Reach S-G43 (Timber Mat Crossing) Ephemeral Spread F Monroe County, West Virginia

Data	Included
Photos	\checkmark
SWVM Form	\checkmark
FCI Calculator and HGM Form	N/A – Ephemeral stream (<4% slope)
RBP Physical Characteristics Form	\checkmark
Water Quality Data	N/A –Low flow
RBP Habitat Form*	\checkmark
RBP Benthic Form	\checkmark
Benthic Identification Sheet	N/A –Low flow
Wolman Pebble Count	\checkmark
Reference Reach Software Pebble Count Data	\checkmark
Longitudinal Profile and Cross Sections	\checkmark

*Modified RBP - Low Flow

Photo Type: DS, US View Location, Orientation, Photographer Initials: Downstream Edge of Right of Way, Upstream View, AK/WP/RA/EW

Photo Type: DS, DS View Location, Orientation, Photographer Initials: Downstream Edge of Right of Way, Downstream View, AK/WP/RA/EW

Photo Type: CP, US View Location, Orientation, Photographer Initials: Center Point, Upstream View, AK/WP/RA/EW

Photo Type: CP, DS View Location, Orientation, Photographer Initials: Center Point, Downstream View, AK/WP/RA/EW

Spread F

Stream S-G43 (Timber Mat Crossing) Mon

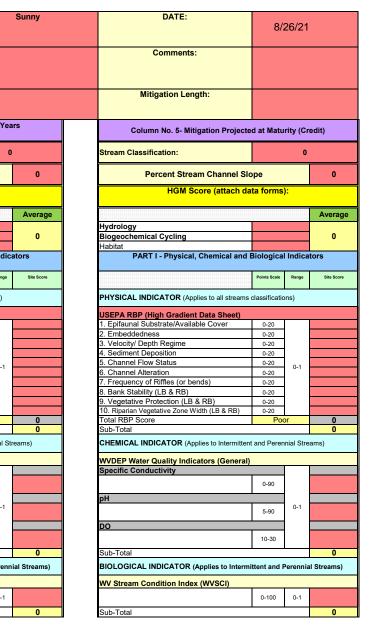
Monroe County

Photo Type: US, US View Location, Orientation, Photographer Initials: Upstream Edge of Right of Way, Upstream View, AK/WP/RA/EW

Photo Type: US, DS View Location, Orientation, Photographer Initials: Upstream Edge of Right of Way, Downstream View, AK/WP/RA/EW

"Q:\Charleston\2021 Projects\21-0244- MVP- STREAM AND WETLAND CONDITIONS ASSESSMENT AND SURVEY PLAN\002 - Pre-Crossing Monitoring\Spread F\S-G43"

West Virginia Stream and Wetland Valuation Metric (SWVM) Version 2.1, September 2017


