Reach S-H108 (Pipeline ROW) Perennial Spread C Webster County, West Virginia

Data	Included
Photos	\checkmark
SWVM Form	\checkmark
FCI Calculator and HGM Form	N/A – Perennial stream (not shadeable, slope >4%)
RBP Physical Characteristics Form	\checkmark
Water Quality Data	\checkmark
RBP Habitat Form	\checkmark
RBP Benthic Form	\checkmark
Benthic Identification Sheet	\checkmark
Wolman Pebble Count	\checkmark
Reference Reach Software Pebble Count Data	\checkmark
Longitudinal Profile and Cross Sections	\checkmark

Spread C Stream S-H108 (Pipeline Right of Way) Webster County

Photo Type: US, US View

Location, Orientation, Photographer Initials: Upstream Edge of Right of Way, Upstream View, ABK/CH/TA/WP

Photo Type: US, DS View Location, Orientation, Photographer Initials: Upstream Edge of Right of Way, Downstream View, ABK/CH/TA/WP

Spread C Stream S-H108 (Pipeline Right of Way) Webster County

Photo Type: CP, US View Location, Orientation, Photographer Initials: Center of Right of Way, Upstream View, ABK/CH/TA/WP

Photo Type: CP, DS View Location, Orientation, Photographer Initials: Center of Right of Way, Downstream View, ABK/CH/TA/WP

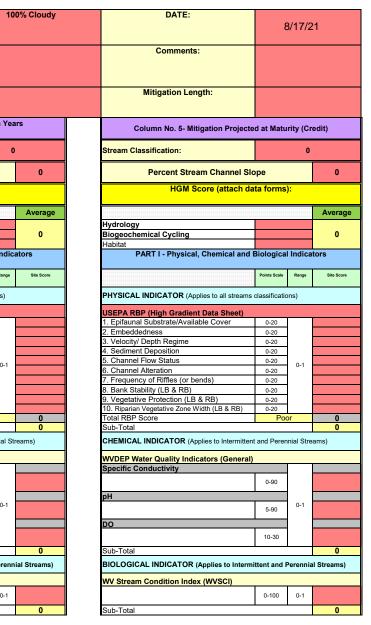
Spread C Stream S-H108 (Pipeline Right of Way) Webster County

Photo Type: DS, DS View Location, Orientation, Photographer Initials: Downstream Edge of Right of Way, Downstream View, ABK/CH/TA/WP

Photo Type: DS, US View Location, Orientation, Photographer Initials: Downstream Edge of Right of Way, Upstream View, ABK/CH/TA/WP

"Q:\Charleston\2021 Projects\21-0244- MVP- STREAM AND WETLAND CONDITIONS ASSESSMENT AND SURVEY PLAN\002 - Pre-Crossing Monitoring\Spread C\S-H108"

West Virginia Stream and Wetland Valuation Metric (SWVM) Version 2.1, September 2017


