Baseline Assessment – Stream Attributes

Reach S-I40 (Pipeline ROW) Intermittent Spread D Nicholas County, West Virginia

Data	Included
Photos	✓
SWVM Form	✓
FCI Calculator and HGM Form	N/A – Intermittent Stream (<4% slope)
RBP Physical Characteristics Form	✓
Water Quality Data	✓
RBP Habitat Form	✓
RBP Benthic Form	✓
Benthic Identification Sheet	N/A –Low flow
Wolman Pebble Count	✓
Reference Reach Software Pebble Count Data	✓
Longitudinal Profile and Cross Sections	✓

Photo Type: US View at DS Edge of LOD
Location, Orientation, Photographer Initials: Downstream Edge of Limits of Disturbance, Upstream View, TF

Photo Type: DS View at DS Edge of LOD
Location, Orientation, Photographer Initials: Downstream Edge of Limits of Disturbance, Downstream View, TF

Photo Type: US View at Center LOD Location, Orientation, Photographer Initials: Center of Limits of Disturbance, Upstream View, TF

Photo Type: DS View at Center LOD Location, Orientation, Photographer Initials: Center of Limits of Disturbance, Downstream View, TF

Photo Type: US View at US Edge of LOD Location, Orientation, Photographer Initials: Upstream Edge of Limits of Disturbance, Upstream View, TF

Photo Type: DS View at US Edge of LOD Location, Orientation, Photographer Initials: Upstream Edge of Limits of Disturbance, Downstream View, TF

Photo Type: C LOD, N Location, Orientation, Photographer Initials: Center of Limits of Disturbance, Facing North, TF

Photo Type: C LOD, S Location, Orientation, Photographer Initials: Center of Limits of Disturbance, Facing South, TF

 $"Q:\label{lem:conditions} \begin{subarray}{l} $"Q:\label{lem:conditions} ASSESSMENT\ AND\ SURVEY\ PLAN\ 0002\ -\ Pre-Crossing\ Monitoring\ Spread\ D\ S-140" \end{subarray}$

West Virginia Stream and Wetland Valuation Metric (SWVM) Version 2.1, September 2017