USACE FILE NO./ Project Name: (v2.1, Sept 2015)	MOUNTAIN	I VALLEY PIPELINE	IMPACT COORDINATES: (in Decimal Degrees)	Lat.	37.473139	Lon.	-80.675738	WEATHER:		
	AND SITE DESCRIPTION:), unaltered or impairments)	UNT to Hans	Creek (S-G43)		MITIGATION STREAM CLAS (watershed size {acre					
STREAM IMPACT LENGTH:	22 FORM OF MITIGATION:	RESTORATION (Levels I-III)	MIT COORDINATES: (in Decimal Degrees)	Lat.		Lon.		PRECIPITATION PAST 48 HRS:		
Column No. 1- Impact Existin	ng Condition (Debit)	Column No. 2- Mitigation Existing C	Condition - Baseline (Credit)		Column No. 3- Mitigation Post Comple		ive Years	Column No. 4- Mitigation Pr Post Completion		en `
Stream Classification:	Ephemeral	Stream Classification:			Stream Classification:		0	Stream Classification:		
Percent Stream Channel S	lope 2.5	Percent Stream Channel Slo	ope		Percent Stream Channel	Slope	0	Percent Stream Channel	Slope	
HGM Score (attach o	data forms):	HGM Score (attach	data forms):		HGM Score (atta	ich data forms	:):	HGM Score (attach	data forms):
	Average		Average				Average			
Hydrology		Hydrology			Hydrology			Hydrology		
Biogeochemical Cycling	0	Biogeochemical Cycling	0		Biogeochemical Cycling		0	Biogeochemical Cycling		
Habitat		Habitat			Habitat			Habitat		
PART I - Physical, Chemical and	d Biological Indicators	PART I - Physical, Chemical an	d Biological Indicators		PART I - Physical, Chemica	I and Biologica	I Indicators	PART I - Physical, Chemical ar	d Biological	In
	Points Scale Range Site Score		Points Scale Range Site Score			Points Scale	Range Site Score		Points Scale	Rar
PHYSICAL INDICATOR (Applies to all stream	ns classifications)	PHYSICAL INDICATOR (Applies to all streams	classifications)		PHYSICAL INDICATOR (Applies to all street	ams classification	s)	PHYSICAL INDICATOR (Applies to all stream	ms classificati	ons)
USEPA RBP (High Gradient Data Sheet)		USEPA RBP (Low Gradient Data Sheet)			USEPA RBP (High Gradient Data Sheet	t)		USEPA RBP (High Gradient Data Sheet)		
1. Epifaunal Substrate/Available Cover	0-20	 Epifaunal Substrate/Available Cover 	0-20		1. Epifaunal Substrate/Available Cover	0-20		1. Epifaunal Substrate/Available Cover	0-20	1
2. Embeddedness	0-20 3	2. Pool Substrate Characterization	0-20		2. Embeddedness	0-20		2. Embeddedness	0-20	ł
3. Velocity/ Depth Regime	0-20	3. Pool Variability	0-20		3. Velocity/ Depth Regime	0-20		3. Velocity/ Depth Regime	0-20	i i
4. Sediment Deposition	0-20 14	4. Sediment Deposition	0-20		4. Sediment Deposition	0-20		4. Sediment Deposition	0-20	i i
5. Channel Flow Status 6. Channel Alteration	0-20 0-1 19	5. Channel Flow Status 6. Channel Alteration	0-20 0-1		5. Channel Flow Status 6. Channel Alteration		0-1	5. Channel Flow Status 6. Channel Alteration	0-20	0-
7. Frequency of Riffles (or bends)	0-20 19	7. Channel Sinuosity	0-20		7. Frequency of Riffles (or bends)	0-20	-	7. Frequency of Riffles (or bends)	0-20	i i
8. Bank Stability (LB & RB)	0-20 18	8. Bank Stability (LB & RB)	0-20		8. Bank Stability (LB & RB)	0-20		8. Bank Stability (LB & RB)	0-20	i i
9. Vegetative Protection (LB & RB)	0-20 17	9. Vegetative Protection (LB & RB)	0-20		9. Vegetative Protection (LB & RB)	0-20		9. Vegetative Protection (LB & RB)	0-20	i i
10. Riparian Vegetative Zone Width (LB & RB)	0-20 14	10. Riparian Vegetative Zone Width (LB & RB)	0-20		10. Riparian Vegetative Zone Width (LB & RB			10. Riparian Vegetative Zone Width (LB & RB)		i i
Total RBP Score	Suboptimal 85	Total RBP Score	Poor 0		Total RBP Score	Poor	0	Total RBP Score	Poo	or
Sub-Total	0.708333333	Sub-Total	0		Sub-Total		0	Sub-Total		
CHEMICAL INDICATOR (Applies to Intermitted	ent and Perennial Streams)	CHEMICAL INDICATOR (Applies to Intermitter	nt and Perennial Streams)		CHEMICAL INDICATOR (Applies to Interm	ittent and Perenni	al Streams)	CHEMICAL INDICATOR (Applies to Intermi	ttent and Perer	nnia
WVDEP Water Quality Indicators (Genera	al)	WVDEP Water Quality Indicators (General			WVDEP Water Quality Indicators (Gene	aral)		WVDEP Water Quality Indicators (Generation	ral)	
Specific Conductivity		Specific Conductivity			Specific Conductivity			Specific Conductivity		<u> </u>
	0-90		0-90			0-90			0-90	ł
100-199 - 85 points pH		pH			рН			pH		ł.
	0-1	511	0-1			1	0-1	511		0
5.6-5.9 = 45 points	0-80		5-90			5-90			5-90	i i
DO		DO			DO			DO		i i
	10-30		10-30			10-30			10-30	i i
	10-50					10-30			10-30	1
Sub-Total		Sub-Total	0		Sub-Total		0	Sub-Total		
BIOLOGICAL INDICATOR (Applies to Interm	nittent and Perennial Streams)	BIOLOGICAL INDICATOR (Applies to Intermit	tent and Perennial Streams)		BIOLOGICAL INDICATOR (Applies to Int	termittent and Pe	rennial Streams)	BIOLOGICAL INDICATOR (Applies to Inte	rmittent and	Per
WV Stream Condition Index (WVSCI)		WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)		
0	0-100 0-1		0-100 0-1			0-100	0-1		0-100	0-
Sub-Total	0	Sub-Total	0		Sub-Total		0	Sub-Total		
PART II Index and	Unit Scoro	BART II Index and	Unit Score	1	PART II Index	and Unit Score		PART II Index and	Unit Score	_

