Baseline Assessment – Stream Attributes

Reach S-F43 (Pipeline ROW) Perennial Spread C Webster County, West Virginia

Data	Included
Photos	✓
SWVM Form	✓
FCI Calculator and HGM Form	N/A – Perennial stream (not shadeable, slope
	>4%)
RBP Physical Characteristics Form	✓
Water Quality Data	✓
RBP Habitat Form	✓
RBP Benthic Form	✓
Benthic Identification Sheet	N/A –Low flow
Wolman Pebble Count	✓
Reference Reach Software Pebble Count Data	✓
Longitudinal Profile and Cross Sections	√

Photo Type: DS Edge of Reach, US View
Location, Orientation, Photographer Initials: Downstream Edge of Reach, Upstream View, ABK/AAK/TA

Photo Type: DS Edge of Reach, DS View
Location, Orientation, Photographer Initials: Downstream Edge of Reach, Downstream View, ABK/AAK/TA

Photo Type: US Edge of TMB, US View
Location, Orientation, Photographer Initials: Upstream Edge of Timber Mat Bridge, Upstream View,
ABK/AAK/TA

Photo Type: US Edge of TMB, DS View
Location, Orientation, Photographer Initials: Upstream Edge of Timber Mat Bridge, Downstream View,
ABK/AAK/TA

Photo Type: CP, US View and Cross Section, Center of Channel
Location, Orientation, Photographer Initials: Center ROW, Upstream View and Cross Section, Center of Channel,
ABK/AAK/TA

Photo Type: CP, DS View and Cross Section, Center of Channel
Location, Orientation, Photographer Initials: Center ROW, Downstream View and Cross Section, Center of
Channel, ABK/AAK/TA

Photo Type: US, US View Location, Orientation, Photographer Initials: Upstream Edge of ROW, Upstream View, ABK/AAK/TA

Location, Orientation, Photographer Initials: Upstream Edge of ROW, Downstream View, ABK/AAK/TA

Photo Type: Cross Section, LDB, US
Location, Orientation, Photographer Initials: Cross Section, Left Descending Bank, Upstream View, ABK/AAK/TA

Photo Type: Cross Section, LDB, DS
Location, Orientation, Photographer Initials: Cross Section, Left Descending Bank, Downstream View,
ABK/AAK/TA

Photo Type: Cross Section, RDB, US
Location, Orientation, Photographer Initials: Cross Section, Right Descending Bank, Upstream View,

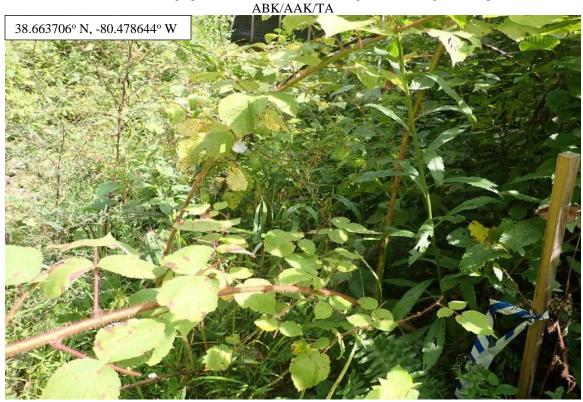


Photo Type: Cross Section, RDB, DS Location, Orientation, Photographer Initials: Cross Section, Left Descending Bank, Downstream View, ABK/AAK/TA

 $[&]quot;Q: \label{lem:conditions} \begin{subarray}{l} $"Q: \cite{Charleston} \cite{Conditions} \begin{subarray}{l} ASSESSMENT\ AND\ SURVEY\ PLAN \cite{OO2} - Pre-Crossing\ Monitoring \cite{Spread}\ C\cite{S-F43}" \end{subarray}$

West Virginia Stream and Wetland Valuation Metric (SWVM) Version 2.1, September 2017