USACE FILE NO./ Project Name: (v2.1, Sept 2015)		Mounta	iin Valley Pipeline	IMPACT COC (in Decima		Lat.	38.187582	Lon.	-80.723025	WEATHER:			DATE:	8/1	9/21
IMPACT STREAM/SITE ID (watershed size {acreage},			UNT to Hon	iny Creek (S-I40)			MITIGATION STREAM CLAS (watershed size {acre						Comments:		
STREAM IMPACT LENGTH:	82	FORM OF MITIGATION:	RESTORATION (Levels I-III)	MIT COOR (in Decima		Lat.		Lon.		PRECIPITATION PAST 48 HRS:			Mitigation Length:		
Column No. 1- Impact Existing	g Condition (Deb	it)	Column No. 2- Mitigation Existing	Condition - Baseline	(Credit)		Column No. 3- Mitigation Post Comple		ive Years	Column No. 4- Mitigation Proje Post Completion (ars	Column No. 5- Mitigation Projecto	ed at Maturity	(Credit)
Stream Classification:	Interm	ittent	Stream Classification:			Str	eam Classification:		0	Stream Classification:	0		Stream Classification:		0
Percent Stream Channel Slo	оре	0.01	Percent Stream Channel S	lope			Percent Stream Channel	Slope	0	Percent Stream Channel Slo	ре	0	Percent Stream Channel SI	ope	0
HGM Score (attach da	ata forms):		HGM Score (attack	n data forms):			HGM Score (atta	ch data forms	5):	HGM Score (attach da	ta forms):		HGM Score (attach da	ata forms):	
		Average			Average	i i			Average			Average			Average
H-d-l-m		Average	1111		Average		des la ser		Average	H. deele ee		Average	Underland		Average
Hydrology		0	Hydrology		0		drology		0	Hydrology			Hydrology		_
Biogeochemical Cycling		U	Biogeochemical Cycling		U		ogeochemical Cycling		0	Biogeochemical Cycling Habitat		U	Biogeochemical Cycling Habitat		U U
PART I - Physical, Chemical and	Biological Indica	ators	PART I - Physical, Chemical a	nd Biological Indicate	ors	на	bitat PART I - Physical, Chemica	I and Biologica	al Indicators	PART I - Physical, Chemical and	Biological Indic	ators	PART I - Physical, Chemical and	Biological In	dicators
	Points Scale Range	Site Score		Points Scale Range	Site Score			Points Scale	Range Site Score		Points Scale Range	Site Score		Points Scale Ra	ange Site Score
PHYSICAL INDICATOR (Applies to all streams	s classifications)		PHYSICAL INDICATOR (Applies to all stream	s classifications)		PH	YSICAL INDICATOR (Applies to all stre	ams classification	s)	PHYSICAL INDICATOR (Applies to all streams	classifications)		PHYSICAL INDICATOR (Applies to all streams	classifications)	
USEPA RBP (High Gradient Data Sheet)			USEPA RBP (Low Gradient Data Sheet)				EPA RBP (High Gradient Data Shee	:)		USEPA RBP (High Gradient Data Sheet)			USEPA RBP (High Gradient Data Sheet)		
Epifaunal Substrate/Available Cover	0-20	8	Epifaunal Substrate/Available Cover	0-20			Epifaunal Substrate/Available Cover	0-20		Epifaunal Substrate/Available Cover	0-20		Epifaunal Substrate/Available Cover	0-20	
2. Embeddedness	0-20	4	Pool Substrate Characterization	0-20			Embeddedness	0-20		Embeddedness	0-20		Embeddedness	0-20	
Velocity/ Depth Regime	0-20	6	3. Pool Variability	0-20			Velocity/ Depth Regime	0-20		Velocity/ Depth Regime	0-20		Velocity/ Depth Regime	0-20	
4. Sediment Deposition	0-20	4	4. Sediment Deposition	0-20			Sediment Deposition	0-20		4. Sediment Deposition	0-20		4. Sediment Deposition	0-20	
5. Channel Flow Status	0-20 0-1	14	5. Channel Flow Status	0-20 0-1			Channel Flow Status	0-20	0-1	5. Channel Flow Status	0-20 0-1		5. Channel Flow Status	0-20)-1
