Baseline Assessment – Stream Attributes

Reach S-L35 (Temporary Access Road) Perennial Spread D Nicholas County, West Virginia

Data	Included
Photos	✓
SWVM Form	✓
FCI Calculator and HGM Form	N/A – Perennial stream (not shadeable, slope >4%)
RBP Physical Characteristics Form	✓
Water Quality Data	N/A – Low flow
RBP Habitat Form	✓
RBP Benthic Form	✓
Benthic Identification Sheet	N/A – Low flow
Wolman Pebble Count	N/A - Reach not fully assessable, Temp AR
Reference Reach Software Pebble Count Data	N/A - Reach not fully assessable, Temp AR
Longitudinal Profile and Cross Sections	✓

Modified RBP – no flow

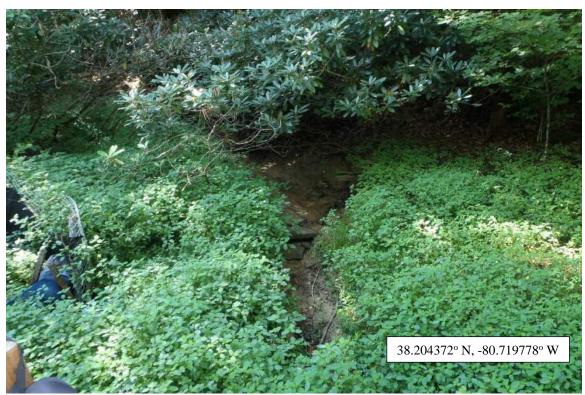


Photo Type: US View at US Side of Bridge Location, Orientation, Photographer Initials: Upstream Side of Bridge, Upstream View, TF/AG/WP/EW

Photo Type: DS View at DS Side of Bridge
Location, Orientation, Photographer Initials: Downstream Side of Bridge, Downstream View, TF/AG/WP/EW

Spread D Stream S-L35 (Temporary Access Road) Nicholas County

Photo Type: Facing W Across Bridge Location, Orientation, Photographer Initials: Facing West Across Bridge, TF/AG/WP/EW

Photo Type: Facing N Across Bridge Location, Orientation, Photographer Initials: Facing North Across Bridge, TF/AG/WP/EW

West Virginia Stream and Wetland Valuation Metric (SWVM) Version 2.1, September 2017