PART II - Index and U	nit Score	
Index	Linear Feet	Unit Score
0.754	22	16.59166667

PART II - Index and Unit Score			
Index	Linear Feet	Unit Score	
0	0	0	

PART II - Index and Unit Score				
Index	Linear Feet	Unit Score		
0	0	0		

PART II - Index and U	PART II - Index and Unit Score		
Index	Linear Feet		
0	0		

PART II - Index and Unit Score			
Index	Linear Feet	Unit Score	
0	0	0	

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

STREAM NAMES-G43 UNT to Hans Creek	LOCATION Monroe/F		
STATION # RIVERMILE	STREAM CLASS Ephemeral		
LATLONG	COUNTY Monroe		
STORET #	AGENCYPotesta/Edge		
INVESTIGATORS ABK/RA/EW/WP			
FORM COMPLETED BY A. Kincaid	DATE 8/26/2021 TIME 1500 PM Preliminary Assessment		

WEATHER CONDITIONS	Now Past 24 Has there been a heavy rain in the last 7 days? hours Yes VNo
CONDITIONS	storm (heavy rain)
	showers (intermittent)
	% cloud cover clear/sunny
SITE LOCATION/MAP	Draw a map of the site and indicate the areas sampled (or attach a photograph)
	-
	O > $(+)$
[You HITT
	T (mail in the second sec
	man I
	- t z t
	- B hr - + + + +
	TIMD
	Elex II V
	4. ~ 4' 36 3 m
	- Il why
	Heavy Bush Brush and
	200) ReavyBush/Brusharea
	HUNG 14 JG L G JG FOI
	L'UL LULAND
STREAM CHARACTERIZATION	Stream Subsystem Stream Type ☐Perennial Intermittent ☐Tidal Coldwater ☑Warmwater
CHARACTERIZATION	Stream Origin Catchment Area km ²
	Glacial Spring-fed Non-glacial montane Mixture of origins
	Swamp and bog

