Reach S-I26 (Pipeline ROW) Intermittent Spread E Greenbrier County, West Virginia

Data	Included
Photos	\checkmark
SWVM Form	\checkmark
FCI Calculator and HGM Form	\checkmark
RBP Physical Characteristics Form	\checkmark
Water Quality Data	N/A – No flow
RBP Habitat Form*	\checkmark
RBP Benthic Form	\checkmark
Benthic Identification Sheet	N/A – No flow
Wolman Pebble Count	\checkmark
Reference Reach Software Pebble Count Data	\checkmark
Longitudinal Profile and Cross Sections	\checkmark

*Modified RBP – No water

Spread E Stream S-I26 (Pipeline ROW) Greenbrier County

Photo Type: US Reach, US View Location, Orientation, Photographer Initials: Upstream Reach, Upstream View, AAK/SM

Photo Type: US Reach, DS View Location, Orientation, Photographer Initials: Upstream Reach, Downstream View, AAK/SM

Spread EStream S-I26 (Pipeline ROW)Greenbrier County

Photo Type: Mid-Reach, US View Location, Orientation, Photographer Initials: Mid-Reach, Upstream View, AAK/SM

Photo Type: Mid-Reach, DS View Location, Orientation, Photographer Initials: Mid-Reach, Downstream View, AAK/SM

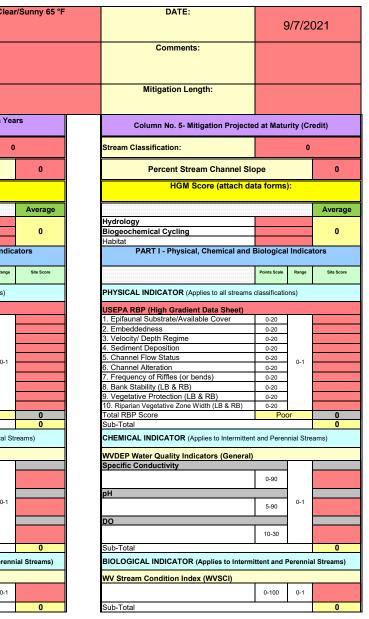
Spread E Stream S-I26 (Pipeline ROW) Greenbrier County

Photo Type: DS Reach, US View Location, Orientation, Photographer Initials: Downstream Reach, Upstream View, AAK/SM

Photo Type: DS Reach, DS View Location, Orientation, Photographer Initials: Downstream Reach, Downstream View, AAK/SM

"Q:\Charleston\2021 Projects\21-0244- MVP- STREAM AND WETLAND CONDITIONS ASSESSMENT AND SURVEY PLAN\002 - Pre-Crossing Monitoring\Spread E\S-126"

West Virginia Stream and Wetland Valuation Metric (SWVM) Version 2.1, September 2017


