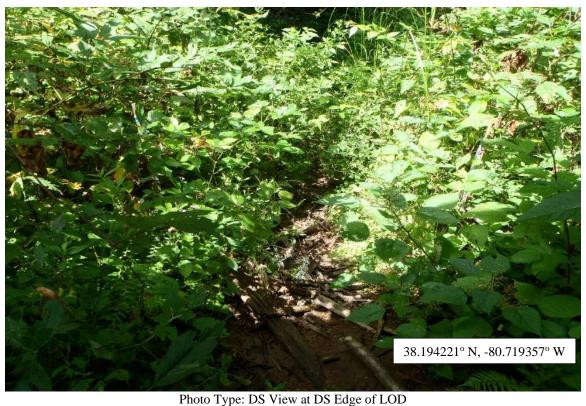
Baseline Assessment – Stream Attributes


Reach S-I38 (Pipeline ROW) Intermittent Spread D Nicholas County, West Virginia

Data	Included
Photos	✓
SWVM Form	✓
FCI Calculator and HGM Form	✓
RBP Physical Characteristics Form	✓
Water Quality Data	N/A – No flow
RBP Habitat Form*	✓
RBP Benthic Form	✓
Benthic Identification Sheet	N/A – Low flow
Wolman Pebble Count	✓
Reference Reach Software Pebble Count Data	✓
Longitudinal Profile and Cross Sections	✓

^{*}Modified RBP - No flow

 $\label{eq:continuous} Photo\ Type:\ US\ View\ at\ DS\ Edge\ of\ LOD$ Location, Orientation, Photographer Initials: Downstream Edge of Limit of Disturbance, Upstream View, TF/AG/TA

Location, Orientation, Photographer Initials: Downstream Edge of Limit of Disturbance, Downstream View, TF/AG/TA

Photo Type: US View at Center of LOD Location, Orientation, Photographer Initials: Center of Limit of Disturbance, Upstream View, TF/AG/TA

Photo Type: DS View at Center of LOD
Location, Orientation, Photographer Initials: Center of Limit of Disturbance, Downstream View, TF/AG/TA

Photo Type: US View at US Edge of LOD Location, Orientation, Photographer Initials: Upstream Edge of Limit of Disturbance, Upstream View, TF/AG/TA

Photo Type: DS View at US Edge of LOD
Location, Orientation, Photographer Initials: Upstream Edge of Limit of Disturbance, Downstream View,
TF/AG/TA

West Virginia Stream and Wetland Valuation Metric (SWVM) Version 2.1, September 2017

