# Reach S-J19 (Timber Mat Crossing) Ephemeral Spread E Greenbrier County, West Virginia

| Data                                       | Included      |
|--------------------------------------------|---------------|
| Photos                                     | $\checkmark$  |
| SWVM Form                                  | $\checkmark$  |
| FCI Calculator and HGM Form                | $\checkmark$  |
| RBP Physical Characteristics Form          | $\checkmark$  |
| Water Quality Data                         | N/A – No flow |
| RBP Habitat Form*                          | $\checkmark$  |
| RBP Benthic Form                           | $\checkmark$  |
| Benthic Identification Sheet               | N/A – No flow |
| Wolman Pebble Count                        | $\checkmark$  |
| Reference Reach Software Pebble Count Data | $\checkmark$  |
| Longitudinal Profile and Cross Sections    | $\checkmark$  |

\*Modified RBP – No flow



Spread E Stream S-J19 (Timber Mat Crossing) Greenbrier County

Photo Type: DS, US View

Location, Orientation, Photographer Initials: Downstream Edge of Right of Way, Upstream View, ABK/WP



Photo Type: DS Edge ROW, DS View Location, Orientation, Photographer Initials: Downstream Edge of ROW, Downstream View, ABK/WP



Spread E Stream S-J19 (Timber Mat Crossing) Greenbrier County

Photo Type: C ROW, US View Location, Orientation, Photographer Initials: Center Right of Way, Upstream View, ABK/WP



Photo Type: C ROW, DS View Location, Orientation, Photographer Initials: Center of Right of Way, Downstream View, ABK/WP



Spread E Stream S-J19 (Timber Mat Crossing) Greenbrier County

Photo Type: US, US View Location, Orientation, Photographer Initials: Upstream Edge of Right of Way, Upstream View, ABK/WP



Photo Type: US, DS View Location, Orientation, Photographer Initials: Upstream Edge of Right of Way, Downstream View, ABK/WP

"Q:\Charleston\2021 Projects\21-0244- MVP- STREAM AND WETLAND CONDITIONS ASSESSMENT AND SURVEY PLAN\002 - Pre-Crossing Monitoring\Spread E\S-EF41"

#### West Virginia Stream and Wetland Valuation Metric (SWVM) Version 2.1, September 2017

| USACE FILE NO./ Project Name: Mountain<br>(v2.1, Sept 2015) |                        |                        | in Valley Pipeline IMPACT COORDINATES: Lat.<br>(in Decimal Degrees) |                             |            |      | 38.028599 Lon80.743623                                      |                                             |                | WEATHER:                                                    |               | Cle      |
|-------------------------------------------------------------|------------------------|------------------------|---------------------------------------------------------------------|-----------------------------|------------|------|-------------------------------------------------------------|---------------------------------------------|----------------|-------------------------------------------------------------|---------------|----------|
| IMPACT STREAM/SITE II<br>(watershed size {acreage           |                        |                        | S-J19 UNT to                                                        | o Meadow Creek              |            |      | MITIGATION STREAM CLA:<br>(watershed size {ac               | SS./SITE ID AND<br>reage}, unaltered or imp |                |                                                             |               |          |
| STREAM IMPACT LENGTH:                                       | 22                     | FORM OF<br>MITIGATION: | RESTORATION (Levels I-III)                                          | MIT COORI<br>(in Decimal    |            | Lat. |                                                             | Lon.                                        |                | PRECIPITATION PAST 48 HRS:                                  |               |          |
| Column No. 1- Impact Existin                                | ng Condition (Deb      | pit)                   | Column No. 2- Mitigation Existing (                                 | Condition - Baseline (      | (Credit)   |      | Column No. 3- Mitigatio<br>Post Compl                       | n Projected at Five<br>etion (Credit)       | Years          | Column No. 4- Mitigation Pr<br>Post Completion              |               | Ten Ye   |
| Stream Classification:                                      | Epher                  | meral                  | Stream Classification:                                              |                             |            |      | Stream Classification:                                      |                                             | 0              | Stream Classification:                                      |               |          |
| Percent Stream Channel S                                    | lope                   | 8.6                    | Percent Stream Channel SI                                           | оре                         |            |      | Percent Stream Channe                                       | el Slope                                    | 0              | Percent Stream Channel                                      | Slope         |          |
| HGM Score (attach o                                         | data forms):           | <u>.</u>               | HGM Score (attach                                                   | data forms):                |            |      | HGM Score (att                                              | ach data forms):                            |                | HGM Score (attach                                           | data form     | s):      |
|                                                             |                        | Average                |                                                                     |                             | Average    |      |                                                             |                                             | Average        |                                                             |               |          |
| Hydrology                                                   | 0.48                   |                        | Hydrology                                                           |                             |            |      | Hydrology                                                   |                                             |                | Hydrology                                                   |               |          |
| Biogeochemical Cycling                                      | 0.18                   | 0.253333333            | Biogeochemical Cycling                                              |                             | 0          |      | Biogeochemical Cycling                                      |                                             | 0              | Biogeochemical Cycling                                      | -             |          |
| Habitat                                                     | 0.1                    |                        | Habitat                                                             |                             |            |      | Habitat                                                     |                                             |                | Habitat                                                     |               |          |
| PART I - Physical, Chemical an                              | d Biological Indic     | ators                  | PART I - Physical, Chemical ar                                      | nd Biological Indicato      | ors        |      | PART I - Physical, Chemic                                   | al and Biological I                         | ndicators      | PART I - Physical, Chemical ar                              | d Biologic    | al Indi  |
|                                                             | Points Scale Range     | Site Score             |                                                                     | Points Scale Range          | Site Score |      |                                                             | Points Scale Rang                           | je Site Score  |                                                             | Points Scale  | Range    |
| PHYSICAL INDICATOR (Applies to all stream                   | ns classifications)    |                        | PHYSICAL INDICATOR (Applies to all streams                          | s classifications)          |            |      | PHYSICAL INDICATOR (Applies to all street                   | eams classifications)                       |                | PHYSICAL INDICATOR (Applies to all stream                   | ms classifica | itions)  |
| USEPA RBP (High Gradient Data Sheet)                        |                        |                        | USEPA RBP (Low Gradient Data Sheet)                                 |                             |            |      | USEPA RBP (High Gradient Data Shee                          | et)                                         |                | USEPA RBP (High Gradient Data Sheet                         |               |          |
| 1. Epifaunal Substrate/Available Cover                      | 0-20                   |                        | 1. Epifaunal Substrate/Available Cover                              | 0-20                        |            |      | 1. Epifaunal Substrate/Available Cover                      | 0-20                                        |                | 1. Epifaunal Substrate/Available Cover                      | 0-20          |          |
| 2. Embeddedness                                             | 0-20                   | 1                      | 2. Pool Substrate Characterization                                  | 0-20                        |            |      | 2. Embeddedness                                             | 0-20                                        |                | 2. Embeddedness                                             | 0-20          |          |
| 3. Velocity/ Depth Regime                                   | 0-20                   |                        | 3. Pool Variability                                                 | 0-20                        |            |      | 3. Velocity/ Depth Regime                                   | 0-20                                        |                | 3. Velocity/ Depth Regime                                   | 0-20          |          |
| 4. Sediment Deposition                                      | 0-20                   | 3                      | 4. Sediment Deposition                                              | 0-20                        |            |      | 4. Sediment Deposition                                      | 0-20                                        |                | 4. Sediment Deposition                                      | 0-20          | _        |
| 5. Channel Flow Status                                      | 0-20 0-1               | 47                     | 5. Channel Flow Status                                              | 0-20 0-1                    |            |      | 5. Channel Flow Status                                      | 0-20 0-1                                    |                | 5. Channel Flow Status                                      | 0-20          | 0-1      |
| 6. Channel Alteration<br>7. Frequency of Riffles (or bends) | 0-20                   | 17                     | 6. Channel Alteration<br>7. Channel Sinuosity                       | 0-20                        |            |      | 6. Channel Alteration<br>7. Frequency of Riffles (or bends) | 0-20                                        |                | 6. Channel Alteration<br>7. Frequency of Riffles (or bends) | 0-20          |          |
| 8. Bank Stability (LB & RB)                                 | 0-20                   | 16                     | 8. Bank Stability (LB & RB)                                         | 0-20                        |            |      | 8. Bank Stability (LB & RB)                                 | 0-20                                        |                | 8. Bank Stability (LB & RB)                                 | 0-20          |          |
| 9. Vegetative Protection (LB & RB)                          | 0-20                   | 18                     | 9. Vegetative Protection (LB & RB)                                  | 0-20                        |            |      | 9. Vegetative Protection (LB & RB)                          | 0-20                                        |                | 9. Vegetative Protection (LB & RB)                          | 0-20          |          |
| 10. Riparian Vegetative Zone Width (LB & RB)                |                        | 2                      | 10. Riparian Vegetative Zone Width (LB & RB)                        | 0-20                        |            |      | 10. Riparian Vegetative Zone Width (LB & R                  |                                             |                | 10. Riparian Vegetative Zone Width (LB & RB)                |               |          |
| Total RBP Score                                             | Marginal               | 57                     | Total RBP Score                                                     | Poor                        | 0          |      | Total RBP Score                                             | Poor                                        | 0              | Total RBP Score                                             |               | oor      |
| Sub-Total                                                   | <u> </u>               | 0.475                  | Sub-Total                                                           | -                           | Ō          |      | Sub-Total                                                   |                                             | Ō              | Sub-Total                                                   |               |          |
| CHEMICAL INDICATOR (Applies to Intermitt                    | tent and Perennial Str | reams)                 | CHEMICAL INDICATOR (Applies to Intermitter                          | nt and Perennial Streams    | 5)         |      | CHEMICAL INDICATOR (Applies to Interr                       | mittent and Perennial                       | Streams)       | CHEMICAL INDICATOR (Applies to Intermi                      | ttent and Per | ennial s |
| WVDEP Water Quality Indicators (Generation                  | al)                    |                        | WVDEP Water Quality Indicators (General                             | n                           |            |      | WVDEP Water Quality Indicators (Gen                         | eral)                                       |                | WVDEP Water Quality Indicators (Gene                        | ral)          |          |
| Specific Conductivity                                       | ui)                    |                        | Specific Conductivity                                               | ·/                          |            |      | Specific Conductivity                                       |                                             |                | Specific Conductivity                                       | <u>uij</u>    |          |
|                                                             | 0-90                   |                        |                                                                     | 0-90                        |            |      |                                                             | 0-90                                        |                |                                                             | 0-90          |          |
| 100-199 - 85 points                                         | 0-50                   |                        |                                                                     | 0-90                        |            |      |                                                             | 0-90                                        |                |                                                             | 0-90          |          |
| pH                                                          |                        | 48                     | pH                                                                  |                             | 0          |      | pH                                                          |                                             |                | рН                                                          |               |          |
|                                                             | 0-80                   |                        |                                                                     | 5-90 0-1                    |            |      |                                                             | 5-90                                        |                |                                                             | 5-90          | 0-1      |
| 5.6-5.9 = 45 points                                         |                        |                        | DO                                                                  |                             |            |      | DO                                                          |                                             |                | DO                                                          |               | -        |
| DO                                                          |                        |                        | bo                                                                  |                             |            |      | DO                                                          |                                             |                | DO                                                          | <b>—</b>      | 4        |
|                                                             | 10-30                  |                        |                                                                     | 10-30                       |            |      |                                                             | 10-30                                       |                |                                                             | 10-30         |          |
| Sub-Total                                                   |                        |                        | Sub-Total                                                           |                             | 0          |      | Sub-Total                                                   |                                             | 0              | Sub-Total                                                   |               | -        |
| BIOLOGICAL INDICATOR (Applies to Intern                     | nittent and Perennial  | Streams)               | BIOLOGICAL INDICATOR (Applies to Intermit                           | ittent and Perennial Stream | ms)        |      | BIOLOGICAL INDICATOR (Applies to In                         | ntermittent and Perer                       | nnial Streams) | BIOLOGICAL INDICATOR (Applies to Inte                       | ermittent and | d Peren  |
| WV Stream Condition Index (WVSCI)                           |                        |                        | WV Stream Condition Index (WVSCI)                                   |                             |            |      | WV Stream Condition Index (WVSCI)                           |                                             |                | WV Stream Condition Index (WVSCI)                           |               |          |
|                                                             | 0-100 0-1              |                        |                                                                     | 0-100 0-1                   |            |      |                                                             | 0-100 0-1                                   |                |                                                             | 0-100         | 0-1      |
| Sub-Total                                                   | 1 1                    | 0                      | Sub-Total                                                           |                             | 0          |      | Sub-Total                                                   | I                                           | 0              | Sub-Total                                                   |               |          |
|                                                             |                        |                        | 000 1010                                                            |                             | v          |      | 1942 (Stal                                                  |                                             | v              | 040 .0tu                                                    |               |          |
|                                                             |                        |                        | a                                                                   |                             |            |      |                                                             |                                             | n              |                                                             |               |          |
| PART II - Index and                                         | Unit Score             |                        | PART II - Index and                                                 | Unit Score                  |            |      | PART II - Index                                             | and Unit Score                              |                | PART II - Index and                                         | Unit Score    | 0        |