USACE FILE NO./ Project Name: (v2.1, Sept 2015)		MOUNTAIN	VALLEY PIPELINE	IMPACT COORDINATES: (in Decimal Degrees)	Lat.	38.663706 Lon.	-80.478644	WEATHER:	50% Cloudy	DATE:	8/15/2015
IMPACT STREAM/SITE ID (watershed size {acreage},			UNT to Oldlick	Creek (S-F43)		MITIGATION STREAM CLASS./SITE ID ANI (watershed size {acreage}, unaltered or i				Comments:	
STREAM IMPACT LENGTH:	101	FORM OF MITIGATION:	RESTORATION (Levels I-III)	MIT COORDINATES: (in Decimal Degrees)	Lat.	Lon.		PRECIPITATION PAST 48 HRS:		Mitigation Length:	
Column No. 1- Impact Existing	Condition (Debit)		Column No. 2- Mitigation Existing Co	ondition - Baseline (Credit)		Column No. 3- Mitigation Projected at Fi Post Completion (Credit)	ve Years	Column No. 4- Mitigation Project Post Completion (Cr		Column No. 5- Mitigation Projec	ted at Maturity (Credit)
Stream Classification:	Perennia	al	Stream Classification:			Stream Classification:	0	Stream Classification:	0	Stream Classification:	0
Percent Stream Channel Slo	оре	12	Percent Stream Channel Slo	oe e		Percent Stream Channel Slope	0	Percent Stream Channel Slop	е 0	Percent Stream Channel S	Slope 0
HGM Score (attach da	ata forms):		HGM Score (attach d	ata forms):		HGM Score (attach data forms):	HGM Score (attach data	a forms):	HGM Score (attach o	data forms):
		Average		Average			Average		Average		Average
Hydrology			Hydrology			Hydrology		Hydrology		Hydrology	
Biogeochemical Cycling Habitat		0	Biogeochemical Cycling Habitat	0		Biogeochemical Cycling Habitat	0	Biogeochemical Cycling Habitat	0	Biogeochemical Cycling Habitat	0
PART I - Physical, Chemical and	Biological Indicator	rs	PART I - Physical, Chemical and	Biological Indicators		PART I - Physical, Chemical and Biological	Indicators	PART I - Physical, Chemical and Bi	ological Indicators	PART I - Physical, Chemical and	d Biological Indicators
	Points Scale Range	Site Score		Points Scale Range Site Score		Points Scale R	tange Site Score	F	Points Scale Range Site Score		Points Scale Range Site Score
PHYSICAL INDICATOR (Applies to all streams	s classifications)		PHYSICAL INDICATOR (Applies to all streams of	lassifications)		PHYSICAL INDICATOR (Applies to all streams classifications	s)	PHYSICAL INDICATOR (Applies to all streams of	assifications)	PHYSICAL INDICATOR (Applies to all stream	ns classifications)
USEPA RBP (High Gradient Data Sheet)			USEPA RBP (Low Gradient Data Sheet)			USEPA RBP (High Gradient Data Sheet)		USEPA RBP (High Gradient Data Sheet)		USEPA RBP (High Gradient Data Sheet)	
Epifaunal Substrate/Available Cover	0-20		Epifaunal Substrate/Available Cover	0-20		Epifaunal Substrate/Available Cover 0-20			0-20	Epifaunal Substrate/Available Cover	0-20
2. Embeddedness	0-20	17	Pool Substrate Characterization	0-20		2. Embeddedness 0-20			0-20	2. Embeddedness	0-20
3. Velocity/ Depth Regime	0-20	40	3. Pool Variability	0-20		3. Velocity/ Depth Regime 0-20			0-20	3. Velocity/ Depth Regime	0-20
Sediment Deposition Channel Flow Status	0-20	13	Sediment Deposition Channel Flow Status	0-20		4. Sediment Deposition 0-20 5. Channel Flow Status 0-20			0-20	Sediment Deposition Channel Flow Status	0-20
Channel Alteration	0-20 0-20 0-1	19	Channel Alteration	0-20 0-1		6. Channel Alteration 0-20	0-1		0-20 0-1	6. Channel Alteration	0-20 0-1