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

WATERSHED FEATURES	Predominant Surrounding Landuse Forest Commercial Field/Pasture Industrial Agricultural Other Residential	Local Watershed NPS Pollution □ No evidence ☑ Some potential sources □ Obvious sources Local Watershed Erosion □ None □ Moderate □ Heavy
RIPARIAN VEGETATION (18 meter buffer)	Indicate the dominant type and record the domin Trees Shrubs Dominant species present Grasses	Grasses □ Herbaccous
INSTREAM FEATURES	Estimated Reach Length 51 ft m Estimated Stream Width 2.0 ft m Sampling Reach Area 102 ft^2 m² Area in km² (m²x1000) km² Estimated Stream Depth 0.05 m Surface Velocity 0 m/sec (at thalweg) Stream Dry	Canopy Cover □ Partly shaded □ Shaded □ Partly open ☑ Partly shaded □ Shaded High Water Mark m Proportion of Reach Represented by Stream Morphology Types Riffleo % Poolo % Runo % Channelized □ Yes Dam Present □ Yes
LARGE WOODY DEBRIS	$\begin{array}{c} \mathbf{LWD} \underbrace{0}_{\mathbf{m}^2} \\ \mathbf{Density of } \mathbf{LWD} \underbrace{0}_{\mathbf{m}^2/\mathbf{km}^2} \left(\mathbf{LWD} \right) \text{ read} \end{array}$	ch area)
AQUATIC VEGETATION	Indicate the dominant type and record the dominant type and record the dominant species present Rooted emergent Rooted submergent Floating Algae Attached Algae Dominant species present	nant species present ☐Rooted floating ☐Free floating
WATER QUALITY	Temperature ⁰ C Specific Conductance Dissolved Oxygen pH Turbidity WQ Instrument Used	Water Odors Normal/None Sewage Petroleum Chemical Fishy Other Water Surface Oils Slick Slick Sheen Olther Olther Turbidity (if not measured) Turbid Clear Slightly turbid Opaque Stained
SEDIMENT/ SUBSTRATE	Odors ✓ Normal Chemical Other Oils ✓ Absent Slight Moderate	Deposits Sludge Sawdust □Paper fiber Sand Relict shells □Other
	STRATE COMPONENTS O	RGANIC SUBSTRATE COMPONENTS (does not necessarily add up to 100%)

	(should add up to 100%)		(does not necessarily add up to 100%)		
Substrate Type	Diameter	% Composition in Sampling Reach	Substrate Type	Characteristic	% Composition in Sampling Area
Bedrock		0	Detritus	sticks, wood, coarse plant	15
Boulder	> 256 mm (10")	0		materials (CPOM)	15
Cobble	64-256 mm (2.5"-10")	0	Muck-Mud	black, very fine organic	0
Gravel	2-64 mm (0.1"-2.5")	0		(FPOM)	0
Sand	0.06-2mm (gritty)	0	Marl	grey, shell fragments	0
Silt	0.004-0.06 mm	100]		
Clay	< 0.004 mm (slick)	0			

HABITAT ASSESSMENT FIELD DATA SHEET - HG - USE ON ALL STREAMS (FRONT)

STREAM NAMES-G43 UNT to Hans Creek	LOCATION		
STATION # RIVERMILE	STREAM CLASS Ephemeral		
LAT LONG	COUNTY Monroe		
STORET #	AGENCYPotesta/Edge		
INVESTIGATORS			
FORM COMPLETED BY A. Kincaid	DATE <u>3/26/2021</u> TIME <u>1500 PM</u> AM PM REASON FOR SURVEY Preliminary Assessment		

	Habitat		Condition	Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
		to allow full colonization potential (i.e., logs/snags that are <u>not</u> new fall and <u>not</u> transient).	form of newfall, but not yet prepared for colonization (may rate at high end of scale).		
	_{SCORE} 0 -	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
ı sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.
ted ir	score 3 ▼	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 🚯 2 1 0
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime V/A	All four velocity/depth regimes present (slow- deep, slow-shallow, fast- deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast- shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).
aram	score 0	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
P.	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
	score 14 ▼	20 19 18 17 16	15 🚺 13 12 11	10 9 8 7 6	5 4 3 2 1 0
	5. Channel Flow Status V N/A	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
	SCORE U	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0