| PART II - Index and Unit Score |             |             |  |  |  |  |  |
|--------------------------------|-------------|-------------|--|--|--|--|--|
| Index                          | Linear Feet | Unit Score  |  |  |  |  |  |
| 0.445                          | 22          | 9.799166667 |  |  |  |  |  |

| PART II - Index and Unit Score |             |            |  |  |  |  |  |
|--------------------------------|-------------|------------|--|--|--|--|--|
|                                |             |            |  |  |  |  |  |
| Index                          | Linear Feet | Unit Score |  |  |  |  |  |
| 0                              | 0           | 0          |  |  |  |  |  |

| PART II - Index and Unit Score |             |            |  |  |  |  |
|--------------------------------|-------------|------------|--|--|--|--|
| Index                          | Linear Feet | Unit Score |  |  |  |  |
| 0                              | 0           | 0          |  |  |  |  |

|                        | 0-100     | 0-1  |
|------------------------|-----------|------|
| Sub-Total              |           |      |
|                        |           |      |
| PART II - Index and Ur | nit Score |      |
| Index                  | Linear    | Feet |
| 0                      | 0         |      |





| PART II - Index and Unit Score |             |            |  |  |  |  |
|--------------------------------|-------------|------------|--|--|--|--|
| Index                          | Linear Feet | Unit Score |  |  |  |  |
| 0                              | 0           | 0          |  |  |  |  |

### FCI Calculator for the High-Gradient Headwater Streams in Appalachia

To ensure accurate calculations, the <u>UPPERMOST STRATUM</u> of the plant community is determined based on the calculated value for V<sub>CCANOPY</sub> (≥20% cover is required for tree/sapling strata). Go to the SAR Data Entry tab and enter site characteristics and data in the yellow cells. For information on determining how to split a project into SARs, see Chapter 5 of the Operational Draft Regional Guidebook for the Functional Assessment of High-Gradient Headwater Streams and Low-Gradient Perennial Streams in Appalachia (Environmental Laboratory U.S. Army Corps of Engineers 2017).

| Project Name: MVP Preliminary Assessment<br>Location: Greenbrier Spread E UNT to Meadow Creek<br>Sampling Date: 8-23-2021 | Project Site | Before Project |
|---------------------------------------------------------------------------------------------------------------------------|--------------|----------------|
| Subclass for this SAR:<br>Ephemeral Stream                                                                                |              |                |
| Uppermost stratum present at this SAR:<br>Shrub/Herb Strata                                                               | SAR number:  | S-J19          |

Functional Results Summary: Enter Results in Section A of the Mitigation Sufficiency Calculator

| Function               | Functional<br>Capacity Index |
|------------------------|------------------------------|
| Hydrology              | 0.48                         |
| Biogeochemical Cycling | 0.18                         |
| Habitat                | 0.10                         |

#### Variable Measure and Subindex Summary:

| Variable               | Name                                                  | Average<br>Measure | Subindex |
|------------------------|-------------------------------------------------------|--------------------|----------|
| VCCANOPY               | Percent canpoy over channel.                          | Not Used, <20%     | Not Used |
| V <sub>EMBED</sub>     | Average embeddedness of channel.                      | 1.00               | 0.10     |
| V <sub>SUBSTRATE</sub> | Median stream channel substrate particle size.        | 0.08               | 0.04     |
| V <sub>BERO</sub>      | Total percent of eroded stream channel bank.          | 14.29              | 1.00     |
| V <sub>LWD</sub>       | Number of down woody stems per 100 feet of stream.    | 0.00               | 0.00     |
| V <sub>TDBH</sub>      | Average dbh of trees.                                 | Not Used           | Not Used |
| V <sub>SNAG</sub>      | Number of snags per 100 feet of stream.               | 0.00               | 0.10     |
| V <sub>SSD</sub>       | Number of saplings and shrubs per 100 feet of stream. | 17.14              | 0.26     |
| V <sub>SRICH</sub>     | Riparian vegetation species richness.                 | 4.29               | 1.00     |
| VDETRITUS              | Average percent cover of leaves, sticks, etc.         | 20.00              | 0.24     |
| V <sub>HERB</sub>      | Average percent cover of herbaceous vegetation.       | 100.00             | 1.00     |
| V <sub>WLUSE</sub>     | Weighted Average of Runoff Score for Catchment.       | 0.89               | 0.94     |