7. Frequency of Riffles (or bends)	0-20	19	7. Channel Sinuosity	0-20		7. Frequency of Riffles (or bends) 0-20			0-20	7. Frequency of Riffles (or bends)	0-20
8. Bank Stability (LB & RB)	0-20	18	8. Bank Stability (LB & RB)	0-20		8. Bank Stability (LB & RB) 0-20		8. Bank Stability (LB & RB)	0-20	8. Bank Stability (LB & RB)	0-20
9. Vegetative Protection (LB & RB)	0-20	18	9. Vegetative Protection (LB & RB)	0-20		9. Vegetative Protection (LB & RB) 0-20		9. Vegetative Protection (LB & RB)	0-20	9. Vegetative Protection (LB & RB)	0-20
10. Riparian Vegetative Zone Width (LB & RB)	0-20	12	10. Riparian Vegetative Zone Width (LB & RB)	0-20		10. Riparian Vegetative Zone Width (LB & RB) 0-20			0-20	10. Riparian Vegetative Zone Width (LB & RB)	0-20
Total RBP Score	Marginal	97	Total RBP Score	Poor 0		Total RBP Score Poor	0	Total RBP Score	Poor 0	Total RBP Score	Poor 0
Sub-Total CHEMICAL INDICATOR (Applies to Intermitten		0.485	Sub-Total CHEMICAL INDICATOR (Applies to Intermittent	and Perennial Streams)		Sub-Total CHEMICAL INDICATOR (Applies to Intermittent and Perennia	0	Sub-Total CHEMICAL INDICATOR (Applies to Intermittent a	0	Sub-Total CHEMICAL INDICATOR (Applies to Intermittee	0
		13)		and referminal outcarns)			ar ou carris)		and referminal execution		•
WVDEP Water Quality Indicators (General) Specific Conductivity)		WVDEP Water Quality Indicators (General) Specific Conductivity			WVDEP Water Quality Indicators (General) Specific Conductivity		WVDEP Water Quality Indicators (General) Specific Conductivity		WVDEP Water Quality Indicators (General Specific Conductivity	11)
Specific conductivity			Specific Conductivity					Specific Colludetivity		Specific Conductivity	
<=99 - 90 points	0-90	49		0-90		0-90			0-90		0-90
pH		0.0	pH	0		pH		pH		pH	
	0-80	6.55		5-90 0-1		5-90	0-1		5-90 0-1		5-90 0-1
6.0-8.0 = 80 points	1	0.00	= -								
DO			ВО			DO		DO		DO	
>5.0 = 30 points	10-30	11.37		10-30		10-30			10-30		10-30
Sub-Total BIOLOGICAL INDICATOR (Applies to Intermit)	ttent and Perennial Strea	ams)	Sub-Total BIOLOGICAL INDICATOR (Applies to Intermitte	ent and Perennial Streams)		Sub-Total BIOLOGICAL INDICATOR (Applies to Intermittent and Per	rennial Streams)	Sub-Total BIOLOGICAL INDICATOR (Applies to Intermitt	tent and Perennial Streams)	Sub-Total BIOLOGICAL INDICATOR (Applies to Interest	mittent and Perennial Streams)
WV Stream Condition Index (WVSCI)		,	WV Stream Condition Index (WVSCI)	,		WV Stream Condition Index (WVSCI)		WV Stream Condition Index (WVSCI)	,	WV Stream Condition Index (WVSCI)	
The same contained in the same same same same same same same sam	0.400		Sadam Condition (117001)	0.400		` <i>'</i>	0.4	`	0-100 0-1	- Caram Constitution (111001)	0.400
0	0-100 0-1			0-100 0-1		0-100	0-1		0-100 0-1		0-100 0-1
Sub-Total		0	Sub-Total	0		Sub-Total	0	Sub-Total	0	Sub-Total	0
									-		
PART II - Index and U	Init Score		PART II - Index and I	Jnit Score		PART II - Index and Unit Score		PART II - Index and Unit	t Score	PART II - Index and	Unit Score
Index	Linear Feet U	nit Score	Index	Linear Feet Unit Score		Index Linear Fe	eet Unit Score	Index	Linear Feet Unit Score	Index	Linear Feet Unit Score
0.743	101	74.9925	0	0 0		0 0	0	0	0 0	0	0 0

