Baseline Assessment – Stream Attributes

Reach S-I36 (Pipeline ROW) Perennial Spread D Nicholas County, West Virginia

Data	Included
Photos	✓
SWVM Form	✓
FCI Calculator and HGM Form	N/A – Perennial stream (not shadeable, slope >4%)
RBP Physical Characteristics Form	✓
Water Quality Data	✓
RBP Habitat Form	✓
RBP Benthic Form	✓
Benthic Identification Sheet	✓ *Full pick <100
Wolman Pebble Count	✓
Reference Reach Software Pebble Count Data	✓
Longitudinal Profile and Cross Sections	✓

Location, Orientation, Photographer Initials: Downstream Edge of Right of Way, Upstream View, TF/CH/TA

Photo Type: DS Edge ROW, DS View
Location, Orientation, Photographer Initials: Downstream Edge of Right of Way, Downstream View, TF/CH/TA

Photo Type: C ROW, US View Location, Orientation, Photographer Initials: Center Point of Right of Way, Upstream View, TF/CH/TA

Photo Type: C ROW, DS View Location, Orientation, Photographer Initials: Center Right of Way, Downstream View, TF/CH/TA

Photo Type: US Edge of ROW, US View Location, Orientation, Photographer Initials: Upstream Edge of Right of Way, Upstream View, TF/CH/TA

Photo Type: DS Edge of ROW, DS View Location, Orientation, Photographer Initials: Downstream Edge of Right of Way, Downstream View, TF/CH/TA

Photo Type: C ROW, Facing N Location, Orientation, Photographer Initials: Center of Right of Way, Facing North, TF/CH/TA

Photo Type: Center ROW, Facing South Location, Orientation, Photographer Initials: Center of Right of Way, Facing South, TF/CH/TA

"Q:\Charleston\2021 Projects\21-0244- MVP- STREAM AND WETLAND CONDITIONS ASSESSMENT AND SURVEY PLAN\002 - Pre-Crossing Monitoring\Spread D\S-I36"

West Virginia Stream and Wetland Valuation Metric (SWVM) Version 2.1, September 2017