JSACE FILE NO./ Project Name: /2.1, Sept 2015)		M	ountain Valley Pipeline		COORDINATES: imal Degrees)	Lat.	38.204372	Lon.	-80.719778	WEATHER:	Clear	r/Sunny 83 °F	DATE:	8/25	5/2021
IMPACT STREAM/SITE ID A (watershed size {acreage}, u			S-L35 TEMP AF	, Riley Branch TE	MP AR		MITIGATION STREAM CLAS (watershed size {acr	SS./SITE ID AND S eage}, unaltered or impa					Comments:		
TREAM IMPACT LENGTH:	52	FORM C			ORDINATES: imal Degrees)	Lat.		Lon.		PRECIPITATION PAST 48 HRS:			Mitigation Length:		
Column No. 1- Impact Existing	Condition (Deb	it)	Column No. 2- Mitigation Existi	g Condition - Base	ine (Credit)		Column No. 3- Mitigation Post Comple		Years	Column No. 4- Mitigation Proje Post Completion (nrs	Column No. 5- Mitigation Project	cted at Maturi	ty (Credit)
tream Classification:	Peren	nnial	Stream Classification:				Stream Classification:		0	Stream Classification:	0		Stream Classification:		0
Percent Stream Channel Slo	pe	1.91	Percent Stream Channe	Slope			Percent Stream Channe	l Slope	0	Percent Stream Channel Slo	ope	0	Percent Stream Channel	Slope	0
HGM Score (attach dat	ta forms):		HGM Score (atta	ch data forms):			HGM Score (atta	ach data forms):		HGM Score (attach da	ata forms):		HGM Score (attach	data forms):	
		Average			Average				Average			Average			Average
lydrology			Hydrology				Hydrology			Hydrology			Hydrology		
liogeochemical Cycling labitat		0	Biogeochemical Cycling Habitat		0		Biogeochemical Cycling Habitat		0	Biogeochemical Cycling Habitat		0	Biogeochemical Cycling Habitat		0
PART I - Physical, Chemical and E	Biological Indica	ators	PART I - Physical, Chemica	l and Biological Ind	icators		PART I - Physical, Chemica	l and Biological Inc	dicators	PART I - Physical, Chemical and	Biological Indica	ators	PART I - Physical, Chemical an	d Biological I	ndicators
	Points Scale Range	Site Score		Points Scale Range	Site Score			Points Scale Range	Site Score		Points Scale Range	Site Score		Points Scale	Range Site Score
HYSICAL INDICATOR (Applies to all streams of	classifications)		PHYSICAL INDICATOR (Applies to all stre	ams classifications)			PHYSICAL INDICATOR (Applies to all stre	ams classifications)		PHYSICAL INDICATOR (Applies to all streams	classifications)		PHYSICAL INDICATOR (Applies to all stream	ns classifications	s)
SEPA RBP (High Gradient Data Sheet) . Epifaunal Substrate/Available Cover	0.00	46	USEPA RBP (Low Gradient Data Shee 1. Epifaunal Substrate/Available Cover				USEPA RBP (High Gradient Data Shee 1. Epifaunal Substrate/Available Cover			USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover	0.00		USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover		
. Embeddedness	0-20	16 17	Pool Substrate Characterization	0-20 0-20			Epiraunai Substrate/Available Cover Embeddedness	0-20 0-20		Epilaunai Substrate/Available Cover Embeddedness	0-20 0-20		Epilaunai Substrate/Available Cover Embeddedness	0-20 0-20	
. Velocity/ Depth Regime	0-20	16	3. Pool Variability	0-20			Velocity/ Depth Regime	0-20		3. Velocity/ Depth Regime	0-20		3. Velocity/ Depth Regime	0-20	
. Sediment Deposition	0-20	15	4. Sediment Deposition	0-20			4. Sediment Deposition	0-20		Sediment Deposition	0-20		Sediment Deposition	0-20	
. Channel Flow Status	0-20	12	5. Channel Flow Status	0-20			5. Channel Flow Status	0-20		Channel Flow Status	0-20		5. Channel Flow Status	0-20	0-1