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

STREAM NAME UNT to	Oldlick Creek	LOCATION S-F43	
STATION #	RIVERMILE	STREAM CLASS Perennial	<u> </u>
LAT 38.663706	LONG -80.478644	COUNTY Webster	
STORET#		AGENCY Potesta	
INVESTIGATORS A.K	incaid/A. Kirsch/T. Aboytes		
FORM COMPLETED BY	A. Kincaid	DATE 8-12-2021 TIME 10.00 AM	REASON FOR SURVEY Preliminary Assessment
WEATHER CONDITIONS	rain shower	n (heavy rain) (steady rain) rs (intermittent) cloud cover lear/sunny	Has there been a heavy rain in the last 7 days? ✓ Yes No Air Temperature 75 F C Other
SITE LOCATION/MAP	Draw a map of the si	te and indicate the areas samp	led (or attach a photograph)
		Jan Service States of the service of	Boidge A This South Control of the State of
STREAM CHARACTERIZATION	Stream Subsystem	termittent Tidal	Stream Type Coldwater Warmwater
CHARACTERIZATIO!	Stream Origin Glacial Non-glacial montan Swamp and bog	□Spring-fed	Catchment Areakm ²

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

WATERS FEATURI		Fores	Pasture Industria	rcial	Local Watershed NPS No evidence ✓ Son Obvious sources Local Watershed Erosi None ☐ Moderate	ne potential sources			
RIPARIA VEGETA (18 meter	TION			d record the dominant species present Shrubs ☐ Grasses ☐ Herbaceous rns/clover					
INSTREA FEATURI		Estimate Samplin Area in Estimate Surface (at that		m m² km²	m High Water Mark m m² Proportion of Reach Represented by Stream Morphology Types Riffle % Run 0 % m Pool %				
LARGE V DEBRIS	VOODY	LWD Density	LWDm² Density of LWDm²/km² (LWD/ reach area)						
AQUATIO VEGETA		☐Roote ☐Floati	e the dominant type and bed emergent RC Atgae NA ant species present of the reach with aquat	☐Free floating					
WATER (QUALITY	Specific Dissolv pH 6.5	rature 20.4 C c Conductance 0.049 ms/cm ed Oxygen 11.37 mg/L 55 su ity 6.75 ntu strument Used YSI/Turb	oidimeter	Petroleum Fishy Water Surface Oils Slick None Other Turbidity (if not measu	Normal/None			
SEDIMEN SUBSTRA		Odors Norm Chen Other Oils		Petroleum None	Looking at stones whic	□ Paper fiber □ Sand Other □ h are not deeply embedded, k in color?			
INC	DRGANIC SUBS		COMPONENTS		ORGANIC SUBSTRATE C				
Substrate Type	Diamete	er	% Composition in Sampling Reach	Substrate Type	Characteristic	% Composition in Sampling Area			
Bedrock Boulder	> 256 mm (10")		5	Detritus	sticks, wood, coarse plant materials (CPOM)	10			
Cobble Gravel	64-256 mm (2.5 2-64 mm (0.1"-2	100000000	25 50	Muck-Mud	black, very fine organic (FPOM)				
Sand	0.06-2mm (gritty	y)	15	Marl	grey, shell fragments				
Silt	0.004-0.06 mm		5]	-				
Clay	< 0.004 mm (sli	ck)	-						

only pools present

HABITAT ASSESSMENT FIELD DATA SHEET - HG - USE ON ALL STREAMS (FRONT)

STREAM NAME UNT to Oldlick Creek	LOCATION S-F43						
STATION # RIVERMILE	STREAM CLASS Perennial						
LAT 38.663706 LONG -80.478644	COUNTY Webster						
STORET #	AGENCY Potesta						
INVESTIGATORS A. Kincaid/A. Kirsch/T. Aboytes	· · · · · · · · · · · · · · · · · · ·						
FORM COMPLETED BY A. Kincaid	DATE 8-12-2021 TIME 10:00 AM PM REASON FOR SURVEY Preliminary Assessment						

	Habitat		Condition	Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
	_{SCORE} 0 ▼	not transient). 20 19 18 17 16	high end of scale). 15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.
ted ir	SCORE 17▼	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime N/A	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).
aram	SCORE 0	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
ă	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
	SCORE 13▼	20 19 18 17 16	15 14 🚺 12 11	10 9 8 7 6	5 4 3 2 1 0
	5. Channel Flow Status N/A	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
	SCORE U	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0

Modified RBP, Over 60% of channel dry.

