Baseline Assessment – Stream Attributes

Reach S-J70 AR (Temporary Access Road) Perennial Spread C Braxton County, West Virginia

Data	Included
Photos	✓
SWVM Form	✓
FCI Calculator and HGM Form	N/A – Assessable Reach <10-ft, Timber Mat
RBP Physical Characteristics Form	✓
Water Quality Data	✓
RBP Habitat Form	✓
RBP Benthic Form	✓
Benthic Identification Sheet	N/A – No Riffle Habitat
Wolman Pebble Count	✓
Reference Reach Software Pebble Count Data	✓
Longitudinal Profile and Cross Sections	✓

Location, Orientation, Photographer Initials: Downstream Edge of Right of Way, Upstream View, SBB/ABK

Location, Orientation, Photographer Initials: Downstream Edge of Right of Way, Downstream View, SBB/ABK

Photo Type: Pool Under TMB, US View Location, Orientation, Photographer Initials: Upstream View of Pool Under Timber Mat Bridge, SBB/ABK

Photo Type: CP, US View Location, Orientation, Photographer Initials: Center of Right of Way, Upstream View, SBB/ABK

Photo Type: CP, DS View Location, Orientation, Photographer Initials: Center Point of Right of Way, Downstream View, SBB/ABK

Photo Type: Pool Under TMB, DS View Location, Orientation, Photographer Initials: Downstream View, Pool Under Timber Mat Bridge, SBB/ABK

Photo Type: US View, US Edge Location, Orientation, Photographer Initials: Upstream Edge of Right of Way, Upstream View, SBB/ABK

Photo Type: DS View, US Edge Location, Orientation, Photographer Initials: Downstream View of Right of Way, Upstream Edge, SBB/ABK

West Virginia Stream and Wetland Valuation Metric (SWVM) Version 2.1, September 2017