USACE FILE NO./ Project Name: (v2.1, Sept 2015)		M	lountain Valley Pipeli	ne		COORDINATES:	Lat.	38.194221	Lon.	-80.719357	WEATHER:		Sunny	DATE:	8/26/	/21
(12.1, 06)(12010)					(III Dec	imal Degrees)									0/20/	/21
IMPACT STREAM/SITE ID				S-I38 UNT to Hominy Cre	ek, Nicholas Co	ınty, Spread D		MITIGATION STREAM CLAS						Comments:		
(watershed size {acreage},	unaitered or impair	ments)						(watershed size {acr	eage}, unaitered or	mpairments)						
							1-									
STREAM IMPACT LENGTH:	77	FORM C		TORATION (Levels I-III)		ORDINATES: imal Degrees)	Lat.		Lon.		PRECIPITATION PAST 48 HRS:			Mitigation Length:		
		WIIIIOAII	1014.	(2000.01)	(20.	a. 20g.000,										
Column No. 1- Impact Existing	Condition (De	bit)	Colur	nn No. 2- Mitigation Existing	g Condition - Base	line (Credit)		Column No. 3- Mitigation Post Comple		ve Years	Column No. 4- Mitigation Pro Post Completion		ars	Column No. 5- Mitigation Pro	ected at Maturi	ty (Credit)
Stream Classification:	Intern	nittent	Stream Clas	sification:				Stream Classification:		0	Stream Classification:)	Stream Classification:		0
Percent Stream Channel Slo	ppe	9.8		Percent Stream Channel S	Slope			Percent Stream Channe	Slope	0	Percent Stream Channel S	lope	0	Percent Stream Channe	I Slope	0
HGM Score (attach da	ata forms):			HGM Score (attac	h data forms):			HGM Score (atta	ch data forms):	HGM Score (attach o	lata forms):		HGM Score (attac	h data forms):	
										A			A			A
D 4-1-	0.7	Average				Average				Average			Average			Average
Hydrology Biogeochemical Cycling	0.7 0.59	0.56666667	Hydrology	nical Cycling		0		Hydrology Biogeochemical Cycling		0	Hydrology Biogeochemical Cycling		0	Hydrology Biogeochemical Cycling		
Habitat	0.41	0.300000007	Habitat	lical Cycling		· ·		Habitat		•	Habitat		•	Habitat		•
PART I - Physical, Chemical and		cators		PART I - Physical, Chemical	and Biological Ind	icators		PART I - Physical, Chemica	l and Biologica	Indicators	PART I - Physical, Chemical and	Biological Indic	ators	PART I - Physical, Chemical	and Biological I	ndicators
	Points Scale Range	Site Score			Points Scale Range	Site Score			Points Scale F	cange Site Score		Points Scale Range	Site Score		Points Scale	Range Site Score
PHYSICAL INDICATOR (Applies to all streams	classifications)		PHYSICAL II	NDICATOR (Applies to all stream	ms classifications)			PHYSICAL INDICATOR (Applies to all stre	ams classifications)	PHYSICAL INDICATOR (Applies to all stream	s classifications)		PHYSICAL INDICATOR (Applies to all stre	ams classifications	s)
USEPA RBP (High Gradient Data Sheet)				(Low Gradient Data Sheet)				USEPA RBP (High Gradient Data Shee			USEPA RBP (High Gradient Data Sheet)	<u> </u>		USEPA RBP (High Gradient Data Shee		
Epifaunal Substrate/Available Cover Embeddedness	0-20 0-20	14		Substrate/Available Cover trate Characterization	0-20 0-20			Epifaunal Substrate/Available Cover Embeddedness	0-20 0-20		Epifaunal Substrate/Available Cover Embeddedness	0-20 0-20		Epifaunal Substrate/Available Cover Embeddedness	0-20 0-20	
Velocity/ Depth Regime	0-20	14	3. Pool Varia		0-20			3. Velocity/ Depth Regime	0-20		3. Velocity/ Depth Regime	0-20		3. Velocity/ Depth Regime	0-20	
Velocity Depart Regime Sediment Deposition	0-20	14	4. Sediment		0-20			4. Sediment Deposition	0-20		4. Sediment Deposition	0-20		Velocity Depart Regime Sediment Deposition	0-20	
5. Channel Flow Status	0-20	1-7	5. Channel F		0-20			5. Channel Flow Status	0-20		5. Channel Flow Status	0-20		5. Channel Flow Status	0-20	
6. Channel Alteration	0-20 0-1	16	6. Channel A		0-20			6. Channel Alteration	0-20	0-1	6. Channel Alteration	0-20		6. Channel Alteration	0-20	0-1
7. Frequency of Riffles (or bends)	0-20		7. Channel S		0-20			7. Frequency of Riffles (or bends)	0-20		7. Frequency of Riffles (or bends)	0-20		7. Frequency of Riffles (or bends)	0-20	
8. Bank Stability (LB & RB)	0-20	16	8. Bank Stab	ility (LB & RB)	0-20			B. Bank Stability (LB & RB)	0-20		8. Bank Stability (LB & RB)	0-20		8. Bank Stability (LB & RB)	0-20	
9. Vegetative Protection (LB & RB)	0-20	16	Vegetative	Protection (LB & RB)	0-20			9. Vegetative Protection (LB & RB)	0-20		Vegetative Protection (LB & RB)	0-20		Vegetative Protection (LB & RB)	0-20	
10. Riparian Vegetative Zone Width (LB & RB)	0-20	16		regetative Zone Width (LB & RB)				Riparian Vegetative Zone Width (LB & RE			Riparian Vegetative Zone Width (LB & RB)			Riparian Vegetative Zone Width (LB & RI		
Total RBP Score	Marginal	92	Total RBP So	core	Poor	0		Total RBP Score	Poor	0	Total RBP Score	Poor	0	Total RBP Score	Poor	0
Sub-Total		0.46	Sub-Total			0		Sub-Total		0	Sub-Total		0	Sub-Total		0
CHEMICAL INDICATOR (Applies to Intermitten	nt and Perennial St	treams)	CHEMICAL I	INDICATOR (Applies to Intermit	tent and Perennial St	eams)		CHEMICAL INDICATOR (Applies to Intern	ittent and Perenni	al Streams)	CHEMICAL INDICATOR (Applies to Intermitte	ent and Perennial S	treams)	CHEMICAL INDICATOR (Applies to Intern	nittent and Perennia	al Streams)
WVDEP Water Quality Indicators (General)				er Quality Indicators (Gener	al)			WVDEP Water Quality Indicators (Gen	eral)		WVDEP Water Quality Indicators (Genera	ıl)		WVDEP Water Quality Indicators (Gen	eral)	
Specific Conductivity			Specific Cor	nductivity		0		Specific Conductivity			Specific Conductivity			Specific Conductivity		
100 100 .05	0-90				0-90				0-90			0-90			0-90	
100-199 - 85 points			-11					-11			-11			-11		
VII	0-1		рп		0-1			yii -		0-1	ρn	0-1		βn		0-1
5.6-5.9 = 45 points	0-80				5-90				5-90			5-90			5-90	
DO .		80	DO			(1)		DO			DO			DO		
	10-30				10-30				10-30			10-30			10-30	
											0.4.7.4.4					
Sub-Total BIOLOGICAL INDICATOR (Applies to Intermiti	tent and Perennial	Streams)	Sub-Total BIOLOGICA	L INDICATOR (Applies to Interr	mittent and Perennial	Streams)		Sub-Total BIOLOGICAL INDICATOR (Applies to In	ermittent and Pe	rennial Streams)	Sub-Total BIOLOGICAL INDICATOR (Applies to Inter	mittent and Peren	nial Streams)	Sub-Total BIOLOGICAL INDICATOR (Applies to In	itermittent and Pe	rennial Streams)
WV Stream Condition Index (WVSCI)	<u> </u>		WV Stream	Condition Index (WVSCI)				WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)	T 1		WV Stream Condition Index (WVSCI)		
0	0-100 0-1				0-100 0-1				0-100	0-1		0-100 0-1			0-100	0-1
Sub-Total		0	Sub-Total			0		Sub-Total		0	Sub-Total	<u> </u>	0	Sub-Total		0
Out Total		J	Oub-Total			v	Ų	Jub Total		J	Cab-Total		U U	Jub-10tai		U
							_									
PART II - Index and U	nit Score			PART II - Index a	nd Unit Score		[PART II - Index	and Unit Score		PART II - Index and I	Jnit Score		PART II - Index a	id Unit Score	
Index	Linear Feet	Unit Score		Index	Linear Feet	Unit Score		Index	Linear F	eet Unit Score	Index	Linear Feet	Unit Score	Index	Linear F	eet Unit Score
0.598	77	46.07166667		0	0	0		0	0	0	0	0	0	0	0	0