6. Channel Alteration	0-20	18	6. Channel Alteration	0-20			Channel Alteration	0-20		6. Channel Alteration	0-20		6. Channel Alteration	0-20	
7. Frequency of Riffles (or bends)	0-20	5	7. Channel Sinuosity	0-20			Frequency of Riffles (or bends)	0-20		7. Frequency of Riffles (or bends)	0-20		7. Frequency of Riffles (or bends)	0-20	
Bank Stability (LB & RB) Vegetative Protection (LB & RB)	0-20 0-20	16 12	8. Bank Stability (LB & RB) 9. Vegetative Protection (LB & RB)	0-20 0-20			Bank Stability (LB & RB) Vegetative Protection (LB & RB)	0-20 0-20		Bank Stability (LB & RB) Vegetative Protection (LB & RB)	0-20		8. Bank Stability (LB & RB) 9. Vegetative Protection (LB & RB)	0-20 0-20	
10. Riparian Vegetative Zone Width (LB & RB)	0-20	Ω Ω	10. Riparian Vegetative Zone Width (LB & RB)	0-20			Riparian Vegetative Zone Width (LB & RB			10. Riparian Vegetative Zone Width (LB & RB)	0-20		10. Riparian Vegetative Zone Width (LB & RB)	0-20	
Total RBP Score	Marginal	95	Total RBP Score	Poor	0		al RBP Score	Poor	0	Total RBP Score	Poor	0	Total RBP Score	Poor	0
Sub-Total	margina.	0.475	Sub-Total	. 55.	Ö		b-Total		0	Sub-Total		0	Sub-Total		Ö
CHEMICAL INDICATOR (Applies to Intermitter	nt and Perennial Stre		CHEMICAL INDICATOR (Applies to Intermitt	ent and Perennial Streams	s)		EMICAL INDICATOR (Applies to Interm	ittent and Perenni	ial Streams)	CHEMICAL INDICATOR (Applies to Intermitter	t and Perennial St	reams)	CHEMICAL INDICATOR (Applies to Intermitter	nt and Perennia	Streams)
WVDEP Water Quality Indicators (General	N		WVDEP Water Quality Indicators (General	ń.		w	/DEP Water Quality Indicators (Gene	ral)		WVDEP Water Quality Indicators (General)			WVDEP Water Quality Indicators (General)		
Specific Conductivity			Specific Conductivity				ecific Conductivity	i ai j		Specific Conductivity			Specific Conductivity		
- ,	0-90	00.0		0-90			, , , , , , , , , , , , , , , , , , ,	0-90		-,,	0-90			0-90	
<=99 - 90 points	0-90	28.2		0-90				0-90			0-90			0-90	
pH			рН			рН				рН			рН		
5050 45 : 1	0-80	5.66		5-90 0-1				5-90	0-1		5-90			5-90	0-1
5.6-5.9 = 45 points			20			DC				DO.			00		
БО	T		ВО			DC		ı		БО			БО		
>5.0 = 30 points	10-30	7.4		10-30				10-30			10-30			10-30	
Sub-Total .		0.825	Sub-Total		0	Su	b-Total		0	Sub-Total		0	Sub-Total		0
BIOLOGICAL INDICATOR (Applies to Intermit	ttent and Perennial S	Streams)	BIOLOGICAL INDICATOR (Applies to Intern	ittent and Perennial Strea	ams)	віс	DLOGICAL INDICATOR (Applies to Int	ermittent and Pe	erennial Streams)	BIOLOGICAL INDICATOR (Applies to Interm	ittent and Perenn	nial Streams)	BIOLOGICAL INDICATOR (Applies to Interm	ittent and Pere	ennial Streams)
WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)			w۱	Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)		
` '	0-100 0-1		, ,	0-100 0-1			, ,	0-100	0-1	,	0-100 0-1		,	0-100)-1
0	0-100 0-1			0-100 0-1				0-100	0-1		0-100 0-1			0-100	J- 1
Sub-Total		0	Sub-Total		0	Su	b-Total		0	Sub-Total		0	Sub-Total		0
	·		·		_							·			_
PART II - Index and U	Jnit Score		PART II - Index an	d Unit Score			PART II - Index	and Unit Score		PART II - Index and U	nit Score		PART II - Index and U	nit Score	
Index	Linear Feet	Unit Score	Index	Linear Feet	Unit Score		Index	Linear F	eet Unit Score	Index	Linear Feet	Unit Score	Index	Linear Fe	et Unit Score
0.650	82	53.3	0	0	0		0	0	0	0	0	0	0	0	0