Stream is made up of all fine substrate

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

Habitat		Conditio	n Category	
Parameter	Optimal	Suboptimal	Marginal	Poor
6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabio or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
SCORE 19	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water of shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.
score 0	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1
8. Bank Stability (score each bank) Note: determine left or right side by facing deurostroom.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30- 60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing 60-100% of bank has erosional scars.
SCORE 9	Left Bank 10 🧕	8 7 6	5 4 3	2 1 0
SCORE 9	Right Bank 10 🛛 🧐	8 7 6	5 4 3	2 1 0
9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well- represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streamban vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
SCORE 8	Left Bank 10 9	8 7 6	5 4 3	2 1 0
score 9 💌,	Right Bank 10 🧕	8 7 6	5 4 3	2 1 0
10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone meters: little or no riparian vegetation due human activities.
LOCODE I	Left Bank 10 9	8 🚺 6	5 4 3	2 1 0
$\frac{\text{SCORE}}{\text{SCORE}} \frac{7}{7}$		8 👩 6		2 1 0

Appendix A-1: Habitat Assessment and Physicochemical Characterization Field Data Sheets - Form 2 A-8

BENTHIC MACROINVERTEBRATE FIELD DATA SHEET

STREAM NAMES-G	643 UNT to Hans Creek	LOCATION	
STATION #	RIVERMILE	STREAM CLASS Ephemera	
LAT	LONG	COUNTY Monroe	•
STORET #		AGENCYPotesta/Edge	
INVESTIGATORS			LOT NUMBER
FORM COMPLETED	A. Kincaid	DATE 8/26/2021 TIME 1600 PM	REASON FOR SURVEY Preliminary Assessment
HABITAT TYPES SAMPLE COLLECTION GENERAL COMMENTS	Gear used D-frame How were the samples coll Indicate the number of jat CobbleSn Submerged Macrophytes	kick-net Other)% rom bank

QUALITATIVE LISTING OF AQUATIC BIOTA

Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare, 2 = Common, 3= Abundant, 4 = Dominant

Periphyton	0	1	2	3	4	Slimes	0	1	2	3	4
Filamentous Algae	0	1	2	3	4	Macroinvertebrates	0	1	2	3	4
Macrophytes	0	1	2	3	4	Fish	0	1	2	3	4