FCI Calculator for the High-Gradient Headwater Streams in Appalachia

To ensure accurate calculations, the <u>UPPERMOST STRATUM</u> of the plant community is determined based on the calculated value for V_{CCANOPY} (≥20% cover is required for tree/sapling strata). Go to the SAR Data Entry tab and enter site characteristics and data in the yellow cells. For information on determining how to split a project into SARs, see Chapter 5 of the Operational Draft Regional Guidebook for the Functional Assessment of High-Gradient Headwater Streams and Low-Gradient Perennial Streams in Appalachia (Environmental Laboratory U.S. Army Corps of Engineers 2017).

Project Name: MVP-Preliminary Assessment

Location: UNT to Hominy Creek

Sampling Date: 8-26-21 Project Site Before Project

Subclass for this SAR:

Intermittent Stream

Uppermost stratum present at this SAR: SAR number: S-I38

Shrub/Herb Strata

Functional Results Summary: Enter Results in Section A of the Mitigation Sufficiency Calculator

Function	Functional Capacity Index
Hydrology	0.70
Biogeochemical Cycling	0.59
Habitat	0.41

Variable Measure and Subindex Summary:

Variable	Name	Average Measure	Subindex
V _{CCANOPY}	Percent canpoy over channel.	Not Used, <20%	Not Used
V _{EMBED}	Average embeddedness of channel.	3.50	1.00
V _{SUBSTRATE}	Median stream channel substrate particle size.	1.25	0.63
V_{BERO}	Total percent of eroded stream channel bank.	6.67	1.00
V_{LWD}	Number of down woody stems per 100 feet of stream.	2.67	0.33
V_{TDBH}	Average dbh of trees.	Not Used	Not Used
V _{SNAG}	Number of snags per 100 feet of stream.	0.00	0.10
V _{SSD}	Number of saplings and shrubs per 100 feet of stream.	25.33	0.39
V _{SRICH}	Riparian vegetation species richness.	0.00	0.00
V _{DETRITUS}	Average percent cover of leaves, sticks, etc.	10.63	0.13
V _{HERB}	Average percent cover of herbaceous vegetation.	82.50	1.00
V _{WLUSE}	Weighted Average of Runoff Score for Catchment.	0.88	0.93

			High-G	radient Field F	Headwat Data She			-	-	a		
	Team·	TF/ AG		i ieiu L	Jala Oile	ot and C	aict		∎ _atitude/UTI	M Northing	38 194221	
Pro			ninary Asses	ssment					ongitude/U1	-		7
110	=	UNT to Hor	-	331110111				_	-	pling Date:		
			-						Odii	ipiirig Dato.	0 20 21	n s
SA	R Number:	S-I38	Reach	Length (ft):	75	Stream Ty	ype:	Inter	mittent Strea	m		
,	Top Strata:	Sh	rub/Herb Str	ata	(determine	d from perc	ent ca	lculate	ed in V _{CCANC}	_{PY})		
Site a	and Timing:	Project Site				•	Before	e Proje	ct			•
Sample	Variables	1-4 in strea	ım channel									
1	Average percent cover over channel by tree and sapling canopy. Measure at no fewer than 10 roughly equidistant points along the stream. Measure only if tree/sapling cover is at least 20%. (If less than 20%, enter at least one value between 0 and 19 to trigger Top Strata choice.)											
_	List the per	cent cover i	measureme	nts at each	point below:	•						
	0	0	0	0	0							
	0	0	0	0	0							
2	V _{EMBED}		nbeddednes tream. Sele									3.5
	along the stream. Select a particle from the bed. Before moving it, determine the percentage of the surface and area surrounding the particle that is covered by fine sediment, and enter the rating according to the following table. If the bed is an artificial surface, or composed of fine sediments, use a											
		rating score of 1. If the bed is composed of bedrock, use a rating score of 5.										
		Embeddedness rating for gravel, cobble and boulder particles (rescaled from Platts, Megahan, and Minshall 1983)										
		Rating	Rating Des	scription								1
		5		of surface of	overed, sur	rounded, or	burie	d by fi	ne sedimen	t (or bedroc	k)	
		4		cent of surfa								
		3		rcent of sur								
		<u>2</u> 1	51 to 75 pe	rcent of sur							ial aurfaca)	
	l ist the rati		point below		covereu, st	irrounded, c	or buil	eu by	ille sealille	ni (or aninc	iai Suriace)	1
	4	4	1	4	4	1						1
	4	4	4	4	4	4						-
	1	4	1	4	4	4						•
	1	4	4	4	4	4						1
	4	4	4	4	4	4						1
3		Median stre	eam channe	l substrate i	particle size	. Measure				ghly equidis	tant points	1.25 in
		-	tream; use t	=	-				=			0
	Enter particle size in inches to the nearest 0.1 inch at each point below (bedrock should be counted as 99 in, asphalt or concrete as 0.0 in, sand or finer particles as 0.08 in):											
	5.90	1.50	0.08	0.40	1.30	0.08						
	1.20	4.30	4.00	0.30	4.20	1.70						1
	0.08	3.20	0.08	2.50	3.00	2.70						1
	0.08	0.50	3.20	8.60	0.90	0.50						
	0.70	5.30	2.30	0.80	0.80	0.70						
4	V_{BERO}		ent of eroded				otal ni	umber	of feet of e	roded bank	on each	
	DEINO		e total perce									7 %
		may be up	to 200%.									