USACE FILE NO./ Project Name: (v2.1, Sept 2015)		М	ountain Valley Pipel	ine		COORDINATES:	Lat.	38.178889	Lon	ı .	-80.72979	WEATH	IER:	90% Cld	oud Cover 70 °F	DATE:	q	/17/2021	
(,,					(III Dec	illiai Degrees)												71772021	
IMPACT STREAM/SITE ID A (watershed size {acreage},				S-I36 H	ominy Creek			MITIGATION STRE	AM CLASS./SITE I							Comments:			
(water street size factorage),	unantered of impairin	nentaj						(watersii	ieu size (acreage), unain	ered or impairi	ients,								
STREAM IMPACT LENGTH:	77	FORM (OF .		MIT CO	OORDINATES:	Lat.		Lon			PRECIPITATION	PAST 48 HRS:			Mitigation Length:			
		MITIGATI	ON: RES	STORATION (Levels I-III)	(in Dec	imal Degrees)													
Column No. 1- Impact Existing	Condition (Deb	oit)	Colu	ımn No. 2- Mitigation Existing	Condition - Base	line (Credit)			Mitigation Projecte st Completion (Cre		ars		. 4- Mitigation Proje Post Completion (ırs	Column No. 5- Mitigation Pr	ojected at Matu	rity (Credit)	
Stream Classification:	Peren	nnial	Stream Cla	ssification:				Stream Classification:			0	Stream Classification:		0		Stream Classification:		0	
Percent Stream Channel Slo	ppe	1.43		Percent Stream Channel S	lope			Percent Stream	n Channel Slope		0	Percent S	tream Channel Slo	ope	0	Percent Stream Chann	el Slope		0
HGM Score (attach da	ata forms):			HGM Score (attach	data forms):			HGM S	core (attach data	forms):		HG	M Score (attach da	ata forms):		HGM Score (atta	ch data forms):	
		Average				Average					Average				Average			Ave	erage
Hydrology			Hydrology					Hydrology				Hydrology				Hydrology			
Biogeochemical Cycling Habitat		0	Biogeoche Habitat	mical Cycling		0		Biogeochemical Cycling Habitat			0	Biogeochemical Cyclin Habitat	ng		0	Biogeochemical Cycling Habitat			0
PART I - Physical, Chemical and	Biological Indica	ators		PART I - Physical, Chemical a	nd Biological Ind	icators			, Chemical and Bio	logical Indic	cators		ical, Chemical and	Biological Indica	ators	PART I - Physical, Chemica	and Biologica	I Indicators	
	Points Scale Range	Site Score			Points Scale Range	Site Score			Points	Scale Range	Site Score			Points Scale Range	Site Score		Points Scale	Range Site	te Score
PHYSICAL INDICATOR (Applies to all streams	classifications)		PHYSICAL	INDICATOR (Applies to all stream	s classifications)			PHYSICAL INDICATOR (Applie	es to all streams classif	ications)		PHYSICAL INDICATOR	(Applies to all streams	s classifications)		PHYSICAL INDICATOR (Applies to all st	eams classification	ons)	
USEPA RBP (High Gradient Data Sheet)		- 15		P (Low Gradient Data Sheet)				USEPA RBP (High Gradient D				USEPA RBP (High Gra				USEPA RBP (High Gradient Data She			
Epifaunal Substrate/Available Cover Embeddedness	0-20	18 18		Substrate/Available Cover strate Characterization	0-20			Epifaunal Substrate/Available Embeddedness				 Epifaunal Substrate/A Embeddedness 	vailable Cover	0-20		Epifaunal Substrate/Available Cover Embeddedness	0-20		
3. Velocity/ Depth Regime	0-20 0-20	18	3. Pool Vari		0-20 0-20			Velocity/ Depth Regime	0-2 0-2			Velocity/ Depth Regin	ne .	0-20 0-20		Velocity/ Depth Regime	0-20 0-20		
4. Sediment Deposition	0-20	17		Deposition	0-20			Sediment Deposition	0-2			Sediment Deposition		0-20		Sediment Deposition	0-20		
5. Channel Flow Status	0-20	19		Flow Status	0-20			5. Channel Flow Status	0-2			5. Channel Flow Status		0-20		5. Channel Flow Status	0-20	0.4	
6. Channel Alteration	0-20	19	6. Channel	Alteration	0-20			6. Channel Alteration	0-2	20		6. Channel Alteration		0-20		6. Channel Alteration	0-20	0-1	
7. Frequency of Riffles (or bends)	0-20	17	7. Channel	Sinuosity	0-20			7. Frequency of Riffles (or bend	ds) 0-2	20		7. Frequency of Riffles (or bends)	0-20		7. Frequency of Riffles (or bends)	0-20		
8. Bank Stability (LB & RB)	0-20	17	8. Bank Sta	bility (LB & RB)	0-20			8. Bank Stability (LB & RB)	0-2	20		Bank Stability (LB & F	RB)	0-20		8. Bank Stability (LB & RB)	0-20		
9. Vegetative Protection (LB & RB)	0-20	18		e Protection (LB & RB)	0-20			9. Vegetative Protection (LB &				Vegetative Protection		0-20		Vegetative Protection (LB & RB)	0-20		
10. Riparian Vegetative Zone Width (LB & RB)	0-20	18		Vegetative Zone Width (LB & RB)	0-20	_		10. Riparian Vegetative Zone Wid				10. Riparian Vegetative Zo	ne Width (LB & RB)	0-20		10. Riparian Vegetative Zone Width (LB & F			
Total RBP Score	Optimal	179	Total RBP S	Score	Poor	0		Total RBP Score		Poor	0	Total RBP Score		Poor	0	Total RBP Score	Po	or	0
Sub-Total CHEMICAL INDICATOR (Applies to Intermitten	nt and Perennial Stre	0.895 reams)	Sub-Total CHEMICAL	INDICATOR (Applies to Intermitte	ent and Perennial Str	eams)		Sub-Total CHEMICAL INDICATOR (Appli	ies to Intermittent and F	Perennial Stream	ams)	Sub-Total CHEMICAL INDICATOR	R (Applies to Intermitte	nt and Perennial Str	reams)	Sub-Total CHEMICAL INDICATOR (Applies to Inter	mittent and Perer	nnial Streams)	0
WVDEP Water Quality Indicators (General)			W//DED Wa	ter Quality Indicators (Genera	ın.			WVDEP Water Quality Indicat	tors (General)			WVDEP Water Quality	Indicators (General	N		WVDEP Water Quality Indicators (Ge	noral)		
Specific Conductivity				onductivity	" <u>'</u>			Specific Conductivity	tors (General)			Specific Conductivity	indicators (General			Specific Conductivity	iei ai)		
opcome conductivity		407.0	оресто ос	madouvity				opcome conductivity	0.0			opecinic conductivity				opcome conductivity			
100-199 - 85 points	0-90	187.9			0-90				0-8	90				0-90			0-90		
рН		0.0	рН			0		рН				pH				pH			
0.0.0.0.0.0.1.1	0-80	7.74			5-90 0-1				5-9	90 0-1				5-90 0-1			5-90	0-1	
6.0-8.0 = 80 points			DO.					DO.		_		20				DO.			
ВО			ВО					ВО				ВО				БО			
>5.0 = 30 points	10-30	8.84			10-30				10-	30				10-30			10-30		
Sub-Total		0.975	Sub-Total			0		Sub-Total			0	Sub-Total			0	Sub-Total			0
BIOLOGICAL INDICATOR (Applies to Intermitt	tent and Perennial S	Streams)	BIOLOGICA	AL INDICATOR (Applies to Interm	ittent and Perennial	Streams)		BIOLOGICAL INDICATOR (Ap	oplies to Intermittent	and Perennia	l Streams)	BIOLOGICAL INDICAT	OR (Applies to Intern	nittent and Perenn	ial Streams)	BIOLOGICAL INDICATOR (Applies to	ntermittent and I	Perennial Strea	ms)
WV Stream Condition Index (WVSCI)			WV Stream	Condition Index (WVSCI)				WV Stream Condition Index (WV Stream Condition	ndex (WVSCI)			WV Stream Condition Index (WVSCI)			
Very Good	0-100 0-1	77.3			0-100 0-1				0-1	00 0-1				0-100 0-1			0-100	0-1	
Sub-Total	1	0.773	Sub-Total			0		Sub-Total	I .		0	Sub-Total		1	0	Sub-Total	I		0
	<u>'</u>		<u>u</u>					4		•		-							
PART II - Index and Ui	nit Coore	II		PART II - Index an	d Unit Coore			DADT	II - Index and Unit S	Page	_		ART II - Index and U	nit Coore		PART II - Index a	and Unit Co.		П
PART II - Index and UI	iii Score			PART II - INGEX an	u Unit Score			PARI	ii - iiiuex and Unit s	Score		PA	Art II - IIIdex and U	iii Score		PART II - Index a	ind Onit Score		
Index	Linear Feet	Unit Score		Index	Linear Feet	Unit Score		Index	Lir	near Feet	Unit Score	Inde	х	Linear Feet	Unit Score	Index	Linear	Feet Unit	Score
0.881	77	67.837		0	0	0		0		0	0	0		0	0	0	0		0