USACE FILE NO./ Project Name: (v2.1, Sept 2015)		MOUNTAIN	VALLEY PIPELINE	IMPACT COORDINATES: (in Decimal Degrees)	Lat.	38.549358	Lon.	-80.53926	WEATHER:		
IMPACT STREAM/SITE ID (watershed size {acreage},			Lower Laure	Fork (S-H108)		MITIGATION STREAM CLA: (watershed size {ac					
STREAM IMPACT LENGTH:	78	FORM OF MITIGATION:	RESTORATION (Levels I-III)	MIT COORDINATES: (in Decimal Degrees)	Lat.		Lon.		PRECIPITATION PAST 48 HRS:		
Column No. 1- Impact Existing	g Condition (Deb	it)	Column No. 2- Mitigation Existing C	condition - Baseline (Credit)		Column No. 3- Mitigatio Post Compl	on Projected at F letion (Credit)	ive Years	Column No. 4- Mitigation Pro Post Completion		ən
Stream Classification:	Perer	nnial	Stream Classification:			Stream Classification:		0	Stream Classification:		
Percent Stream Channel Slo	ope	1.9	Percent Stream Channel Sto	ope		Percent Stream Channe	el Slope	0	Percent Stream Channel S	lope	
HGM Score (attach da	ata forms):		HGM Score (attach	data forms):		HGM Score (att	tach data form	s):	HGM Score (attach o	data forms):):
Hydrology		Average	Hydrology	Average		Hydrology		Average	Hydrology		
Biogeochemical Cycling Habitat		0	Biogeochemical Cycling Habitat	0		Biogeochemical Cycling Habitat		0	Biogeochemical Cycling Habitat	_	
PART I - Physical, Chemical and	-		PART I - Physical, Chemical an			PART I - Physical, Chemic			PART I - Physical, Chemical and		i Ir
	Points Scale Range	Site Score		Points Scale Range Site Score			Points Scale	Range Site Score		Points Scale	R
PHYSICAL INDICATOR (Applies to all streams	classifications)		PHYSICAL INDICATOR (Applies to all streams	classifications)		PHYSICAL INDICATOR (Applies to all str	reams classificatior	ns)	PHYSICAL INDICATOR (Applies to all stream	ns classificatio	ons
USEPA RBP (High Gradient Data Sheet)			USEPA RBP (Low Gradient Data Sheet)			USEPA RBP (High Gradient Data Shee			USEPA RBP (High Gradient Data Sheet)		
1. Epifaunal Substrate/Available Cover	0-20	16	1. Epifaunal Substrate/Available Cover	0-20		1. Epifaunal Substrate/Available Cover	0-20		1. Epifaunal Substrate/Available Cover	0-20	i
2. Embeddedness 3. Velocity/ Depth Regime	0-20	<u>15</u> 9	2. Pool Substrate Characterization 3. Pool Variability	0-20		2. Embeddedness 3. Velocity/ Depth Regime	0-20		2. Embeddedness 3. Velocity/ Depth Regime	0-20	i
4. Sediment Deposition	0-20	14	4. Sediment Deposition	0-20		4. Sediment Deposition	0-20		4. Sediment Deposition	0-20	i
5. Channel Flow Status		15	5. Channel Flow Status	0-20		5. Channel Flow Status			5. Channel Flow Status	0-20	ł
	0-20 0-1		6. Channel Alteration				0-20	0-1			1
6. Channel Alteration	0-20	19		0-20		6. Channel Alteration	0-20		6. Channel Alteration	0-20	ł
7. Frequency of Riffles (or bends)	0-20	12	7. Channel Sinuosity	0-20		7. Frequency of Riffles (or bends)	0-20		7. Frequency of Riffles (or bends)	0-20	ł
8. Bank Stability (LB & RB)	0-20	18	8. Bank Stability (LB & RB)	0-20		8. Bank Stability (LB & RB)	0-20		8. Bank Stability (LB & RB)	0-20	1
9. Vegetative Protection (LB & RB)	0-20	17	9. Vegetative Protection (LB & RB)	0-20		9. Vegetative Protection (LB & RB)	0-20		9. Vegetative Protection (LB & RB)	0-20	ł
10. Riparian Vegetative Zone Width (LB & RB)	0-20	12	10. Riparian Vegetative Zone Width (LB & RB)	0-20		10. Riparian Vegetative Zone Width (LB & R		_	10. Riparian Vegetative Zone Width (LB & RB)		·
Total RBP Score	Suboptimal	147	Total RBP Score	Poor 0		Total RBP Score	Poor	0	Total RBP Score	Poor	r
Sub-Total CHEMICAL INDICATOR (Applies to Intermitten	nt and Perennial Str	0.735 eams)	Sub-Total CHEMICAL INDICATOR (Applies to Intermitten	t and Perennial Streams)		Sub-Total CHEMICAL INDICATOR (Applies to Intern	mittent and Perenr	ial Streams)	Sub-Total CHEMICAL INDICATOR (Applies to Intermitt	tent and Peren	nni
WVDEP Water Quality Indicators (General))		WVDEP Water Quality Indicators (General))		WVDEP Water Quality Indicators (Ger	neral)		WVDEP Water Quality Indicators (Generation)	al)	
Specific Conductivity	0-90	36	Specific Conductivity	0-90		Specific Conductivity	0-90		Specific Conductivity	0-90	ł
<=99 - 90 points											i
рН	0-1		рН			рН		0-1	рН		ι.
6.0-8.0 = 80 points	0-80	6.58		5-90 0-1			5-90	0-1		5-90	1
			DO			20			20		1
DO			DO			DO			00		1
>5.0 = 30 points	10-30	6.16		10-30			10-30			10-30	i
Sub-Total		1	Sub-Total			Sub-Total	I I	0	Sub-Total		-
BIOLOGICAL INDICATOR (Applies to Intermit	tent and Perennial	Streams)	BIOLOGICAL INDICATOR (Applies to Intermit	tent and Perennial Streams)		BIOLOGICAL INDICATOR (Applies to In	ntermittent and P	erennial Streams)	BIOLOGICAL INDICATOR (Applies to Inter	rmittent and F	Pe
WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)		
Verv Good	0-100 0-1	83.92		0-100 0-1			0-100	0-1		0-100	(
Sub-Total		0.8392	Sub-Total	0		Sub-Total		0	Sub-Total	L	-
			ų ·	¥		u		~			-