Left Bank:

5 ft

Right Bank:

0 ft

Sample	e Variables	5-9 within t	the entire r	iparian/buffer zone a	djacent to t	he stream ch	nannel (25	feet from e	ach bank).	
5	V_{LWD}	stream read	ch. Enter tl	y stems (at least 4 inc ne number from the en will be calculated.						2.7
				Number		oody stems:		2		
6	V_{TDBH}			measure only if V _{CCANO}		ing cover is a	it least 20%). Trees ar	e at least 4	Not Used
		,	•	neter. Enter tree DBHs		too \ it is too the e	h			
		the stream		nents of individual tree	s (at least 4	in) within the	butter on e	ach side of		
			Left Side				Right Side			
7	\/	Number of	on ago (at la	201 4" dbb ond 26" tol) nor 100 fo	at of atroom	Enter num	bar of an agr		
,	V_{SNAG}			east 4" dbh and 36" tal d the amount per 100 f			Enter num	ber or snags	s on each	0.0
			Left Side:			Right Side:		0		
8	V_{SSD}			nd shrubs (woody stem Enter number of sapli						25.3
				tream will be calculate		ubs on each	side of the	stream, and	uic	20.0
			Left Side:			Right Side:		6		
9	V_{SRICH}			ecies richness per 100 stratum. Check all exo						0.00
				and the subindex will b				ii oliala. Op	.00.00	0.00
		Grou	p 1 = 1.0		Group 2 (-1.0)					
	Acer rubru	ım		Magnolia tripetala		Ailanthus a	ltissima		Lonicera ja	ponica
	Acer sacci	harum		Nyssa sylvatica		Albizia julib	rissin		Lonicera ta	ntarica
	Aesculus f	flava		Oxydendrum arboreum		Alliaria peti	olata		Lotus corni	iculatus
	Asimina tri	iloba		Prunus serotina		Alternanthe	era		Lythrum sa	licaria
	Betula alleg	ghaniensis		Quercus alba		philoxeroide	es		Microstegiur	n vimineum
	Betula len	ta		Quercus coccinea		Aster tatario	cus		Paulownia	tomentosa
	Carya alba	3		Quercus imbricaria		Cerastium t	fontanum		Polygonum (cuspidatum
	Carya glab	ora		Quercus prinus		Coronilla va	aria		Pueraria m	ontana
	Carya ova	lis		Quercus rubra		Elaeagnus ui	mbellata		Rosa multi	flora
	Carya ova	ta		Quercus velutina		Lespedeza	bicolor		Sorghum h	alepense
	Cornus flo	rida		Sassafras albidum		Lespedeza	cuneata		Verbena bi	rasiliensis
	Fagus gra	ndifolia		Tilia americana		Ligustrum ob	otusifolium			
	Fraxinus a			Tsuga canadensis		Ligustrum s	sinense			
	Liriodendroi	n tulipifera		Ulmus americana						
	Magnolia a									
	-			•						
		0	Species in	Group 1			0	Species in	Group 2	

	Variables The four sul									one withir	1 25 feet fro	m each
10	V _{DETRITUS}	Average pe	rcent cover	of leaves,	sticks, or oth ercent cove	ner organic i	material. W	oody deb	ris <		er and	10.63 %
			Left	Side			Righ	t Side				
		10	5	5	20	20	10	5		10		
11	V	Average pe	rcentage co	over of herb	aceous veg	etation (me	acure only if	tree cove	or ic	<20%) D	o not	
	V_{HERB}	include woo	ody stems a percentage:	t least 4" db	oh and 36" ta n 200% are	all. Because	there may	be severa	al la	yers of gro	und cover	83 %
				Side			Righ	t Side			'	
		90	100	90	60	70	80	90		80		
Sample	e Variable 1	2 within the	e entire cat	chment of	the stream.	•						
12	V _{WLUSE}	Weighted A	verage of F	Runoff Score	e for watersl	ned:						0.88
			Land	Use (Choos	e From Dro	p List)				Runoff Score	% in Catch- ment	Running Percent (not >100)
	Forest and n	ative range (>	75% ground	cover)				-	•	1	85.99	85.99
	Residential districts, 2 acres (12% cover)							-	0.3	1.25	87.24	
	Open space (pasture, lawns, parks, etc.), grass cover <50%							_	0.1	12	99.24	
	Residential districts, 1/2 - 1 ac (25% to 20% cover)							-	0.2	0.76	100	
	<u> </u>							-	-			
								-	•			
	-							•	•			
								-	-			
	S	S-I38					No	tes:				
Va	ariable	Value	VSI	Land Cov	er Analysis	was comp	leted using	g the 201	9 N	lational La	and Cover	Database
V _C	CANOPY	Not Used, <20%	Not Used		rom Landa d boundari							
VE	MBED	3.5	1.00									
VsI	JBSTRATE	1.25 in	0.63									
V_{BI}	ERO	7 %	1.00									
VL	WD	2.7	0.33									
V _{TI}	овн	Not Used	Not Used									
Vsi	NAG	0.0	0.10									
Vs	SD	25.3	0.39									
Vsi	RICH	0.00	0.00									
	ETRITUS	10.6 %	0.13									
	ERB	83 %	1.00									
V _w	LUSE	0.88	0.93									