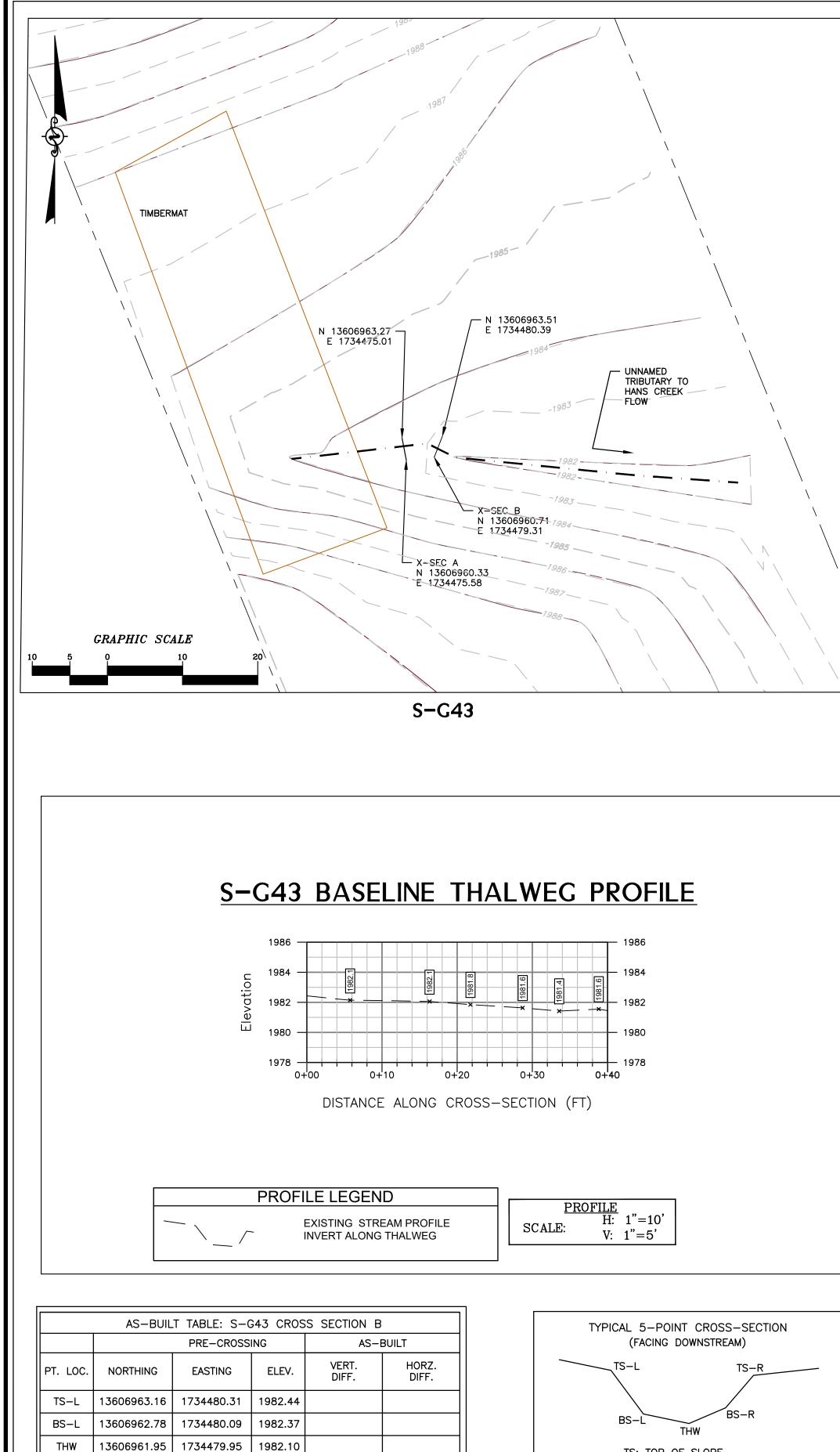
FIELD OBSERVATIONS OF MACROBENTHOS

Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare (1-3 organisms), 2 = Common (3-9 organisms), 3 = Abundant (>10 organisms), 4 = Dominant (>50 organisms)

Porifera	0	1	2	3	4	Anisoptera	0	1	2	3	4	Chironomidae	0	1	2	3	4
Hydrozoa	0	1	2	3	4	Zygoptera	0	1	2	3	4	Ephemeroptera	0	1	2	3	4
Platyhelminthes	0	1	2	3	4	Hemiptera	0	1	2	3	4	Trichoptera	0	1	2	3	4
Turbellaria	0	1	2	3	4	Coleoptera	0	1	2	3	4	Other	0	1	2	3	4
Hirudinea	0	1	2	3	4	Lepidoptera	0	1	2	3	4						
Oligochaeta	0	1	2	3	4	Sialidae	0	1	2	3	4						
Isopoda	0	1	2	3	4	Corydalidae	0	1	2	3	4						
Amphipoda	0	1	2	3	4	Tipulidae	0	1	2	3	4						
Decapoda	0	1	2	3	4	Empididae	0	1	2	3	4						
Gastropoda	0	1	2	3	4	Simuliidae	0	1	2	3	4						
Bivalvia	0	1	2	3	4	Tabinidae	0	1	2	3	4						
						Culcidae	0	1	2	3	4						