USACE FILE NO./ Project Name: (v2.1, Sept 2015)		N	lountain Va	alley Pipeline		COORDINATES: cimal Degrees)	Lat.	38.779630'	Lon.	-80.5262	221	WEATHER:	WEATHER: Clear/Sunny/35 Degrees F		DATE:	11/22/202	22
IMPACT STREAM/SITE ID / (watershed size {acreage}, d				S-J'	70 AR (FALLS RUN)			MITIGATION STREAM CLASS (watershed size {acrea			TION:	11/22/2022			Comments:		
STREAM IMPACT LENGTH:	66	FORM MITIGAT		RESTORATION (Levels I-I		OORDINATES: cimal Degrees)	Lat.		Lon.			PRECIPITATION PAST 48 HRS:			Mitigation Length:		
Column No. 1- Impact Existing	Condition (Debi	it)		Column No. 2- Mitigation Ex	isting Condition - Base	line (Credit)		Column No. 3- Mitigation F Post Completi		ve Years		Column No. 4- Mitigation Proje Post Completion (ears	Column No. 5- Mitigation Project	ed at Maturity (Cred	dit)
Stream Classification:	Peren	ınial		Stream Classification:				Stream Classification:		0		Stream Classification:		0	Stream Classification:	0	
Percent Stream Channel Slo	ре			Percent Stream Char	nnel Slope			Percent Stream Channel S	Slope	0		Percent Stream Channel Slo	оре	0	Percent Stream Channel St	оре	0
HGM Score (attach da	ata forms):			HGM Score (attach data forms):			HGM Score (attac	h data forms):		HGM Score (attach da	ata forms):		HGM Score (attach d	ata forms):	
		Average	Ī			Average				Average				Average			Average
Hydrology				Hydrology				Hydrology				Hydrology			Hydrology		
Hydrology Biogeochemical Cycling Habitat		0	ŀ	Biogeochemical Cycling Habitat		0		Biogeochemical Cycling Habitat		0		Biogeochemical Cycling Habitat		0	Biogeochemical Cycling Habitat		0
PART I - Physical, Chemical and	Biological Indica	ators	ľ	PART I - Physical, Chen	nical and Biological Inc	licators		PART I - Physical, Chemical	and Biologica	I Indicators		PART I - Physical, Chemical and	Biological Indi	cators	PART I - Physical, Chemical and	Biological Indicato	ors
	Points Scale Range	Site Score			Points Scale Range	Site Score			Points Scale	Range Site Score			Points Scale Range	Site Score		Points Scale Range	Site Score
PHYSICAL INDICATOR (Applies to all streams	classifications)		ļ	PHYSICAL INDICATOR (Applies to all	streams classifications)			PHYSICAL INDICATOR (Applies to all stream	ns classification:	s)		PHYSICAL INDICATOR (Applies to all streams	s classifications)		PHYSICAL INDICATOR (Applies to all streams	s classifications)	
USEPA RBP (High Gradient Data Sheet)				USEPA RBP (Low Gradient Data Si				USEPA RBP (High Gradient Data Sheet)				USEPA RBP (High Gradient Data Sheet)			USEPA RBP (High Gradient Data Sheet)		
Epifaunal Substrate/Available Cover	0-20	16	Į.	1. Epifaunal Substrate/Available Cove				Epifaunal Substrate/Available Cover	0-20			Epifaunal Substrate/Available Cover	0-20		Epifaunal Substrate/Available Cover	0-20	
Embeddedness Velocity/ Depth Regime	0-20 0-20	15	1	Pool Substrate Characterization Pool Variability	0-20 0-20			Embeddedness Velocity/ Depth Regime	0-20 0-20			Embeddedness Velocity/ Depth Regime	0-20 0-20		Embeddedness Velocity/ Depth Regime	0-20 0-20	
Velocity Depth Regime Sediment Deposition	0-20	12		4. Sediment Deposition	0-20			Velocity Depth Regime Sediment Deposition	0-20			Velocity Depart Regime Sediment Deposition	0-20		Velocity Departing 4. Sediment Deposition	0-20	
5. Channel Flow Status	0-20	15	1	5. Channel Flow Status	0-20			5. Channel Flow Status	0-20			5. Channel Flow Status	0-20		5. Channel Flow Status	0-20	