PART II - Index and Unit Score			
Index Linear Feet Unit Score			
0.858	78	66.9292	

PART II - Index and Unit Score		
Index	Linear Feet	Unit Score
0	0	0

PART II - Index and Unit Score		
Index	Linear Feet	Unit Score
0	0	0

VV Stream Condition Index (WVSCI)			
	0-100	0-1	
Sub-Total			
PART II - Index and U	nit Score		
Index	Linear	Feet	
0	0		

PART II - Index and Unit Score		
Index	Linear Feet	Unit Score
0	0	0

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

STREAM NAME LO	ower Laurel Fork	LOCATION S-H108 Spread	c	
STATION #	RIVERMILE	STREAM CLASS Perennial		
LAT 38.549358	LONG80.53926	COUNTY Webster		
STORET #		AGENCY Potesta		
INVESTIGATORS	AK/CH			
FORM COMPLETE	^{DBY} A. Kincaid	DATE 8/17/2021 TIME 1000 AM	REASON FOR SURVEY Preliminary Assessment	

WEATHER CONDITIONS	Now Past 24 hours Has there been a heavy rain in the last 7 days? 100 % storm (heavy rain) rain (steady rain) showers (intermittent) %cloud cover clear/sunny Air Temperature 75 F ° C
SITE LOCATION/MAP	Draw a map of the site and indicate the areas sampled (or attach a photograph)
-	Pos 3 Bol , 202 - Fost 3000
	VU dance UV VOO 00 V LDB
STDEAM	J Stream Tune
STREAM CHARACTERIZATION	Stream Subsystem Stream Type Perennial Intermittent Tidal Stream Origin Coldwater Warmwater Glacial Spring-fed Mixture of origins Non-glacial montane Other Other

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

WATERSHED FEATURES RIPARIAN VEGETATION (18 meter buffer)	Predominant Surrounding Landuse □ Forest □ Commercial □ Field/Pasture □ Industrial □ Agricultural □ Other □ Residential □ Other □ Indicate the dominant type and record the domin □ Trees □ Dominant species present □	Local Watershed NPS Pollution □No evidence Some potential sources □Obvious sources Local Watershed Erosion ☑None Moderate □Heavy nant species present □Grasses □Herbaccous
INSTREAM FEATURES	Estimated Reach Length 75 ft m Estimated Stream Width 4 ft m Sampling Reach Area m² Area in km² (m²x1000) km² Estimated Stream Depth m Surface Velocity m/sec (at thalweg) Stream Dry □	Canopy Cover ☐ Partly open ☐ Partly shaded ☐ Shaded High Water Markm Proportion of Reach Represented by Stream Morphology Types Riffle ²⁰ % Run ³⁰ % Pool ⁴⁰ % Run ³⁰ % Channelized ☐ Yes ☑ No Dam Present ☐ Yes ☑ No
LARGE WOODY DEBRIS AQUATIC VEGETATION	LWDm ² Density of LWDm ² /km ² (LWD/ read Indicate the dominant type and record the domin Rooted emergentRooted submergent Floating AlgaeAttached Algae Dominant species present Portion of the reach with aquatic vegetation	ant species present ☐Rooted floating ☐Free floating
WATER QUALITY		Water Odors Normal/Nonc Sewage Petroleum Chemical Fishy Other Slick Sheen None Other Turbidity (if not measured) Turbid Clear Slightly turbid Opaque Stained
SEDIMENT/ SUBSTRATE	Odors ✓ Normal Chemical Other Oils ✓ Absent Slight Moderate	Deposits Sludge □Sawdust □Paper fiber ☑Sand Relict shells □Other Lpoking at stones which are not deeply embedded, are the undersides black in color? □Yes ☑No

INORGANIC SUBSTRATE COMPONENTS (should add up to 100%)		ORGANIC SUBSTRATE COMPONENTS (does not necessarily add up to 100%)				
Substrate Type	Diameter	% Composition in Sampling Reach	Substrate Type	Characteristic	% Composition in Sampling Area	
Bedrock			Detritus	sticks, wood, coarse plant	E	
Boulder	>256 mm (10")	<i></i>	materials (CPOM)	5		
Cobble	64-256 mm (2.5"-10")	35	Muck-Mud	ck-Mud black, very fine organic (FPOM)		
Gravel	2-64 mm (0.1"-2.5")	40			-	
Sand	0.06-2mm (gritty)	15	Marl	grey, shell fragments		
Silt	0.004-0.06 mm	10			_	
Clay	< 0.004 mm (slick)	-	1			