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

STREAM NAME S	-138	LOCATION UNT Hominy C	reek Spread D	
STATION#	RIVERMILE	STREAM CLASS Intermittent		
LAT 38.194221	LONG -80.719357	COUNTY Nicholas		
STORET#		AGENCYPotesta		
INVESTIGATORS	TF/ AG			
FORM COMPLETE	TF	DATE 8-26-21 TIME 1180	REASON FOR SURVEY Preli	minary Assessment
WEATHER CONDITIONS	rain showe	hours hours A	las there been a heavy rain in Yes No Air Temperature 85 F OC	the last 7 days?
SITE LOCATION/N	Draw a map of the st	te and indicate the areas sample	ed (or attach a photograph)	
	herb	School School	heib	Pipelline 75 ft.
	Timbernat) 02 V	L'ix est	La
STREAM CHARACTERIZAT	Stream Subsystem Perennial In Stream Origin Glacial Non-glacial montar Swamp and bog	termittent Tidal	Catchment Area kn	n²

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

WATERSHED FEATURES		✓ Fores	ninant Surrounding Lan	duse reial	Local Watershed NPS			
		Field Agric	Pasture Industri	rcial al Pipeline Roa	d Dobvious sources			
İ		Resid	lential		Local Watershed Eros ✓ None			
RIPARIA VEGETA	TION	Indicat	e the dominant type and	record the do	minant species present ☐ Grasses ☑ He	erbaceous		
(18 meter	buffer)	Domina	ant species present Po	keberry &	Greenbrier			
INSTREA		Estima	ted Reach Length 75	ft m	Canopy Cover			
FEATURI	ES	Estima	ted Stream Width 3.5	ft m	SUMMERS OF STREET, THE STREET, THE	ly shaded Shaded		
		Sampli	ng Reach Area	m²	High Water Mark 5			
Dry	1	Area in km² (m²x1000)km²			Proportion of Reach R Morphology Types Riffle %	Run %		
		Estima	ted Stream Depth 0.2	ft_m	Pool %	Kuii76		
		Surface (at thal	e Velocitym	/sec	Channelized ☐ Yes	☑No		
			Dry 🗹		Dam Present ☐ Yes	☑No		
LARGE V DEBRIS	VOODY	LWD	0.5 m^2					
DEBRIS		Density	of LWDn	n ² /km ² (LWD/	reach area)			
AQUATIO VEGETA	C TION	Indicat	e the dominant type and ed emergent	record the do	minant species present nt Rooted floating	☐Free floating		
			Dominant species present NA					
			of the reach with aquat		0 %			
WATED (QUALITY		rature C		Water Odors			
WAIER	QUALITI		: Conductance		Normal/None □Sewage	Normal/None □Sewage □Chemical		
No wate Dry cha		327	ed Oxygen		Fishy Other			
Diy cha	illici	рН			Water Surface Oils ☐ Slick ☐ Sheen ☐	Globs Flecks		
		Turbidity			None Other			
		WQ Instrument Used			Turbidity (if not measured) Clear Slightly turbid Turbid Opaque Stained Other			
SEDIMEN SUBSTRA		Odors Norm	nal Sewage nical Anaerobic	Petroleum	Deposits □ Sludge □ Sawdust □ Relict shells	☐Paper fiber ☐Sand		
		Othe			— Lρoking at stones whic	h are not deeply embedded,		
		Oils Abse	nt Slight Moderat	te Profus	are the undersides blac se □Yes □No	ck in color?		
	9							
INC	ORGANIC SUBS (should a		COMPONENTS (00%)		ORGANIC SUBSTRATE C (does not necessarily add			
Substrate Type	Diamet	er	% Composition in Sampling Reach	Substrate Type	Characteristic	% Composition in Sampling Area		
Bedrock			0	Detritus	sticks, wood, coarse plant materials (CPOM)	3		
Boulder	> 256 mm (10")		5		materials (Cr Olvi)	٥		
Cobble	e 64-256 mm (2.5"-10")		10 Muci		black, very fine organic (FPOM)	0		
Gravel	2-64 mm (0.1"-2		45		,	<u> </u>		
Sand	0.06-2mm (gritt	y)	25 Marl		grey, shell fragments			
Silt	0.004-0.06 mm	1.	15	1		U		
Clay	< 0.004 mm (slick)		0					

HABITAT ASSESSMENT FIELD DATA SHEET - HG - USE ON ALL STREAMS (FRONT)

STREAM NAME S-I38	LOCATION				
STATION # RIVERMILE	STREAM CLASS Intermittent				
LAT 38.194221 LONG -80.719357	COUNTY Nicholas				
STORET#	AGENCYPotesta				
INVESTIGATORS AG/ TF					
FORM COMPLETED BY	DATE TIME 8-26-21 AM PM REASON FOR SURVEY Preliminary Assessment				