|        |                        |                               |                             |                              |                                       |                                |                                  |                                                  |                  | Versio       | on 10-20-17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------|------------------------|-------------------------------|-----------------------------|------------------------------|---------------------------------------|--------------------------------|----------------------------------|--------------------------------------------------|------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |                        |                               | High-G                      |                              |                                       |                                |                                  | Appalachi                                        | а                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        | _                      |                               |                             |                              | Jata She                              | et and C                       | alcula                           |                                                  |                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| _      |                        | Potesta (Al                   |                             |                              |                                       |                                | Latitude/UTM Northing: 38.028599 |                                                  |                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Pro    | oject Name:            |                               | -                           |                              |                                       |                                |                                  | Longitude/U                                      | -                |              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                        | Greenbrier                    | -                           |                              |                                       |                                |                                  | San                                              | pling Date:      | 8-23-2021    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SA     | AR Number:             | S-J19                         | Reach                       | Length (ft):                 | 70                                    | Stream Ty                      | /pe: El                          | ohemeral Stream                                  | 1                |              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        | Top Strata:            | Sh                            | rub/Herb Sti                | rata                         | (determine                            | d from perco                   | ent calcu                        | lated in V <sub>CCANC</sub>                      | <sub>PPY</sub> ) |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Site   | and Timing:            | Project Site                  |                             |                              |                                       | -                              | Before Pr                        | oject                                            |                  |              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Sample | e Variables            | 1-4 in strea                  | am channel                  |                              |                                       |                                |                                  |                                                  |                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1      | V <sub>CCANOPY</sub>   | equidistant<br>20%, enter     | points alon<br>at least one | g the strean<br>e value betw | n. Measure<br>veen 0 and <sup>2</sup> | only if tree/<br>19 to trigger | sapling c                        | Measure at no<br>over is at least<br>ta choice.) |                  |              | Not Used,<br><20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        | List the per           | rcent cover i                 | measureme                   | nts at each                  | point below                           |                                |                                  | -                                                |                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        | 0                      | 0                             | 0                           | 0                            | 0                                     | 0                              | 0                                | 0                                                | 0                | 5            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        | 5                      | 0                             | 0                           | 0                            | 0                                     | 0                              | 0                                | 0                                                | 0                | 0            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2      | V <sub>EMBED</sub>     | along the s                   | tream. Sele                 | ect a particle               | e from the b                          | ed. Before                     | moving it                        | ver than 30 rou<br>, determine the               | e percentag      | e of the     | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        |                        |                               |                             |                              |                                       |                                |                                  | diment, and e                                    |                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        |                        |                               |                             |                              |                                       |                                |                                  | r composed of                                    | fine sedime      | ents, use a  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        |                        |                               | e of 1. If the              |                              |                                       |                                | ÷                                |                                                  | He Merche        | n and        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                        | Embedded<br>Minshall 19       | •                           | for gravel, c                | obble and c                           | ouider parti                   | cies (res                        | caled from Pla                                   | its, Megana      | n, and       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        |                        | Rating                        | Rating Des                  |                              |                                       |                                |                                  |                                                  |                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        |                        | 5                             |                             |                              |                                       |                                |                                  | y fine sedimen                                   |                  | k)           | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                        | 4                             |                             |                              |                                       |                                |                                  | ed by fine sedi                                  |                  |              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                        | 3                             |                             |                              |                                       |                                |                                  | ried by fine see                                 |                  |              | e de la companya de la company |
|        |                        | 1                             |                             |                              |                                       |                                |                                  | by fine sedime                                   |                  | ial surface) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        | List the rati          | ings at each                  |                             |                              |                                       |                                | banea                            | 2)                                               |                  |              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        | 1                      | 1                             | 1                           | 1                            | 1                                     | 1                              | 1                                | 1                                                | 1                | 1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        | 1                      | 1                             | 1                           | 1                            | 1                                     | 1                              | 1                                | 1                                                | 1                | 1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        | 1                      | 1                             | 1                           | 1                            | 1                                     | 1                              | 1                                | 1                                                | 1                | 1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        |                        |                               |                             |                              |                                       |                                |                                  |                                                  |                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        |                        |                               |                             |                              |                                       |                                |                                  |                                                  |                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3      | V <sub>SUBSTRATE</sub> |                               | eam channe<br>tream; use t  |                              |                                       |                                |                                  | er than 30 rou                                   | ghly equidis     | tant points  | 0.08 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|        | Entor north            | -                             |                             | -                            | =                                     |                                | _                                |                                                  | ounted as 0      | 0 in         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        |                        | cie size in in<br>concrete as |                             |                              |                                       |                                | onbed) w                         | ck should be c                                   | ounted as 9      | 9 in,        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        | 0.08                   | 0.08                          | 0.08                        | 0.08                         | 0.08                                  | 0.08                           | 0.08                             | 0.08                                             | 0.08             | 0.08         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        | 0.08                   | 0.08                          | 0.08                        | 0.08                         | 0.08                                  | 0.08                           | 0.08                             | 0.08                                             | 0.08             | 0.08         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        | 0.08                   | 0.08                          | 0.08                        | 0.08                         | 0.08                                  | 0.08                           | 0.08                             | 0.08                                             | 0.08             | 0.08         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        | 0.00                   | 0.00                          | 0.06                        | 0.06                         | 0.00                                  | 0.00                           | 0.08                             | 0.06                                             | 0.06             | 0.08         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        |                        |                               |                             |                              |                                       |                                |                                  |                                                  |                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4      | V <sub>BERO</sub>      | Total perce                   | ent of erode                | stream ch                    | annel hank                            | Enter the t                    | otal num                         | per of feet of e                                 | roded bank       | on each      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        | ¥ BERO                 |                               | e total perce               |                              |                                       |                                |                                  | eroded, total e                                  |                  |              | 14 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |                        | - '                           | Left Bank:                  | 5                            | ft                                    |                                | Right Bai                        | nk: 5                                            | ft               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        |                        |                               |                             |                              |                                       |                                | ~                                |                                                  |                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| Samp | le Variable        | s 5-9 within t                                                                                                                                            | the entire         | riparian/buf  | fer zone ad             | jacent to t | he stream ch                     | hannel (25    | feet from e                     | each bank).  |             |
|------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------|-------------------------|-------------|----------------------------------|---------------|---------------------------------|--------------|-------------|
| 5    | V <sub>LWD</sub>   | stream read                                                                                                                                               | ch. Enter t        |               | rom the enti<br>ulated. | re 50'-wide | eter and 36 in<br>e buffer and w | vithin the ch | annel, and                      |              | 0.0         |
|      |                    |                                                                                                                                                           |                    | /             |                         |             | voody stems:                     |               | 0                               |              |             |
| 6    | $V_{TDBH}$         |                                                                                                                                                           |                    |               |                         |             | ling cover is a                  | at least 20%  | <ol> <li>). Trees ar</li> </ol> | e at least 4 | Not Used    |
|      |                    | inches (10 cm) in diameter. Enter tree DBHs in inches.<br>List the dbh measurements of individual trees (at least 4 in) within the buffer on each side of |                    |               |                         |             |                                  |               |                                 |              |             |
|      |                    | the stream                                                                                                                                                |                    |               |                         |             | ing within the                   |               |                                 |              |             |
|      |                    |                                                                                                                                                           | Left Side          | _             | _                       |             |                                  | Right Side    |                                 | -            |             |
|      |                    |                                                                                                                                                           |                    |               |                         |             |                                  |               |                                 |              |             |
|      |                    |                                                                                                                                                           |                    |               |                         |             |                                  |               |                                 |              |             |
|      |                    |                                                                                                                                                           |                    |               |                         |             |                                  |               |                                 |              |             |
|      |                    |                                                                                                                                                           |                    |               |                         |             |                                  |               |                                 |              |             |
|      |                    |                                                                                                                                                           |                    |               |                         |             |                                  |               |                                 |              |             |
|      |                    |                                                                                                                                                           |                    |               |                         |             |                                  |               |                                 |              |             |
|      |                    |                                                                                                                                                           |                    |               |                         |             |                                  |               |                                 |              |             |
|      |                    |                                                                                                                                                           |                    |               |                         |             |                                  |               |                                 |              |             |
| 7    | $V_{SNAG}$         |                                                                                                                                                           |                    | east 4" dbh   |                         |             | et of stream.                    | Enter num     | ber of snag                     | s on each    | 0.0         |
|      |                    |                                                                                                                                                           | Sireann, an        |               |                         |             | alculateu.                       |               |                                 |              | 0.0         |
|      |                    |                                                                                                                                                           | Left Side          |               | 0                       |             | Right Side:                      |               | 0                               |              |             |
| 8    | $V_{SSD}$          |                                                                                                                                                           |                    |               |                         |             | ches dbh) per                    |               |                                 |              | 17.1        |
|      |                    |                                                                                                                                                           |                    | tream will be |                         |             | ubs on each                      | side of the   | stream, and                     | a the        | 17.1        |
|      |                    | •                                                                                                                                                         | Left Side          | :             | 6                       |             | Right Side:                      |               | 6                               |              |             |
| 9    | V <sub>SRICH</sub> |                                                                                                                                                           |                    |               |                         |             | am reach. C                      |               |                                 |              |             |
|      |                    |                                                                                                                                                           |                    |               |                         |             | sive species p<br>I from these d |               | li strata. Sp                   | Decles       | 4.29        |
|      |                    |                                                                                                                                                           | p 1 = 1.0          |               |                         |             |                                  |               | 2 (-1.0)                        |              |             |
|      | Acer rubr          |                                                                                                                                                           |                    | Magnolia t    | ripetala                |             | Ailanthus a                      | -             |                                 | Lonicera ja  | aponica     |
|      | Acer sace          | charum                                                                                                                                                    |                    | Nyssa sylv    | vatica                  |             | Albizia julib                    | rissin        |                                 | Lonicera ta  | atarica     |
|      | Aesculus           |                                                                                                                                                           |                    |               | n arboreum              |             | Alliaria petiolata               |               |                                 | Lotus corn   | iculatus    |
|      | Asimina t          |                                                                                                                                                           | <br>               | Prunus se     |                         |             |                                  |               |                                 | Lythrum sa   |             |
|      |                    | eghaniensis                                                                                                                                               |                    | Quercus a     |                         |             | Alternanthe<br>philoxeroid       |               |                                 | Microstegiui |             |
|      |                    | -                                                                                                                                                         |                    |               |                         |             | -                                |               |                                 | -            |             |
|      | Betula ler         |                                                                                                                                                           |                    | Quercus c     |                         |             | Aster tatari                     |               |                                 |              | tomentosa   |
|      | Carya alb          |                                                                                                                                                           |                    | Quercus ir    |                         |             | Cerastium                        |               |                                 | Polygonum    |             |
|      | Carya gla          |                                                                                                                                                           |                    | Quercus p     |                         |             | Coronilla va                     |               |                                 | Pueraria m   |             |
|      | Carya ova          |                                                                                                                                                           | $\checkmark$       | Quercus ru    |                         |             | Elaeagnus u                      | mbellata      |                                 | Rosa multi   |             |
|      | Carya ova          | ata                                                                                                                                                       | a Quercus velutina |               |                         | Lespedeza   | bicolor                          |               | Sorghum h                       | alepense     |             |
|      | Cornus fle         | orida                                                                                                                                                     |                    | Sassafras     | albidum                 |             | Lespedeza                        | cuneata       |                                 | Verbena b    | rasiliensis |
|      | Fagus gra          | andifolia                                                                                                                                                 |                    | Tilia ameri   | cana                    |             | Ligustrum ob                     | otusifolium   |                                 |              |             |
|      | Fraxinus           | americana                                                                                                                                                 |                    | Tsuga can     | adensis                 |             | Ligustrum s                      | sinense       |                                 |              |             |
| ~    | Liriodendro        | on tulipifera                                                                                                                                             |                    | Ulmus am      | ericana                 |             |                                  |               |                                 |              |             |
|      | Magnolia           | acuminata                                                                                                                                                 |                    |               |                         |             |                                  |               |                                 |              |             |
|      |                    |                                                                                                                                                           |                    | -             |                         |             |                                  |               | _                               | _            |             |
|      |                    | 3                                                                                                                                                         | Species in         | n Group 1     |                         |             |                                  | 0             | Species in                      | Group 2      |             |