HABITAT ASSESSMENT FIELD DATA SHEET - HG - USE ON ALL STREAMS (FRONT)

STREAM NAME Lower Laurel Fork	LOCATION S-H108 Spread C		
STATION # RIVERMILE	STREAM CLASS Perennial		
LAT <u>38.549358</u> LONG <u>-80.53926</u>	COUNTY Webster		
STORET #	AGENCY Potesta		
INVESTIGATORS AK/CH			
FORM COMPLETED BY A. Kincaid	DATE ^{8/17/2021} TIME ^{1000 AM} AM PM REASON FOR SURVEY Preliminary Assessment		

	Habitat		Condition	Category				
	Parameter	Optimal	Suboptimal	Marginal	Poor			
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are <u>not</u> new fall and	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.			
	_{SCORE} 16	<u>not</u> transient). 20 19 18 17 16	high end of scale). 15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.			
ted ir	score 15	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime N/A	All four velocity/depth regimes present (slow- deep, slow-shallow, fast- deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast- shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).			
aram	_{SCORE} 9	20 19 18 17 16	15 14 13 12 11	10 🧕 8 7 6	5 4 3 2 1 0			
- A	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.			
	score 14	20 19 18 17 16	15 🚺 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
	5. Channel Flow Status N/A	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.			
	SCORE 15	20 19 18 17 16	14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

	Habitat		Condition	n Category				
	Parameter	Optimal	Suboptimal	Marginal	Poor			
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabior or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.			
	score 19	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water o shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.			
Ĺ	_{score} 12	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
	8. Bank Stability (score each bank) Note: determine left or right side by facing detraction.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30- 60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.			
	SCORE 9	Left Bank 10 🧕	8 7 6	5 4 3	2 1 0			
	SCORE 9	Right Bank 10 🛛 🧕	8 7 6	5 4 3	2 1 0			
	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well- represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.			
	SCORE 9	Left Bank 10 🧐	8 7 6	5 4 3	2 1 0			
	SCORE 8)	Right Bank 10 9	8 7 6	5 4 3	2 1 0			
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone < meters: little or no riparian vegetation due to human activities.			
	SCORE 6	Left Bank 10 9	8 7 🙆	5 4 3	2 1 0			
	SCORE 6	Right Bank 10 9	8 7 🙆	5 4 3	2 1 0			

Total Score 147

BENTHIC MACROINVERTEBRATE FIELD DATA SHEET

STREAM NAME Low	wer Laurel Fork	LOCATION S-H108 Spread	c					
STATION #	RIVERMILE	STREAM CLASS Perennial						
LAT 38.549358	LONG -80.53926	COUNTY Webster						
STORET #		AGENCY Potesta						
INVESTIGATORS A	NK/CH		LOT NUMBER					
FORM COMPLETED	^{BY} A. Kincaid	DATE 8/17/2021 TIME 1000 AM	REASON FOR SURVEY Preliminary Assessment					
HABITAT TYPES Indicate the percentage of each habitat type present Cobble% Snags% Vegetated Banks 100 % Sand 30 % Submerged Macrophytes% Other (armsi) 60 %								
SAMPLE COLLECTION	Gear used D-frame kick-net Other							
GENERAL COMMENTS 4 kicks done in riffles where gravel is dominar								

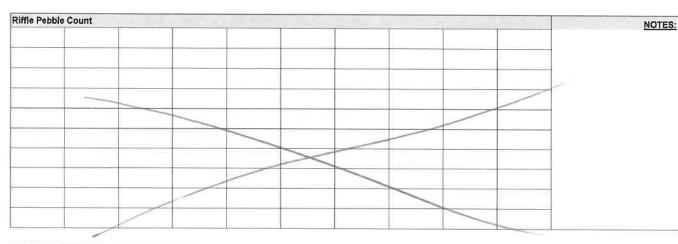
QUALITATIVE LISTING OF AQUATIC BIOTA

Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare, 2 = Common, 3= Abundant, 4 = Dominant

Periphyton	0 1	2	3	4	Slimes	0	1	2	3	4
Filamentous Algae	0 1	2	3	4	Macroinvertebrates	0	1	2	3	4
Macrophytes	0 1	2	3	4	Fish	0	1	2	3	4