6. Channel Alteration	0-20	19	-	6. Channel Alteration	0-20			6. Channel Alteration	0-20	0-1		6. Channel Alteration	0-20		6. Channel Alteration	0-20	
7. Frequency of Riffles (or bends)	0-20	4		7. Channel Sinuosity	0-20			7. Frequency of Riffles (or bends)	0-20			7. Frequency of Riffles (or bends)	0-20		7. Frequency of Riffles (or bends)	0-20	
8. Bank Stability (LB & RB)	0-20	16	8	8. Bank Stability (LB & RB)	0-20			8. Bank Stability (LB & RB)	0-20			8. Bank Stability (LB & RB)	0-20		8. Bank Stability (LB & RB)	0-20	
Vegetative Protection (LB & RB)	0-20	13	9	9. Vegetative Protection (LB & RB)	0-20			Vegetative Protection (LB & RB)	0-20			Vegetative Protection (LB & RB)	0-20		Vegetative Protection (LB & RB)	0-20	
10. Riparian Vegetative Zone Width (LB & RB)	0-20	12	l <u>.</u>	10. Riparian Vegetative Zone Width (LB				10. Riparian Vegetative Zone Width (LB & RB)				10. Riparian Vegetative Zone Width (LB & RB)			10. Riparian Vegetative Zone Width (LB & RB)	0-20	
Total RBP Score	Suboptimal	129	Į.	Total RBP Score	Poor	0		Total RBP Score	Poor	0		Total RBP Score	Poor	0	Total RBP Score	Poor	0
Sub-Total CHEMICAL INDICATOR (Applies to Intermitten	t and Perennial Stre	0.645 eams)		Sub-Total CHEMICAL INDICATOR (Applies to Ir	termittent and Perennial St	reams)		Sub-Total CHEMICAL INDICATOR (Applies to Intermit	ent and Perenni	al Streams)		Sub-Total CHEMICAL INDICATOR (Applies to Intermitted	nt and Perennial S	Streams)	Sub-Total CHEMICAL INDICATOR (Applies to Intermittee	nt and Perennial Stream	ms)
WVDEP Water Quality Indicators (General)				WVDEP Water Quality Indicators (C	ieneral)			WVDEP Water Quality Indicators (Gener	al)			WVDEP Water Quality Indicators (General)		WVDEP Water Quality Indicators (General)	
Specific Conductivity			1	Specific Conductivity		0		Specific Conductivity				Specific Conductivity			Specific Conductivity		
	0-90	0.064			0-90				0-90				0-90			0-90	
<=99 - 90 points		0.000	- 1	.11				-11				.11			.11		
рн	0-1		1	рн	0-1			рн		0-1		рн	0-1		рн	0-1	
5.6-5.9 = 45 points	0-80	5.99			5-90				5-90	0-1			5-90			5-90	
DO		8.9	li li	DO		0		DO				DO			DO		
	10-30	13.65			10-30				10-30				10-30			10-30	
>5.0 = 30 points Sub-Total		0.825	Į.	Sub-Total				Sub-Total		0		Sub-Total		0	Sub-Total		
			l l			0						oub rotal					<u> </u>
BIOLOGICAL INDICATOR (Applies to Intermitt	tent and Perennial S	streams)	ŀ	BIOLOGICAL INDICATOR (Applies to		Streams)		BIOLOGICAL INDICATOR (Applies to Inte	rmittent and Pe	renniai Streams)		BIOLOGICAL INDICATOR (Applies to Intern	nittent and Peren	niai Streams)	BIOLOGICAL INDICATOR (Applies to Intern	nittent and Perennial s	Streams)
WV Stream Condition Index (WVSCI)	0-100 0-1			WV Stream Condition Index (WVSC	0-100 0-1			WV Stream Condition Index (WVSCI)	0-100	0-1		WV Stream Condition Index (WVSCI)	0-100 0-1		WV Stream Condition Index (WVSCI)	0-100 0-1	
0 Sub-Total	3 .00	0		Sub-Total	3-100 0-1	0		Sub-Total	5 100	0		Sub-Total	0.00	0	Sub-Total	0 100 0-1	0
	<u>J</u>	J	L.			Ü	ı	Cas 10tal		, ,					555 TOWN		
PART II - Index and Ui	nit Score		ſ	PART II - Inc	lex and Unit Score		Ī	PART II - Index a	nd Unit Score			PART II - Index and U	nit Score		PART II - Index and U	Init Score	
													,				
Index	Linear Feet	Unit Score		Index	Linear Feet	Unit Score		Index	Linear F	eet Unit Score	е	Index	Linear Feet	Unit Score	Index	Linear Feet	Unit Score
0.735	66	48.51	l l	0	0	0		0	0	0		0	0	0	0	0	0