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

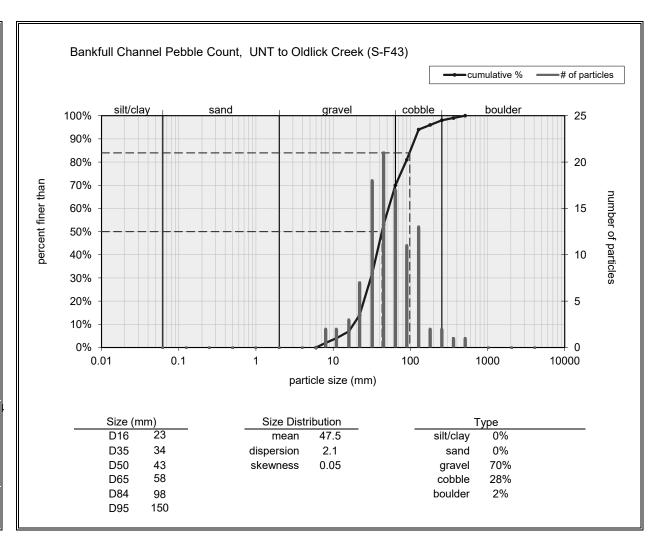
	Habitat		Condition	ı Category			
	Habitat Parameter	Optimal	Suboptimal	Marginal	Poor		
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.		
	SCORE 19▼	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
ing reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.		
sampl	score 0 ▼	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing decrease.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.		
e eva	SCORE 9	Left Bank 10	8 7 6	5 4 3	2 1 0		
tob	SCORE 9 ▼	Right Bank 10	8 7 6	5 4 3	2 1 0		
Parameters	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.		
	SCORE 9	Left Bank 10 9	8 7 6	5 4 3	2 1 0		
	SCORE 9 ▼,	Right Bank 10	8 7 6	5 4 3	2 1 0		
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.		
	SCORE 6	Left Bank 10 9	8 7 6	5 4 3	2 1 0		
	SCORE 6 ▼)	Right Bank 10 9	8 7 6	5 4 3	2 1 0		

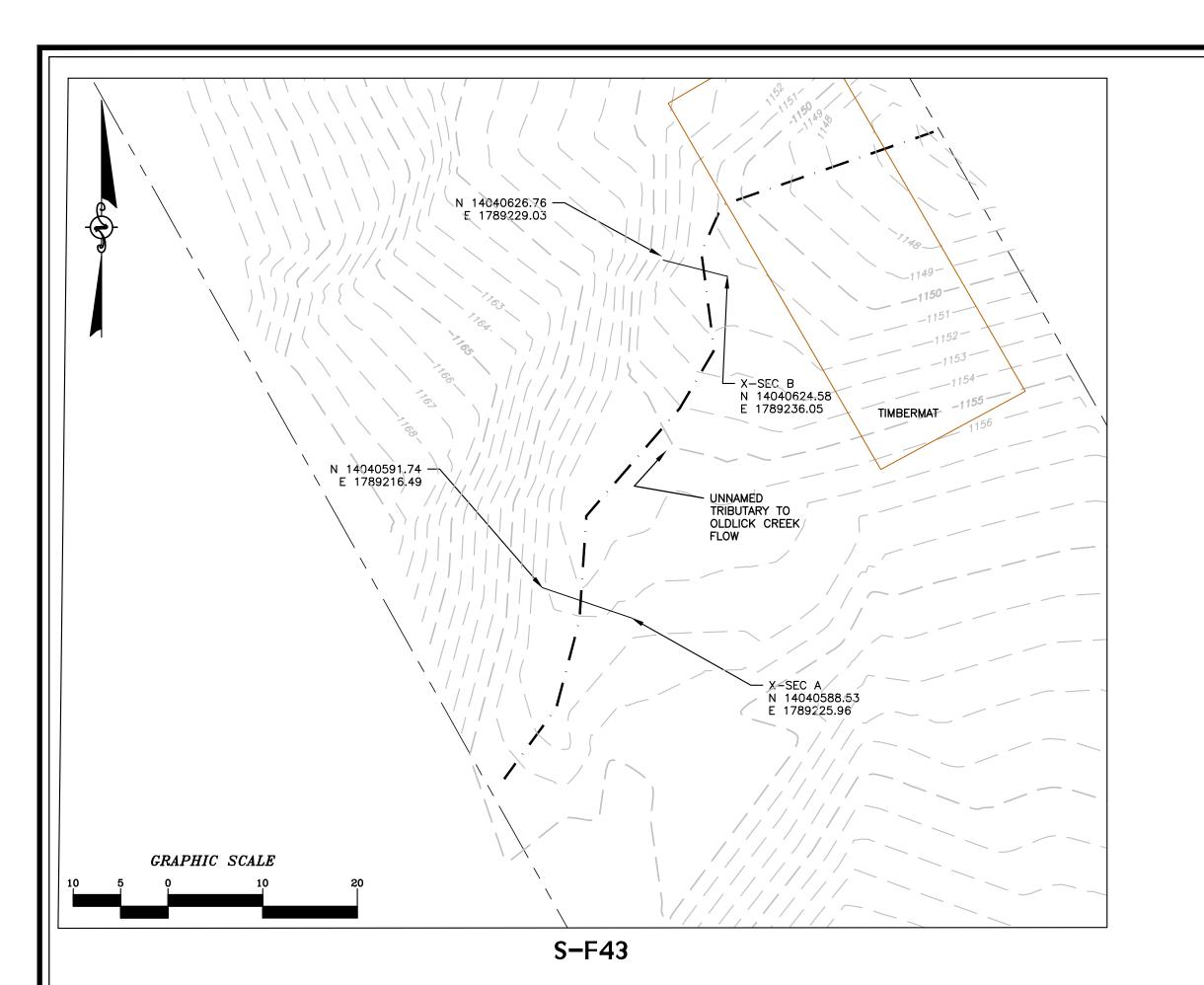
Total Score Modified RBP, Over 60% of channel dry.