| -               | e Variables<br>The four sul |                |              |                |                |                       |               |            | zone withi                   | n 25 feet fro | om each  |
|-----------------|-----------------------------|----------------|--------------|----------------|----------------|-----------------------|---------------|------------|------------------------------|---------------|----------|
| 10              | V <sub>DETRITUS</sub>       | Average pe     | ercent cover | of leaves, s   |                | ner organic i         | material. W   | oody debri | s <4" diamet                 | er and        | 20.00 %  |
|                 |                             |                | Left         | Side           |                |                       | Right         | t Side     |                              | ]             |          |
|                 |                             | 20             | 20           | 20             | 20             | 20                    | 20            | 20         | 20                           | 1             |          |
| 11              | V <sub>HERB</sub>           | Average pe     | ercentage c  | over of herb   | aceous veg     | etation (mea          | asure only if | tree cover | is <20%). D                  | o <i>not</i>  |          |
|                 | IN HERB                     | include woo    | ody stems a  | it least 4" dt | oh and 36" ta  | all. Because          | e there may   | be several | layers of gro<br>of ground v | ound cover    | 100 %    |
|                 |                             | at each sub    | oplot.       |                | 20070 4.0      |                       | -             |            | or ground r                  |               |          |
|                 |                             | 100            |              | Side           | 400            | 100                   | -             | t Side     | 100                          |               |          |
|                 |                             | 100            | 100          | 100            | 100            | 100                   | 100           | 100        | 100                          |               |          |
| Sample          | e Variable 1                | 2 within the   | e entire cat | chment of      | the stream.    |                       |               |            |                              |               |          |
| 12              | V <sub>WLUSE</sub>          |                |              |                | e for waters   |                       |               |            |                              |               |          |
|                 | WLUSE                       | g              | ge en        |                |                |                       |               |            |                              |               | 0.89     |
|                 |                             |                | Land         | Llas (Chass    | e From Dro     | n Liot)               |               |            | Runoff                       | % in          | Running  |
|                 |                             |                |              | Score          | Catch-<br>ment | Percent<br>(not >100) |               |            |                              |               |          |
|                 | Forest and n                | ative range (> | -            | 1              | 88.24          | 88.24                 |               |            |                              |               |          |
|                 | Open space                  | (pasture, lawr | -            | 0.1            | 11.76          | 100                   |               |            |                              |               |          |
|                 |                             |                | -            |                |                |                       |               |            |                              |               |          |
|                 |                             |                | -            |                |                |                       |               |            |                              |               |          |
|                 |                             |                |              |                |                |                       |               |            | -                            |               |          |
|                 |                             |                |              |                |                |                       |               | -          | -                            |               |          |
|                 |                             |                |              |                |                |                       |               | •          |                              |               |          |
|                 |                             |                |              |                |                |                       |               | •          |                              |               |          |
|                 |                             | S-J19          |              |                |                |                       | No            | tes:       | -                            |               |          |
| V               | ariable                     | Value          | VSI          | Land Cov       | er Analvsis    | was com               |               |            | National L                   | and Cover     | Database |
|                 | CANOPY                      | Not Used,      | Not Used     | (NLCD), f      | rom Landa      | t satellite ir        | magery and    | d other su | oplementar                   | y datasets.   |          |
|                 |                             | <20%<br>1.0    | 0.10         | watershe       | d boundari     | es are bas            | ed off field  | delineate  | d stream im                  | pacts.        |          |
|                 | MBED                        |                |              |                |                |                       |               |            |                              |               |          |
|                 | UBSTRATE                    | 0.08 in        | 0.04         |                |                |                       |               |            |                              |               |          |
|                 | ERO                         | 14 %           | 1.00         |                |                |                       |               |            |                              |               |          |
| VL              | WD                          | 0.0            | 0.00         |                |                |                       |               |            |                              |               |          |
| VTI             | DBH                         | Not Used       | Not Used     |                |                |                       |               |            |                              |               |          |
| V <sub>SI</sub> | NAG                         | 0.0            | 0.10         |                |                |                       |               |            |                              |               |          |
| Vs              | SD                          | 17.1           | 0.26         |                |                |                       |               |            |                              |               |          |
| Vs              | RICH                        | 4.29           | 1.00         |                |                |                       |               |            |                              |               |          |
| VD              | ETRITUS                     | 20.0 %         | 0.24         |                |                |                       |               |            |                              |               |          |
| V <sub>H</sub>  | ERB                         | 100 %          | 1.00         |                |                |                       |               |            |                              |               |          |
| Vw              | LUSE                        | 0.89           | 0.94         |                |                |                       |               |            |                              |               |          |

# PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

| STREAM NAME S-J19                                             | LOCATION UNT to Meadow River Spread E                     |                                            |  |  |  |  |  |
|---------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------|--|--|--|--|--|
| STATION # RIVERMILE                                           | STREAM CLASS Ephemeral                                    |                                            |  |  |  |  |  |
| LAT <u>38.028599</u> LONG <u>-80.743623</u> COUNTY Greenbrier |                                                           |                                            |  |  |  |  |  |
| STORET #                                                      | AGENCY Potesta                                            |                                            |  |  |  |  |  |
| INVESTIGATORS AK/AG/EW/WP                                     |                                                           |                                            |  |  |  |  |  |
| FORM COMPLETED BY AG                                          | DATE 8-23-2021<br>TIME 1340 PM REASON FOR SURVEY Prelimit | REASON FOR SURVEY<br>Preliminary Assessmen |  |  |  |  |  |

| WEATHER<br>CONDITIONS      | Now     Past 24<br>hours     Has there been a heavy rain in the last 7 days?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SITE LOCATION/MAP          | Draw a map of the site and indicate the areas sampled (or attach a photograph)<br>John Gas Pipe line Row<br>John Wert Wert<br>John Wert Wert<br>John We |
| STREAM<br>CHARACTERIZATION | Stream Subsystem       Intermittent       Tidal       Stream Type         Perennial       Intermittent       Tidal       Coldwater       Warmwater         Stream Origin       Catchment Area       km²         Glacial       Spring-fed       Mixture of origins       Vorter_storm cunot         Swamp and bog       Other_storm cunot       Other_storm cunot       Stream Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

# PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

| WATERSHED<br>FEATURES<br>RIPARIAN<br>VEGETATION<br>(18 meter buffer)         | Predominant Surrounding Landuse         ✓ Forest       Commercial         Field/Pasture       Industrial         Agricultural       ✓ Other                                                                                                                                         | Local Watershed NPS Pollution  No evidence Some potential sources  Obvious sources  Local Watershed Erosion None Moderate Heavy  nant species present Grasses Herbaccous                                                                                                                                                                                                                                         |
|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| INSTREAM<br>FEATURES                                                         | Estimated Reach Length       50 ft m         Estimated Stream Width       0.6 ft m         Sampling Reach Area       20 M2 m²         Area in km² (m²x1000)       km²         Estimated Stream Depth       0.05 ft m         Surface Velocity (at thalweg)       NA m/sec           | Canopy Cover       □Partly shaded □Shaded         ☑ Partly open       □Partly shaded □Shaded         High Water Mark      m         Proportion of Reach Represented by Stream         Morphology Types         Riffle       %         Pool       %         Channelized       Yes         Dam Present       Yes                                                                                                   |
| LARGE WOODY<br>DEBRIS<br>AQUATIC<br>VEGETATION                               | LWDm <sup>2</sup><br>Density of LWDm <sup>2</sup> /km <sup>2</sup> (LWD/ read<br>Indicate the dominant type and record the domin<br>Rooted emergentRooted submergent<br>Floating AlgaeAttached Algae<br>Dominant species presentNA<br>Portion of the reach with aquatic vegetation0 |                                                                                                                                                                                                                                                                                                                                                                                                                  |
| WATER QUALITY<br>Unable<br>to<br>collect<br>due to<br>SEDIMENT/<br>SUBSTRATE | Temperature0 C         Specific Conductance         Dissolved Oxygen         pH         Turbidity         WQ Instrument Used low flow         Odors         Normal         Sewage         Petroleum         Ohenical                                                                | Water Odors         Normal/None       Sewage         Petroleum       Chemical         Fishy       Other         Water Surface Oils       Slick         Slick       Sheen         None       Other         Turbidity (if not measured)       Turbid         Clear       Slightly turbid         Opaque       Stained         Deposits       Sludge         Sludge       Sawdust         Relict shells       Other |
|                                                                              | Other<br>Oils<br>☑ Absent □ Slight □ Moderate □ Profuse<br>STRATE COMPONENTS OI                                                                                                                                                                                                     | Lpoking at stones which are not deeply embedded,<br>are the undersides black in color?<br>☐ Yes                                                                                                                                                                                                                                                                                                                  |

| INC               | ORGANIC SUBSTRATE<br>(should add up to |                                    | ORGANIC SUBSTRATE COMPONENTS<br>(does not necessarily add up to 100%) |                                             |                                   |  |  |  |  |
|-------------------|----------------------------------------|------------------------------------|-----------------------------------------------------------------------|---------------------------------------------|-----------------------------------|--|--|--|--|
| Substrate<br>Type | Diameter                               | % Composition in<br>Sampling Reach | Substrate<br>Type                                                     | Characteristic                              | % Composition in<br>Sampling Area |  |  |  |  |
| Bedrock           |                                        | ÷                                  | Detritus                                                              | sticks, wood, coarse plant materials (CPOM) | -                                 |  |  |  |  |
| Boulder           | > 256 mm (10")                         |                                    |                                                                       | materials (CPOM)                            |                                   |  |  |  |  |
| Cobble            | 64-256 mm (2.5"-10")                   |                                    | Muck-Mud                                                              | black, very fine organic                    |                                   |  |  |  |  |
| Gravel            | 2-64 mm (0.1"-2.5")                    | -                                  |                                                                       | (FPOM)                                      | -                                 |  |  |  |  |
| Sand              | 0.06-2mm (gritty)                      | 99<br>9                            | Marl                                                                  | grey, shell fragments                       |                                   |  |  |  |  |
| Silt              | 0.004-0.06 mm 80                       |                                    |                                                                       |                                             | -                                 |  |  |  |  |
| Clay              | < 0.004 mm (slick)                     | 20                                 | ]                                                                     |                                             |                                   |  |  |  |  |