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

STREAM NAMEU	NT to Hominy Creek	LOCATION S-I40, Spread D	
STATION #	RIVERMILE	STREAM CLASS Intermittent	▼
LAT 38.187582	LONG -80.723025	COUNTY Nicholas	V
STORET#		AGENCYPotesta	
INVESTIGATORS	rf/ CH		
FORM COMPLETE	^{DBY} TF	DATE 8-19-21 TIME 1511 REASON FOR SURVEY	Preliminary Assessment
WEATHER CONDITIONS	rai show	Past 24 hours Yes No In (heavy rain) ers (intermittent) scloud cover clear/sunny Past 24 hours Yes No Air Temperature 75 F O Cother	•
SITE LOCATION/	- / /	site and indicate the areas sampled (or attach a photograp	LoP_
STREAM CHARACTERIZA	Stream Subsystem Perennial Stream Origin Glacial Non-glacial monts	ntermittent □Tidal Stream Type □Coldwater □Warmw. Catchment Area Spring-fed □ Mixture of origins Other	ater km²

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

WATERS FEATURI		Predon Fores Field Agric	Pasture Industria	rcial al	Local Watershed NPS No evidence Son Obvious sources Local Watershed Eros None Moderate	ne potential sources			
RIPARIA VEGETA (18 meter	N TION buffer)		e the dominant type and s SI		minant species present ☐Grasses ☐Ho	rbaceous			
INSTREA FEATURI		Estimate Samplin Area in Estimate	km² (m²x1000) ted Stream Depth velocity weg) m	m m² km²		ly shaded Shaded s*m epresented by Stream Run_5% No No			
LARGE V DEBRIS	VOODY	LWD Density	3 m² of LWDm	n ² /km ² (LWD/	reach area)				
AQUATIO VEGETA		☐Roote ☐Floati	Indicate the dominant type and record the dominant species present Rooted emergent						
WATER (QUALITY	Specific Dissolv pH 5.6	rature 18.8 C Conductance 28.2 us/cm ed Oxygen 7.4 mg/L 66 SU ity 10.37 NTU strument Used YSI		Petroleum Fishy Water Surface Oils Slick Sheen None Other Turbidity (if not measure)	Normal/None Sewage Petroleum Chemical Chemical Slick Sheen Globs Flecks None Other			
SUBSTRATE No Ch			Odors Normal Sewage Petroleum Sludge Sawdust Paper fiber Paper fiber Sawdust Paper fiber Paper fiber Paper fiber Paper fiber P						
INC		STRATE	COMPONENTS	Î	ORGANIC SUBSTRATE C				
Substrate Type	Diamet		% Composition in Sampling Reach	Substrate Type	Characteristic	% Composition in Sampling Area			
Bedrock Boulder	> 256 mm (10")	1	0	Detritus	sticks, wood, coarse plant materials (CPOM)	0			
Cobble Gravel	64-256 mm (2.5 2-64 mm (0.1"-2	"-10")	0	Muck-Mud	black, very fine organic (FPOM)	0			
Sand	0.06-2mm (gritt	y)	70	Marl	grey, shell fragments	0			
Silt	0.004-0.06 mm		30						
Clay	< 0.004 mm (sli	ck)	0	1					

