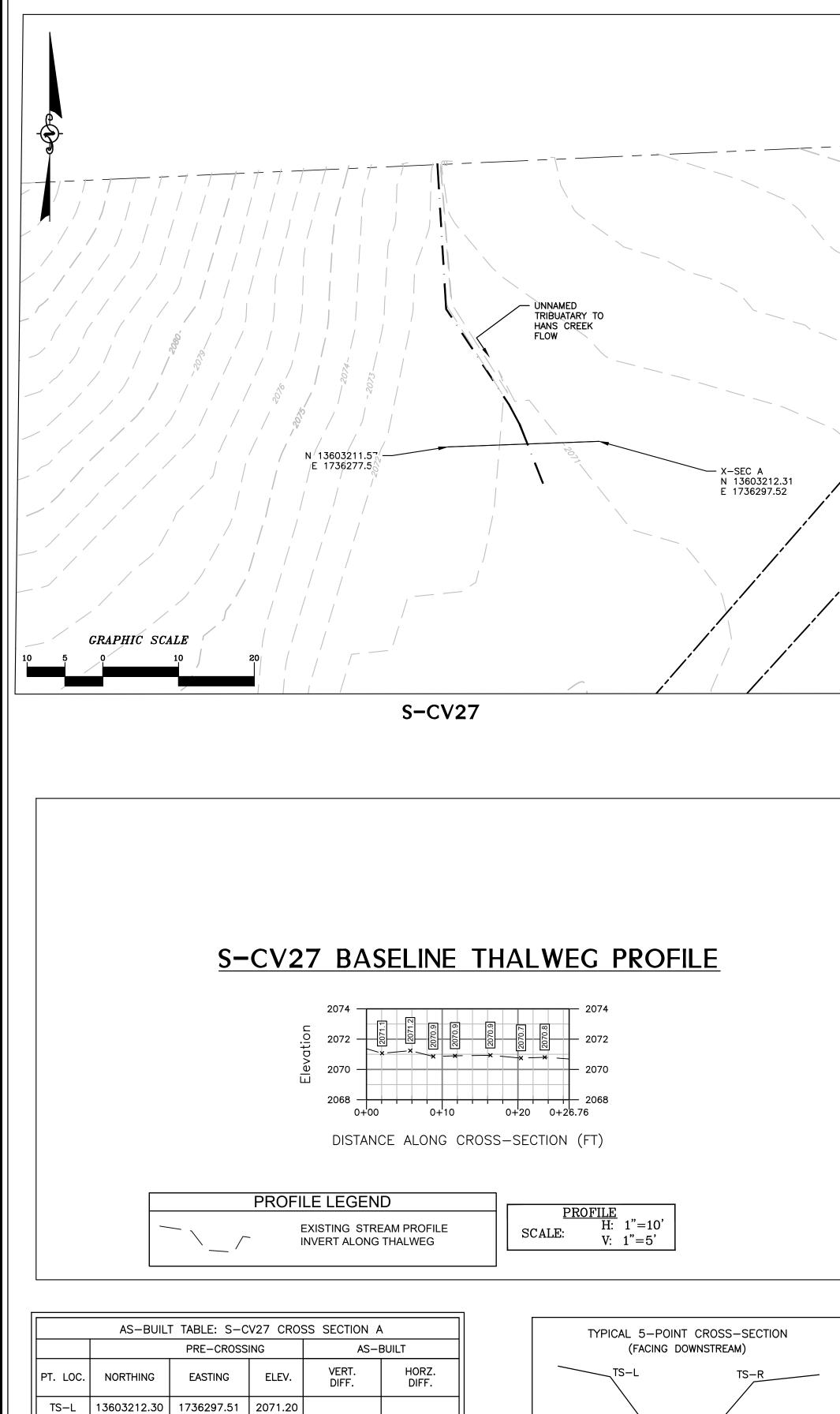
FIELD OBSERVATIONS OF MACROBENTHOS

Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare (1-3 organisms), 2 = Common (3-9 organisms), 3= Abundant (>10 organisms), 4 = Dominant (>50 organisms)