USACE FILE NO./ Project Name: (v2.1, Sept 2015)	Mountain		n Valley Pipeline	IMPACT COORDINATES: (in Decimal Degrees)	Lat.	38.019129	Lon.	-80.75522	WEATHER:	С
IMPACT STREAM/SITE ID AND SITE DESCRIPTION: (watershed size {acreage}, unaltered or impairments)			S-I26 UNT to	S-I26 UNT to Meadow Creek			SS./SITE ID AN reage}, unaltered or			
STREAM IMPACT LENGTH:	78	FORM OF MITIGATION:	RESTORATION (Levels I-III)	MIT COORDINATES: (in Decimal Degrees)	Lat.		Lon.		PRECIPITATION PAST 48 HRS:	
Column No. 1- Impact Existin	g Condition (Deb	pit)	Column No. 2- Mitigation Existing C	ondition - Baseline (Credit)		Column No. 3- Mitigatio Post Compl	n Projected at F etion (Credit)	ive Years	Column No. 4- Mitigation Pro Post Completion	
Stream Classification:	Intern	nittent	Stream Classification:			Stream Classification:		0	Stream Classification:	
Percent Stream Channel SI	lope	9.6	Percent Stream Channel Slo	ope		Percent Stream Channe	el Slope	0	Percent Stream Channel S	Slope
HGM Score (attach d	lata forms):		HGM Score (attach o	data forms):		HGM Score (att	ach data forms	s):	HGM Score (attach	data forms):
		Average		Average				Average		
Hydrology Biogeochemical Cycling	0.49 0.28 0.09	0.286666667	Hydrology Biogeochemical Cycling	0		Hydrology Biogeochemical Cycling		0	Hydrology Biogeochemical Cycling	
Habitat PART I - Physical, Chemical and		ators	Habitat PART I - Physical, Chemical and	d Biological Indicators		Habitat PART I - Physical, Chemic	al and Biologica	al Indicators	Habitat PART I - Physical, Chemical an	d Biological Ir
	Points Scale Range	Site Score		Points Scale Range Site Score			Points Scale	Range Site Score		Points Scale R:
PHYSICAL INDICATOR (Applies to all stream	is classifications)		PHYSICAL INDICATOR (Applies to all streams	classifications)		PHYSICAL INDICATOR (Applies to all str	eams classification	s)	PHYSICAL INDICATOR (Applies to all stream	ms classifications
USEPA RBP (High Gradient Data Sheet)			USEPA RBP (Low Gradient Data Sheet)			USEPA RBP (High Gradient Data Shee	et)		USEPA RBP (High Gradient Data Sheet)	
1. Epifaunal Substrate/Available Cover	0-20		1. Epifaunal Substrate/Available Cover	0-20		1. Epifaunal Substrate/Available Cover	0-20		1. Epifaunal Substrate/Available Cover	0-20
2. Embeddedness	0-20	9	2. Pool Substrate Characterization	0-20		2. Embeddedness	0-20		2. Embeddedness	0-20
Velocity/ Depth Regime	0-20		3. Pool Variability	0-20		3. Velocity/ Depth Regime	0-20		Velocity/ Depth Regime	0-20
4. Sediment Deposition	0-20	16	4. Sediment Deposition	0-20		4. Sediment Deposition	0-20		4. Sediment Deposition	0-20
5. Channel Flow Status	0-20 0-1		5. Channel Flow Status	0-20 0-1		5. Channel Flow Status	0-20	0-1	5. Channel Flow Status	0-20
6. Channel Alteration	0-20	16	6. Channel Alteration	0-20		6. Channel Alteration	0-20		6. Channel Alteration	0-20
Frequency of Riffles (or bends)	0-20		7. Channel Sinuosity	0-20		7. Frequency of Riffles (or bends)	0-20		Frequency of Riffles (or bends)	0-20
Bank Stability (LB & RB)	0-20	18	8. Bank Stability (LB & RB)	0-20		8. Bank Stability (LB & RB)	0-20		Bank Stability (LB & RB)	0-20
9. Vegetative Protection (LB & RB)	0-20	18	9. Vegetative Protection (LB & RB)	0-20		9. Vegetative Protection (LB & RB)	0-20		9. Vegetative Protection (LB & RB)	0-20
10. Riparian Vegetative Zone Width (LB & RB)	0-20	2	10. Riparian Vegetative Zone Width (LB & RB)	0-20		10. Riparian Vegetative Zone Width (LB & R			10. Riparian Vegetative Zone Width (LB & RB)	
Total RBP Score	Marginal	79	Total RBP Score	Poor 0		Total RBP Score	Poor	0	Total RBP Score	Poor
Sub-Total CHEMICAL INDICATOR (Applies to Intermitte	ent and Perennial St	0.395 reams)	Sub-Total CHEMICAL INDICATOR (Applies to Intermitten	t and Perennial Streams)		Sub-Total CHEMICAL INDICATOR (Applies to Intern	mittent and Perenni	ů ř	Sub-Total CHEMICAL INDICATOR (Applies to Intermit	tent and Perennia
WVDEP Water Quality Indicators (Genera	il)		WVDEP Water Quality Indicators (General)			WVDEP Water Quality Indicators (Ger	ieral)		WVDEP Water Quality Indicators (Gener	al)
Specific Conductivity			Specific Conductivity			Specific Conductivity			Specific Conductivity	
100-199 - 85 points	0-90			0-90			0-90			0-90
pH			nH			nH				
рп	0-1		рн	0-1		рп		0-1	рн	—— (
5.6-5.9 = 45 points	0-80			5-90			5-90			5-90
DO			DO			DO			DO	
50			50			50			50	
	10-30			10-30			10-30			10-30
Sub-Total			Sub-Total	0		Sub-Total		0	Sub-Total	I
BIOLOGICAL INDICATOR (Applies to Interm	ittent and Perennial	Streams)	BIOLOGICAL INDICATOR (Applies to Intermitt	tent and Perennial Streams)		BIOLOGICAL INDICATOR (Applies to In	ntermittent and Pe	erennial Streams)	BIOLOGICAL INDICATOR (Applies to Inte	mittent and Pe
WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)	
0	0-100 0-1			0-100 0-1			0-100	0-1		0-100
Sub-Total		0	Sub-Total	0		Sub-Total		0	Sub-Total	
DADT II Index and I	Unit Coore		DADT II Index and	Unit Coore		DART II Indov	and Unit Coore		DADT II Index and	Unit Coore

PART II - Index and Unit Score								
Index	Linear Feet	Unit Score						
0.442	78	34.4825						

PART II - Index and Unit Score									
Index	Linear Feet	Unit Score							
0	0	0							

PART II - Index and Unit Score								
Index	Linear Feet	Unit Score						
0	0	0						

	0-100	0-1									
Sub-Total											
PART II - Index and Unit Score											
Index	Linear	Feet									
0	0										

PART II - Index and Unit Score								
Index	Linear Feet	Unit Score						
0	0	0						

FCI Calculator for the High-Gradient Headwater Streams in Appalachia

To ensure accurate calculations, the UPPERMOST STRATUM of the plant community is determined based on the calculated value for V_{CCANOPY} (≥20% cover is required for tree/sapling strata). Go to the SAR Data Entry tab and enter site characteristics and data in the yellow cells. For information on determining how to split a project into SARs, see Chapter 5 of the Operational Draft Regional Guidebook for the Functional Assessment of High-Gradient Headwater Streams and Low-Gradient Perennial Streams in Appalachia (Environmental Laboratory U.S. Army Corps of Engineers 2017).

Project Name: MVP Preliminary Assessment Location: UNT to Meadow Creek Sampling Date: 9-7-2021 Project Site **Before Project** Subclass for this SAR: Intermittent Stream

Uppermost stratum present at this SAR: Shrub/Herb Strata

SAR number:

S-I26

Functional Results Summary:

Enter Results in Section A of the Mitigation Sufficiency Calculator

Function	Functional Capacity Index
Hydrology	0.49
Biogeochemical Cycling	0.28
Habitat	0.09

Variable Measure and Subindex Summary:

Variable	Name	Average Measure	Subindex
VCCANOPY	Percent canpoy over channel.	Not Used, <20%	Not Used
V _{EMBED}	Average embeddedness of channel.	1.40	0.24
V _{SUBSTRATE}	Median stream channel substrate particle size.	0.08	0.04
V _{BERO}	Total percent of eroded stream channel bank.	0.00	1.00
V _{LWD}	Number of down woody stems per 100 feet of stream.	0.00	0.00
V _{TDBH}	Average dbh of trees.	Not Used	Not Used
V _{SNAG}	Number of snags per 100 feet of stream.	0.00	0.10
V _{SSD}	Number of saplings and shrubs per 100 feet of stream.	6.00	0.09
V _{SRICH}	Riparian vegetation species richness.	4.00	1.00
VDETRITUS	Average percent cover of leaves, sticks, etc.	19.38	0.24
V _{HERB}	Average percent cover of herbaceous vegetation.	100.00	1.00
V _{WLUSE}	Weighted Average of Runoff Score for Catchment.	0.91	0.96