HABITAT ASSESSMENT FIELD DATA SHEET - HG - USE ON ALL STREAMS (FRONT)

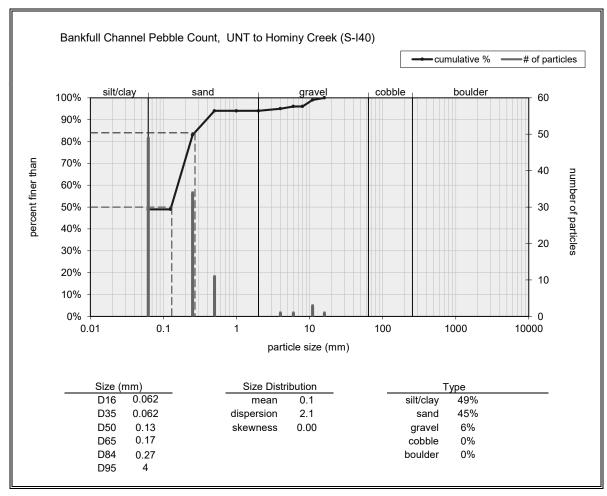
STREAM NAMEUNT to Hominy Cr	LOCATION S-140						
STATION # RIVERMILE_	STREAM CLASS Intermittent	\blacksquare					
LAT 38.187582 LONG -80.7230	COUNTY Nicholas	~					
STORET#	AGENCYPotesta						
INVESTIGATORSTF/ CH							
FORM COMPLETED BY	DATE 8-19-21 REASON FOR SURVEY Preliminary Assessment						

	Habitat	le .	Condition	Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
	_{SCORE} 8 ▼	20 19 18 17 16	15 14 13 12 11	10 9 🚷 7 6	5 4 3 2 1 0
ı sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.
ted in	score 4 ▼	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime N/A	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).
ıram	_{SCORE} 6 ▼	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
P _ε	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
	score 4 ▼	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
	5. Channel Flow Status N/A	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
	SCORE 14	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0

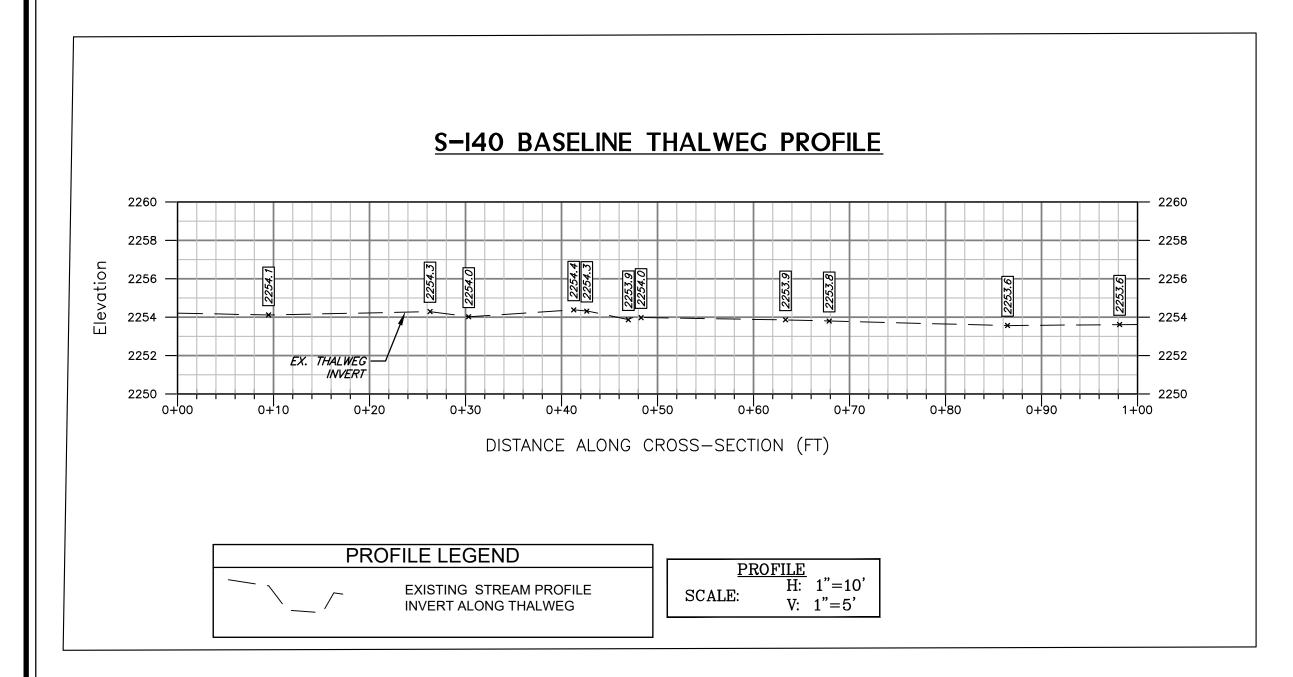
HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