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

STREAM NAMES-J70 AR	LOCATION Falls Run					
STATION # RIVERMILE	STREAM CLASS Perennial					
LAT <u>38.779630</u> LONG <u>-80.526221</u>	RIVER BASIN Braxton County					
STORET#	AGENCY Potesta					
INVESTIGATORS SBB/ABK						
FORM COMPLETED BY ABK	DATE 11/22/2022 TIME 1025 AM REASON FOR SURVEY Baseline Assessmen					

	<u> </u>
WEATHER CONDITIONS	Now Past 24 Has there been a heavy rain in the last 7 days?
SITE LOCATION/MAP	Colvets. Colvets. Timber Med Bidgel Access Road.
STREAM CHARACTERIZATION	Stream Subsystem Percrinial Intermittent Tidal Stream Origin Glacial Non-glacial montane Swamp and bog Swamp and bog Stream Type Catchment Area km²

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

WATERS FEATURI		Predon Fores Field Agric	Pasture Industria	reial	Local Watershed NPS □ No evidence □ Son □ Obvious sources □ Local Watershed Eros □ None □ Moderate	ne potential sources					
RIPARIA VEGETA (18 meter	N TION buffer)		e the dominant type and s SI ant species present Sycamo		minant species present Ho	rbaceous					
INSTREA FEATURI		Estimate Samplin Area in Estimate	ted Reach Length ted Stream Width ng Reach Area km² (m²x1000) ted Stream Depth e Velocity weg) 25 ft 625 ft/2 627 ft/2	km²	High Water Mark 2	□ Partly open □ Partly shaded □ Shaded High Water Mark 2.5π m Proportion of Reach Represented by Stream Morphology Types Riffle 5 % Run 35 % Pool ∞ %					
LARGE WOODY DEBRIS LWD o m² Density of LWD o m²/km² (LWD/ reach area) N/A											
AQUATIO VEGETA		Boote Float Domina	Indicate the dominant type and record the dominant species present Rooted emergent								
Wild reclaim to the	QUALITY	Specific Dissolv pH 5.99 s Turbid	cature 1.0 C C Conductance 0.084 us/on ed Oxygen 13.65 mg/L C C C C C C C C C C C C C C C C C C C	,	Petroleum Fishy Water Surface Oils Slick Sheen Other Turbidity (if not measure)	Vormal/None Sewage Petroleum Chemical Fishy Other Water Surface Oils Slick Sheen Globs Flecks ✓ None Other Turbidity (if not measured) Clear ✓ Slightly turbid					
SEDIMEN SUBSTRA		Odors Norm Chen Other	nical Anaerobic	Petroleum None	Epoking at stones which	Sludge Sawdust Paper fiber Sand Cherict shells Other Epoking at stones which are not deeply embedded, are the undersides black in color?					
INC			COMPONENTS		ORGANIC SUBSTRATE C						
Substrate	(should a Diamet	dd up to 1 er	% Composition in	Substrate	(does not necessarily add Characteristic	% Composition in					
Bedrock			Sampling Reach	Type Detritus	sticks, wood, coarse plant	Sampling Area					
Boulder	> 256 mm (10"))	10	Dearius	materials (CPOM)	20					
Cobble	64-256 mm (2.5		40	Muck-Mud	black, very fine organic	0					
Gravel	2-64 mm (0.1"-2	2.5")	20	1	(FPOM)						
Sand	0.06-2mm (gritt	y)	30	Marl	grey, shell fragments						
Silt	0.004-0.06 mm		0]	ľ						
Clay	< 0.004 mm (sli	ck)	0]							

HABITAT ASSESSMENT FIELD DATA SHEET - HG - USE ON ALL STREAMS (FRONT)

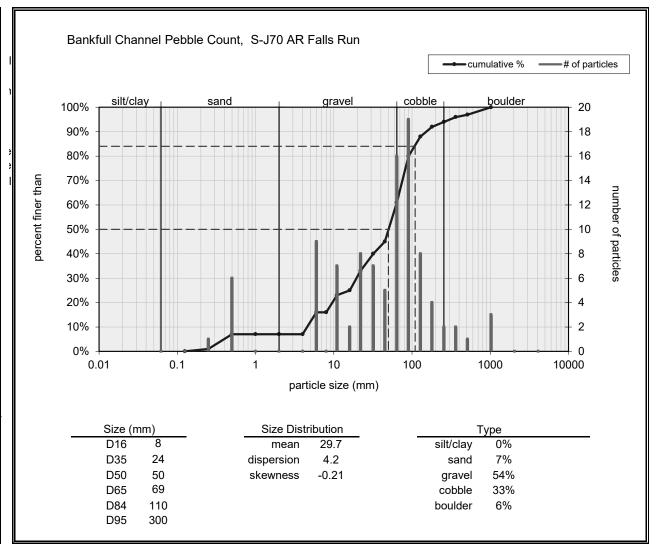
STREAM NAMES-J70 AR	LOCATION Falls Run						
STATION # RIVERMILE	STREAM CLASSPerennial						
LAT 38.779630 LONG -80.526221	RIVER BASIN Braxron County						
STORET#	AGENCYPotesta						
INVESTIGATORS SBB/ABK							
FORM COMPLETED BY ABK	DATE 11/22/2022 TIME 1025 AM PM REASON FOR SURVEY Baseline Assessment						