Porifera	0	1	2	3	4	Anisoptera	0	1	2	3	4	Chironomidae	0	1	2	3	4
Hydrozoa	0	1	2	3	4	Zygoptera	0	1	2	3	4	Ephemeroptera	0	1	2	3	4
Platyhelminthes	0	1	2	3	4	Hemiptera	0	1	2	3	4	Trichoptera	0	1	2	3	4
Turbellaria	0	1	2	3	4	Coleoptera	0	1	2	3	4	Other	0	1	2	3	4
Hirudinea	0	1	2	3	4	Lepidoptera	0	1	2	3	4						
Oligochaeta	0	1	2	3	4	Sialidae	0	1	2	3	4						
Isopoda	0	1	2	3	4	Corydalidae	0	1	2	3	4						
Amphipoda	0	1	2	3	4	Tipulidae	0	1	2	3	4						
Decapoda	0	1	2	3	4	Empididae	0	1	2	3	4						
Gastropoda	0	1	2	3	4	Simuliidae	0	1	2	3	4						
Bivalvia	0	1	2	3	4	Tabinidae	0	1	2	3	4						
						Culcidae	0	1	2	3	4						

SITE ID: S-(V 27 DATE: 26 AUGUST 2021 COLLECTOR(S): EMMA WEAR

Wolman Pe	bble Count (F	teach Wide)	Accession 1	NE SO WE					AN DUT	NOTES:
SI	SI	51	SI	হা	SI	SI	SI	SI	SF	ito neo.
SI	SI	SI	SE	ST	SI	SI	SL	SE	SI.	-
SI	SI	S\$	SI	SI	ST	SI	SI	SE	SI	-
SI	SI	SE	SI	St	SI	SE	SE	SI	SI	-
ST	ST	SI	ST	SI	SI	SI	SI	SL	SI	-
9L	x	SF	X	S.	SE	ST	SI	ST	SI	-
M	SI	SI	SE	R	SI	SL	51	SI	TR.	1
<u>St.</u>	22	SI	SI	SI	SI	SI.	ST	ST	SI	
9I_	IC	ST-	SI	21	SI	ST	SE	ST.	SE	1
SE) JI	ST	St	51	SE	ST	ST	12	SI	


Monroe/F

Riffle Pebble Count	New York and the second second		NOTES:

	Service and the service of the servi	14,916,322	Service Contract	NOTES:
0				
-				
the				

Inches	PARTICLE	Millimeters	
	Sit / Clay	<.062	\$/C
	Very Fine	.062125	\sim
	Fine	.12525	s
	Medium	.2550	S A N D
	Coarse	.50 - 1.0	D
.0408	Very Coarse	1.0 -2	-
.0816	Very Fine	2-6	語語語
.1622	Fine	4 - 5.7	
2231	Fine	5.7-8	G
31-,44	Medium	8-11,3	RA
.4463	Medium	11,3 - 15	Ω.
.6389	Coarse	16+2 <u>2.6</u>	E
.89-1.3	Coarse	22.6-32	U
1.3 - 1.8	Very Coarse	32 - 45	1000
1.8-2.5	Very Coarse	45-64	
2.5 - 3.5	Small	64 - 90	C
3.5 - 5.0	Small	90 - 128	288
5.0 - 7.1	Large	128 - 180	님밥
7.1-10.1	Large	180 - 256	as
10.1 - 14.3	Small	256 - 362	8
14.3 - 20	Small	362 - 512	Ŭ
20 - 40	Medium	512 - 1024	PE
40 - 80	Large-Vry Large		B
	Bedrock	Nor.	BDRK