	Habitat		Condition	ı Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
	SCORE 18▼	20 19 🔞 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
ing reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.
sampl	score 5 ▼	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing deuterment.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.
e eva	SCORE 8	Left Bank 10 9	8 7 6	5 4 3	2 1 0
to b	SCORE 8 ▼	Right Bank 10 9	8 7 6	5 4 3	2 1 0
Parameters	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
	$\frac{6}{6}$	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE 6	Right Bank 10 9	8 7 6	5 4 3	2 1 0
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.
	SCORE 4	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE 4	Right Bank 10 9	8 7 6	5 4 3	2 1 0

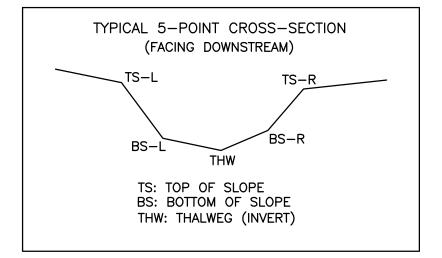
Total Score 95


BENTHIC MACROINVERTEBRATE FIELD DATA SHEET

Filamentous Algae 0 1 2 3 4 Macroinvertebrates 0 1 2 3 4	STREAM NAMEUN	T to	Но	min	у С	reel	`	LOC	CATION	N S-140)									
Note	STATION #	_ R	IVE	RM	ILE_			STR	EAM C	LASS I	nter	mitte	ent							▼
No benthics collected due to lack of riffles and substrate Commonweight Co	LAT 38,187582	L	ONO	J -80.7	23025			COL	JNTY	Ni	chol	as							_[•
The proper	STORET#							AGI	ENCYP	otesta	i									
HABITAT TYPES	INVESTIGATORST	F/ C	Н										1	LOT	NUMBER					
SAMPLE Gar used	FORM COMPLETED		10510000000	0.0100				1	REA!		eliminar	y Ass	essm	ent						
COLLECTION How were the samples collected? wading from bank from boat from boa	HABITAT TYPES	In	dica Co Sub	ate the obble of the observation	ne pe e_ ged N	ercen 	tage of 6 Sophytes	each l	habitat %	type pr □V	esen eget	it ated Other	Ban	ks	%	%				
How were the samples collected?	SAMPLE	G	ear	used		D-fi	ame [kick	-net											
Indicate the number of jabs/kicks taken in each habitat type.	COLLECTION																			
Cobble		н	ow v	were	the	samp	oles coll	ected	' L	_ wadin	g		froi	m bar	ikfrom boa	t				
QUALITATIVE LISTING OF AQUATIC BIOTA Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare, 2 = Common, 3 = Abundant, 4 = Dominant		Cobble Snags Vegetated Banks Sand Sand Other (
Periphyton		N	o b	en	thi	cs	colle	ctec	d due	to la	ack	of	rif	fles	and substrat	е				
Periphyton	Indicate estimated									ved, 1	=]	Rare	e, 2	; = C	ommon, 3= Abuno	dant,	4 =	=		
Filamentous Algae																				
FIELD OBSERVATIONS OF MACROBENTHOS Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare (1-3 organisms), 2 = Common (3-9 organisms), 3 = Abundant (>10 organisms), 4 = Dominant (>50 organisms)	* *					-		-	-							-	-	_	-	-
Porifera	•												nve	rtebi	rates				_	
Porifera O 1 2 3 4 Anisoptera O 1 2 3 4 Ephemeroptera O 1 2 3 4 Anisoptera O 1 2 3 4 Ephemeroptera O 1 2 3 4 Anisoptera O 1 2 3 4 Ephemeroptera O 1 2 3 4 Anisoptera O 1 2 3 4 Ephemeroptera O 1 2 3 4 Anisoptera O 1 2 3 4 Ephemeroptera O 1	Macrophytes					0	1 2	2 3	4		Fis	h				0	1	2	_3_	4
Hydrozoa 0 1 2 3 4 Zygoptera 0 1 2 3 4 Ephemeroptera 0 1 2 3 4 Platyhelminthes 0 1 2 3 4 Hemiptera 0 1 2 3 4 Turbellaria 0 1 2 3 4 Coleoptera 0 1 2 3 4 Hirudinea 0 1 2 3 4 Lepidoptera 0 1 2 3 4 Oligochaeta 0 1 2 3 4 Corydalidae 0 1 2 3 4 Amphipoda 0 1 2 3 4 Empididae 0 1 2 3 4 Decapoda 0 1 2 3 4 Empididae 0 1 2 3 4 Gastropoda 0		l abı	und	anc	e:	0 = org	Absen anisms	it/Not s), 3=	Obse Abun	dant (>10	org	anis	sms)	, 4 = Dominant (>:	50 oı			s)	
Platyhelminthes 0 1 2 3 4 Hemiptera 0 1 2 3 4 Trichoptera 0 1 2 3 4 Turbellaria 0 1 2 3 4 Coleoptera 0 1 2 3 4 Hirudinea 0 1 2 3 4 Lepidoptera 0 1 2 3 4 Oligochaeta 0 1 2 3 4 Sialidae 0 1 2 3 4 Isopoda 0 1 2 3 4 Tipulidae 0 1 2 3 4 Amphipoda 0 1 2 3 4 Empididae 0 1 2 3 4 Gastropoda 0 1 2 3 4 Simuliidae 0 1 2 3 4 Bivalvia 0 1	Porifera	0	1	2	3	4		-		0	1	2	3	4		0	1	2	3	4
Turbellaria 0 1 2 3 4 Coleoptera 0 1 2 3 4 Other 0 1 2 3 4 Hirudinea 0 1 2 3 4 Lepidoptera 0 1 2 3 4 Oligochaeta 0 1 2 3 4 Sialidae 0 1 2 3 4 Isopoda 0 1 2 3 4 Corydalidae 0 1 2 3 4 Amphipoda 0 1 2 3 4 Empididae 0 1 2 3 4 Decapoda 0 1 2 3 4 Simuliidae 0 1 2 3 4 Bivalvia 0 1 2 3 4 Tabinidae 0 1 2 3 4	•							_												
Hirudinea 0 1 2 3 4 Lepidoptera 0 1 2 3 4 Oligochaeta 0 1 2 3 4 Sialidae 0 1 2 3 4 Isopoda 0 1 2 3 4 Corydalidae 0 1 2 3 4 Amphipoda 0 1 2 3 4 Tipulidae 0 1 2 3 4 Decapoda 0 1 2 3 4 Empididae 0 1 2 3 4 Simuliidae 0 1 2 3 4 Bivalvia 0 1 2 3 4 Tabinidae 0 1 2 3 4	*							_							-					
Oligochaeta 0 1 2 3 4 Sialidae 0 1 2 3 4 Isopoda 0 1 2 3 4 Corydalidae 0 1 2 3 4 Amphipoda 0 1 2 3 4 Tipulidae 0 1 2 3 4 Decapoda 0 1 2 3 4 Empididae 0 1 2 3 4 Gastropoda 0 1 2 3 4 Tabinidae 0 1 2 3 4 Bivalvia 0 1 2 3 4 Tabinidae 0 1 2 3 4								_							Other	0	1	2	3	4
Isopoda 0 1 2 3 4 Corydalidae 0 1 2 3 4 Amphipoda 0 1 2 3 4 Tipulidae 0 1 2 3 4 Decapoda 0 1 2 3 4 Empididae 0 1 2 3 4 Gastropoda 0 1 2 3 4 Simuliidae 0 1 2 3 4 Bivalvia 0 1 2 3 4 Tabinidae 0 1 2 3 4							_	-	ra											
Amphipoda 0 1 2 3 4 Tipulidae 0 1 2 3 4 Decapoda 0 1 2 3 4 Empididae 0 1 2 3 4 Gastropoda 0 1 2 3 4 Simuliidae 0 1 2 3 4 Bivalvia 0 1 2 3 4 Tabinidae 0 1 2 3 4	-										_									
Decapoda 0 1 2 3 4 Empididae 0 1 2 3 4 Gastropoda 0 1 2 3 4 Simuliidae 0 1 2 3 4 Bivalvia 0 1 2 3 4 Tabinidae 0 1 2 3 4	-								ae											
Gastropoda 0 1 2 3 4 Simuliidae 0 1 2 3 4 Bivalvia 0 1 2 3 4 Tabinidae 0 1 2 3 4							_													
Bivalvia 0 1 2 3 4 Tabinidae 0 1 2 3 4	-										_									
	-																			
	Divaivia	U	1	2	3	4					1									