. Channel Alteration	0-20	18	Channel Alteration	0-20			6. Channel Alteration	0-20		6. Channel Alteration	0-20		6. Channel Alteration	0-20	•
. Frequency of Riffles (or bends)	0-20	15	7. Channel Sinuosity	0-20			7. Frequency of Riffles (or bends)	0-20		7. Frequency of Riffles (or bends)	0-20		7. Frequency of Riffles (or bends)	0-20	
. Bank Stability (LB & RB)	0-20	17	8. Bank Stability (LB & RB)	0-20			8. Bank Stability (LB & RB)	0-20		8. Bank Stability (LB & RB)	0-20		8. Bank Stability (LB & RB)	0-20	
. Vegetative Protection (LB & RB) 0. Riparian Vegetative Zone Width (LB & RB)	0-20 0-20	15 15	 Vegetative Protection (LB & RB) Riparian Vegetative Zone Width (LB & RE 	0-20) 0-20			Vegetative Protection (LB & RB) Riparian Vegetative Zone Width (LB & RE)	0-20 3) 0-20		Vegetative Protection (LB & RB) Riparian Vegetative Zone Width (LB & RB)	0-20 0-20		Vegetative Protection (LB & RB) Riparian Vegetative Zone Width (LB & RB)	0-20 0-20	
otal RBP Score	Suboptimal	156	Total RBP Score	Poor	0		Total RBP Score	Poor	0	Total RBP Score	Poor	0	Total RBP Score	Poor	0
Sub-Total	Gabopaniai	0.78	Sub-Total	1.00.	0		Sub-Total	1 001	0	Sub-Total	1 001	0	Sub-Total		0
HEMICAL INDICATOR (Applies to Intermittent	and Perennial Stre	eams)	CHEMICAL INDICATOR (Applies to Intern	ittent and Perennial Str	eams)		CHEMICAL INDICATOR (Applies to Interm	nittent and Perennial St	reams)	CHEMICAL INDICATOR (Applies to Intermitter	nt and Perennial Str	reams)	CHEMICAL INDICATOR (Applies to Intermit	tent and Perenni	ial Streams)
WDEP Water Quality Indicators (General)			WVDEP Water Quality Indicators (Gene	eral)			WVDEP Water Quality Indicators (Gen	eral)		WVDEP Water Quality Indicators (General)		WVDEP Water Quality Indicators (Gener	al)	
pecific Conductivity			Specific Conductivity		(1)		Specific Conductivity			Specific Conductivity			Specific Conductivity		
100-199 - 85 points	0-90			0-90				0-90			0-90			0-90	
5.6-5.9 = 45 points	0-80		рп	5-90 0-1			рп	5-90 0-1		pn	5-90 0-1		рп	5-90	0-1
0.0-3.9 = 43 points			DO		(1)		DO			DO			DO		
	10-30			10-30				10-30			10-30			10-30	
ub-Total			Sub-Total		0		Sub-Total		0	Sub-Total		0	Sub-Total		0
SIOLOGICAL INDICATOR (Applies to Intermitte	ent and Perennial	Streams)	BIOLOGICAL INDICATOR (Applies to Inte	rmittent and Perennial	Streams)		BIOLOGICAL INDICATOR (Applies to In	termittent and Perenn	nial Streams)	BIOLOGICAL INDICATOR (Applies to Interm	nittent and Perenni	ial Streams)	BIOLOGICAL INDICATOR (Applies to Inte	rmittent and Pe	erennial Streams)
VV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)				WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)	1 1		WV Stream Condition Index (WVSCI)	$\overline{}$	
0	0-100 0-1			0-100 0-1				0-100 0-1			0-100 0-1			0-100	0-1
ub-Total		0	Sub-Total		0		Sub-Total		0	Sub-Total		0	Sub-Total		0
PART II - Index and Un	it Score	П	PART II - Index	and Unit Score	П		PART II - Index	and Unit Score		PART II - Index and U	nit Score		PART II - Index and	I Init Score	
ART II - IIIGA AIIG OII	30018		FART II - IIIUex	and Offic Ocore			FAINT II - IIIUUX	and omit doore		PART II - IIIUUX AIIU U	iii. Goorg		FART II - IIIdex and	C.III GCOIE	
Index	Linear Feet	Unit Score	Index	Linear Feet	Unit Score		Index	Linear Feet	Unit Score	Index	Linear Feet	Unit Score	Index	Linear F	eet Unit Score
0.790	52	41.08	0	0	0		0	0	0	0	0	0	0	0	0