											Versio	on 10-20-17
			High-G		Headwat Data She					a		
	Team:	Potesta/Ed	ge (AK/SM)					L	_atitude/UT	M Northing:	38.019129	
Pro		MVP Prelin		ssment						-	-80.75522	
	-	UNT to Me							•	pling Date:	-	
SA	R Number:			Length (ft):	50	Stream Ty	vpe:	Interr	mittent Strea			•
	Top Strata:	Sh	rub/Herb Str	ata	(determine	d from perce	ent cal	culate	ed in V _{CCANC}	_{PPY})		
Site	and Timing:	Project Site				•	Before	e Proje	ct			•
Sample	e Variables	1-4 in strea	m channel									
1	V _{CCANOPY}		ercent cover	over chann	el by tree a	nd sapling c	anopy	. Mea	asure at no	fewer than	10 roughly	
		equidistant	points along at least one	g the strean	n. Measure	only if tree/s	sapling	g cove	er is at least			Not Used, <20%
	List the per	rcent cover i							,			
	0	0	0	0	0							1
	0	0	0	0	0							
2	V _{EMBED}		nbeddednes tream. Sele									1.4
			d area surro									
			o the followi							fine sedim	ents, use a	
			e of 1. If the		-			-				٦
		Embedded Minshall 19	ness rating 983)	for gravel, c	obble and b	oulder parti	cles (r	escale	ed from Pla	tts, Megaha	n, and	
		Rating	Rating Des]
		5			covered, sur						:k)	ł
		4			ace covered							-
		3			face covere face covere							4
		1			covered, su				-		ial surface)	1
	List the rati	ings at each									iai eanaeej	1
	5	1	1	1	1	1						1
	5	1	1	1	1	1						1
	5	1	1	1	1	1						
	1	1	1	1	1	1						
	1	1	1	1	1	1						
3	V _{SUBSTRATE}	Median stre along the s	eam channe tream; use t							ghly equidis	tant points	0.08 in
	Enter partie	cle size in in		•				20021		ounted as 9	9 in.	
		concrete as									- ,	
	0.08	0.08	0.08	0.08	0.08	0.08						1
	0.08	84.00	0.08	0.08	0.08	0.08						
	0.08	111.00	0.08	0.08	0.08	0.08						1
	0.08	411.00	0.08	0.08	0.08	0.08						1
	0.08	241.00	0.08	0.08	0.08	0.08						1
4	V _{BERO}	Total perce side and th	ent of erodeo e total perce	d stream cha	annel bank.	Enter the to						0 %
		may be up	Left Bank:	0	ft		Diaht	Popla	0	f+		
			Len Bank:	0	ft		Right E	Dank:	0	ft		

Sampl	le Variable	s 5-9 within t	the entire	riparian/buf	fer zone ad	jacent to t	he stream ch	nannel (25	feet from e	each bank).	
5	V_{LWD}	Number of down woody stems (at least 4 inches in diameter and 36 inches in length) per 100 feet of stream reach. Enter the number from the entire 50'-wide buffer and within the channel, and the amount per 100 feet of stream will be calculated.									
		Number of downed woody stems: 0									
6	V_{TDBH}	Average dbh of trees (measure only if V _{CCANOPY} tree/sapling cover is at least 20%). Trees are at least 4 inches (10 cm) in diameter. Enter tree DBHs in inches.									
			,				in) within the	buffor on o	ach aida af		
		the stream			vicual liees	(al least 4		builer on e	ach side of		
			Left Side					Right Side			1
7	V _{SNAG}						et of stream.	Enter num	ber of snag	s on each	
		side of the	stream, an	d the amour	it per 100 fe	et will be c	alculated.				0.0
			Left Side	·	0		Right Side:		0		
8	V _{SSD}	Number of			oody stems	up to 4 inc	ches dbh) per	100 feet of	stream (m	easure only	
							ubs on each :	side of the	stream, and	the	6.0
		amount per	Left Side	tream will be	e calculated		Right Side:		0		
9	V _{SRICH}	Riparian ve				feet of stre	am reach. Cl			nt from	
		Group 1 in	the tallest	stratum. Ch	eck all exoti	c and inva	4.00				
				and the sub	ndex will be	calculated	I from these d		0 (1 0)		
	Acer rubr		p 1 = 1.0	Magnolia t	ripotala		Ailanthus a	-	2 (-1.0)	Lonicera ja	nonico
				•	•						
	Acer saco			Nyssa sylv			Albizia julib			Lonicera ta	
	Aesculus			-	n arboreum		Alliaria peti	olata		Lotus corn	
	Asimina t	riloba		Prunus sei	rotina		Alternanthe			Lythrum sa	licaria
	Betula alle	eghaniensis		Quercus a	lba		philoxeroide	es		Microstegiur	m vimineum
	Betula ler	nta		Quercus c	occinea		Aster tatario	cus		Paulownia	tomentosa
	Carya alb	a		Quercus in	nbricaria		Cerastium f	fontanum		Polygonum	cuspidatum
	Carya gla	bra		Quercus p	rinus		Coronilla va	aria		Pueraria m	ontana
	Carya ova	alis	\checkmark	Quercus ru	ıbra		Elaeagnus ui	mbellata		Rosa multi	flora
	Carya ova	ata		Quercus v	elutina		Lespedeza	bicolor		Sorghum h	alepense
	Cornus flo	orida		Sassafras	albidum		Lespedeza	cuneata		Verbena bi	rasiliensis
	Fagus gra	andifolia		Tilia ameri	cana		Ligustrum ob	tusifolium			
		americana		Tsuga can	adensis		Ligustrum s				
_ _		on tulipifera		Ulmus am			0	-			
		acuminata		ennao ann							
	magnona	aoanniata									
		2	Species in	Group 1				0	Species in	Group 2	