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

STREAM NAME H	PODER AND TO THE DAME OF ELECTION AND THE STATE OF THE ST	LOCATION S-136	
STATION #	RIVERMILE	STREAM CLASS Perent	nial
LAT 38.178889	LONG80.72979	COUNTY Nicholas	5
STORET#		AGENCY Potesta	
INVESTIGATORS	TF/CH	T	
FORM COMPLETE	DBY TF	DATE 9/17/2021 TIME 10:00 AM	REASON FOR SURVEY Preliminary Assessment
	1.1		*
WEATHER CONDITIONS	90 % V 9%	m (heavy rain) n (steady rain) ers (intermittent) scloud cover clear/sunny	
SITE LOCATION	S STEEP SOND P 9 P	e site and indicate the areas with a site and a	Sampled (or attach a photograph) Repeire Repei
STREAM CHARACTERIZAT	Stream Subsystem □ Perennial □ In	ntermittent Tidal	Stream Type ☑Coldwater ☐ Warmwater
	Stream Origin Glacial Non-glacial monta Swamp and bog	Spring-fed Mixture of origins Other	Catchment Areakm ²

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

WATERS FEATURI		Predon Fores Field Agric Resid	Pasture Industria	reial	Local Watershed NPS □ No evidence □ Sor □ Obvious sources □ Local Watershed Erosi □ None □ Moderate	ne potential sources			
RIPARIA VEGETA (18 meter	TION			record the do arubs adodendron s	minant species present ☐Grasses ☐ He species	rbaceous			
INSTREA FEATURI		Estima Sampli Area in Estima	ted Stream Width ng Reach Area km² (m²x1000) ted Stream Depth e Velocity weg)			ly shaded Shaded S.5 ft m epresented by Stream Run 30 % No			
LARGE V DEBRIS	VOODY	LWD Density	25 ft^2 m² of LWDm	1 ² /km ² (LWD /	reach area)				
AQUATIO VEGETA		Roote Float Domina	e the dominant type and ed emergent Re ing Algae At ant species present NA of the reach with aquat	ooted submerge tached Algae	nt Rooted floating	Free floating			
WATER (QUALITY	Specific Dissolv pH 7.7				Chemical Other Globs Flecks			
SEDIMEN SUBSTRA		Odors Norm Chen Othe Oils	nical Anaerobic	Petroleum None	Epoking at stones which are not deeply embedded, are the undersides black in color?				
INC	ORGANIC SUBS		COMPONENTS		ORGANIC SUBSTRATE C				
Substrate Type	Diamet		% Composition in Sampling Reach	Substrate Type	Characteristic	% Composition in Sampling Area			
Bedrock Boulder	> 256 mm (10")		0 30	Detritus	sticks, wood, coarse plant materials (CPOM)	10			
Cobble Gravel	64-256 mm (2.5 2-64 mm (0.1"-2	1,0005.00	30 20	Muck-Mud	black, very fine organic (FPOM)	0			
Sand	0.06-2mm (gritt	y)	15	Marl grey, shell fragments					
Silt	0.004-0.06 mm		5			()			
Clay	< 0.004 mm (sli	ck)	0	[

HABITAT ASSESSMENT FIELD DATA SHEET - HG - USE ON ALL STREAMS (FRONT)