		1								
Bankfull Channel 🛛 🗸										
Material Size Range (mm)	Count	Bankf	ull Chann	el Pebble	Count, UNT t	to Hans Creek (S-	CV27)			
silt/clay 0 - 0.062	100					· ·	, 	L (' 0/		
very fine sand 0.062 - 0.125	100									icles
fine sand 0.125 - 0.25										
medium sand 0.25 - 0.5		100% -	silt/clay	Ŧ	sand	gravel	cobble	boulder	<u> </u>	
coarse sand 0.5 - 1		100 %							120	
very coarse sand 1 - 2		90% -								
very fine gravel 2 - 4		0.001							+ 100	
fine gravel 4 - 6		80% -								
fine gravel 6 - 8		₩ 70% -								
medium gravel 8 - 11		t							- 80	nu
medium gravel 11 - 16		ے %00 ن <u>و</u>								number of particles
coarse gravel 16 - 22		u≣ 12 50% -							60	er
coarse gravel 22 - 32		Uec Solva								ofp
very coarse gravel 32 - 45		b 40% -								barr
very coarse gravel 45 - 64		_							+ 40	icle
small cobble 64 - 90		30% -								S
medium cobble 90 - 128		20% -								
large cobble 128 - 180									- 20	
very large cobble 180 - 256		10% -								
small boulder 256 - 362		0% -							0	
small boulder <u>362 - 512</u>		0.0)1	0.1	1	10	100	1000	10000	
medium boulder 512 - 1024		0.0	, ,	0.1				1000	10000	
large boulder 1024 - 2048						particle size (mm)				
very large boulder 2048 - 4096	400									
total particle count:	100		0:		0:	Distribution		-		
bedrock		—	Size (mm D16 0	1)).062		e Distribution		Type		
						nean 0.1	S	ilt/clay 100%		
clay hardpan				0.062	disper			sand 0%		
detritus/wood).062).062	skewr	iess		gravel 0%		
artificial	100							cobble 0% oulder 0%		
total count:	100).062).062			D	oulder 0%		
Note:			D95 0	1.002						
100.		L								

THW

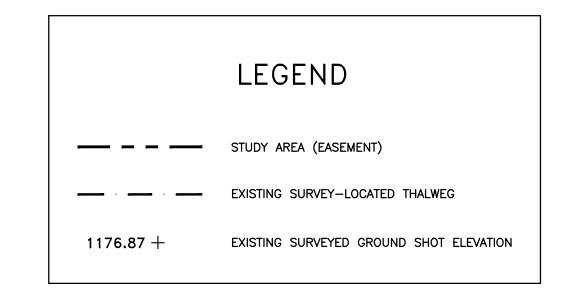
TS: TOP OF SLOPE BS: BOTTOM OF SLOPE

THW: THALWEG (INVERT)