FIELD OBSERVATIONS OF MACROBENTHOS

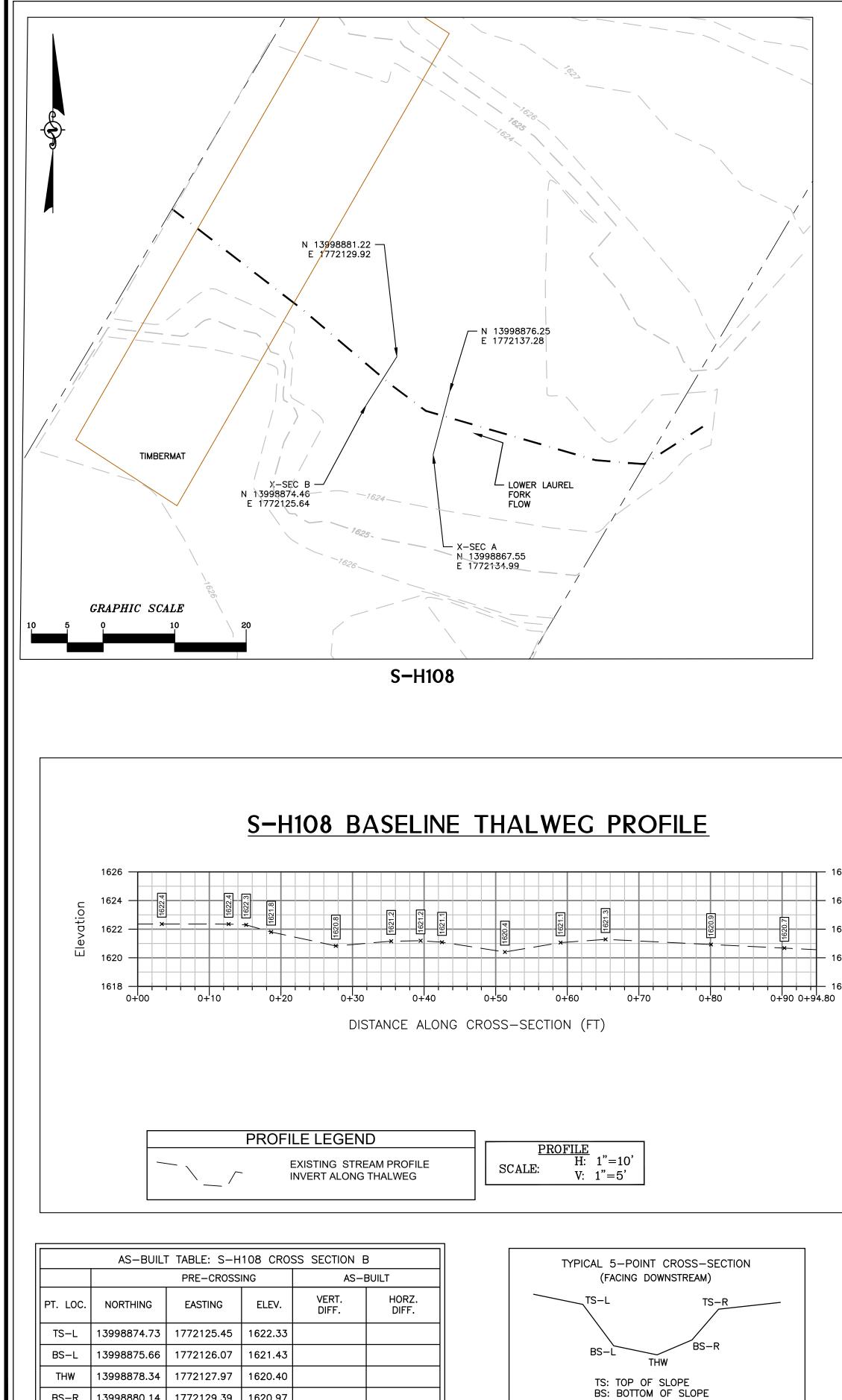
Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare (1-3 organisms), 2 = Common (3-9 organisms), 3= Abundant (>10 organisms), 4 = Dominant (>50 organisms)