## HABITAT ASSESSMENT FIELD DATA SHEET - HG - USE ON ALL STREAMS (FRONT)

| STREAM NAME S-J19             | LOCATION UNT to Meadow River                                                  |  |  |  |  |  |  |
|-------------------------------|-------------------------------------------------------------------------------|--|--|--|--|--|--|
| STATION # RIVERMILE           | STREAM CLASS Ephemeral                                                        |  |  |  |  |  |  |
| LAT 38.028599 LONG -80.743623 | _ COUNTY Greenbrier                                                           |  |  |  |  |  |  |
| STORET #                      | AGENCY Potesta                                                                |  |  |  |  |  |  |
| INVESTIGATORS AK/AG/EW/WP     |                                                                               |  |  |  |  |  |  |
| FORM COMPLETED BY             | DATE     8-23-2021     REASON FOR SURVEY       TIME     1340 PM     AM     PM |  |  |  |  |  |  |

|                                              | Habitat                                       |                                                                                                                                                                                                                                                             | Condition                                                                                                                                                                                                                             | Category                                                                                                                                                                                                                                  |                                                                                                                                                                                               |  |  |  |  |
|----------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                              | Parameter                                     | Optimal                                                                                                                                                                                                                                                     | Suboptimal                                                                                                                                                                                                                            | Marginal                                                                                                                                                                                                                                  | Poor                                                                                                                                                                                          |  |  |  |  |
|                                              | 1. Epifaunal<br>Substrate/<br>Available Cover | Greater than 70% of<br>substrate favorable for<br>epifaunal colonization and<br>fish cover; mix of snags,<br>submerged logs, undercut<br>banks, cobble or other<br>stable habitat and at stage<br>to allow full colonization<br>potential (i.e., logs/snags | 40-70% mix of stable<br>habitat; well-suited for<br>full colonization potential;<br>adequate habitat for<br>maintenance of<br>populations; presence of<br>additional substrate in the<br>form of newfall, but not<br>yet prepared for | 20-40% mix of stable<br>habitat; habitat<br>availability less than<br>desirable; substrate<br>frequently disturbed or<br>removed.                                                                                                         | Less than 20% stable<br>habitat; lack of habitat is<br>obvious; substrate<br>unstable or lacking.                                                                                             |  |  |  |  |
|                                              | <sub>score</sub> 0                            | that are <u>not</u> new fall and<br><u>not</u> transient).<br>20 19 18 17 16                                                                                                                                                                                | colonization (may rate at<br>high end of scale).<br>15 14 13 12 11                                                                                                                                                                    | 10 9 8 7 6                                                                                                                                                                                                                                | 5 4 3 2 1 0                                                                                                                                                                                   |  |  |  |  |
| ı sampling reach                             | 2. Embeddedness                               | Gravel, cobble, and<br>boulder particles are 0-<br>25% surrounded by fine<br>sediment. Layering of<br>cobble provides diversity<br>of niche space.                                                                                                          | Gravel, cobble, and<br>boulder particles are 25-<br>50% surrounded by fine<br>sediment.                                                                                                                                               | Gravel, cobble, and<br>boulder particles are 50-<br>75% surrounded by fine<br>sediment.                                                                                                                                                   | Gravel, cobble, and<br>boulder particles are more<br>than 75% surrounded by<br>fine sediment.                                                                                                 |  |  |  |  |
| ted in                                       | score 1                                       | 20 19 18 17 16                                                                                                                                                                                                                                              | 15 14 13 12 11                                                                                                                                                                                                                        | 10 9 8 7 6                                                                                                                                                                                                                                | 5 4 3 2 🊺 0                                                                                                                                                                                   |  |  |  |  |
| Parameters to be evaluated in sampling reach | 3. Velocity/Depth<br>Regime<br>N/A            | All four velocity/depth<br>regimes present (slow-<br>deep, slow-shallow, fast-<br>deep, fast-shallow).<br>(Slow is < 0.3 m/s, deep is<br>> 0.5 m.)                                                                                                          | Only 3 of the 4 regimes<br>present (if fast-shallow is<br>missing, score lower than<br>if missing other regimes).                                                                                                                     | Only 2 of the 4 habitat<br>regimes present (if fast-<br>shallow or slow-shallow<br>are missing, score low).                                                                                                                               | Dominated by 1 velocity/<br>depth regime (usually<br>slow-deep).                                                                                                                              |  |  |  |  |
| aram                                         | score 0                                       | 20 19 18 17 16                                                                                                                                                                                                                                              | 15 14 13 12 11                                                                                                                                                                                                                        | 10 9 8 7 6                                                                                                                                                                                                                                | 5 4 3 2 1 0                                                                                                                                                                                   |  |  |  |  |
| 4                                            | 4. Sediment<br>Deposition                     | Little or no enlargement<br>of islands or point bars<br>and less than 5% of the<br>bottom affected by<br>sediment deposition.                                                                                                                               | Some new increase in bar<br>formation, mostly from<br>gravel, sand or fine<br>sediment; 5-30% of the<br>bottom affected; slight<br>deposition in pools.                                                                               | Moderate deposition of<br>new gravel, sand or fine<br>sediment on old and new<br>bars; 30-50% of the<br>bottom affected; sediment<br>deposits at obstructions,<br>constrictions, and bends;<br>moderate deposition of<br>pools prevalent. | Heavy deposits of fine<br>material, increased bar<br>development; more than<br>50% of the bottom<br>changing frequently;<br>pools almost absent due to<br>substantial sediment<br>deposition. |  |  |  |  |
|                                              | <sub>score</sub> 3                            | 20 19 18 17 16                                                                                                                                                                                                                                              | 15 14 13 12 11                                                                                                                                                                                                                        | 10 9 8 7 6                                                                                                                                                                                                                                | 5 4 🗿 2 1 0                                                                                                                                                                                   |  |  |  |  |
|                                              | 5. Channel Flow<br>Status 🔽 N/A               | Water reaches base of<br>both lower banks, and<br>minimal amount of<br>channel substrate is<br>exposed.                                                                                                                                                     | Water fills >75% of the<br>available channel; or<br><25% of channel<br>substrate is exposed.                                                                                                                                          | Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.                                                                                                                                                 | Very little water in<br>channel and mostly<br>present as standing pools.                                                                                                                      |  |  |  |  |
|                                              | SCORE                                         | 20 19 18 17 16                                                                                                                                                                                                                                              | 15 14 13 12 11                                                                                                                                                                                                                        | 10 9 8 7 6                                                                                                                                                                                                                                | 5 4 3 2 1 0                                                                                                                                                                                   |  |  |  |  |