BS-L THW BS-R TS-R

13603211.93

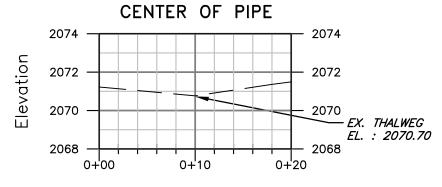
13603211.91


13603211.68

1736291.51 2070.93

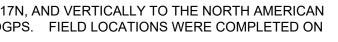
1736288.08 2070.72

1736282.86 2070.91

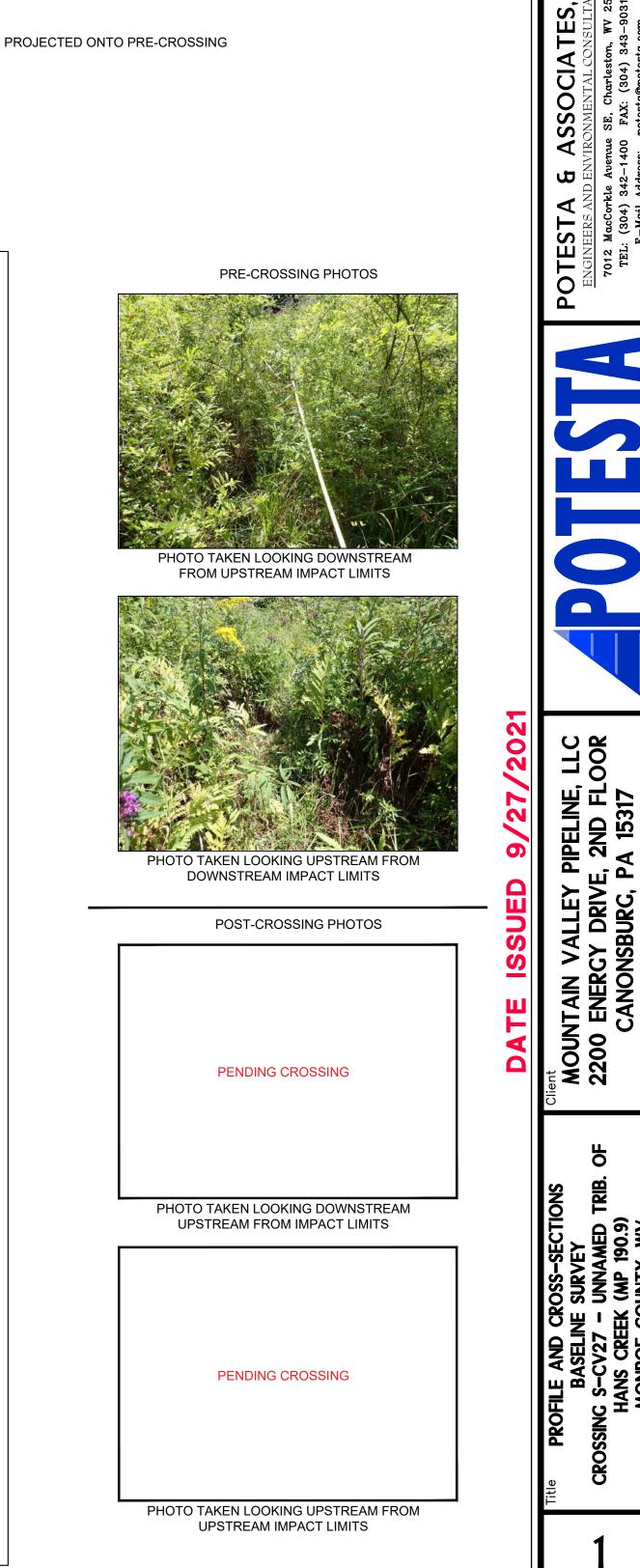

13603211.45 1736277.56 2070.98

SURVEY NOTES:

- 1. THIS MAP HAS BEEN ORIENTED TO NAD 1983 UTM ZONE 17N, AND VERTICALLY TO THE NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD 88), USING REAL TIME DGPS. FIELD LOCATIONS WERE COMPLETED ON 8-19-2021.
- 2. EASEMENT LINES SHOWN ON PLAN VIEW WERE PROVIDED BY MOUNTAIN VALLEY PIPELINE.
- COMBINATION WITH SURVEY POINTS AND COLLECTED PREVIOUSLY IN 2020 IN ORDER TO GENERATE THE PRE-CROSSING SURFACE SHOWN IN PLAN. DUE TO NATURAL EROSIONAL STREAM PROCESSES THAT OCCUR OVER TIME, MINOR ADJUSTMENTS TO THE PROFILE ALIGNMENTS MAY HAVE BEEN REQUIRED IN ORDER TO GENERATE A CLEAN PRE-CROSSING SURFACE.
- 4. ALL SECTION VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.
- 5. POST-CROSSING SURVEY INFORMATION SHOWN IN RED. DATA PENDING.
- SECTION AND PROFILE VIEWS FOR COMPARISON.



DISTANCE ALONG CROSS-SECTION (FT)


С	CROSS SECTION LEGEND							
	— EXISTING GRADE							
	$\begin{array}{c c} \underline{CROSS} & \underline{SECTION} \\ \hline \\ ALE: & H: & 1''=10' \\ V: & 1''=5' \end{array}$							

NOTE: ALL SECTION VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.

3. SURVEY POINTS FOR CROSS SECTIONS AND THALWEG PROFILES COLLECTED IN 2021 HAVE BEEN USED IN

6. POST-CROSSING SURVEY POINTS FOR CROSS SECTIONS AND THALWEG ARE PROJECTED ONTO PRE-CROSSING

PRE-CROSSING

Drawing No

-S-CV27 CAD File No.

MBS Drawn

СНН Checked

BB/JLY Approved

NOTED Scale:

SEPT. 2021 Date:

21-0244-005 Project No.

 \mathbf{O}

Z