Porifera	0	1	2	3	4	Anisoptera	0	1	2	3	4	Chironomidae	0	1	2	3	4
Hydrozoa	0	1	2	3	4	Zygoptera	0	1	2	3	4	Ephemeroptera	0	1	2	3	4
Platyhelminthes	0	1	2	3	4	Hemiptera	0	1	2	3	4	Trichoptera	0	1	2	3	4
Turbellaria	0	1	2	3	4	Coleoptera	0	1	2	3	4	Other	0	1	2	3	4
Hirudinea	0	1	2	3	4	Lepidoptera	0	1	2	3	4	a					
Oligochaeta	0	1	2	3	4	Sialidae	0	1	2	3	4						
Isopoda	0	1	2	3	4	Corydalidae	0	1	2	3	4				-		
Amphipoda	0	1	2	3	4	Tipulidae	0	1	2	3	4	otor	1		f	1	1
Decapoda	0	1	2	3	4	Empididae	0	1	2	3	4	stor	15				
Gastropoda	0	1	2	3	4	Simuliidae	0	1	2	3	4		7.1.2			J	
Bivalvia	0	1	2	3	4	Tabinidae	0	1	2	3	4						
						Culcidae	0	1	2	3	4						

ID 1		We	st Virginia Stream (Conditi	on Ir	ndex (WV	SCI)	L.	IRG ID RE
PORTANT: A blank	screen	below me	ans that you have not ente	red the l	Benthi	c Identificatio	ons correctly	All individua	ls that are p
the 200-count subs	ample n	nust be de	signated as such in the Se	mple Me	ethodo	lgy column o	on the Benthi	c ID forms (Fa	mily or Genu
WVSCI Family	- Count	- TV -			WYSCI	Metrics and	Scores	ORG	ID REIC2
Aeshnidae	- 1	3		-	1100	meanes and	rocores		
Baetid	ae 1	4				WVSCI			
Baetiscid	ae 1	3				Standardized		Development	-
Calopterygid	ae 1	5				Score w BSV		Benthic Der	isity
Ceratopogonid		6		Metrics	BSV	1996-2001	# of grids Pic	ked 43 To	tal # of grids
Chironomid	ae 40	6	% 2 Dominant Taxa (Famil	42.01	37.3	92.49	Souther C. Market Station		
Corydalid	ae 4	5	% Chironomidae	18.26	1.7	83.15			
Dryopid	ae 11	5		and the second s			Tota	I IBI Individuals	219
Elmid	ae 52	4	& EPT (Family)	45.21	89.3	50.62	# of 0	rganisms per Grid	5.09
Empidid	ae 4	6	HBI (Family)	4.29	2.61	77.24			
Ephemerellid	ae 9	3	# EPT Taxa (Family)	14	13	107.69		nisms per Sq cm	0.0509
Glossosomatid	зе 2	0					Orga	inisms per Sq m	509.30
Goerid	ae 3	4	# Total Taxa (Family)	26	22	118.18			
Gomphid	ae 1	3		WVSCI S	core w/	83.92			
Heptageniid	ae 5	4		BSV 199	6-2001	03.32			
Hydrachnid	ae 1	6	WVSCI Cate			THE OWNER WHEN			
Hydrophilid	ae 2	5	wyou cale	gory mun	mpaneo	Very Good			
Hydropsychid		5		W	/SCI Th	resholds			
Hydroptilid		4				= >68.00			
Leptophlebiid		2				0.61 to 68.00			
Leuctrid		3		Im	paired =	= <60.61			
Perlid	ae 6	1		-					
Philopotamid	ae 1	3							
Polycentropodid		6							
Rhyacophilid		3							
Tipulid		3							

SITE ID: S-HIOR LOWERLAUXEL Fort

COLLECTOR(S): CH/AK


iman Pet	ble Count (R	each Wide)	1.000	A LOTTER	1100	1997 - T				NOTES:
41	50	FSA	28	62	49	62	31	16	57	
46	FSA	72	19	44	98	69	35	114	93	MM
33	132	57	82	36	77	55	51	56	36	
122	19	36	117	5(68	53	27	44	142	
34	42	135	137	35	5	78	68	39	74	
110	40	92	148	72	133	45	72	79	97	
82	106	FSA	74	56	207	011	57	38	46	
60	62	FSA	CSA	62	76	211	22	47	28	
63	113	54	FSA	66	37	28	86	46	33	
52	53	FSA	18	43	CSA	60	2	58	56	

	NOTES:

Inches	PARTICLE	Millimeters	
	Silt/Clay	<.062	S/C
	Very Fine	.052125	~
	Fine	.12525	SA
	Medium	.2550	
	Coarse	.50 - 1.0	D
.0408	Very Coarse	1.0 . 2	-
0816	Very Fine	2-4	0.53
.1522	Fine	4-5.7	2014
.2231	Fine	5.7 - 8	G
.31 - ,44	Medium	B-11.3	R
.4463	Medium	\$1,3 - 16	
63 - 89	Coarse	15-22.6	(je)
.89 - 1.3	Coarse	22.6 - 32	IJ
1.3 - 1.8	Very Coarse	32 - 45	
1.8-2.5	Very Coarse	45-64	17
2.5 - 3.5	Smail	64 - 90	
3.5 - 5.0	Small	90 - 128	
5.0 - 7.1	Large	128 - 180	
7.1-10.1	Large	180 - 256	as
10.1 - 14.3 Small		256 - 362	B
14.3 - 20 Small		362 - 512	Ŭ
20 - 40	mulbeld	512 - 1024	- Pêh
40-30	Large-Vry Large	1024 - 2048	B

silt/clay 0 very fine sand 0.062	Range (mm <u>)</u> - 0.062 2 - 0.125	Count		Bankt	full Cha	nnel Pebb	le Count,	Lower Lau	rel Fork (S-H	1108)	cumulative %	# of part	ticles
fine sand 0.12		6	þ		silt/cla	ov/	sand		gravel	, cobble	boulder		
	5 - 0.5			100% -	Silver	ay	Sanu		giavei		Douidei	30	
	5 - 1	2		90% -									
,	1 - 2			90 /0								- 25	
, , , , , , , , , , , , , , , , , , , ,	2 - 4		þ	80% -								- 25	
	4 - 6		Ę	700/									
	6 - 8 8 - 11		tha	70% -						l i		- 20	n
0	1 - 16		ert	60% -									amr
	6 - 22	6	percent finer than	500/									number of particles
	2 - 32	4	ent	50%								- 15	<u> 약</u>
	2 - 45	19	erc	40%						i			par
	5 - 64	28	d							ALC: NO		+ 10	tic
	4 - 90	17		30% -						/			es
	0 - 128	10		20% -									
	8 - 180	6		2070								+ 5	
very large cobble 180	0 - 256	2		10% -					/		1		
	6 - 362			0% -								0	
	2 - 512			0%	01	0.1		1	10	100	1000	10000	
	2 - 1024			0.	01	0.1					1000	10000	
large boulder <u>1024</u> very large boulder <u>204</u> 8								par	ticle size (mm))			
		100											
total par	ticle count:	100			Size (n	nm)		Size Dist	ribution		Туре		
bedrock					D16	27		mean	51.2		silt/clay 0%		
clay hardpan					D35	43		dispersion	1.9		sand 8%		
detritus/wood	-				D50	53		skewness	-0.02		gravel 57%		
artificial	-				D65	64		2	0.02		cobble 35%		
	total count:	100			D84	97					oulder 0%		
					D95	150							
Note:													

BS-R

TS-R

13998880.14

1772129.39 1620.97

13998881.12 1772129.93 1622.24

	LEGEND
	STUDY AREA (EASEMENT)
· ·	EXISTING SURVEY-LOCATED THALWEG
1176.87 +	EXISTING SURVEYED GROUND SHOT ELEVATION

1626

1624

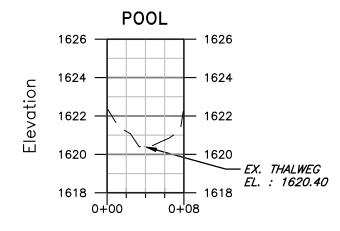
1622

1620

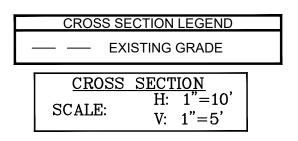

1618

THW: THALWEG (INVERT)