				subplots (40" x end of a subplot of a subplo						n 25 feet fro	om each
10	V _{DETRITUS}	Average pe	ercent cover	of leaves, sticks, Enter the percent	or other or	ganic n	naterial. W	oody deb	ris <4" diame	ter and	19.38 %
		Left Side Right Side]	
		20	15			15	20				
11	V _{HERB}	20 Average pe	20 Proentage cr	over of herbaceous		25 n (mea	20 Isure only if	tree cove	r is <20%)	o not	
	♥ HERB	include woo	ody stems a	it least 4" dbh and	36" tall. Be	ecause	there may	be severa	I layers of gro	ound cover	100 %
		vegetation at each sub		s up through 200%	% are accep	oted. E	inter the pe	rcent cove	er of ground v	regetation	100 /8
		ateachisut		Side			Righ	t Side		1	
		100	100			00	100				
		100	100		1	00	100				
Sample	e Variable 1	2 within the	e entire cat	chment of the st	ream.						
12	V _{wluse}	Weighted A	Average of F	Runoff Score for w	atershed:						0.91
									Runoff	% in	Running
			Land	Use (Choose Fror	m Drop List)			Score	Catch- ment	Percent (not >100)
	Forest and n	ative range (>	75% around	cover)					1	89.48	89.48
			the second s	1273/29925-62990 1273-29925-62990							
	Open space	(pasture, lawr	is, parks, etc.), grass cover <50%					0.1	10.52	100
								•	-		
	_								-		
								•	-		
								•	-		
	-								-		
		S-126					No	tes:			
V	ariable			Land Cover Ana	alvsis was	comp	-		9 National I	and Cover	Datahase
		Value Not Used,	VSI	(NLCD), from La							
Vc	CANOPY	<20%	Not Used	Watershed bou	ndaries ar	e base	ed off field	delineate	ed stream in	npacts.	
VE	MBED	1.4	0.24								
Vs	UBSTRATE	0.08 in	0.04								
VB	ERO	0 %	1.00								
VL	WD	0.0	0.00								
	DBH	Not Used	Not Used								
	NAG	0.0	0.10								
Vs	SD	6.0	0.09								
Vs	RICH	4.00	1.00								
	ETRITUS	19.4 %	0.24								
	ERB	100 %	1.00								
	LUSE	0.91	0.96								
- W	LUSE	0.01	0.00								

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

STREAM NAMES	5-126	LOCATION UNT to Mea	adow Creek
STATION #	RIVERMILE	STREAM CLASS Inter	mittent 🔽
LAT 38.019129	LONG80.75522	COUNTY Green	brier 🔽
STORET #		AGENCYPotesta/Ed	ge
INVESTIGATORS	AK/SM		
FORM COMPLET	ED BY Ak	DATE 9-7-2021 TIME 1015	REASON FOR SURVEY Preliminary Assessment

WEATHER CONDITIONS	Now Past 24 hours Has there been a heavy rain in the last 7 days? Storm (heavy rain) rain (steady rain) showers (intermittent) % cloud cover clear/sunny Past 24 hours Image: Clear structure for the struc
SITE LOCATION/MAP	Draw a map of the site and indicate the areas sampled (or attach a photograph) WWW ZoD Pipeline Pow MN J WR Pipeline Pow MN J WR Pow WWW J WR WWW J WR WR WR WR WR WR WR WR WR WR
	1 1 100
STREAM CHARACTERIZATION	Stream Subsystem Stream Type Perennial Intermittent Tidal Stream Origin Coldwater Warmwater Glacial Spring-fed Catchment Area Non-glacial montane Mixture of origins Other

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

WATERS FEATURI		✓ Fores	Pasture Industria	duse rcial al	Local Watershed NPS No evidence Sor Obvious sources Local Watershed Eros None Moderate	ne potential sources
RIPARIAI VEGETAT (18 meter	LION	I □ Tree	e the dominant type and s SS ant species present SS	irubs	Grasses	rbaccous
INSTREA FEATURI		Estima Sampli Area in Estima Surfacc (at thal	ted Stream Width 0.9 ng Reach Area 31.51 km² (m²x1000) $-$ ted Stream Depth <0.05 c Velocity 0 m	$\frac{t}{m} = \frac{m^2}{m^2}$ $\frac{m^2}{m^2}$ $\frac{m^2}{m}$		ly shaded □Shaded .1 ft _m epresented by Stream Run% ☑No ☑No
LARGE W DEBRIS	/OODY	LWD Density	$\frac{0}{0 \text{ of } LWD} = 0$ m	² /km ² (LWD/	reach area)	
AQUATIC VEGETAT		☐Roote ☐Float Domina		aquatic veg	nt Rooted floating	Free floating
u	QUALITY ow Flow; nable to ccess	Specific Dissolv pH Turbid	rature0 C c Conductance ed Oxygen ity strument Used		Water Odors Pormal/None Sewage Petroleum Sewage Fishy Sick Slick Sheen Slick Other Turbidity (if not measu Clear Clear Slightly tu Opaque Stained	Chemical Other Globs Flecks
SEDIMEN SUBSTRA		Odors Norm Chen Othe Oils Abse	nical Anaerobic	Petroleum ☑None 2e □Profu	are the undersides blac	h are not deeply embedded.
INC		STRATE dd up to 1	COMPONENTS 100%)		ORGANIC SUBSTRATE C (does not necessarily add	
Substrate Type	Diamet	er	% Composition in Sampling Reach	Substrate Type	Characteristic	% Composition in Sampling Area
Bedrock			0	Detritus	sticks, wood, coarse plant	0
Boulder	> 256 mm (10"))	0		materials (CPOM)	U