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

STREAM NAME S-L35 (TEMP AR)	LOCATION Riley Branch T	EMP AR, Spread D
STATION # RIVERMILE	STREAM CLASS Perennial	
LAT 38.204372 LONG -80.719778	COUNTY Nicholas	
STORET#	AGENCYPotesta/ Edge	
INVESTIGATORS EW, TF, WP, AG		
FORM COMPLETED BY Emma Weaver	DATE 8-25-21 TIME 1130	REASON FOR SURVEY Preliminary Assessment

WEATHER CONDITIONS	Now Past 24 hours Yes No Storm (heavy rain) rain (steady rain) showers (intermittent) % cloud cover clear/sunny Past 24 hours Yes No Air Temperature 83 F ° C Other %
SITE LOCATION/MAP	Draw a map of the site and indicate the areas sampled (or attach a photograph) FOR SECO SECO SECO SECO SECO SECO SECO SECO
	18' mide MVP AR Gray
	FOREST FOREST FOREST TOP
STREAM CHARACTERIZATION	Stream Subsystem Perennial Intermittent Tidal Coldwater Warmwater Stream Origin Catchment Area km² Glacial Non-glacial montane Swamp and bog Other_

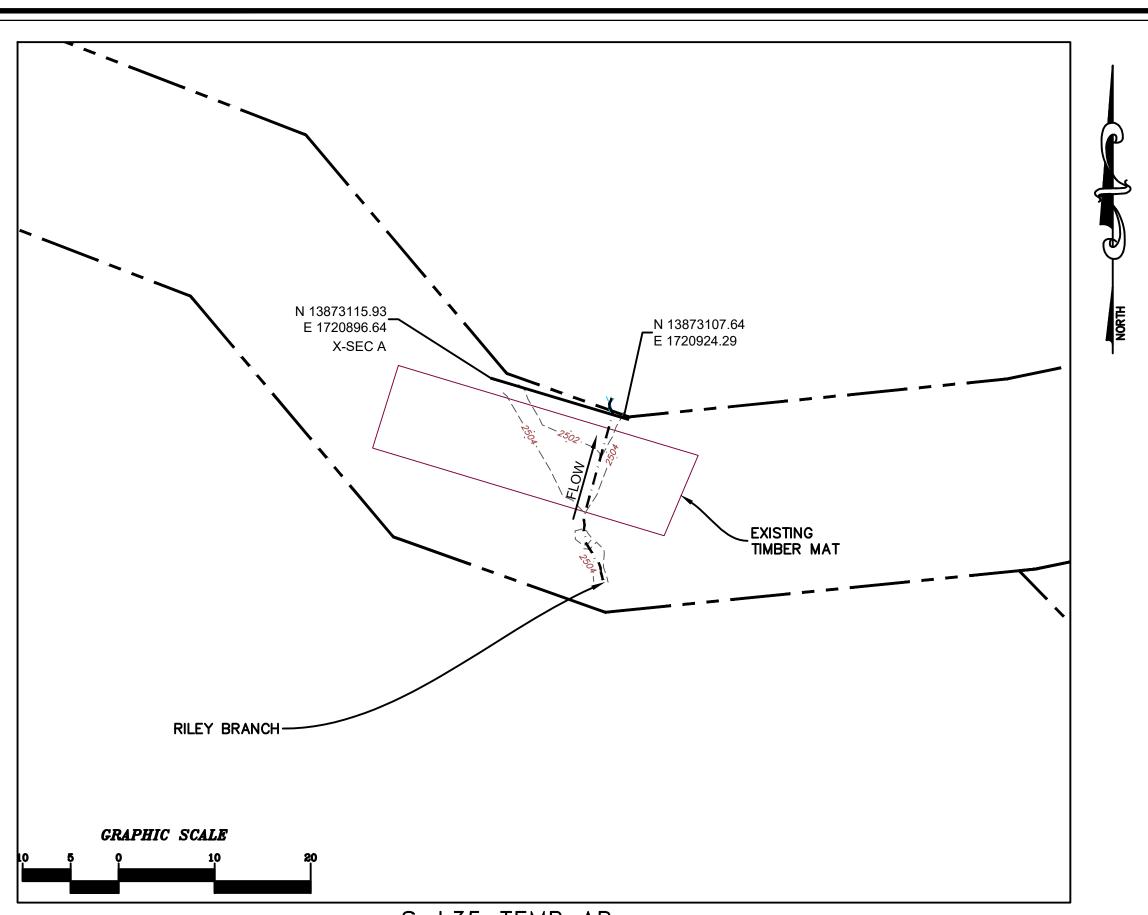
PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