STREAM NAME Hominy Creek	LOCATION S-136
STATION # RIVERMILE	STREAM CLASS Perennial
LAT 38.178889 LONG -80.72979	COUNTY Nicholas
STORET#	AGENCY Potesta
INVESTIGATORS TF/CH	
FORM COMPLETED BY TF	DATE 9/17/2021 TIME 10:00 AM PM REASON FOR SURVEY Preliminary Assessment

	Habitat		Condition	Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
	□N/A	stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are <u>not</u> new fall and <u>not</u> transient).	additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).		
1	SCORE 18	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
n sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.
led in	SCORE 18	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime N/A	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).
lram	SCORE 18	20 19 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Pa	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
	SCORE 17	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
	5. Channel Flow Status N/A	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
	SCORE 19	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

	Habitat		Conditio	n Category			
	Parameter	Optimal	Suboptimal	Marginal	Poor		
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.		
	SCORE 19	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
IIIg Icacii	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.		
	SCORE 17	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
rarameters to be evaluated product than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing demonstrating. SCORE 9	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.		
e va	SCORE 9	Left Bank 10	8 7 6	5 4 3	2 1 0		
	SCORE 8	Right Bank 10 9	8 7 6	5 4 3	2 1 0		
I al allictel	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.		
	SCORE 9	Left Bank 10 9	8 7 6	5 4 3	2 1 0		
	SCORE 9	Right Bank 10	8 7 6	5 4 3	2 1 0		
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.		
	SCORE 9	Left Bank 10	8 7 6	5 4 3	2 1 0		
	SCORE 9	Right Bank 10	8 7 6	5 4 3	2 1 0		

Total Score 179

BENTHIC MACROINVERTEBRATE FIELD DATA SHEET

LOCATION S-136

STREAM NAME Hominy Creek

STATION #	_ R	IVE	RM	ILE_			STE	EAM C	LASS F	Pere	nnia	1							
LAT 38,178889	L	ONO	j -80	72979			CO	UNTY	Nie	chol	as								
STORET#							AG	ENCY	Potesta	9									
INVESTIGATORS 7	ΓF/CH	1								N-1.0		1	LOT	NUMBER					
FORM COMPLETED	BY	Т	F				DA'	100	7/2021 XX AM			1	REA	SON FOR SURVEY P	relimir	nary	Asse	essm	nent
HABITAT TYPES	In	dica C Sub	ite ti obbi merg	ne po e_8 ged N	ercen 85_% Macro	tage o	f each Snags_	habitat 10_% %		esen eget	it ated other			% \sum Sand 5	%				
SAMPLE	G	ear	used	Г	D-fr	ame	kick	c-net			ther				28				
COLLECTION	н	ow v	vere	the	samp	oles co	llected	? [wadin	9		froi	m bai	nk from boo	at				
	V	Cob	ble_	+		r of ja	nags_	ks taken	in each □V	eget	bitat ated Other	Ban	e. ks	Sand	_				
GENERAL COMMENTS	E	36	er	าt	h	ic	S	an	ηpl	e	: 1	ta	ık	en in 4	1 r	if	fl	e	S
QUALITATIVE I Indicate estimated Dominant Periphyton Filamentous Algae	l abı					Absen 1				Sli	mes		L-5402	common, 3= Abun	6	1 1	2 2	3	4 4
Macrophytes					0	1	2 3	4		Fis	h				0	1	2	3	4
	l abı	und	anc	e:	0 = orga	Abse anism	nt/No is), 3=	t Obse Abun	dant (>10	org	ani	sms)	rganisms), 2 = Co , 4 = Dominant (>			ism	s)	-
Porifera					4		sopter						4		0	1	2	7	4
Hydrozoa														Ephemeroptera					4
Platyhelminthes	0	1	2	3	4		nipter		0	1	2	3	4	Trichoptera	0	1	2	3	4
Turbellaria	0	1	2	3	4		eopter		0	1	2	3	4	Other	0	1	2	3	4
Hirudinea	0	1	2	3	4	_	idopte	era	0	1	2	3	4						
Oligochaeta Isopoda	0	1	2	3	4		idae ydalid	26	0	1 I	2	3	4	ļ					
Amphipoda	0	1	2	3	4		ydand ulidae		0	1	2	3	4						
Decapoda	0	1	2	3	4	_	oidida		0	1	2	3	4						
Gastropoda	0	1	2	3	4		uliida		0	1	2	3	4						
Bivalvia	0	1	2	3	4		inidae		0	1	2	3	4						
		•	_	_		Cul			0	1	2	3	4						