BENTHIC MACROINVERTEBRATE FIELD DATA SHEET

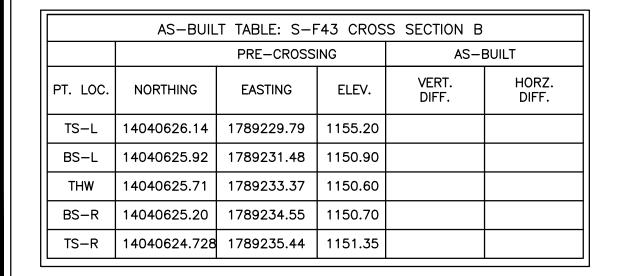
STREAM NAME UN	II to C	Oldlich	k Gree	ek.		- 0	LOC	AHON	S-F43										
STATION #	_ R	IVE	RM	LE_			STR	EAM C	LASS	Pere	nnia	ı							
LAT 38.663706	_ L	ONO	j80	47864	í.		COL	JNTY	W	ebst	er								
STORET#							AGE	ENCY	Potesta	3									
INVESTIGATORS	A. Kin	caid/	A. Kir	sch/1	. Abc	ytes							LOT	NUMBER					
FORM COMPLETED	BY	A	. k	(ir	nca	aid	DAT	E 8-12-	2021 0 AM				REA	SON FOR SURVEY	relimir	ary	Asse	essm	ent
HABITAT TYPES		dica Co Sub	ate the obble	e pe	rcen % 1acro	tage of 6 6 Sr	each l nags9	habitat	type pr	eser eget	ated Other	Ban	ks	%	%				
SAMPLE COLLECTION	H In	ow v	were ate th	the :	samp mbe	rame Colles colles r of jabs Sna	ected? s/kick	? []wadin in each □V	g n hal	other bitat rated	fron type Ban	n baı	nk from boa	at				
GENERAL COMMENTS	┢							CS		<u> </u>	C		•	colle	C	t	e)(t
QUALITATIVE I Indicate estimated Dominant) = A		/Not	Obser	ved, 1		Raro		= (Common, 3= Abun		4 =	= 2	3	4
Filamentous Algae						1 2		4					rteb	rates	0	1	2	3	4
Macrophytes					0	1 2	3	4		Fis	h				0	1	2	3	4
	l ab	und	anc	e:	0 = orga	Absent anisms	t/Not), 3=	Obser Abun	dant (>10	org	anis	sms)	rganisms), 2 = Co	·50 oı	rgar	nism		
Porifera Hydrozoa	0	1		_	4		•	a .	-	1				Chironomidae		1	2	3	4
Platyhelminthes	0	1 1	2	3	4 4	Zygoj Hemi	_		0	1 1	2	3	4	Ephemeroptera Trichoptera	0	1 1	2	3	4
Turbellaria	0	1	2	3	4	Coled	_		0	1	2	3	4	Other	0	1	2	3	4
Hirudinea	0	1	2	3	4	Lepid			0	1	2	3	4	o their	O	•	_	,	Ċ
Oligochaeta	0	1	2	3	4	Sialic			0	1	2	3	4						
Isopoda	0	1	2	3	4	Coryo		ae	0	1	2	3	4						
Amphipoda	0	1	2	3	4	Tipul	idae		0	1	2	3	4						
Decapoda	0	1	2	3	4	Empi			0	1	2	3	4						
Gastropoda	0	1	2	3	4	Simu		e	0	1	2	3	4						
Bivalvia	0	1	2	3	4	Tabir			0	1	2	3	4						
						Culci	dae		0	1	2	3	4						