WATERS FEATURI		☐ Fores		duse rcial	Local Watershed NPS ☐ No evidence ☐ Son	
		Agric	ultural	al 	Obvious sources	
		Resid	ential		Local Watershed Eros None Moderate	Heavy
RIPARIA VEGETA (18 meter	TION		e the dominant type and S ant species present		minant species present He	erbaceous
INSTREA FEATURI		Estima	ed Reach Length	m	Canopy Cover ☐ Partly open ☐ Part	ly shaded Shaded
		2017/2012/0960	ed Stream Width ng Reach Area		High Water Mark	m
		(5)	km² (m²x1000)	16	Proportion of Reach R Morphology Types	epresented by Stream
		22 X	ed Stream Depth		Riffle % Pool %	Run%
			Velocity m	154	Channelized □Yes	□No
		(at thal	weg) Dry	7.43.7	Dam Present ☐ Yes	
LARGE V	VOODY		m²			
DEBRIS		l	of LWDn	n ² /km ² (LWD/	reach area)	
AQUATIO VEGETA	C TION	Indicate Roote Float	e the dominant type and cd emergent Roing Algae At	record the do boted submerge ttached Algae	minant species present nt Rooted floating	☐Free floating
		Domina	nnt species present			
		Portion	of the reach with aquat	ic vegetation	%	
WATER (QUALITY	Specific	cature C		Water Odors Normal/None □Sewage □Petroleum □Fishy	Chemical Other
		рН			Water Surface Oils ☐ Slick ☐ Sheen ☐ ☐ None ☐ Other	Globs Flecks
		l	ity strument Used		Turbidity (if not measu ☐ Clear ☐ Slightly tu ☐ Opaque ☐ Stained	rred) rbid Turbid Other
SEDIMEN SUBSTRA		Odors Norm Chem	al Sewage iical Anaerobic	Petroleum None	Deposits ☐ Sludge ☐ Sawdust☐ Relict shells	☐Paper fiber ☐Sand Other
		Oils	nt □Slight □Moderat		are the undersides blac	ch are not deeply embedded, ck in color?
-	200		COMPONENTS		ong wag gymann i m	ACAMPONENTES
INC		STRATE dd up to 1	COMPONENTS (00%)		ORGANIC SUBSTRATE C (does not necessarily add	
Substrate Type	Diamet	er	% Composition in Sampling Reach	Substrate Type	Characteristic	% Composition in Sampling Area
Bedrock				Detritus	sticks, wood, coarse plant materials (CPOM)	
Boulder	> 256 mm (10"))			materials (Cl OW)	
Cobble	64-256 mm (2.5	5"-10")		Muck-Mud	black, very fine organic (FPOM)	
Gravel	2-64 mm (0.1"-	2.5")			,	
Sand	0.06-2mm (gritt	y)		Marl	grey, shell fragments	
Silt	0.004-0.06 mm					
Clay	< 0.004 mm (sli	ck)				