Insects	Count	Tolerance	TV	Insects	Count	Tolerance	TV	Non-Insects	Count	Tolerance	TV
Ephemeroptera	-	•	80	Odonata			0	Crustacea	•		0
Ameletidae		2	0	Aeshnidae		3	0	Asellidae		7	0
Baetidae	2	4	8	Calopterygidae		6	0	Cambaridae		5	0
Beatiscidae	1	4	4	Coenagrionidae		7	0	Gammaridae		5	0
Caenidae	7	5	35	Cordulegastridae		3	0	Palaemonidae		5	0
Ephemerellidae	51	3	153	Gomphidae		5	0	Annelida			0
Ephemeridae		5	0	Lestidae		7	0	Hirudinea		10	0
Heptageniidae	17	3	51	Libellulidae		7	0	Nematoda		10	0
Isonychiidae	1	3	3	Coleoptera			49	Nematomorpha		10	0
Leptophlebiidae		4	0	Chrysomelidae		7	0	Oligochaeta		10	0
Potamanthidae		5	0	Dryopidae		5	0	Turbellaria			0
Siphlonuridae	1	3	3	Dytiscidae		6	0	Turbellaria		7	0
Tricorythidae		5	0	Elmidae	39	4	156	Bivalvia			0
Plecoptera			6	Gyrinidae		5	0	Corbiculidae		6	0
Capniidae		2	0	Haliplidae		7	0	Sphaeriidae		5	0
Chloroperlidae		2	0	Hydrophilidae		7	0	Unionidae		4	0
Leuctridae		2	0	Psephenidae	10	3	30	Gastropoda			0
Nemouridae		2	0	Ptilodactylidae		5	0	Ancylidae		7	0
Peltoperlidae		1	0	Hemiptera			0	Hydrobiidae		4	0
Perlidae	3	1	3	Belostomatidae		8	0	Physidae		7	0
Perlodidae	3	1	3	Corixidae		8	0	Planorbidae		5	0
Pteronarcyidae		1	0	Gerridae		10	0	Pleuroceridae		5	0
Taeniopterygidae		2	0	Hydrometridae		8	0	Viviparidae		5	0
Trichoptera			31	Nepidae		8	0	Miscellaneous			0
Brachycentridae		2	0	Notonectidae		8	0	Collembola		6	0
Glossosomatidae		2	0	Megaloptera			6	Lepidoptera		5	0
Helicopsychidae		3	0	Corydalidae	6	3	18	Neuroptera		5	0
Hydropsychidae	26	5	130	Sialidae		6	0	Hydrachnidae		6	0
Hydroptilidae	1	3	3	Diptera			52	Totals	Total	number	224
Lepidostomatidae		3	0	Athericidae		3	0	Totals	Total	families	17
Lentoceridae		3	Λ	Blanharicaridae		2	n			М	letric calc

SITE ID:	S-I36
-	9/17/2021

Hydropsychidae	26	5	130	Sialidae		6	0	Hydrachnidae		6	0		
Hydroptilidae	1	3	3	Diptera			52	Totals	Total	number	224		
Lepidostomatidae		3	0	Athericidae		3	0	Totals	Total	families	17		
Leptoceridae		3	0	Blephariceridae		2	0			M	etric calc	ulations	
Limnephilidae		4	0	Ceratopogonidae	1	8	8	WVSCI Metric Scores Additional metrics					metrics
Molannidae		3	0	Chironomidae	51	9	459	, www	ci wetric	Scores		Ephemeroptera Taxa	7
Philopotamidae		4	0	Culicidae		10	0	Total Taxa	ì	17	77.3	Plecoptera Taxa	2
Phryganeidae		4	0	Dixidae		6	0	EPT Taxa		12	92.3	Trichoptera Taxa	3
Polycentropodidae		5	0	Empididae		7	0	% EPT Abunda	ance	52.2	58.5	Long-lived Taxa	6
Psychomiidae		4	0	Psychodidae		8	0	% Chironomi	dae	22.8	78.6	Odonata Taxa	0
Rhyacophilidae	4	3	12	Ptychopteridae		8	0	Hilsenhoff Biotic In	dex (HBI)	4.82	70.1	Diptera Taxa	2
Uenoidae		2	0	Simuliidae		7	0	% 2 Dominant	Taxa	45.5	86.9	COET Taxa	12
	Total Tole	rance Value	1079	Stratiomyidae		10	0				•	% Sensitive	43.3
West Virginia Stre	am Condit	ion Index (W	VSCI)	Syrphidae		10	0					% Tolerant	23.2
Gerritson, J., J. Burton, ar				Tabanidae		7	0	WV Stream	Condition	Index	77.3	% Clingers	54.9
condition index for West Virginia wadeable streams. Tetra Tech, Inc. Owing Mills, MD. Tipulidae 5 0 Wet-spinners 11.6					11.6								
Spreadsheet uses update	d Best Stan	dard Values [B	SV] for eac	h metric per WVSCI Adde	enda dated	March 23, 201	10				· · · · · ·	-	