low flow - modified RBP

## HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

| Habitat                                                                                                     |                                                                                                                                                                                                                                                                                                                          | Condition                                                                                                                                                                                                                                                                                                    | Condition Category                                                                                                                                                                                                                   |                                                                                                                                                                                                                          |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Parameter                                                                                                   | Optimal                                                                                                                                                                                                                                                                                                                  | Suboptimal                                                                                                                                                                                                                                                                                                   | Marginal                                                                                                                                                                                                                             | Poor                                                                                                                                                                                                                     |  |  |  |  |  |  |  |
| 6. Channel<br>Alteration                                                                                    | Channelization or<br>dredging absent or<br>minimal; stream with<br>normal pattern.                                                                                                                                                                                                                                       | Some channelization<br>present, usually in areas<br>of bridge abutments;<br>evidence of past<br>channelization, i.e.,<br>dredging, (greater than<br>past 20 yr) may be<br>present, but recent<br>channelization is not<br>present.                                                                           | Channelization may be<br>extensive; embankments<br>or shoring structures<br>present on both banks;<br>and 40 to 80% of stream<br>reach channelized and<br>disrupted.                                                                 | Banks shored with gabio<br>or cement; over 80% of<br>the stream reach<br>channelized and<br>disrupted. Instream<br>habitat greatly altered or<br>removed entirely.                                                       |  |  |  |  |  |  |  |
| score 17                                                                                                    | 20 19 18 17 16                                                                                                                                                                                                                                                                                                           | 15 14 13 12 11                                                                                                                                                                                                                                                                                               | 10 9 8 7 6                                                                                                                                                                                                                           | 5 4 3 2 1 0                                                                                                                                                                                                              |  |  |  |  |  |  |  |
| 7. Frequency of<br>Riffles (or bends)                                                                       | Occurrence of riffles<br>relatively frequent; ratio<br>of distance between riffles<br>divided by width of the<br>stream <7:1 (generally 5<br>to 7); variety of habitat is<br>key. In streams where<br>riffles are continuous,<br>placement of boulders or<br>other large, natural<br>obstruction is important.           | Occurrence of riffles<br>infrequent; distance<br>between riffles divided by<br>the width of the stream is<br>between 7 to 15.                                                                                                                                                                                | Occasional riffle or bend;<br>bottom contours provide<br>some habitat; distance<br>between riffles divided by<br>the width of the stream is<br>between 15 to 25.                                                                     | Generally all flat water<br>shallow riffles; poor<br>habitat; distance betwee<br>riffles divided by the<br>width of the stream is a<br>ratio of >25.                                                                     |  |  |  |  |  |  |  |
| SCORE 0                                                                                                     | 20         19         18         17         16                                                                                                                                                                                                                                                                           | 15 14 13 12 11                                                                                                                                                                                                                                                                                               | 10 9 8 7 6                                                                                                                                                                                                                           | 5 4 3 2 1 0                                                                                                                                                                                                              |  |  |  |  |  |  |  |
| 8. Bank Stability<br>(score each bank)<br>Note: determine left<br>or right side by<br>facing determinement. | Banks stable; evidence of<br>erosion or bank failure<br>absent or minimal; little<br>potential for future<br>problems. <5% of bank<br>affected.                                                                                                                                                                          | Moderately stable;<br>infrequent, small areas of<br>erosion mostly healed<br>over. 5-30% of bank in<br>reach has areas of erosion.                                                                                                                                                                           | Moderately unstable; 30-<br>60% of bank in reach has<br>areas of erosion; high<br>erosion potential during<br>floods.                                                                                                                | Unstable; many eroded<br>areas; "raw" areas<br>frequent along straight<br>sections and bends;<br>obvious bank sloughing<br>60-100% of bank has<br>erosional scars.                                                       |  |  |  |  |  |  |  |
| SCORE 8                                                                                                     | Left Bank 10 9                                                                                                                                                                                                                                                                                                           | 8 7 6                                                                                                                                                                                                                                                                                                        | 5 4 3                                                                                                                                                                                                                                | 2 1 0                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| SCORE 8                                                                                                     | Right Bank 10 9                                                                                                                                                                                                                                                                                                          | 8 7 6                                                                                                                                                                                                                                                                                                        | 5 4 3                                                                                                                                                                                                                                | 2 1 0                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| 9. Vegetative<br>Protection (score<br>each bank)                                                            | More than 90% of the<br>streambank surfaces and<br>immediate riparian zone<br>covered by native<br>vegetation, including<br>trees, understory shrubs,<br>or nonwoody<br>macrophytes; vegetative<br>disruption through<br>grazing or mowing<br>minimal or not evident;<br>almost all plants allowed<br>to grow naturally. | 70-90% of the<br>streambank surfaces<br>covered by native<br>vegetation, but one class<br>of plants is not well-<br>represented; disruption<br>evident but not affecting<br>full plant growth potential<br>to any great extent; more<br>than one-half of the<br>potential plant stubble<br>height remaining. | 50-70% of the<br>streambank surfaces<br>covered by vegetation;<br>disruption obvious;<br>patches of bare soil or<br>closely cropped vegetation<br>common; less than one-<br>half of the potential plant<br>stubble height remaining. | Less than 50% of the<br>streambank surfaces<br>covered by vegetation;<br>disruption of streamban<br>vegetation is very high;<br>vegetation has been<br>removed to<br>5 centimeters or less in<br>average stubble height. |  |  |  |  |  |  |  |
| SCORE                                                                                                       | Left Bank 10 🧕                                                                                                                                                                                                                                                                                                           | 8 7 6                                                                                                                                                                                                                                                                                                        | 5 4 3                                                                                                                                                                                                                                | 2 1 0                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| SCORE 9                                                                                                     | Right Bank 10 🧕 🧕                                                                                                                                                                                                                                                                                                        | 8 7 6                                                                                                                                                                                                                                                                                                        | 5 4 3                                                                                                                                                                                                                                | 2 1 0                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| 10. Riparian<br>Vegetative Zone<br>Width (score each<br>bank riparian zone)                                 | Width of riparian zone<br>>18 meters; human<br>activities (i.e., parking<br>lots, roadbeds, clear-cuts,<br>lawns, or crops) have not<br>impacted zone.                                                                                                                                                                   | Width of riparian zone<br>12-18 meters; human<br>activities have impacted<br>zone only minimally.                                                                                                                                                                                                            | Width of riparian zone 6-<br>12 meters; human<br>activities have impacted<br>zone a great deal.                                                                                                                                      | Width of riparian zone<br>meters: little or no<br>riparian vegetation due<br>human activities.                                                                                                                           |  |  |  |  |  |  |  |
| SCORE 1                                                                                                     | Left Bank 10 9                                                                                                                                                                                                                                                                                                           | 8 7 6                                                                                                                                                                                                                                                                                                        | 5 4 3                                                                                                                                                                                                                                | 2 🚺 0                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| SCORE 1                                                                                                     | Right Bank 10 9                                                                                                                                                                                                                                                                                                          | 8 7 6                                                                                                                                                                                                                                                                                                        | 5 4 3                                                                                                                                                                                                                                | 2 🚺 0                                                                                                                                                                                                                    |  |  |  |  |  |  |  |

Total Score \_\_\_\_\_

### BENTHIC MACROINVERTEBRATE FIELD DATA SHEET

| STREAM NAME S-J                          | 19                                                                                                                                                                                  | LOCATION UNT to Meadow River                          |                                             |  |  |  |  |  |  |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------|--|--|--|--|--|--|
| STATION #                                | _ RIVERMILE                                                                                                                                                                         | STREAM CLASS Ephemeral                                |                                             |  |  |  |  |  |  |
| LAT 38.028599                            | LONG -80.743623                                                                                                                                                                     | COUNTY Greenbrier                                     |                                             |  |  |  |  |  |  |
| STORET #                                 |                                                                                                                                                                                     | AGENCY Potesta                                        |                                             |  |  |  |  |  |  |
| INVESTIGATORS A                          | K/AG/EW/WP                                                                                                                                                                          |                                                       | LOT NUMBER                                  |  |  |  |  |  |  |
| FORM COMPLETED                           | AG                                                                                                                                                                                  | DATE 8-23-2021<br>TIME 1340 PM                        | REASON FOR SURVEY<br>Preliminary Assessment |  |  |  |  |  |  |
| HABITAT TYPES<br>SAMPLE<br>COLLECTION    | Cobble%       Snags%       Vegetated Banks%       Sand%         Submerged Macrophytes%       Other (       )%         MPLE       Gear used       D-frame       kick-net       Other |                                                       |                                             |  |  |  |  |  |  |
|                                          | Indicate the number of jal                                                                                                                                                          | bs/kicks taken in each habitat t<br>hags DVegetated B | ype.<br>Banks Sand                          |  |  |  |  |  |  |
| unable to collect benthics due to no flo |                                                                                                                                                                                     |                                                       |                                             |  |  |  |  |  |  |

### QUALITATIVE LISTING OF AQUATIC BIOTA

Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare, 2 = Common, 3= Abundant, 4 = Dominant

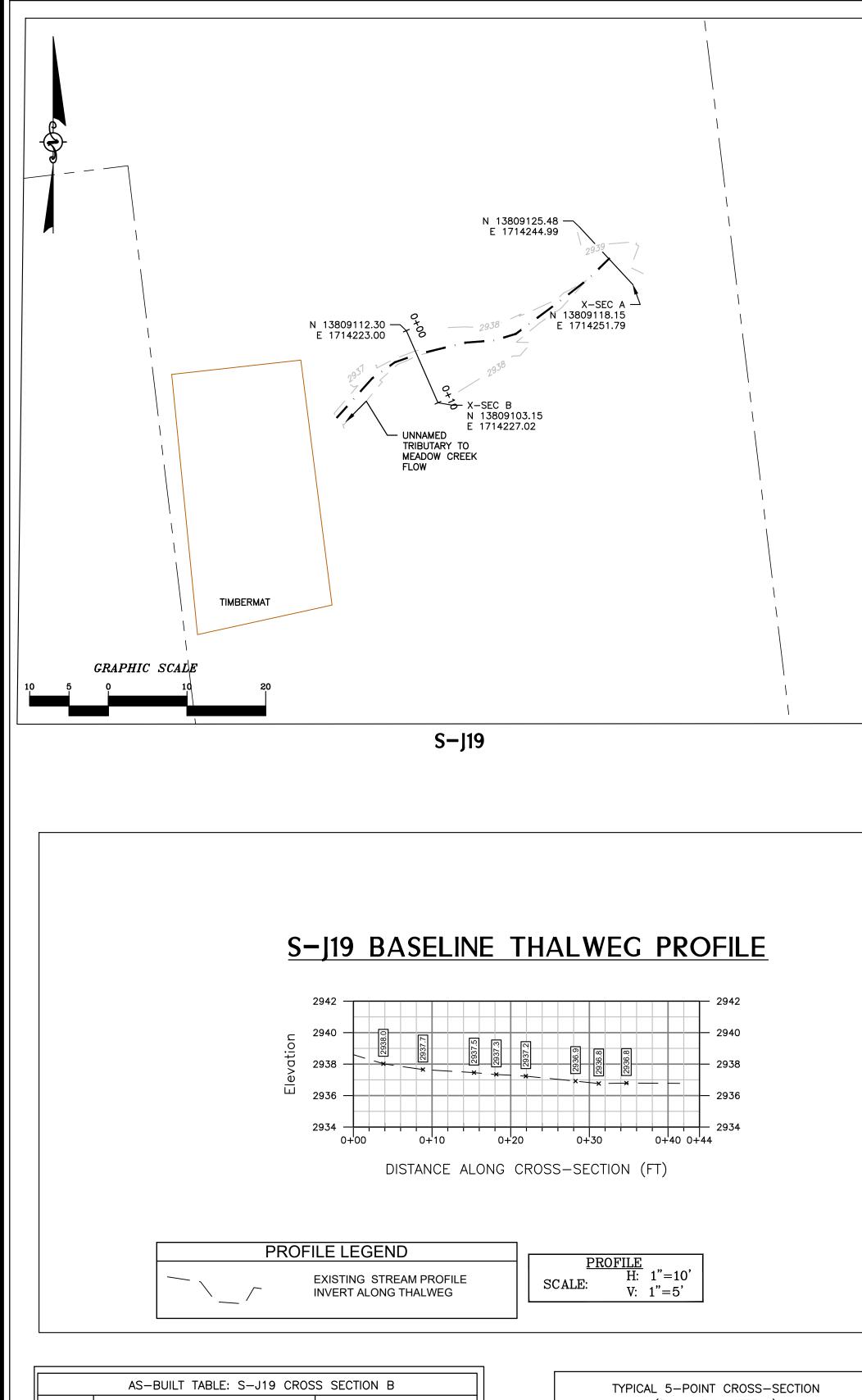
| Periphyton        | 0 | 1 | 2 | 3 | 4 | Slimes             | 0 | 1 | 2 | 3 | 4 |
|-------------------|---|---|---|---|---|--------------------|---|---|---|---|---|
| Filamentous Algae | 0 | 1 | 2 | 3 | 4 | Macroinvertebrates | 0 | 1 | 2 | 3 | 4 |
| Macrophytes       | 0 | 1 | 2 | 3 | 4 | Fish               | 0 | 1 | 2 | 3 | 4 |