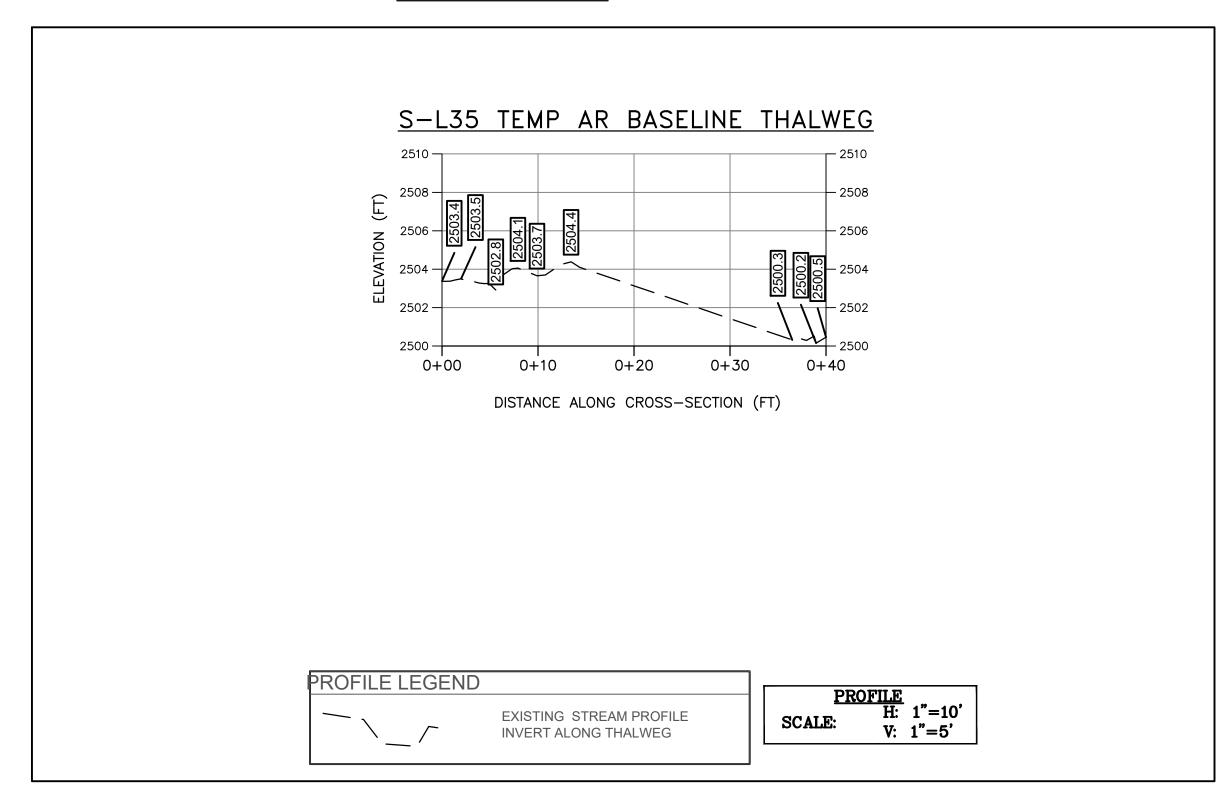
HABITAT ASSESSMENT FIELD DATA SHEET - HG - USE ON ALL STREAMS (FRONT)

STREAM NAME S-L35 (TEMP AR)	LOCATION Riley Branch TEMP AR
STATION # RIVERMILE	STREAM CLASS Perennial
LAT <u>38.204372</u> LONG <u>-80.719778</u>	COUNTY Nicholas
STORET#	AGENCY Potesta/ Edge
INVESTIGATORS EW, TF, WP, AG	
FORM COMPLETED BY Emma Weaver	DATE 8-25-21 REASON FOR SURVEY Preliminary Assessment

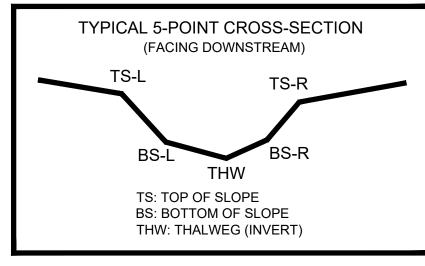
	Habitat		Condition	Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
	SCORE 16	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.
ed ir	SCORE 17	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime N/A	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).
aran	SCORE 16	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
4	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
	SCORE 15	20 19 18 17 16	[5] 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
	5. Channel Flow Status N/A	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0


HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

	Habitat		Conditio	n Category	
	Parameter Parameter	Optimal	Suboptimal	Marginal	Poor
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
	SCORE 18	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
ing reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.
ampl	SCORE 15	20 19 18 17 16	(15) 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing demograph.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.
e cva	SCORE 8	Left Bank 10 9	8 7 6	5 4 3	2 1 0
to be	SCORE 9	Right Bank 10	8 7 6	5 4 3	2 1 0
Parameters	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
	SCORE 7	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE 8	Right Bank 10 9	8 7 6	5 4 3	2 1 0
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.
	SCORE 7	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE 8	Right Bank 10 9	8 7 6	5 4 3	2 1 0