SITE ID:	SG-43	Menroe	F
DATE:	826/21		
COLLECTO	DR(S): REA, ABK, UE	FW	

Wolman Peb	ble Count (Re	each Wide)		000005259		01000 - 10.	N	A THE REAL		NOTES	
062	-062	- 062	.062	.062	,062	. CO2	.062	. CAZ	.062		
-062	-062	- 062	-C62	.062	1062	.06z	· 662	,062	562		
.062	.062	.062	.062	606t	,062	.062	.062	,062	.062		
062	.062	.062	:062	500.	.062	-062	.062	.062	1062		
.062	.062	062	:062	.062	.062	.062	.662	520.	.062		
062	.062	.062	.062	50100	.062	1062	1062	.062	1062		
.062	.062	.062	,062	.062	.062	1062	.062	.062	,062		
.068	.062	.062	.062	.067	,00Z	.062	.062	.062	.062		
.062	. 062	.062	.067	.062	+06T	.ObZ	.062	.062	.062		
062	.062	.062	.062	.062	1062	.062	.062	.062	. 862		


Riffle Pebble Count			NOTES:

		of the second	AN 10 100		1.1		NOTES:
						· · · · · · · · · · · · · · · · · · ·	
		1		 1			-
	 	·		 			
_	 						

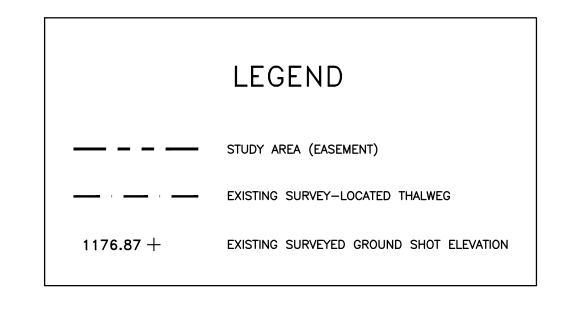
Inches	PARTICLE	Millimeters	
10.0	Silt / Clay	<.062	S/C
	Very Fine	.062125	0
	Fine	.12525	S
	Medium	.2550	SAND
	Coarse	.50 - 1.0	D
0406	Very Coarse	1.0 - 2	~
.0816	Very Fine	2-4	
.1622	Fine	4-5.7	設設
.2231	Fine	5.7 - 8	G
.3144	Medium	B-11.3	RA
.4463	Medium	11,3 - 16	Ŷ
.6389	Coarse	16 - 22.6	E
.89 - 1.3	Coarse	22.6 - 32	Ŀ
1.3 - 1.8	Very Coarse	32 - 45	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
1.8 - 2.5	Very Coarse	45-64	100
2.5 - 3.5	Small	64 - 90	
3.5~ 5.0	Small	90 - 128	
5.0 - 7.1	Large	128 - 180	Z₽.
7.1-10.1	Large	180 - 256	85
10.1 - 14.3	Small	255 - 362	B
14.3 - 20	Small	362 - 512	20 E PR
20-40	Medium	512 - 1024	2 E
40-80	Large-Vry Large	1024 - 2048	B
	Bedrock		BDRK

▼ Size Range (mm)	Count		Bankfull	Channel Pe	ebble Cour	nt, S-G43	UNT to Hans C	reek			
0 - 0.062	100								—cumulative %	# of pa	articles
0.062 - 0.125										# 01 pt	
0.125 - 0.25											
0.25 - 0.5			100% —	silt/clay	sand		gravel	cobble	boulder	12	0
0.5 - 1											
1 - 2			90%								
2 - 4			80%							+ 10	0
4 - 6		_									
6 - 8		าลท	70%							- 80	_
8 - 11		percent finer than	60%								nn
11 - 16		line	00 /0								nbe
16 - 22		nt 1	50% -							+ 60	Ö
22 - 32 32 - 45		ce	1001								fp
32 - 45 45 - 64		be	40%								arti
64 - 90			30%							- 40	number of particles
90 - 128											0,
128 - 180			20%							- 20	1
180 - 256			10%							20	
256 - 362			1070								
362 - 512			0%							0	
512 - 1024			0.01	C).1	1	10	100	1000	10000	
1024 - 2048							particle size (mm)			
2048 - 4096								,			
al particle count:	100										
			S	ize (mm)		Size I	Distribution		Туре		
				0.062		me		silt/			
			C	0.062		dispersi	on 1.0		and 0%		
				0.062		skewne		gra	avel 0%		
				0.062 0.062					oble 0%		
total count:	100		C	0.062				bou			
			Г	0.062							