### FIELD OBSERVATIONS OF MACROBENTHOS

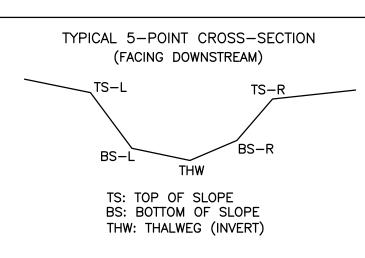
Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare (1-3 organisms), 2 = Common (3-9 organisms), 3= Abundant (>10 organisms), 4 = Dominant (>50 organisms)

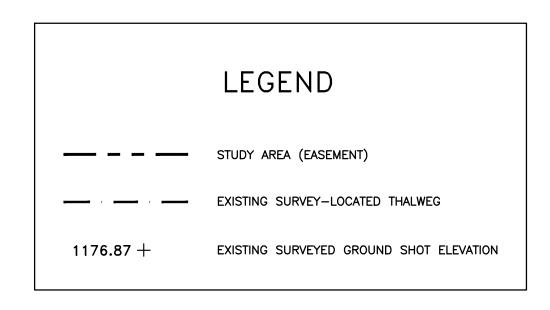
| Porifera        | 0 | 1 | 2 | 3 | 4 | Anisoptera  | 0 | 1 | 2 | 3 | 4 | Chironomidae  | 0 | 1 | 2 | 3 | 4 |
|-----------------|---|---|---|---|---|-------------|---|---|---|---|---|---------------|---|---|---|---|---|
| Hydrozoa        | 0 | 1 | 2 | 3 | 4 | Zygoptera   | 0 | 1 | 2 | 3 | 4 | Ephemeroptera | 0 | 1 | 2 | 3 | 4 |
| Platyhelminthes | 0 | 1 | 2 | 3 | 4 | Hemiptera   | 0 | 1 | 2 | 3 | 4 | Trichoptera   | 0 | 1 | 2 | 3 | 4 |
| Turbellaria     | 0 | 1 | 2 | 3 | 4 | Coleoptera  | 0 | 1 | 2 | 3 | 4 | Other         | 0 | 1 | 2 | 3 | 4 |
| Hirudinea       | 0 | 1 | 2 | 3 | 4 | Lepidoptera | 0 | 1 | 2 | 3 | 4 |               |   |   |   |   |   |
| Oligochaeta     | 0 | 1 | 2 | 3 | 4 | Sialidae    | 0 | 1 | 2 | 3 | 4 |               |   |   |   |   |   |
| Isopoda         | 0 | 1 | 2 | 3 | 4 | Corydalidae | 0 | 1 | 2 | 3 | 4 |               |   |   |   |   |   |
| Amphipoda       | 0 | 1 | 2 | 3 | 4 | Tipulidae   | 0 | 1 | 2 | 3 | 4 |               |   |   |   |   |   |
| Decapoda        | 0 | 1 | 2 | 3 | 4 | Empididae   | 0 | 1 | 2 | 3 | 4 |               |   |   |   |   |   |
| Gastropoda      | 0 | 1 | 2 | 3 | 4 | Simuliidae  | 0 | 1 | 2 | 3 | 4 |               |   |   |   |   |   |
| Bivalvia        | 0 | 1 | 2 | 3 | 4 | Tabinidae   | 0 | 1 | 2 | 3 | 4 |               |   |   |   |   |   |
|                 |   |   |   |   |   | Culcidae    | 0 | 1 | 2 | 3 | 4 |               |   |   |   |   |   |

SITE ID: S-JA Spread E DATE: 13 August 2021 COLLECTOR(S): 4K/AG/EW/WA


| Wolman Pe | bble Count (R | each Wide} | 2019-1010-1× | CALCOLAR . | 15 2 10 | 14.23 2000 | 22.21 | 1.1.1.1.1.1.1.1 | State of the state | NOTES: |
|-----------|---------------|------------|--------------|------------|---------|------------|-------|-----------------|--------------------|--------|
| 11.062    | 10.02         | 40.062     | 0.082        | 0.062      | 0.062   | 0.062      | 0.062 | 0.052           | 0.062              | NOTES. |
| 520.0     | 0.062         | 0.062      | 0.062        | 0.062      | 0.062   | 0.062      | 0.062 | 0.062           | 0.062              |        |
| 0.062     | 0.062         | 6.062      | 0.062        | 0.062      | 0.062   | 0.062      | 0.062 | 0.062           | 0.062              |        |
| 0.062     | 0.062         | 0.062      | 0.005        | 0.061      | 0.062   | 0.062      | 0.062 | 0.062           | 0.062              |        |
| 0.062     | 0.01          | 0.012      | 0.052        | 0.062      | 0.062   | 0.061      | 0.062 | 0.062           | 0.052              |        |
| 0.062     | 0.012         | 0.062      | 0.062        | 0.062      | 0.062   | 0.061      | 0.062 | 0.062           | 0.062              |        |
| 0.062     | 0.062         | 0.62       | 0.061        | 0.00       | 0.062   | 0.051      | 0.062 | 0.062           | 0.062              |        |
| 0-061     | 0.062         | 6.041      | 0.062        | 0.062      | 0.062   | 0.062      | 0.062 | 0.062           | 0.062              |        |
| 0.062     | 0.062         | 0.062      | 0.062        | 0.062      | 0.062   | 0.062      | 0.062 | 0.062           | 0.062              |        |
| 0.62      | 0.061         | 0.062      | 0.062        | 0:062      | 0.062   | 0.062      | 6.062 | 0.002           | 0.062              | 1      |

| Riffle Pebble Coun | t. | A STATE OF | And the second | S SUCCESS |      |   | NOTES: | Stat. |
|--------------------|----|------------|----------------|-----------|------|---|--------|-------|
|                    |    |            |                |           |      |   |        |       |
|                    |    | <br>       |                |           | <br> |   |        |       |
|                    |    |            |                |           |      |   |        |       |
|                    |    |            |                |           |      |   |        |       |
|                    |    | <br>       |                |           | <br> |   |        |       |
|                    |    |            |                |           |      |   |        |       |
|                    |    |            |                |           | <br> | - |        |       |
|                    |    | <br>       |                |           |      |   |        |       |
|                    |    |            |                |           |      |   |        |       |
|                    |    | <br>       |                |           | <br> |   |        |       |
|                    |    |            |                |           |      |   |        |       |
|                    |    |            |                |           |      |   |        |       |
|                    |    | <br>       |                |           | <br> |   |        |       |
|                    |    |            |                |           | 0    |   |        |       |
|                    |    | <br>       |                |           | <br> |   |        |       |
|                    |    |            |                |           |      |   |        |       |

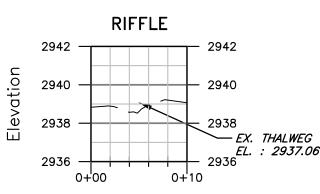

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ACCOUNT OF THE OWNER | T T | and the second s | A CONTRACTOR OF THE OWNER OWNER OWNER OF THE OWNER OWNE OWNER OWNE | NOTES: |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                                                               |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 | -   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |
| and the second sec |                                                                                                                 |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |


| Inches      | PARTICLE        | Millimeters |                  |
|-------------|-----------------|-------------|------------------|
|             | Silt / Clay     | < .062      | S/C              |
|             | Very Fine       | .062125     | ~                |
|             | Fine            | .12525      | s                |
|             | Medium          | .2550       | S<br>A<br>N<br>D |
|             | Coarse          | .50 - 1.0   | D                |
| 04 - 08     | Very Coarse     | 1,0 - 2     | ~                |
| .0816       | Very Fine       | 2-4         | (\$67)<br>(\$67) |
| .1622       | Fine            | 4-5.7       |                  |
| 2231        | Fine            | 5.7 - 8     | G                |
| 31 - 44     | Mediam          | 8-11.3      | GRA              |
| .4463       | Medicen         | 11.3 - 16   |                  |
| .6389       | Goarse          | 16-22.5     | E                |
| .89 - 1.3   | Coarse          | 22.6 - 32   | U                |
| 1.3 - 1.8   | Very Coarse     | 32-45       |                  |
| 1.8 - 2.5   | Very Coarse     | 45-64       |                  |
| 2.5 - 3.5   | Small           | 64 - 90     |                  |
| 3.5 - 5.0   | Smal            | 90 - \$28   |                  |
| 5.0 - 7,1   | Large           | 128 - 180   | 386              |
| 7.1 - 10.1  | Large           | 160 - 256   | a.               |
| 10.1 - 14.3 | Small           | 256 - 362   | (D)              |
| 14.3 - 20   | Small           | 362 - 512   |                  |
| 20 - 40     | Medium          | 512 - 1024  | ₽ġ,              |
| 40 - 80     | Large-Vry Large | 1024 - 2048 | R                |
|             | Bedrock         |             | BDRK             |