	Habitat		Condition	ı Category				
	Parameter	Optimal	Suboptimal	Marginal	Poor			
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.			
	SCORE 16	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
ı sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.			
ted in	SCORE 15	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).			
ıram	score 7	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
P ₂	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.			
	SCORE 12	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.			
	SCORE 15	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

	Habitat		Condition	ı Category				
	Parameter	Optimal	Suboptimal	Marginal	Poor			
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.			
	SCORE 19	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
ding reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.			
samp	score 4	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing devirogram.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.			
e eva	SCORE 8	Left Bank 10 9	8 7 6	5 4 3	2 1 0			
to be	SCORE 8	Right Bank 10 9	8 7 6	5 4 3	2 1 0			
Parameters	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.			
	SCORE 6	Left Bank 10 9	8 7 6	5 4 3	2 1 0			
	SCORE 7	Right Bank 10 9	8 7 6	5 4 3	2 1 0			
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.			
	$\frac{7}{5}$	Left Bank 10 9	8 7 6	5 4 3	2 1 0			
	SCORE 5	Right Bank 10 9	8 7 6	5 4 3	2 1 0			

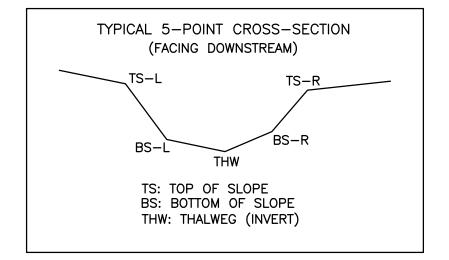
Total Score 129


BENTHIC MACROINVERTEBRATE FIELD DATA SHEET

STREAM NAMES-J	170	AR					LOC	CATIO	ทFall	s F	Rur	1								
STATION #	_ R	IVE	RM	ILE_			STR	EAM (CLAS	sΡ	ere	nni	al							
LAT 38.779630	L	ONO	j -80	.5262	21		RIV	ER BA	SIN E	3ra	axt	on	Со	unt	у					
STORET#							AGE	ENCY	Potes	sta	(
INVESTIGATORSS													1	LOT	NUMBER				_	
FORM COMPLETED	BY	A	В	K	e Z	()	DAT TIM	FE 11/2	22/2022 25 AM				1	REAS	SON FOR SURVEY Ba	aselir	ne A	sse	ssm	ent
HABITAT TYPES	In	dica Cob Sub	ite the	ne pe	ercen _% //acro	tage of Sn	each lags	habitat %	t type	$1 V_e$	oet:	ated	Bani	ks	%	%				
SAMPLE	G	ear	used		D-fi	ame [kick	-net												
COLLECTION	∥ н	ow v	vere	the	samr	oles coll	lected:	· [□wac	ling		г	fror	n bar	nk 🔲 from boa	ıt				
										-					ik Irom ood					
	║□	Cob	ble			r of jab Sn phytes	ags		n in ea	Vε	geta	itat ated ther	Ban	ks	Sand)	_				
GENERAL COMMENTS						abitat kick				hi	n l	-0	D.	LO	D lacked riffle	ha	bita	at I	arg	je
QUALITATIVE I Indicate estimated Dominant					0 = 2		t/Not	Obse	rved,			nes	e, 2	= C	fommon, 3= Abuno		1		3	4
Filamentous Algae					-	1 2	-	-					nve	rtebi	rates	-	-	_	3	-
Macrophytes						1 2					Fisl					0	1	2	3	4
	l abı	und	anc	e:	0 = org	Absen anisms	it/Not s), 3=	Obse Abur	ıdant	(>	10	org	anis	sms)	rganisms), 2 = Coi , 4 = Dominant (>:				ıs)	
Porifera	0	1				Anis	-		()	1	2			Chironomidae	0	1	2	3	4
Hydrozoa	0	1	2	3	4		ptera)	1	2	3	4	Ephemeroptera	0	1	2	3	4
Platyhelminthes	0	1	2	3	4		iptera)	1	2	3	4	Trichoptera	0	1	2	3	4
Turbellaria	0	1	2	3	4		optera)	1	2	3	4	Other	0	1	2	3	4
Hirudinea	0	1	2	3	4	_	dopte	ra)	1	2	3	4						
Oligochaeta	0	1	2	3	4	Siali)	1	2	3	4						
Isopoda	0	1	2	3	4		dalida	ae)	1	2	3	4						
Amphipoda	0	1	2	3	4	^	lidae)	1	2	3	4						
Decapoda	0	1	2	3	4		ididae ıliidae)	1	2	3	4						
Gastropoda Bivalvia	0	1	2	3	4 4		iliidae nidae)	1	2	3	4 4						
Divaivia	U	1	2	5	4	Culc)	1	2	3	4						
										_	_			_ (-	_