Muck-Mud

Marl

black, very fine organic (FPOM)

grey, shell fragments

0

0

0

5 5

10

80

Cobble

Gravel

Sand

Silt

Clay

64-256 mm (2.5"-10")

2-64 mm (0.1"-2.5")

0.06-2mm (gritty)

< 0.004 mm (slick)

0.004-0.06 mm

HABITAT ASSESSMENT FIELD DATA SHEET - HG - USE ON ALL STREAMS (FRONT)

STREAM NAMES-126	LOCATION
STATION # RIVERMILE	STREAM CLASS Intermittent
LAT 38.019129 LONG -80.75522	COUNTY Greenbrier
STORET #	AGENCYPotesta/Edge
INVESTIGATORSAK/SM	
FORM COMPLETED BY Ak	DATE 9-7-2021 TIME 1015 AM PM REASON FOR SURVEY Preliminary Assessment

	Habitat		Condition	Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
		to allow full colonization potential (i.e., logs/snags that are <u>not</u> new fall and <u>not</u> transient).	form of newfall, but not yet prepared for colonization (may rate at high end of scale).		
	_{SCORE} 0	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
ı sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.
ted i	_{SCORE} 9 ▼	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime V/A	All four velocity/depth regimes present (slow- deep, slow-shallow, fast- deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast- shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).
aram	_{SCORE} 0	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
P	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
	_{SCORE} 16 ▼	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
	5. Channel Flow Status 🖌 N/A	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
	SCORE U	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0

Low flow present, Unable to assess WQ variables - modified RBP.

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

	Habitat		Condition	n Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
	_{SCORE} 16 ▼	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
ing reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.
samp	SCORE 0	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing documentation.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30- 60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.
e ev	SCORE 9 ▼	Left Bank 10 9	8 7 6	5 4 3	2 1 0
s to b	SCORE 9	Right Bank 10 9	8 7 6	5 4 3	2 1 0
Parameter	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well- represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
	$score \frac{9}{2}$	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE 9	Right Bank 10 9	8 7 6	5 4 3	2 1 0
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.
	$s_{CORE} \frac{1}{1}$	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE 1				1

Total Score _____

BENTHIC MACROINVERTEBRATE FIELD DATA SHEET

STREAM NAMES-I2	26	LOCATION	
STATION #	RIVERMILE	STREAM CLASS Intermitten	nt 🔽
LAT 38.019129	LONG -80.75522	COUNTY Greenbrier	•
STORET #		AGENCY Potesta/Edge	
INVESTIGATORSA	K/SM		LOT NUMBER
FORM COMPLETED	Ak	DATE 9.7-2021 TIME 1015	REASON FOR SURVEY Preliminary Assessment
HABITAT TYPES SAMPLE	Indicate the percentage of Cobble% S Submerged Macrophytes Gear used D-frame	inags% Uegetated B % Other ()%
COLLECTION		Ds/kicks taken in each habitat ty hags □Vegetated B	anks Sand
GENERAL COMMENTS	No benthics colle	cted, very low flow	

QUALITATIVE LISTING OF AQUATIC BIOTA

Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare, 2 = Common, 3= Abundant, 4 = Dominant

Periphyton	0	1	2	3	4	Slimes	0	1	2	3	4
Filamentous Algae	0	1	2	3	4	Macroinvertebrates	0	1	2	3	4
Macrophytes	0	1	2	3	4	Fish	0	1	2	3	4

FIELD OBSERVATIONS OF MACROBENTHOS

Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare (1-3 organisms), 2 = Common (3-9 organisms), 3= Abundant (>10 organisms), 4 = Dominant (>50 organisms)

Porifera	0	1	2	3	4	Anisoptera	0	1	2	3	4	Chironomidae	0	1	2	3	4
Hydrozoa	0	1	2	3	4	Zygoptera	0	1	2	3	4	Ephemeroptera	0	1	2	3	4
Platyhelminthes	0	1	2	3	4	Hemiptera	0	1	2	3	4	Trichoptera	0	1	2	3	4
Turbellaria	0	1	2	3	4	Coleoptera	0	1	2	3	4	Other	0	1	2	3	4
Hirudinea	0	1	2	3	4	Lepidoptera	0	1	2	3	4						
Oligochaeta	0	1	2	3	4	Sialidae	0	1	2	3	4						
Isopoda	0	1	2	3	4	Corydalidae	0	1	2	3	4						
Amphipoda	0	1	2	3	4	Tipulidae	0	1	2	3	4						
Decapoda	0	1	2	3	4	Empididae	0	1	2	3	4						
Gastropoda	0	1	2	3	4	Simuliidae	0	1	2	3	4						
Bivalvia	0	1	2	3	4	Tabinidae	0	1	2	3	4						
						Culcidae	0	1	2	3	4						