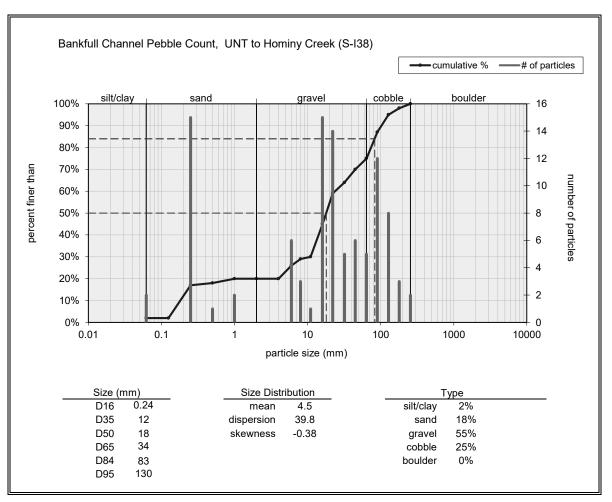
	Habitat		Condition	ı Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
	N/A	to allow full colonization potential (i.e., logs/snags that are <u>not</u> new fall and <u>not</u> transient).	form of newfall, but not yet prepared for colonization (may rate at high end of scale).		
	_{SCORE} 0 ▼	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.
led is	SCORE 14▼	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime N/A	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast- shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).
aram	score 0 ▼	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Par	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
	SCORE 14▼	20 19 18 17 16	15 🚺 13 12 11	10 9 8 7 6	5 4 3 2 1 0
	5. Channel Flow Status N/A	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
	SCORE U	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0

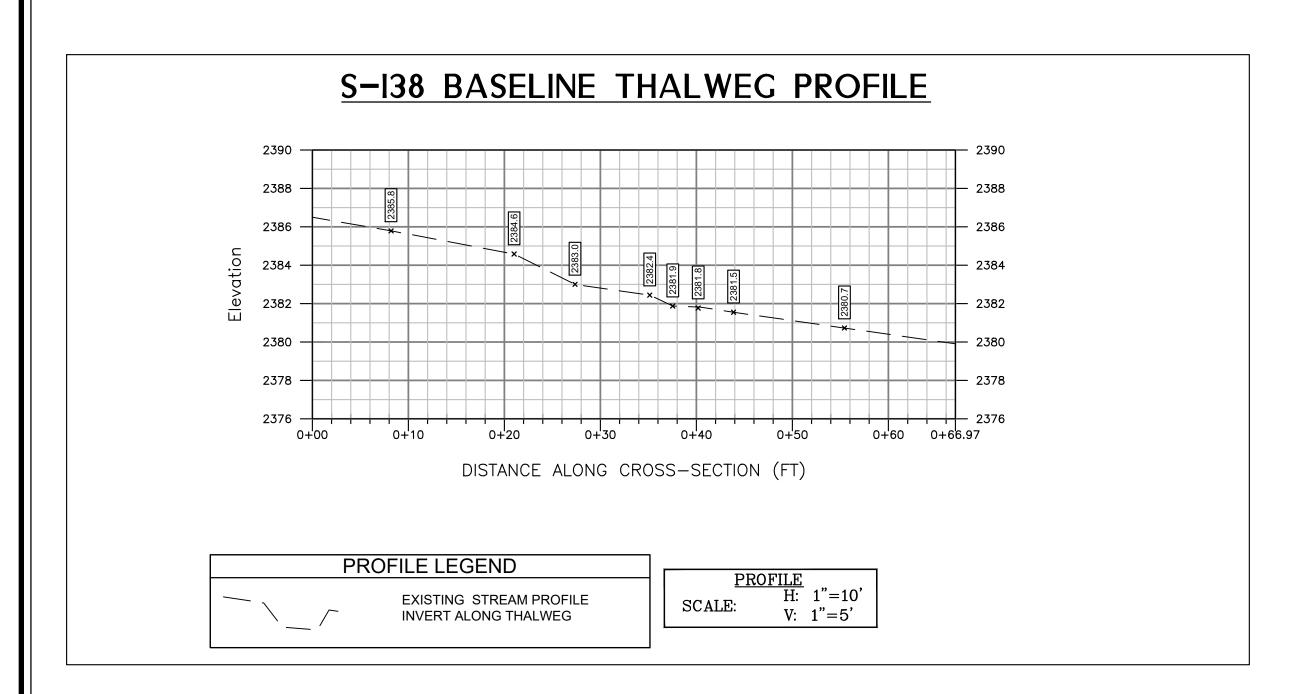
Modified RBP- no flow

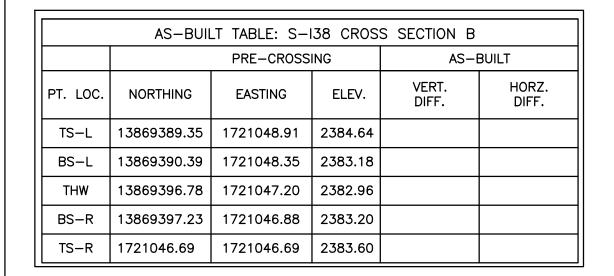
HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