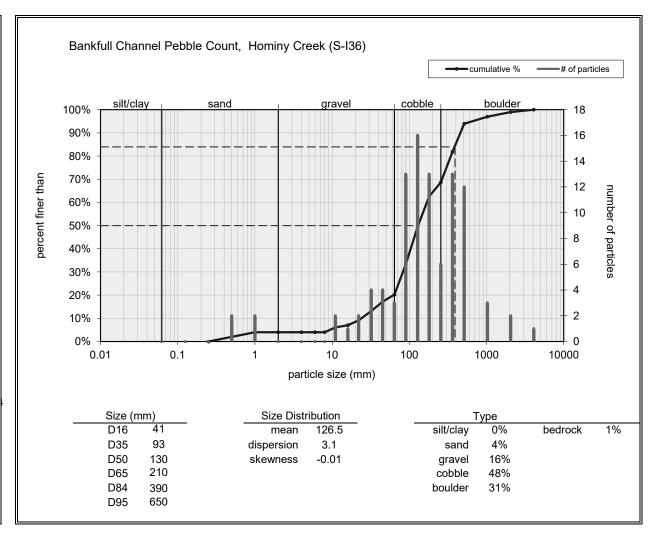
SITE ID: S-I36 Hominy Creek

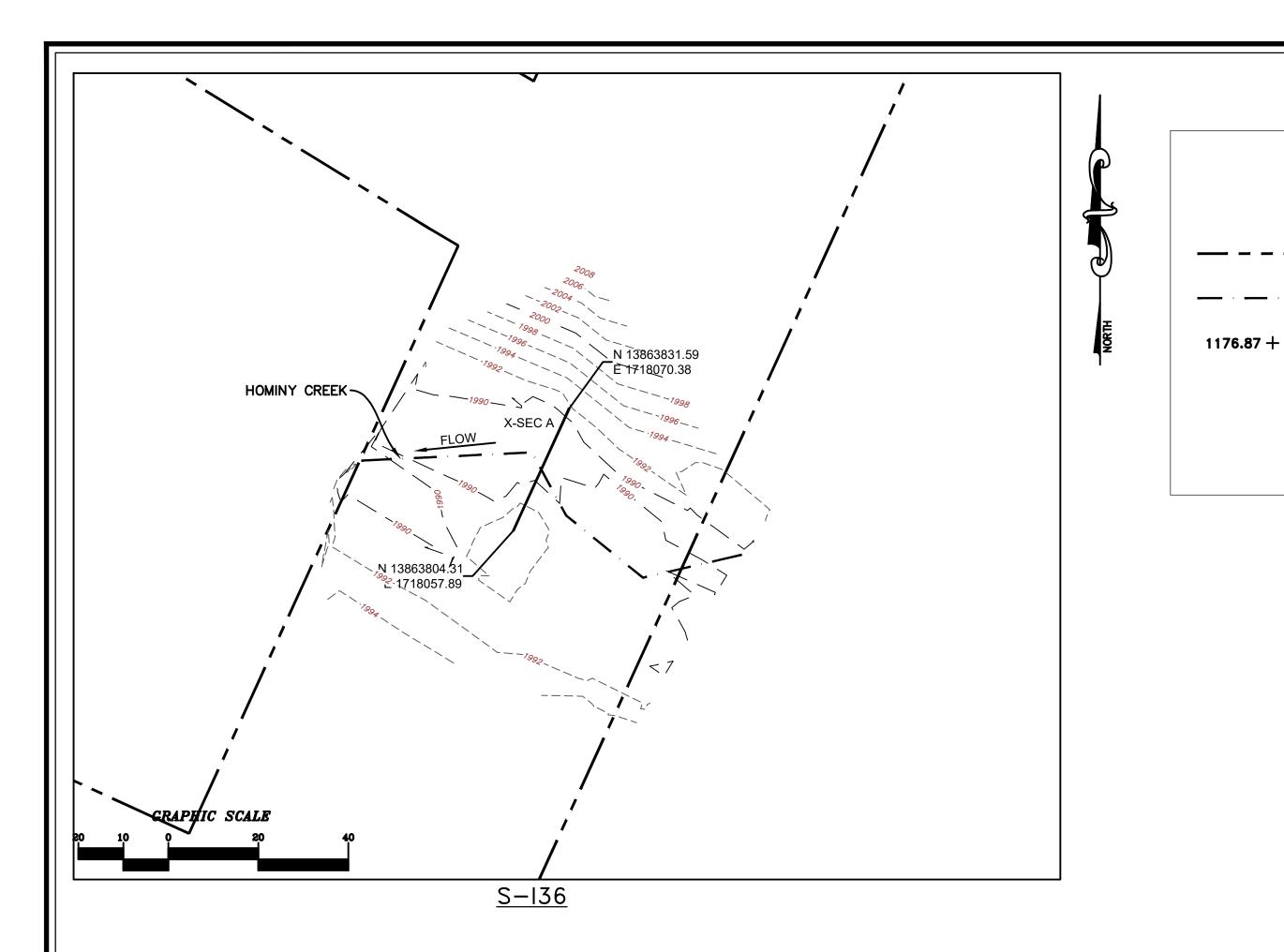
DATE: 9/17/21

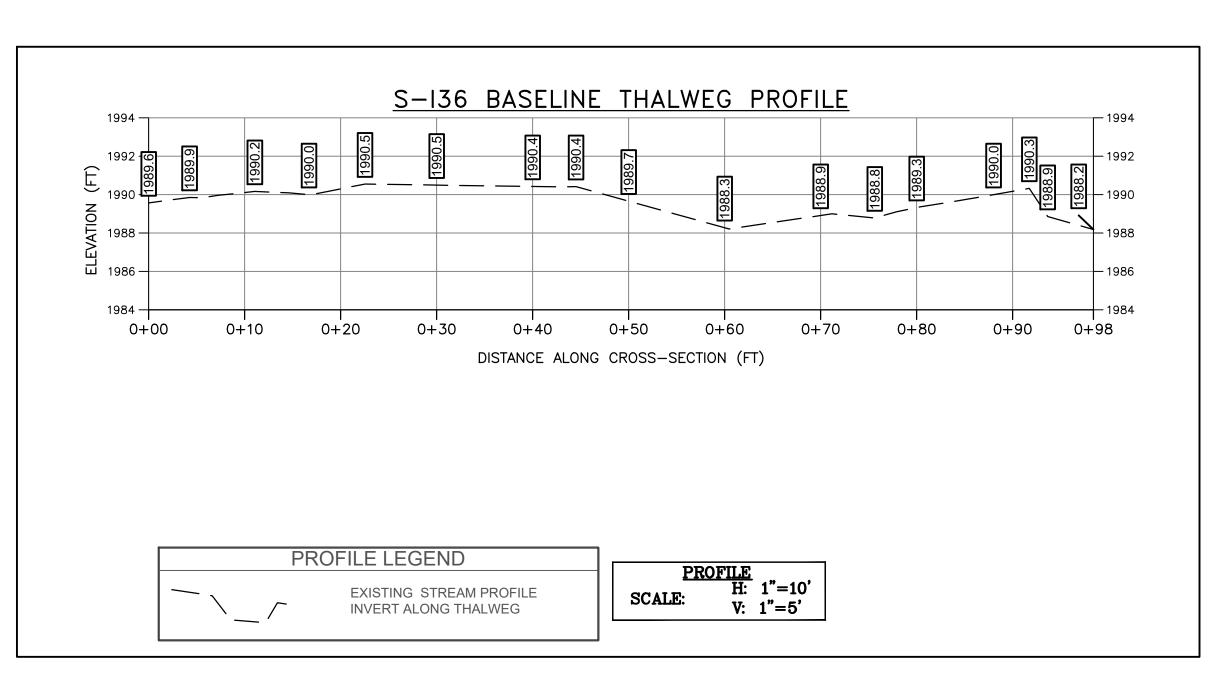
COLLECTOR(S): TF CH

Wolman Peb	ble Count (R	each Wide)							
25,000	400	118	73	285	480	128	11	69	3500
350	20	12	25	168	[100	151	141	560	470
163	105	139	510	218	195	162	820	33	9
43	330	410	29	33	430	140	470	130	168
58	80	245	110	81	490	125	218	330	640
99	239	151	68	જી૧	129	410	162	295	125
138	420	208	(10	78	86	55	JiD.	345	(7)
89	258	78	10	CSA	92	79	66	134	110
67	248	120	440	31	1,150	285	265	218	365
340	110	129	310	32	37	¿sA	MSA	MSA	113

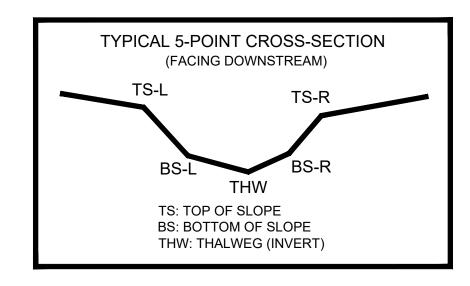
williamed org


NOTES:


le Pebble Cou	unt				<u>NO</u>	TES:


Inches	ETAVALIE	Millimeters	
	StriCay	362	50
	sery Fine	E-10	0
	Foe	125 - 14	s
	Medium	25 (50	(SAZD)
	Coarse	50 - 11	[D]
(14= 15)	585 (186E)	1777	"
.5. F	very Fine	2 - 4	
16 20	ylaia	4-57	
22	Eng	6.0	(G)
39-44	Vedium	8.99	R
44 - 83	Medium	11.3 - 64	A
8E - 85	Coarse	16 - 20 6	E;
39 - 1E	Seame	20 6 - 32	U
13-18	Very Goarse	32 - 45	
18.35	Very Grarse	25.42	L.,
25 15	Smill	64-30	400
35-5	Small	\$5 - \$28	さいのの
51.1	Large	128 186	N. V.
71 55.1	Large	151 054	
10/10/14 3	90-31	256 - 362	-
10.3 - 20	Small	85,82	#DICO®
20 + 40	Mediam	\$12 - 1024	
40 92	Large-Vry Large	1024 - 1048	3
	Redram		POST