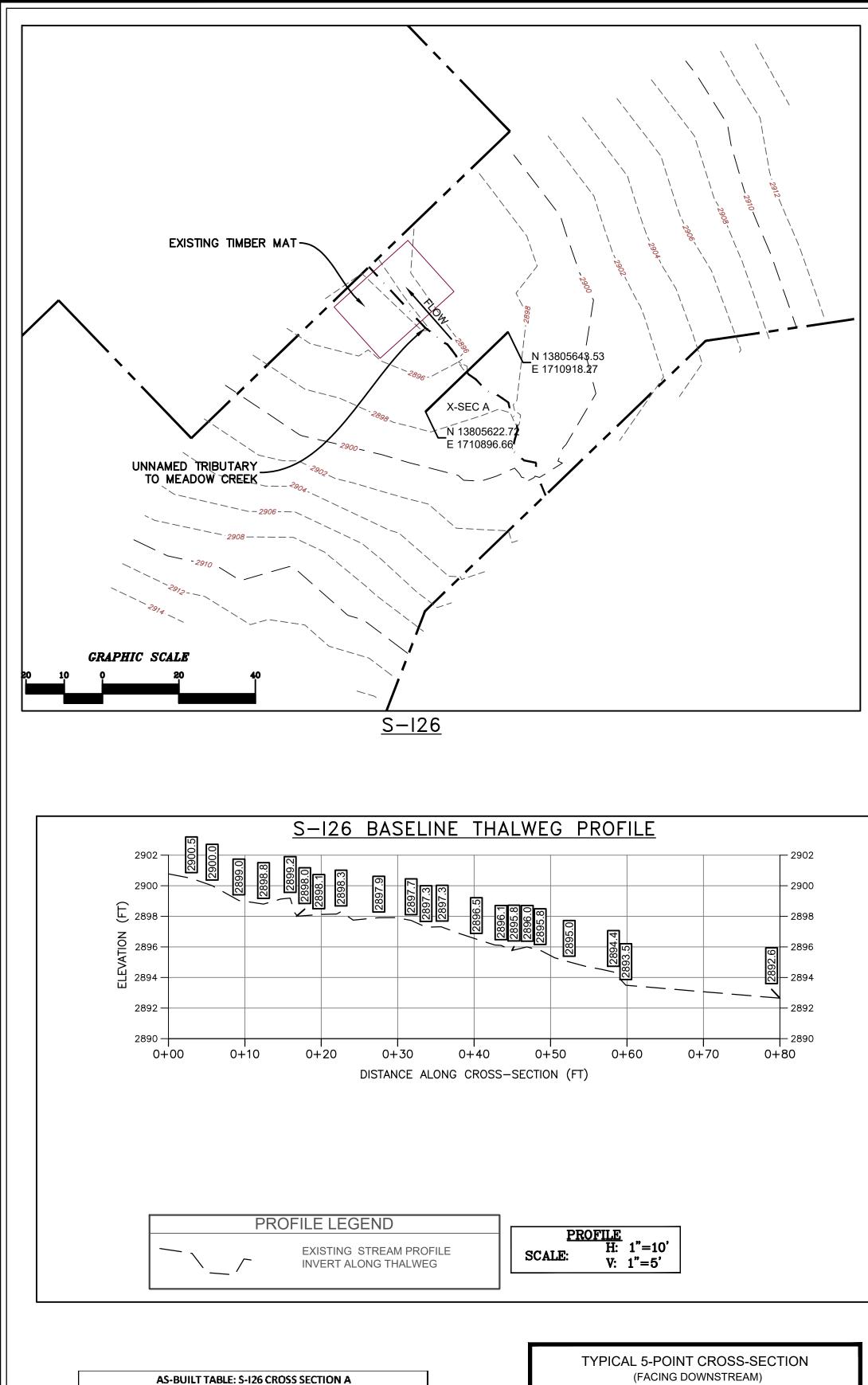
SITE ID: S-IZ6		Spread	E
DATE: 7 Septimbro	2021		

and the states of the second

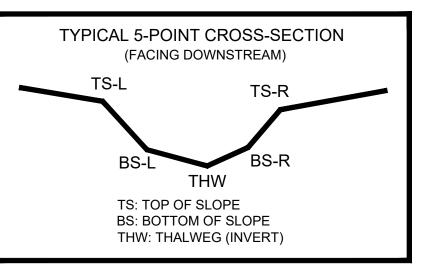
COLLECTOR(S): _____

Wolman Peb	ble Count (Re	ach Wide)							Ť
.062	062	062	062	062	0.67	667	:062	262	062
241	Z" (241	067	5	C	241	OLL	061	062
166	.062	.062	166	89	84	062	OGL	062	050
:002	.062	062	20	201	062	.062		201	701
1(1	11	.062	. 662	.062	125	125	062	. 0.61	067
662	.062	062	.062	.062	.062	.062	.061	: 06/	.067
.062	062	. 062	.662	062	, 662	-062	.012	,062	657
610.2	. 644	(62	<i>t[]]</i>	441	411	111	411	411	.067
- L	.062	,062	500.	062	.062	.062	062	540	, ear
. 062	062	062	062	062	120	662	.062	062	Ole

iffie Pebble Count			
	and the second second		


MARTS 2. Millimeters Inche: S/C \$d1Clay 1 242 Very Fine 282 - 125 SA Fine 125 - 25 Medium 25 - 55 N J Coarse 50 - 1 0 04 . 75 Mary Coarse 1.2.2 ____ 18 . 18 very fiste 2 - 4 18 - 22 ะี่เา≐ 4-57 GRAV 22 - 31 ÷n∈ 57.9 31 - 44Medium. 8.113 42 - 62 Vedrum 11.3 - 16 .E; e3 - 89 Quarse. 18-26-Ū 59-13 Coarse 22.6 - 32 12-18 Cery Coarse 32 - 45 1.8.25 Very Obarse 45 - 54 25.35 Smal 64 - 96 35.51 Sma" 90 - 128 52-71 128 - 186 Lance 21-101 Large 180 - 256 10.1 - 14.8 Smark 256 - 262 8 12.3 - 20 Small 262 - 512 THE SHIP 25-40 Medium 512 - 1024 41.483 Large-Vry Large 1024 - 2048 Bedrock EDAN ---- ,