	Habitat		Condition	ı Category			
	Parameter Parameter	Optimal	Suboptimal	Marginal	Poor		
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.		
	SCORE 16▼	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
ling reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.		
ampl	SCORE 0	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing demonstrate.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.		
e eva	SCORE 8	Left Bank 10 9	8 7 6	5 4 3	2 1 0		
to p	SCORE 8	Right Bank 10 9	8 7 6	5 4 3	2 1 0		
Parameters to	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.		
	SCORE 8	Left Bank 10 9	8 7 6	5 4 3	2 1 0		
	SCORE 8 ▼,	Right Bank 10 9	8 7 6	5 4 3	2 1 0		
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.		
	SCORE 8	Left Bank 10 9	8 7 6	5 4 3	2 1 0		
	SCORE 8 ▼)	Right Bank 10 9	8 7 6	5 4 3	2 1 0		

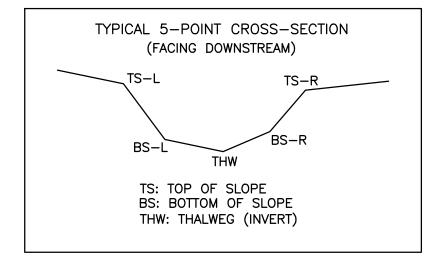
Total Score 92 Modified RBP- no flow


BENTHIC MACROINVERTEBRATE FIELD DATA SHEET


STREAM NAME S-	138						LOC	ATIO	NU N	Γ to	Н	omii	ny C	Creel	(
STATION #	TATION # RIVERMILE					STREAM CLASS Intermittent														
LAT 38.194221 LONG -80.719357					COUNTY Nicholas															
STORET#							AGE	NCY	otes	ta										
INVESTIGATORS T	F/ A	G											1	LOT	NUMBER				_	
FORM COMPLETED	BY	T	F				10000000000	E 8-2	-				1	REAS	SON FOR SURVEY	elimina	ry Ass	sessm	nent	
HABITAT TYPES	In	dica C Sub	ate the obble of the observation	ne pe e_ ged N	ercen % Macro	tage of	each l	habitat %	type p	res Veg	ent geta Ot	ted l	Bani	ks	%	%				
SAMPLE																				
COLLECTION															_					
	н	ow v	were	the	samp	oles coll	ected	′ L	wadı	ng		Ш	froi	n ban	k from boa	ıt				
	In	dica Col Sub	te the ble_ merg	ged N	ımbe Tacro	r of jab Sn ophytes	s/kick ags	s taker	in eac	h h Veg	abi eta Ot	itat ted l her	type Bani (ks	Sand	_				
GENERAL COMMENTS																_				
	$ \! \! $	1C	f	lo	W	an	d	no	be	er	١t	h	İC	S	ample ta	ake	er)		
QUALITATIVE I Indicate estimated Dominant					0 = 2		/Not	Obse				are	2, 2	= C	ommon, 3= Abuno			2	2	
Filamentous Algae					-	1 2							nva	rtebr	rates	-	1	_	_	4
Macrophytes						1 2					ish		IIVC	licoi	ates	-		2		
FIELD OBSERVA Indicate estimated	ATIO	ON	S O	F M e:	(AC) 0 =	ROBE Absen	NTH t/Not	OS : Obse		1 :	= F	Rar			rganisms), 2 = Coi , 4 = Dominant (>:	mmo	n (3	-9		
Porifera	0	1	2	3	4	Anis	optera	a	0		l	2	3	4	Chironomidae	0	1	2	3	4
Hydrozoa	0	1	2	3	4	Zygo	_		0		1	2	3	4	Ephemeroptera	0	1	2	3	4
Platyhelminthes	0	1	2	3	4	Hem	•		0	1	1	2	3	4	Trichoptera	0	1	2	3	4
Turbellaria	0	1	2	3	4	Cole	_		0		1	2	3	4	Other	0	1	2	3	4
Hirudinea	0	1	2	3	4	Lepio		ra	0		1	2	3	4						
Oligochaeta	0	1	2	3	4	Siali			0			2	3	4						
Isopoda	0	1	2	3	4	Cory		ae	0			2	3	4						
Amphipoda	0	1	2	3	4	Tipu			0			2	3	4						
Decapoda	0	1	2	3	4	Emp			0			2	3	4						
Gastropoda	0	1	2	3	4	Simu			0			2	3	4						
Bivalvia	0	1	2	3	4	Tabi			0		l ı	2	3	4						
						Culc	ıdae		0		L	2	3	4						


	5-73	ار ج		11	<i>(, ,</i> ,		<	S 1000	1 1	
TE ID:	X-	15	141 70	Horing	Creek			<u>Spread</u>	d D	
TE:	8/31									
LLECTO	DR(S):	JA/7								
olman Pe	bble Count (R	each Wide)								NOTES:
150	35	MSA	20	38	22	80	FSA	FSA	SI	Dry Channel
10	OX	60	52	20	12	8	CSA	SI	FSA	Dry channel
12	20	100	76	FSA	FSA	6	1.3	FSA	15	V-7
20	12	15	8	CSA	30	45	66	58	FSA	
13	22	18	FSA	80	85	220	110	29	105	
70	15	16	FSA	58	26	2	17	16	18	
3_	85	70	FSA	F5A	35	32	25	21	6	
35	105	6	110	52	8	FSA	FSA	12	42	
15	10	41	22	12	FSA	FSA	80	19	6	
12	125	220	5	6	14	110	75	22	16	
fle Pebb	le Count									NOTES:
									4	