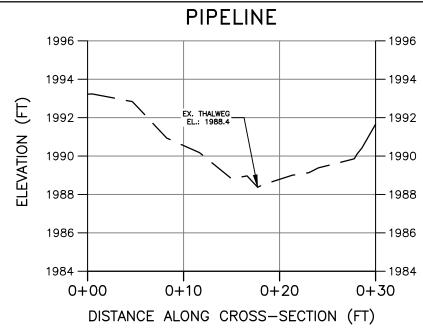
				_	OTES:
	22.55				
		-			
			742		


Bankfull Channel	
	0
Material Size Range (mm)	Count
silt/clay 0 - 0.062	0
very fine sand 0.062 - 0.125	0
fine sand 0.125 - 0.25	0
medium sand 0.25 - 0.5	2
coarse sand 0.5 - 1	2
very coarse sand 1 - 2	0
very fine gravel 2 - 4	0
fine gravel 4 - 6	0
fine gravel 6 - 8	0
medium gravel 8 - 11	2
medium gravel 11 - 16	1
coarse gravel 16 - 22	2
coarse gravel 22 - 32	4
very coarse gravel 32 - 45	4
very coarse gravel 45 - 64	3
small cobble 64 - 90	13
medium cobble 90 - 128	16
large cobble <u>128</u> - 180	13
very large cobble 180 - 256	6
small boulder 256 - 362	13
small boulder 362 - 512	12
medium boulder 512 - 1024	3
large boulder 1024 - 2048	2
very large boulder 2048 - 4096	1
total particle count:	99
bedrock	1
clay hardpan	
detritus/wood	
artificial	
total count:	100
Note:	

AS-BUILT TABLE: S-136 CROSS SECTION A								
	PI	AS-E	UILT					
PT. LOC.	NORTHING	EASTING	ELEV	VERT. DIFF.	HORZ. DIFF.			
TS-L	13863779.6206	1718031.6263'	1994.911'					
BS-L	13863790.2306	1718039.1910	1991.659'					
THW	13863821.7808	1718062.0620	1988.211'					
BS-R	13863835.0399	1718068.4419	1991.923'					
TS-R	13863836.2991	1718069.53391	1992.804'					

SURVEY NOTES:

LEGEND


STUDY AREA (EASEMENT)

EXISTING SURVEY-LOCATED THALWEG

EXISTING SURVEYED GROUND SHOT ELEVATION

- 1. THIS MAP HAS BEEN ORIENTED TO NAD 1983 UTM ZONE 17N, AND VERTICALLY TO THE NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD 88), USING REAL TIME DGPS. FIELD LOCATIONS WERE COMPLETED ON SEPTEMBER 17, 2021.
- 2. EASEMENT LINES SHOWN ON PLAN VIEW WERE PROVIDED BY MOUNTAIN VALLEY PIPELINE.
- 3. SURVEY POINTS FOR CROSS SECTIONS AND THALWEG PROFILES COLLECTED IN 2021 HAVE BEEN USED IN COMBINATION WITH SURVEY POINTS COLLECTED PREVIOUSLY IN 2020 IN ORDER TO GENERATE THE PRE-CROSSING SURFACE SHOWN IN PLAN. DUE TO NATURAL EROSIONAL STREAM PROCESSES THAT CAN OCCUR OVER TIME, MINOR ADJUSTMENTS TO THE PROFILE ALIGNMENTS MAY HAVE BEEN REQUIRED IN ORDER TO GENERATE A CLEAN PRE-CROSSING SURFACE.
- 4. ALL SECTION VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.
- 5. POST-CROSSING SURVEY INFORMATION SHOWN IN RED. DATA PENDING.
- 6. POST-CROSSING SURVEY POINTS FOR CROSS SECTIONS AND THALWEG ARE PROJECTED ONTO PRE-CROSSING SECTION AND PROFILE VIEWS FOR COMPARISON.

S-136 BASELINE CROSS-SECTION A

CROSS SECTION LEGEND — EXISTING GRADE

CROSS SECTION
H: 1"=10'
V: 1"=5'

NOTE: ALL SECTIONS VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.

PRE-CROSSING PHOTOS

PHOTO TAKEN LOOKING DOWNSTREAM FROM UPSTREAM IMPACT LIMITS

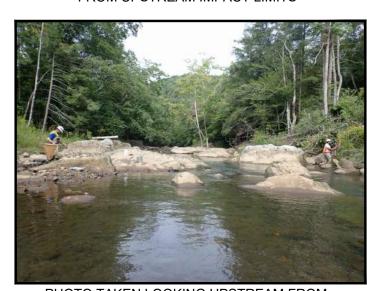


PHOTO TAKEN LOOKING UPSTREAM FROM DOWNSTREAM IMPACT LIMITS

POST-CROSSING PHOTOS

PENDING CROSSING

PHOTO TAKEN LOOKING DOWNSTREAM FROM UPSTREAM IMPACT LIMITS

PENDING CROSSING

PHOTO TAKEN LOOKING UPSTREAM FROM DOWNSTREAM IMPACT LIMITS

PRE-CROSSING

CAD File No.

Drawing No