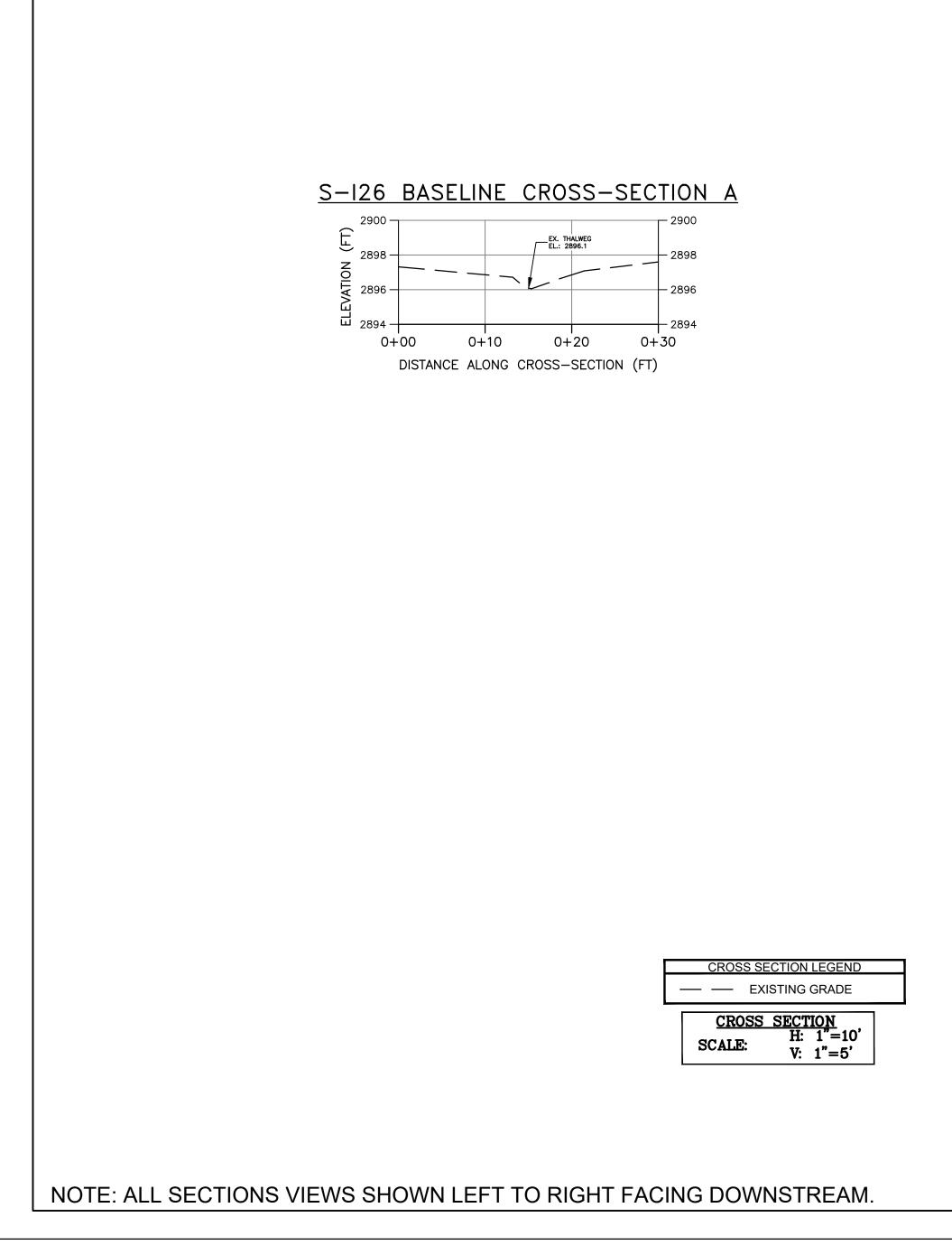
NOTES;