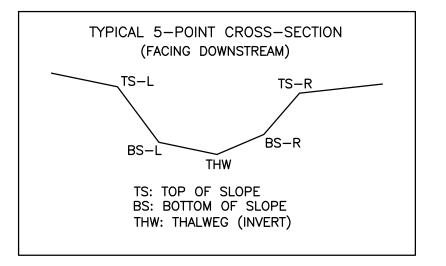
SITE ID: S- F43	UDT to adlick Creek
DATE: 8-17-21	
COLLECTOR(S):	incasal

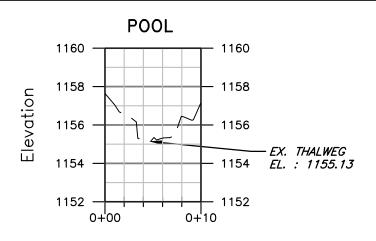

	nt (Reach Wide)	mm	VS	-/-	S. AVIII II I			2/1//	NOTES:
4	1 23	50	37	50	483	49	30	256	
105 2	2 10	00	40	19	57	6	75	95	
30 11	83	25	20	06	84	127	62	76	
36 4	8 21	48	66	47	30	Uq	103	78	
40 3	1 76	27	100	83	aa	35	- 8	262	
87 3	8 79	91	44	58	49	34	16	87	
29 6	0 14	49	28	37	201	36	58	The	
83 0	5 13	96	77	56	27	18	23	28	
40 12	6 64	93	42	46	1010	141	129	70	
132 U	8 63	113	45	214	18	Sh	16	0	


Riffle Pebble Count		NOTES:
	<u> </u>	NO Riffles
		in reach

THE RESERVE THE PARTY OF THE PA	NOTES:			
			8	
 _				
 _	4			

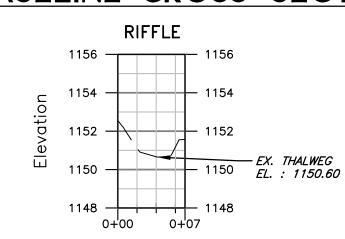

PARTICLE	Millimeters	
Silt / Clay	< .062	S/C
Very Fine	.062125	$\overline{}$
Fine	.12525	S
Medium	2550	N
Coarse	.50 - 1.0	D
Very Coarse	1.0 - 2	1
Very Fine	2-4	
Fire	4 - 5.7	
Fine	5.7 - 8	G
Mędium	8 - 11,3	R
Medium	11.3 - 16	V.
Coarse	16 - 22.6	E
Coarse	22.6 - 32	U
Very Coarse	32 - 45	200
Very Coarse	45 - 64	
Smell	64 - 90	C.
Small	90 - 128	28 B
Large	128 - 180	
Large	180 - 256	ELS.
Small	256 - 362	(1)
Small	362 - 512	Νğ
Medium	512 - 1024	JE!
Large-Vry Large	1024 - 2048	B
	Sit / Clay Very Fine Fine Medium Coarse Very Coarse Very Fine Fine Medium Medium Medium Coarse Coarse Very Coarse Very Coarse Large Large Small Small Medium	Silt / Clay < .062 Very Fine .062125 Fine .12525 Medium .2650 Coarse .50 - 1.0 Very Coarse 1.0 - 2 Very Fine 2 - 4 Fine 4 - 5.7 Fine 5.7 - 6 Medium 8 - 11.3 Medium 11.3 - 16 Coarse 16 - 22.6 Coarse .22.632 Very Coarse .45 - 64 Smell .64 - 90 Small .90 - 128 Large .128 - 180 Large .126362 Small .256362 Small .256362 Small .362 - 512 Medium .1251024