Bankfull Channel		
Material Size	Range (mm)	Count
silt/clay 0	- 0.062	100
very fine sand 0.062	2 - 0.125	
fine sand 0.125	5 - 0.25	
	5 - 0.5	
coarse sand 0.5	5 - 1	
very coarse sand	- 2	
very fine gravel 2	2 - 4	
fine gravel 4	- 6	
	6 - 8	
	3 - 11	
iniounani granoi	- 16	
5	6 - 22	
	2 - 32	
, , ,	2 - 45	
, î	5 - 64	
	4 - 90	
) - 128	
0	3 - 180	
) - 256	
	6 - 362	
	2 - 512	
-	2 - 1024	
5	4 - 2048	
very large boulder 2048	3 - 4096	
total part	icle count:	100
	. <u> </u>	
bedrock		
clay hardpan		
detritus/wood		
artificial		
t	otal count:	100
Note:		

1982.35

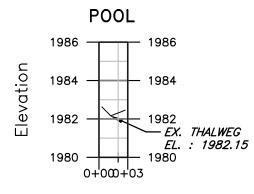
TS: TOP OF SLOPE BS: BOTTOM OF SLOPE


THW: THALWEG (INVERT)

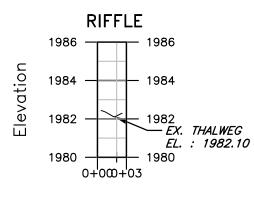
BS-R

TS-R

13606961.72 1734479.56


13606961.13 1734479.43 1982.29

SURVEY NOTES:


- 1. THIS MAP HAS BEEN ORIENTED TO NAD 1983 UTM ZONE 17N, AND VERTICALLY TO THE NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD 88), USING REAL TIME DGPS. FIELD LOCATIONS WERE COMPLETED ON 8-26-2021.
- 2. EASEMENT LINES SHOWN ON PLAN VIEW WERE PROVIDED BY MOUNTAIN VALLEY PIPELINE.
- 3. SURVEY POINTS FOR CROSS SECTIONS AND THALWEG PROFILES COLLECTED IN 2021 HAVE BEEN USED IN COMBINATION WITH SURVEY POINTS AND COLLECTED PREVIOUSLY IN 2020 IN ORDER TO GENERATE THE PRE-CROSSING SURFACE SHOWN IN PLAN. DUE TO NATURAL EROSIONAL STREAM PROCESSES THAT OCCUR OVER TIME, MINOR ADJUSTMENTS TO THE PROFILE ALIGNMENTS MAY HAVE BEEN REQUIRED IN ORDER TO GENERATE A CLEAN PRE-CROSSING SURFACE.
- 4. ALL SECTION VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.
- 5. POST-CROSSING SURVEY INFORMATION SHOWN IN RED. DATA PENDING.
- 6. POST-CROSSING SURVEY POINTS FOR CROSS SECTIONS AND THALWEG ARE PROJECTED ONTO PRE-CROSSING SECTION AND PROFILE VIEWS FOR COMPARISON.

S-G43 BASELINE CROSS-SECTION A

DISTANCE ALONG CROSS-SECTION (FT)

S-G43 BASELINE CROSS-SECTION B

DISTANCE ALONG CROSS-SECTION (FT)

CROSS SECTION LEGEND
– — EXISTING GRADE
$\begin{array}{c c} \underline{CROSS} & \underline{SECTION} \\ \hline SCALE: & H: 1"=10' \\ V: 1"=5' \end{array}$

NOTE: ALL SECTION VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.