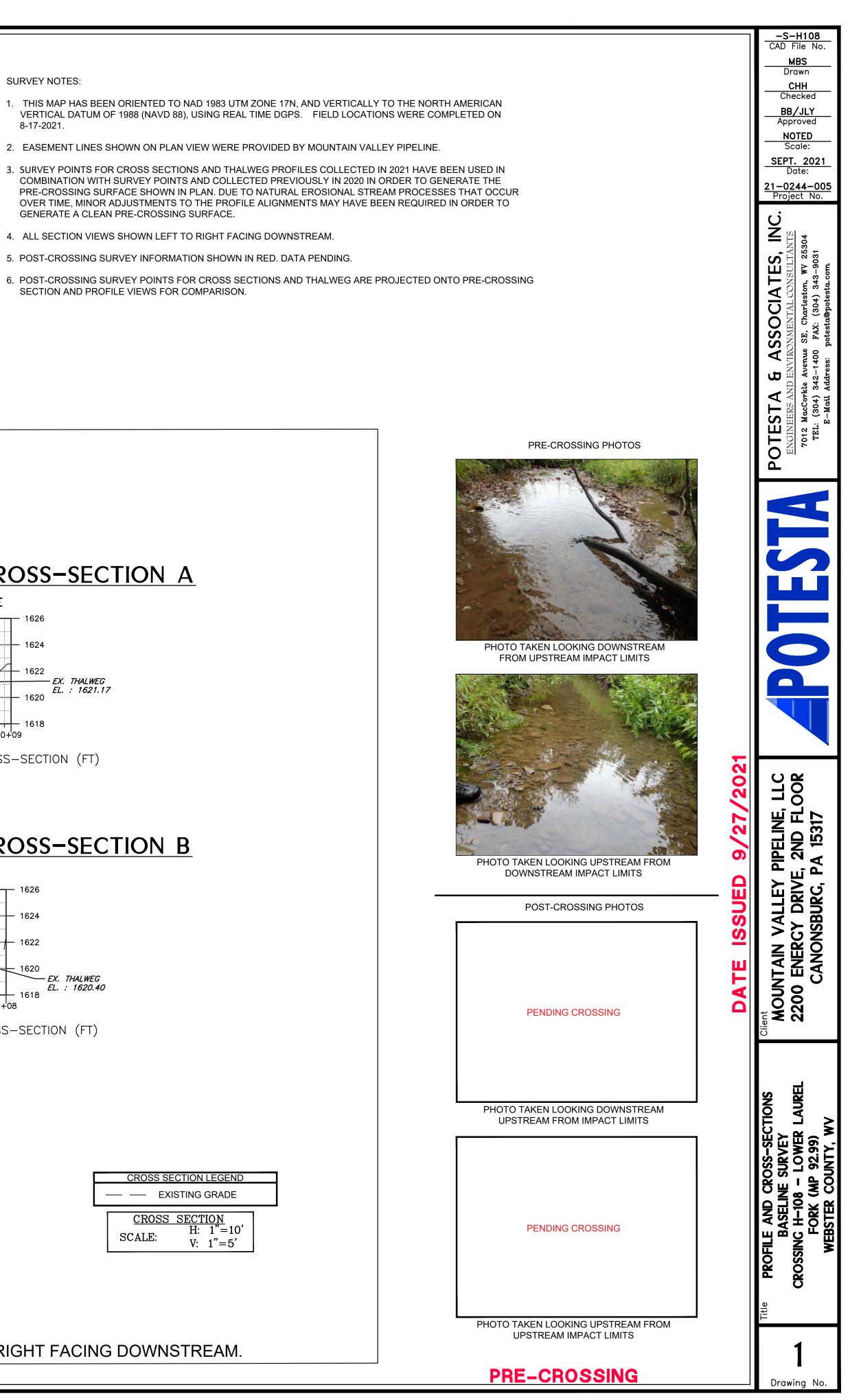
SURVEY NOTES:


- 1. THIS MAP HAS BEEN ORIENTED TO NAD 1983 UTM ZONE 17N, AND VERTICALLY TO THE NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD 88), USING REAL TIME DGPS. FIELD LOCATIONS WERE COMPLETED ON 8-17-2021.
- 2. EASEMENT LINES SHOWN ON PLAN VIEW WERE PROVIDED BY MOUNTAIN VALLEY PIPELINE.
- 3. SURVEY POINTS FOR CROSS SECTIONS AND THALWEG PROFILES COLLECTED IN 2021 HAVE BEEN USED IN COMBINATION WITH SURVEY POINTS AND COLLECTED PREVIOUSLY IN 2020 IN ORDER TO GENERATE THE PRE-CROSSING SURFACE SHOWN IN PLAN. DUE TO NATURAL EROSIONAL STREAM PROCESSES THAT OCCUR OVER TIME, MINOR ADJUSTMENTS TO THE PROFILE ALIGNMENTS MAY HAVE BEEN REQUIRED IN ORDER TO GENERATE A CLEAN PRE-CROSSING SURFACE.
- 4. ALL SECTION VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.
- 5. POST-CROSSING SURVEY INFORMATION SHOWN IN RED. DATA PENDING.
- SECTION AND PROFILE VIEWS FOR COMPARISON.

S-H108 BASELINE CROSS-SECTION A



DISTANCE ALONG CROSS-SECTION (FT)


S-H108 BASELINE CROSS-SECTION B

DISTANCE ALONG CROSS-SECTION (FT)

NOTE: ALL SECTION VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.