Bankfull Channel	
Material Size Range (mm	Count
silt/clay 0 - 0.062	0
very fine sand 0.062 - 0.125	0
fine sand 0.125 - 0.25	0
medium sand 0.25 - 0.5	0
coarse sand 0.5 - 1	0
very coarse sand 1 - 2	0
very fine gravel 2 - 4	0
fine gravel 4 - 6	0
fine gravel 6 - 8	2
medium gravel 8 - 11	2
medium gravel 11 - 16	3
coarse gravel 16 - 22	7
coarse gravel 22 - 32	18
very coarse gravel 32 - 45	21
very coarse gravel 45 - 64	17
small cobble 64 - 90	11
medium cobble 90 - 128	13
large cobble 128 - 180	2
very large cobble 180 - 256	2
small boulder 256 - 362	1
small boulder 362 - 512	1
medium boulder 512 - 1024	0
large boulder 1024 - 2048	0
very large boulder 2048 - 4096	0
total particle count:	100
bedrock	
clay hardpan	
detritus/wood	
artificial	
total count:	100
Note:	


LEGEND

EXISTING SURVEY-LOCATED THALWEG 1176.87 **+** EXISTING SURVEYED GROUND SHOT ELEVATION

SURVEY NOTES:


- 1. THIS MAP HAS BEEN ORIENTED TO NAD 1983 UTM ZONE 17N, AND VERTICALLY TO THE NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD 88), USING REAL TIME DGPS. FIELD LOCATIONS WERE COMPLETED ON
- 3. SURVEY POINTS FOR CROSS SECTIONS AND THALWEG PROFILES COLLECTED IN 2021 HAVE BEEN USED IN COMBINATION WITH SURVEY POINTS AND COLLECTED PREVIOUSLY IN 2020 IN ORDER TO GENERATE THE PRE-CROSSING SURFACE SHOWN IN PLAN. DUE TO NATURAL EROSIONAL STREAM PROCESSES THAT OCCUR OVER TIME, MINOR ADJUSTMENTS TO THE PROFILE ALIGNMENTS MAY HAVE BEEN REQUIRED IN ORDER TO GENERATE A CLEAN PRE-CROSSING SURFACE.
- 4. ALL SECTION VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.
- 5. POST-CROSSING SURVEY INFORMATION SHOWN IN RED. DATA PENDING.
- 6. POST-CROSSING SURVEY POINTS FOR CROSS SECTIONS AND THALWEG ARE PROJECTED ONTO PRE-CROSSING SECTION AND PROFILE VIEWS FOR COMPARISON.

S-F43 BASELINE CROSS-SECTION A

DISTANCE ALONG CROSS—SECTION (FT)

S-F43 BASELINE CROSS-SECTION B

DISTANCE ALONG CROSS-SECTION (FT)

CROSS SECTION LEGEND — EXISTING GRADE

NOTE: ALL SECTION VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.

PRE-CROSSING PHOTOS

PHOTO TAKEN LOOKING DOWNSTREAM FROM UPSTREAM IMPACT LIMITS

PHOTO TAKEN LOOKING UPSTREAM FROM DOWNSTREAM IMPACT LIMITS

POST-CROSSING PHOTOS

PENDING CROSSING

PHOTO TAKEN LOOKING DOWNSTREAM UPSTREAM FROM IMPACT LIMITS

PENDING CROSSING

PHOTO TAKEN LOOKING UPSTREAM FROM UPSTREAM IMPACT LIMITS

PRE-CROSSING

Drawing No

Checked

BB/JLY Approved

NOTED Scale:

SEPT. 2021

Date:

21-0244-005 Project No.