SITE ID:	5-5-	70	AR	F	Talls	Ru	7			
	-	7077								
COLLECTOR	R(S):	3415	BB							
85 95 97 95 65 65 66 80 76	10 60 10 85 10 780 15 90 30	MS 120 75 10 170 230 35 20	10 90 MS 55 30 150 80 30	52 175 30 170 60 FG 70 270 72	HB 300 FS HS HS HS HS HS HS	100 30 100 50 50 100 100 100 100 100 100 100	304000000000000000000000000000000000000	FG FG 50 50 50	30 53 10 76 CG CG 10 70 70 70	MOTES: (HM) 5 colours on each side of Timberhat Brock due to strain being inaccessable under bridge
Riffle Pebble	Count									NOTES:
										NOTES:

Inches	PARTICLE	Millimeters	
	Silt / Clay	< .062	S/C
	Very Fine	.962125	_
	Fine	.125 (25)	S
	Medium	25 (50)	A
	Coarse	,50 - 1,0	D
0408	Very Coarse	1.0 - 2	_
.0816	Very Fine	2-4	- X +
.1622	Fine	4 (5.7)	
.2231	Fine	5.7 - 8	G
.3144	Medium	8 - 11.3	IR
.4453	Medium	11.3 - 16	W.
.6389	Coarse	16 (22,6)	E
.89 - 1.3	Coarse	22.6 - 32	17
1.3 - 1.8	Very Coarse	32 - 45	3, "
18-25	Very Coarse	45 - 64	A Sain
2.5 - 3.5	Smaß	64 - 90	以月
3.5 - 5.0	Small	90 - 128	
5.0 - 7.1	Large	128 - 180	
7.1 - 10.1	Large	180 - 256	
10.1 - 14.3	Small	256 - 362	(B)
14.3 - 20	Smat	362 512	BOU
20 - 40	Medium	512 (1024)	È
40 - 80	Large-Vry Large	1024 - 2048	8
	Badrock		BDRK


Bankfull Channel	
Balikiuli Challiel	
Material Size Range (mm)	Count
silt/clay 0 - 0.062	0
very fine sand 0.062 - 0.125	0
fine sand 0.125 - 0.25	1
medium sand 0.25 - 0.5	6
coarse sand 0.5 - 1	0
very coarse sand 1 - 2	0
very fine gravel 2 - 4	0
fine gravel 4 - 6	9
fine gravel 6 - 8	0
medium gravel 8 - 11	7
medium gravel 11 - 16	2
coarse gravel 16 - 22	8
coarse gravel 22 - 32	7
very coarse gravel 32 - 45	5
very coarse gravel 45 - 64	16
small cobble 64 - 90	19
medium cobble 90 - 128	8
large cobble 128 - 180	4
very large cobble 180 - 256	2
small boulder 256 - 362	2
small boulder 362 - 512	1
medium boulder 512 - 1024	3
large boulder 1024 - 2048	0
very large boulder 2048 - 4096	0
total particle count:	100
bedrock	
clay hardpan	
detritus/wood	
artificial	
total count:	100
Note:	

S-J70 AR

S-J70 AR BASELINE THALWEG PROFILE DISTANCE ALONG CROSS-SECTION (FT) PROFILE LEGEND PROFILE H: 1"=10' | '"-5' **EXISTING STREAM PROFILE** SCALE: V: 1"=5' INVERT ALONG THALWEG