| Riffle Surface  Material Size Range (mm              | ,                      |                    | Riffle            | Surface  | Pebble | e Count, U | NT to Meado | w River (S-J1  | 9)     |           |            |           |                     |
|------------------------------------------------------|------------------------|--------------------|-------------------|----------|--------|------------|-------------|----------------|--------|-----------|------------|-----------|---------------------|
| silt/clay 0 - 0.062                                  | 100                    |                    |                   |          |        |            |             |                |        |           | mulative % | ——# of pa | rticles             |
| very fine sand 0.062 - 0.125                         |                        |                    |                   |          |        |            |             |                | L_     |           |            |           |                     |
| fine sand 0.125 - 0.25                               |                        |                    |                   | silt/cla | W.     | sand       |             | gravel         | cobble | · .       | boulder    |           |                     |
| medium sand 0.25 - 0.5                               |                        |                    | <sup>100%</sup> T |          |        | Juna       |             | graver         | 000010 |           | boulder    | 120       | )                   |
| coarse sand 0.5 - 1                                  |                        |                    | 90% -             |          |        |            |             |                |        |           |            |           |                     |
| very coarse sand 1 - 2                               |                        |                    | 5070              |          |        |            |             |                |        |           |            | + 100     | )                   |
| very fine gravel 2 - 4                               |                        |                    | 80% -             |          |        |            |             |                |        |           |            |           | ,                   |
| fine gravel <u>4 - 6</u>                             | <b>├</b> ──── <b>│</b> | _<br>_             | 700/              |          |        |            |             |                |        |           |            |           |                     |
| fine gravel <u>6 - 8</u><br>medium gravel 8 - 11     |                        | hai                | 70% -             |          |        |            |             |                |        |           |            | + 80      | р                   |
| medium gravel <u>8 - 11</u><br>medium gravel 11 - 16 |                        | ert                | 60% -             |          |        |            |             |                |        |           |            |           | m                   |
| coarse gravel 16 - 22                                |                        | percent finer than |                   |          |        |            |             |                |        |           |            |           | number of particles |
| coarse gravel 22 - 32                                |                        | ent                | 50% -             |          |        |            |             |                |        |           |            | 60        | oť                  |
| very coarse gravel 32 - 45                           |                        | erc                | 40% -             |          |        |            |             |                |        |           |            |           | pa                  |
| very coarse gravel 45 - 64                           |                        | ă                  |                   |          |        |            |             |                |        |           |            | + 40      | rtic                |
| small cobble 64 - 90                                 |                        |                    | 30% -             |          |        |            |             |                |        |           |            |           | es                  |
| medium cobble 90 - 128                               |                        |                    | 20% -             |          |        |            |             |                |        |           |            |           |                     |
| large cobble 128 - 180                               |                        |                    | 20%               |          |        |            |             |                |        |           |            | + 20      |                     |
| very large cobble 180 - 256                          |                        |                    | 10% -             |          |        |            |             |                |        |           |            |           |                     |
| small boulder 256 - 362                              |                        |                    |                   |          |        |            |             |                |        |           |            |           |                     |
| small boulder 362 - 512                              |                        |                    | 0% +              |          |        |            |             | 10             | 400    |           | 4000       | 0         |                     |
| medium boulder 512 - 1024                            |                        |                    | 0.0               | )1       | 0.     | 1          | 1           | 10             | 100    |           | 1000       | 10000     |                     |
| large boulder 1024 - 2048                            |                        |                    |                   |          |        |            | part        | icle size (mm) |        |           |            |           |                     |
| very large boulder 2048 - 4096                       |                        |                    |                   |          |        |            |             |                |        |           |            |           |                     |
| total particle count:                                | 100                    |                    |                   |          |        |            | <b>.</b>    |                |        |           |            |           |                     |
|                                                      |                        |                    |                   | Size (m  |        | _          | Size Distr  |                |        |           | Гуре       |           |                     |
| bedrock                                              |                        |                    |                   |          | 0.062  |            | mean        | 0.1            | :      | silt/clay | 100%       |           |                     |
| clay hardpan                                         |                        |                    |                   |          | 0.062  |            | dispersion  | 1.0            |        | sand      | 0%         |           |                     |
| detritus/wood                                        |                        |                    |                   |          | 0.062  |            | skewness    |                |        | gravel    | 0%         |           |                     |
| artificial                                           | 100                    |                    |                   |          | 0.062  |            |             |                |        | cobble    | 0%         |           |                     |
| total count:                                         | 100                    |                    |                   |          | 0.062  |            |             |                |        | boulder   | 0%         |           |                     |
| Noto                                                 |                        |                    |                   | D95      | 0.062  |            |             |                |        |           |            |           |                     |
| Note:                                                |                        |                    |                   |          |        |            |             |                |        |           |            |           |                     |

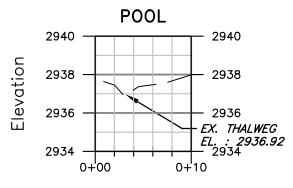


| AS-BUILT TABLE: S-J19 CROSS SECTION B |             |            |          |                |                |  |  |
|---------------------------------------|-------------|------------|----------|----------------|----------------|--|--|
|                                       |             | PRE-CROSS  | AS-BUILT |                |                |  |  |
| PT. LOC.                              | NORTHING    | EASTING    | ELEV.    | VERT.<br>DIFF. | HORZ.<br>DIFF. |  |  |
| TS-L                                  | 13809108.17 | 1714224.75 | 2937.36  |                |                |  |  |
| BS-L                                  | 13809108.93 | 1714224.44 | 2937.09  |                |                |  |  |
| тнพ                                   | 13809110.21 | 1714228.17 | 2936.92  |                |                |  |  |
| BS-R                                  | 13809110.56 | 1714228.12 | 2933.96  |                |                |  |  |
| TS-R                                  | 13809110.44 | 1714223.81 | 2937.45  |                |                |  |  |





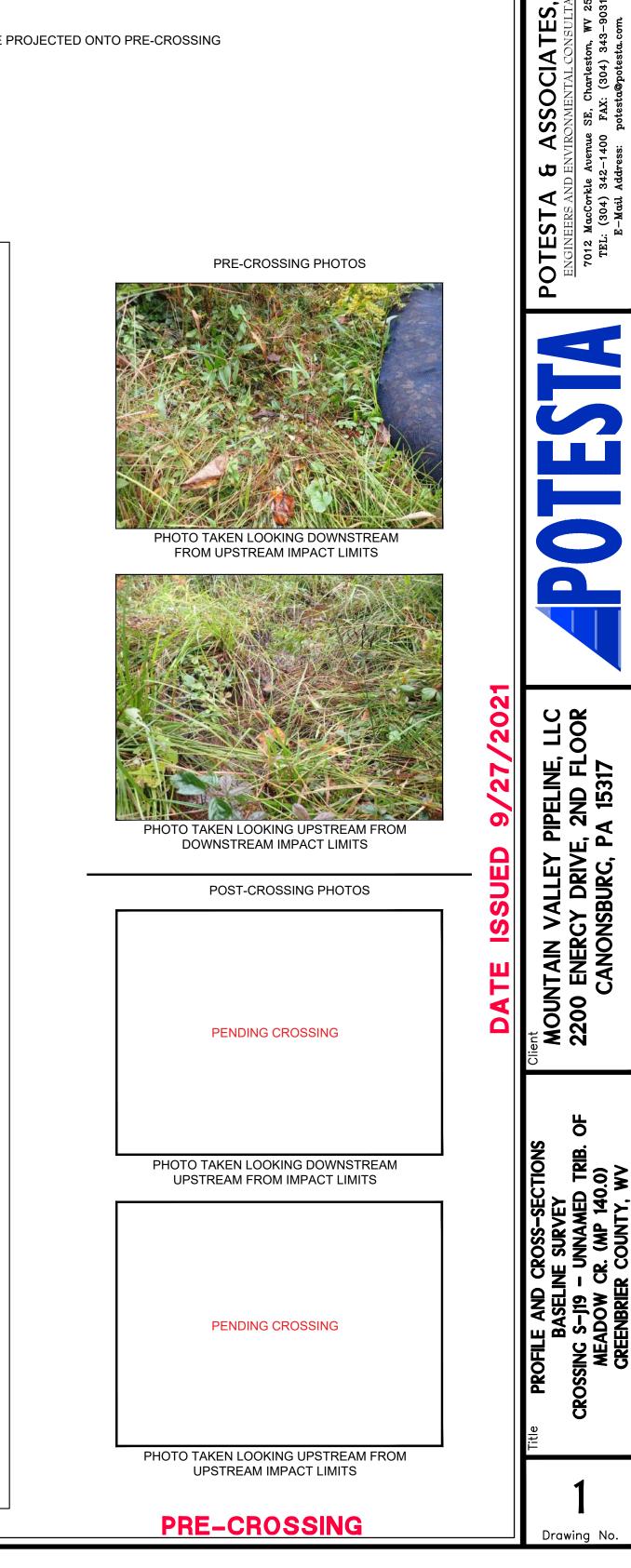

SURVEY NOTES:


- 1. THIS MAP HAS BEEN ORIENTED TO NAD 1983 UTM ZONE 17N, AND VERTICALLY TO THE NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD 88), USING REAL TIME DGPS. FIELD LOCATIONS WERE COMPLETED ON 8-23-2021.
- 2. EASEMENT LINES SHOWN ON PLAN VIEW WERE PROVIDED BY MOUNTAIN VALLEY PIPELINE.
- 3. SURVEY POINTS FOR CROSS SECTIONS AND THALWEG PROFILES COLLECTED IN 2021 HAVE BEEN USED IN COMBINATION WITH SURVEY POINTS AND COLLECTED PREVIOUSLY IN 2020 IN ORDER TO GENERATE THE PRE-CROSSING SURFACE SHOWN IN PLAN. DUE TO NATURAL EROSIONAL STREAM PROCESSES THAT OCCUR OVER TIME, MINOR ADJUSTMENTS TO THE PROFILE ALIGNMENTS MAY HAVE BEEN REQUIRED IN ORDER TO GENERATE A CLEAN PRE-CROSSING SURFACE.
- 4. ALL SECTION VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.
- 5. POST-CROSSING SURVEY INFORMATION SHOWN IN RED. DATA PENDING.
- 6. POST-CROSSING SURVEY POINTS FOR CROSS SECTIONS AND THALWEG ARE PROJECTED ONTO PRE-CROSSING SECTION AND PROFILE VIEWS FOR COMPARISON.

# S-J19 BASELINE CROSS-SECTION A



DISTANCE ALONG CROSS-SECTION (FT)


# S-J19 BASELINE CROSS-SECTION B



DISTANCE ALONG CROSS-SECTION (FT)

| CROS                | S SECTION LEGEND                           |
|---------------------|--------------------------------------------|
|                     | EXISTING GRADE                             |
| <u>CRO</u><br>SCALE | <u>SS SECTION</u><br>H: 1"=10'<br>V: 1"=5' |

NOTE: ALL SECTION VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.



-S-J19 CAD File No.

MBS Drawn

СНН Checked

BB/JLY Approved

NOTED Scale:

SEPT. 2021 Date:

21-0244-005 Project No.

() Z