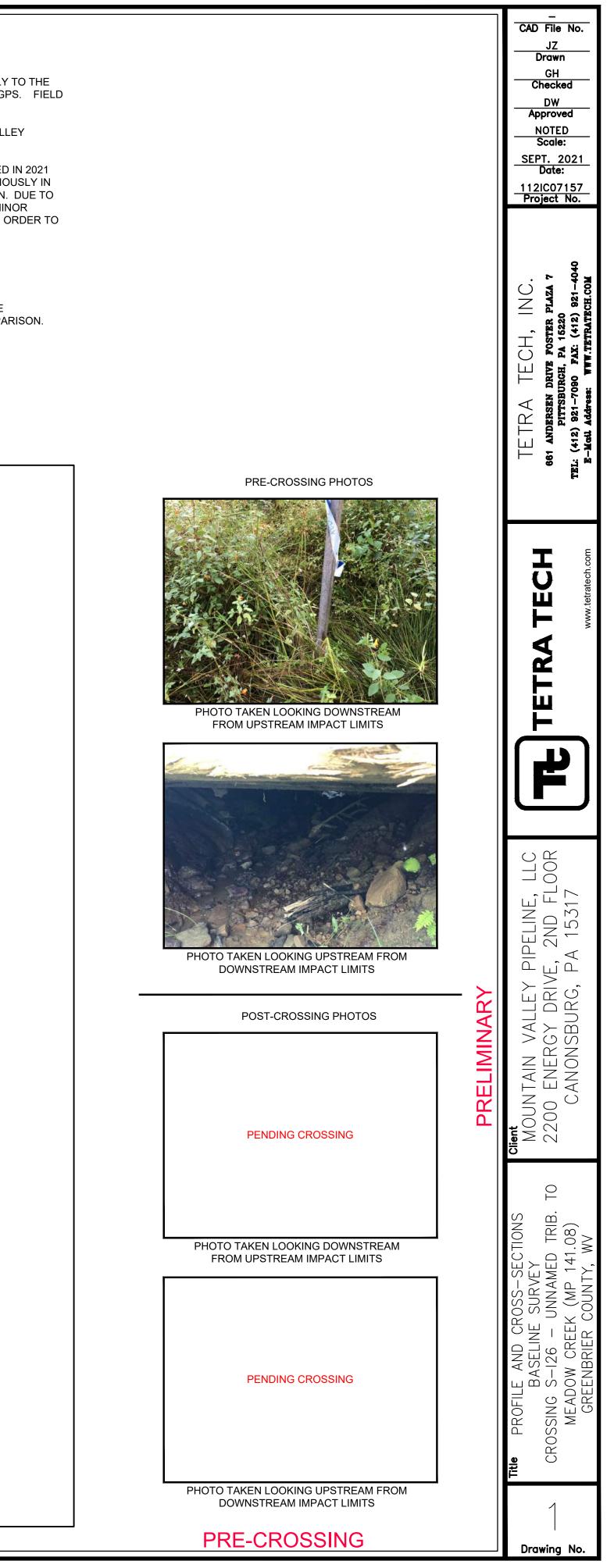

NOTES:

				1	r		T	NOTES:
							· · ·	a)
							1 1	
				1				
						-		
				 1				
		1 1						
				 				•
	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		1					
-						1		

Bankfull Channel		_			_					
Material Size Range (mm) Count		Bankf	ull Chan	inel Pebble	e Count, UN	Т ТО М	IEADOW CR	REEK (S-126)		
silt/clay 0 - 0.062 76										# of particles
very fine sand 0.062 - 0.125										
fine sand 0.125 - 0.25			- :14/-1-		I				h a dalar a	
medium sand 0.25 - 0.5		100% -	silt/cla	y I	sand		gravel	cobble	boulder	80
coarse sand 0.5 - 1		000/								
very coarse sand 1 - 2		90% -								- 70
very fine gravel 2 - 4 1		80% -								
fine gravel 4 - 6 1	_									- 60
fine gravel <u>6 - 8</u>	Jar	70% -								
medium gravel 8 - 11	er tl	60% -								- 50 F
medium gravel <u>11 - 16</u>	fine	0070						İ		ıbe
coarse gravel <u>16 - 22</u> coarse gravel <u>22 - 32</u> 1	ut .	50% -		•				 		- 40 <u>-</u>
coarse gravel <u>22 - 32</u> 1 very coarse gravel <u>32 - 45</u>	percent finer than	400/								f pa
very coarse gravel 45 - 64	be	40% -								- 30 1.
small cobble 64 - 90 2		30% -								+ 50 number of particles
medium cobble 90 - 128 4								İ		+ 20 "
large cobble 128 - 180 2		20% -						1		
very large cobble 180 - 256 7		10% -								+ 10
small boulder 256 - 362		-								
small boulder 362 - 512 6		0% -								0
medium boulder 512 - 1024		0.)1	0.1	1		10	100	1000	10000
large boulder 1024 - 2048						par	ticle size (mm)		
very large boulder 2048 - 4096						•				
total particle count: 100										
			Size (m		S	Size Dist	ribution		Туре	
bedrock			D16	0.062		mean	2.7	s	ilt/clay 76%	
clay hardpan			D35	0.062	disp	persion	968.2		sand 0%	
detritus/wood				0.062	ske	ewness	0.91		gravel 3%	
artificial			D65	0.062				(cobble 15%	
total count: 100			D84	120				b	oulder 6%	
			D95	380						
Note:										

AS-BUILT TABLE: S-126 CROSS SECTION A								
	PI		AS-BUILT					
PT. LOC.	NORTHING	EASTING	ELEV	VERT.	HORZ.			
	NORTHING	EASTING		DIFF.	DIFF.			
TS-L	13805631.8100	1710906.1840'	2896.723'					
BS-L	13805632.8000	1710907.1530 ¹	2896.156'					
THW	13805633.5300	1710907.6800'	2896.037'					
BS-R	13805634.8600	1710909.1840'	2896.400'					
TS-R	13805635.5800	1710910.0650'	2896.625'					




LEGEND — — — — STUDY AREA (EASEMENT) — — — — EXISTING SURVEY-LOCATED THALWEG 1176.87 + EXISTING SURVEYED GROUND SHOT ELEVATION SURVEY NOTES:

- 1. THIS MAP HAS BEEN ORIENTED TO NAD 1983 UTM ZONE 17N, AND VERTICALLY TO THE NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD 88), USING REAL TIME DGPS. FIELD LOCATIONS WERE COMPLETED ON SEPTEMBER 20, 2021.
- 2. EASEMENT LINES SHOWN ON PLAN VIEW WERE PROVIDED BY MOUNTAIN VALLEY PIPELINE.

3. SURVEY POINTS FOR CROSS SECTIONS AND THALWEG PROFILES COLLECTED IN 2021 HAVE BEEN USED IN COMBINATION WITH SURVEY POINTS COLLECTED PREVIOUSLY IN 2020 IN ORDER TO GENERATE THE PRE-CROSSING SURFACE SHOWN IN PLAN. DUE TO NATURAL EROSIONAL STREAM PROCESSES THAT CAN OCCUR OVER TIME, MINOR ADJUSTMENTS TO THE PROFILE ALIGNMENTS MAY HAVE BEEN REQUIRED IN ORDER TO GENERATE A CLEAN PRE-CROSSING SURFACE.

- 4. ALL SECTION VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.
- 5. POST-CROSSING SURVEY INFORMATION SHOWN IN RED. DATA PENDING.
- 6. POST-CROSSING SURVEY POINTS FOR CROSS SECTIONS AND THALWEG ARE PROJECTED ONTO PRE-CROSSING SECTION AND PROFILE VIEWS FOR COMPARISON.