AS-BUILT TABLE: S-J70 AR CROSS SECTION A					
		PRE-CROSSING		AS-BUILT	
PT. LOC.	NORTHING	EASTING	ELEV.	VERT. DIFF.	HORZ. DIFF.
TS-L	14082766.41	1775371.84	920.21		
BS-L	14082763.50	1775378.04	918.39		
THW	14082760.37	1775384.48	916.54		
BS-R	14082737.99	1775429.08	918.36		
TS-R	14082733.12	1775437.72	921.29		

LEGEND

EXISTING SURVEY-LOCATED THALWEG

1176.87 **+** EXISTING SURVEYED GROUND SHOT ELEVATION

SURVEY NOTES:

- 1. THIS MAP HAS BEEN ORIENTED TO NAD 1983 UTM ZONE 17N, AND VERTICALLY TO THE NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD 88), USING REAL TIME DGPS. FIELD LOCATIONS WERE COMPLETED ON
- 2. EASEMENT LINES SHOWN ON PLAN VIEW WERE PROVIDED BY MOUNTAIN VALLEY PIPELINE.
- 3. SURVEY POINTS FOR CROSS SECTIONS AND THALWEG PROFILES COLLECTED IN 2021 HAVE BEEN USED IN COMBINATION WITH SURVEY POINTS AND COLLECTED PREVIOUSLY IN 2020 IN ORDER TO GENERATE THE PRE-CROSSING SURFACE SHOWN IN PLAN. DUE TO NATURAL EROSIONAL STREAM PROCESSES THAT OCCUR OVER TIME, MINOR ADJUSTMENTS TO THE PROFILE ALIGNMENTS MAY HAVE BEEN REQUIRED IN ORDER TO GENERATE A CLEAN PRE-CROSSING SURFACE.
- 4. ALL SECTION VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.
- 5. POST-CROSSING SURVEY INFORMATION SHOWN IN RED. DATA PENDING.
- 6. POST-CROSSING SURVEY POINTS FOR CROSS SECTIONS AND THALWEG ARE PROJECTED ONTO PRE-CROSSING SECTION AND PROFILE VIEWS FOR COMPARISON.

PRE-CROSSING PHOTOS

PHOTO TAKEN LOOKING DOWNSTREAM FROM UPSTREAM IMPACT LIMITS

PHOTO TAKEN LOOKING UPSTREAM FROM DOWNSTREAM IMPACT LIMITS

POST-CROSSING PHOTOS

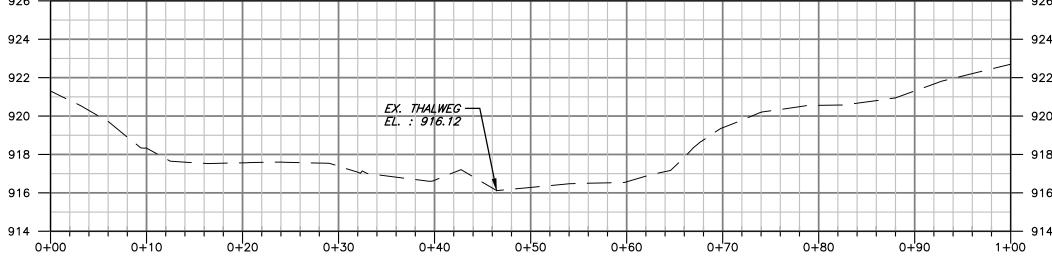

PENDING CROSSING

PHOTO TAKEN LOOKING DOWNSTREAM UPSTREAM FROM IMPACT LIMITS

PENDING CROSSING

PHOTO TAKEN LOOKING UPSTREAM FROM UPSTREAM IMPACT LIMITS

S-J70 AR BASELINE CROSS-SECTION A

DISTANCE ALONG CROSS-SECTION (FT)

CROSS SECTION LEGEND — EXISTING GRADE

NOTE: ALL SECTION VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.

PRE-CROSSING

Checked

Approved NOTED Scale:

DEC. 2022Date:

21-0244-002 Project No.

Drawing No