TE ID:	5-3	140								
TE:	8/19/2									
LLECTOR	1	F CH/T	A							
	ble Count (Re				707 70 11	T.G. SIP	Tario PostA	diversity of		NOTES:
51	SI	57	M5	MS	TZ	FSA	F54	5	FSA	-T - 0 +
FSA	51	FSA	SI	MS	FSA	FSA	51	12	FSA	Tra - E'as Sand
SA	SI	FSA	FSA	FSA	FSA	4	5 T	945	FSA	FSA FINE
SA	FSA	FSA	57	27	MS	8	SI	MS	31	TH - Jano
SA	FSA	FSA	57	5]	MS	Z	SI	,415	5.5	CSA - cooric
FSA	FSA	FSA	51	SI	MS	Z\$	51	MS	F5A	SA - SOND CSA - COOVSE SOND. MS- MED SOND
SI	FSA	FSA	51-	IZ	FSA	MS	SI	9	51	1
SI	FSA	FSA	5%	12	\$7	SI	5]	FSA	5]	1
SI	FGA	FSA	51	ZZ	ZZ	ZC .	51	27	F3A	1
27	FSA	21	51	IZ	57	IZ	51	51	9	
e Pebble	Count				District		SAME AND	is a time	Link and the	NOTES:
A Shirter				One first Ma			P. 150	Vaccing Co.	Section (Section	NOTES:
										1
										1
										1
										1
				-						1
										1
										1
										1

	PADROLC		
Inches	PARTICLE		S/C
	Sift / Clay	<.062	3/6
	Very Fine	.062125	0
	Fine	.12525	S
	Medium	.2550	N
	Coarse	,50 - 1.0	ND
0408	Very Coarse	1.0 - 2)
.0816	Very Fine	2-4	45. 4.0 4.14
.1622	Fine	4 - 5.7	
.2231	Fine	5.7 - 0	G
.3144	Mediom	8 - 11.3	RA
.4463	Mediam	11.3 - 16	
.6389	Coarse	16-226	图E 图
89 - 1,3	Coarse	22.6 - 32	U
1.3 - 1,8	Very Coarse	32 - 45	技术部
1.8 - 2.5	Very Coarse	45 - 64	100
2.5 - 3.5	Small	64 - 90	R CHA
3.5 - 5.0	Small	90 - 128	Ö
5.0 - 7.1	Large	128 - 180	
7.1 - 10.1	Large	180 - 256	8
10.1 - 14,3	Small	256 - 362	8
14,3 - 20	Small	362 - 512	ųν
20 - 40	Medium	512 - 1024	Şį
40 - 80	Large-Vry Large	1024 - 2048	R
	Bedrock		BDRK