	•	-								
	<u> </u>									
										NOTES:
									*	
		3								


Inches	mate	Millimereti	
	Set Clay	1.562	ន្ទាប
	Very hate	182 - 125	0
	- ีเกล	105 - 25	OZZO
	Wedium	25 - 60	N
	Joanse	50-10	[0]
<u> 51 - 56</u>	Very Same	10.2	
08 - 16	very Fine	2-4	
16 - 22	नेतर	4 - 6 7	
22 - 31	Fin-	57.8	G.
31 = 44	Medium	8-113	R
44 - 63	Vedum	11.5 - 16	-Oi
50 - 89	Coarse	== 16 - 22 ∈	E
35 - 13	Coarse	22 6 - 32	A
13-18	Very Coarse	30 - 45	
18-25	Very Coarse	48 - 64	
25-75	Small	64 - 90	704
35-51	Small	90 - 118	ス割り
50 - 71	'à'Të	125 - 180	X 2 1
7.1-12.1	Large	180 - 256	539
42 T × 14 \$	Sma"	256 - 362	(g)
14 7 - 20	\$ma1	362 - 512	[6]
20 - 40	Vedrom	512 - 1924	Ď.
40 90	Large-Viy Large	1004 - 2048	
	Bedrap.		Pľakj

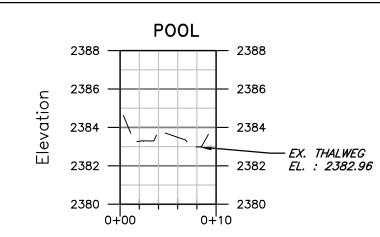
Bankfull Channel	•		
Material	Size F	Range (mm)	Count
silt/clay	0	- 0.062	2
very fine sand	0.062	- 0.125	
fine sand			15
medium sand		- 0.5	1
coarse sand	0.5	- 1	2
very coarse sand	1	- 2	
very fine gravel	2	- 4	
fine gravel	4	- 6	6
fine gravel	6	- 8	3
medium gravel		- 11	1
medium gravel		- 16	15
coarse gravel		- 22	14
coarse gravel		- 32	5
very coarse gravel		- 45	6
very coarse gravel		- 64	5
small cobble		- 90	12
medium cobble		- 128	8
large cobble		- 180	3
very large cobble		- 256	2
small boulder		- 362	
small boulder	362	- 512	
medium boulder	512	- 1024	
large boulder	1024	- 2048	
very large boulder	2048	- 4096	
tota	al part	icle count:	100
bedrock			
clay hardpan			
detritus/wood			
artificial			
	te	otal count:	100
Note:			

LEGEND

EXISTING SURVEY-LOCATED THALWEG

1176.87 +EXISTING SURVEYED GROUND SHOT ELEVATION

SURVEY NOTES:


- 1. THIS MAP HAS BEEN ORIENTED TO NAD 1983 UTM ZONE 17N, AND VERTICALLY TO THE NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD 88), USING REAL TIME DGPS. FIELD LOCATIONS WERE COMPLETED ON
- 2. EASEMENT LINES SHOWN ON PLAN VIEW WERE PROVIDED BY MOUNTAIN VALLEY PIPELINE.
- 3. SURVEY POINTS FOR CROSS SECTIONS AND THALWEG PROFILES COLLECTED IN 2021 HAVE BEEN USED IN COMBINATION WITH SURVEY POINTS AND COLLECTED PREVIOUSLY IN 2020 IN ORDER TO GENERATE THE PRE-CROSSING SURFACE SHOWN IN PLAN. DUE TO NATURAL EROSIONAL STREAM PROCESSES THAT OCCUR OVER TIME, MINOR ADJUSTMENTS TO THE PROFILE ALIGNMENTS MAY HAVE BEEN REQUIRED IN ORDER TO GENERATE A CLEAN PRE-CROSSING SURFACE.
- 4. ALL SECTION VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.
- 5. POST-CROSSING SURVEY INFORMATION SHOWN IN RED. DATA PENDING.
- 6. POST-CROSSING SURVEY POINTS FOR CROSS SECTIONS AND THALWEG ARE PROJECTED ONTO PRE-CROSSING SECTION AND PROFILE VIEWS FOR COMPARISON.

S-138 BASELINE CROSS-SECTION A

DISTANCE ALONG CROSS-SECTION (FT)

S-I38 BASELINE CROSS-SECTION B

DISTANCE ALONG CROSS-SECTION (FT)

CROSS SECTION LEGEND — EXISTING GRADE

NOTE: ALL SECTION VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.

PRE-CROSSING PHOTOS

PHOTO TAKEN LOOKING DOWNSTREAM FROM UPSTREAM IMPACT LIMITS

PHOTO TAKEN LOOKING UPSTREAM FROM DOWNSTREAM IMPACT LIMITS

POST-CROSSING PHOTOS

PENDING CROSSING

PHOTO TAKEN LOOKING DOWNSTREAM UPSTREAM FROM IMPACT LIMITS

PENDING CROSSING

PHOTO TAKEN LOOKING UPSTREAM FROM UPSTREAM IMPACT LIMITS

PRE-CROSSING

Checked BB/JLY Approved

NOTED Scale: **SEPT. 2021**Date: 21-0244-005 Project No.

Drawing No