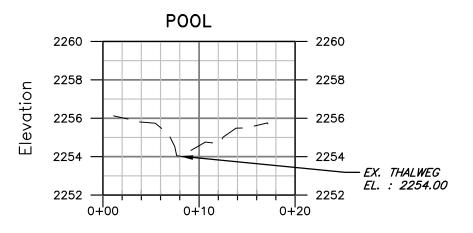

Bankfull Channel	
Material Size Ran	ge (mm) Count
silt/clay 0 - 0	0.062 49
very fine sand 0.062 - 0	0.125
fine sand 0.125 - 0	0.25 34
medium sand 0.25 - 0	0.5 11
coarse sand 0.5 -	
very coarse sand 1 - 2	2
very fine gravel 2 - 4	4 1
fine gravel 4 - 6	6 1
fine gravel 6 - 8	8
medium gravel 8 -	11 3
medium gravel 11 - 1	
coarse gravel 16 - 2	22
coarse gravel 22 - 3	32
very coarse gravel 32 - 4	
very coarse gravel 45 - 6	
small cobble 64 - 9	
medium cobble 90 - 7	
large cobble 128 - 1	
very large cobble 180 - 2	
small boulder 256 - 3	
small boulder 362 - 5	512
medium boulder 512 - 7	1024
large boulder 1024 - 2	2048
very large boulder 2048 - 4	4096
total particle	count: 100
bedrock	-
clay hardpan	-
detritus/wood	
artificial	
	count: 100
Note:	

S-140

AS-BUILT TABLE: S-I40 CROSS SECTION B									
		PRE-CROSS	ING	AS-E	BUILT				
PT. LOC.	NORTHING	EASTING	ELEV.	VERT. DIFF.	HORZ. DIFF.				
TS-L	13866966.145	1719994.75	2255.57						
BS-L	13866966.78	1719995.20	2254.27						
THW	13866971.83	1719996.24	2253.87						
BS-R	13866972.44	1719995.74	2253.97						
TS-R	13866973.25	1719996.01	2254.84						

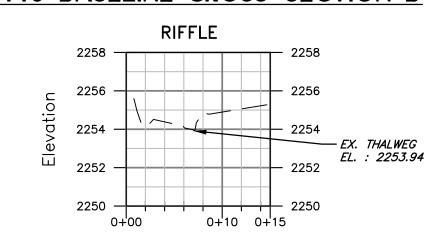
LEGEND

STUDY AREA (EASEMENT)


EXISTING SURVEY-LOCATED THALWEG

1176.87 **+** EXISTING SURVEYED GROUND SHOT ELEVATION

SURVEY NOTES:


- 1. THIS MAP HAS BEEN ORIENTED TO NAD 1983 UTM ZONE 17N, AND VERTICALLY TO THE NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD 88), USING REAL TIME DGPS. FIELD LOCATIONS WERE COMPLETED ON
- 2. EASEMENT LINES SHOWN ON PLAN VIEW WERE PROVIDED BY MOUNTAIN VALLEY PIPELINE.
- 3. SURVEY POINTS FOR CROSS SECTIONS AND THALWEG PROFILES COLLECTED IN 2021 HAVE BEEN USED IN COMBINATION WITH SURVEY POINTS AND COLLECTED PREVIOUSLY IN 2020 IN ORDER TO GENERATE THE PRE-CROSSING SURFACE SHOWN IN PLAN. DUE TO NATURAL EROSIONAL STREAM PROCESSES THAT OCCUR OVER TIME, MINOR ADJUSTMENTS TO THE PROFILE ALIGNMENTS MAY HAVE BEEN REQUIRED IN ORDER TO GENERATE A CLEAN PRE-CROSSING SURFACE.
- 4. ALL SECTION VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.
- 5. POST-CROSSING SURVEY INFORMATION SHOWN IN RED. DATA PENDING.
- 6. POST-CROSSING SURVEY POINTS FOR CROSS SECTIONS AND THALWEG ARE PROJECTED ONTO PRE-CROSSING SECTION AND PROFILE VIEWS FOR COMPARISON.

S-140 BASELINE CROSS-SECTION A

DISTANCE ALONG CROSS-SECTION (FT)

S-140 BASELINE CROSS-SECTION B

DISTANCE ALONG CROSS-SECTION (FT)

CROSS SECTION LEGEND — EXISTING GRADE V: 1"=5'

NOTE: ALL SECTIONS VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.

PRE-CROSSING PHOTOS

PHOTO TAKEN LOOKING DOWNSTREAM FROM UPSTREAM IMPACT LIMITS

PHOTO TAKEN LOOKING UPSTREAM FROM DOWNSTREAM IMPACT LIMITS

POST-CROSSING PHOTOS

PENDING CROSSING

PHOTO TAKEN LOOKING DOWNSTREAM UPSTREAM FROM IMPACT LIMITS

PENDING CROSSING

PHOTO TAKEN LOOKING UPSTREAM FROM UPSTREAM IMPACT LIMITS

PRE-CROSSING

Checked

Approved NOTED

Scale:

SEPT. 2021Date:

21-0244 Project No.

Drawing No