Total Score 156

BENTHIC MACROINVERTEBRATE FIELD DATA SHEET


	_00	(TEI	MP /	٩R)			LO	CATIO	N Riley	Bra	ınch	TEN	ИР A	R					
STATION #	R	IVE	RM	LE_			STF	REAM	CLASS F	Pere	nnia	ıl							
LAT 38.204372	L	ONO	j -80	.7197	78		CO	UNTY	Ni	chol	as								
STORET#							AG	ENCY	Potest	a/ E	Edg	е							
INVESTIGATORS	ΞW,	TF,	WP,	AG			-					1	OT	NUMBER					
FORM COMPLETE) BY	En	nm	a V	Vea	ave	DA'	TE <u>8-</u> 11	25-21 130			1	REAS	SON FOR SURVEY	elimina	ry Ass	essm	ent	
HABITAT TYPES	In	dica Co Sub	ite thobbli	e pe	rcen % Iacro	tage of	of each Snags _ s	habita %	t type pr	eser eget	i t ated other	Banl	ks	%	%				
SAMPLE	G	ear	used		D-fr	ame	kick	k-net											
COLLECTION	1						llected		□wadin					k from boa					
		Cob	ble			ΠS	nags		n in eacl □V	eget	ated	Ban	ks	Sand)					
GENERAL COMMENTS	N	lo	b	en	th	ics	со	lled	cted	. 7	in	nb	er	mat bridge	e/lo)W	fl	OV	٧.
QUALITATIVE Indicate estimated Dominant									erved, 1	=]	Raro	e, 2	= C	ommon, 3= Abuno	dant,	4 =	=		
Periphyton					0	1	2 3	4		Sli	mes				0	1	2	3	4
					-	-	2 3 2 3	-				nve	rtebr	ates	-	_	2 2	-	-
Periphyton					0	1		4			croi	nve	rtebr	ates	0	1	_	3	4
Periphyton Filamentous Algae Macrophytes FIELD OBSERV Indicate estimated	ATI(und	anc	e:	0 0 ACl 0 = orgs	1 1 ROB Abse	2 3 2 3 ENTH ent/No ns), 3=	4 4 IOS t Obse	ndant (Ma Fis 1 = >10	croi h Rar org	e (1 anis	-3 or	rganisms), 2 = Coi , 4 = Dominant (>:	0 0 mmoi 50 oi	1 1 n (3	2 2 -9 nism	3 3	4 4
Periphyton Filamentous Algae Macrophytes FIELD OBSERV Indicate estimated	ATIO	und	anc	e:	0 0 ACI 0 = orga	1 1 ROB Abse	2 3 2 3 ENTH ent/No as), 3=	4 4 4 IOS t Obse	ndant (Ma <u>Fis</u> 1 = >10	croi h Rar org	e (1 anis	-3 or sms)	rganisms), 2 = Coi , 4 = Dominant (>: Chironomidae	0 0 0 mmoi 50 or	1 1 n (3 rgan	2 2 2 -9 nism	3 3 3	4 4
Periphyton Filamentous Algae Macrophytes FIELD OBSERV Indicate estimated Porifera Hydrozoa	ATIO d abu	1 1	2 2	3 3	0 0 0 0 = 0 orgs	1 1 ROB Abse	2 3 2 3 ENTH ent/No ens), 3=	4 4 4 IOS t Obse	0 0	Ma Fis 1 = >10	Rar org	e (1 anis	-3 or sms)	rganisms), 2 = Cor , 4 = Dominant (> Chironomidae Ephemeroptera	0 0 0 mmo 50 or	1 1 n (3 rgan	2 2 -9 nism 2 2	3 3 3 3	4 4 4
Periphyton Filamentous Algae Macrophytes FIELD OBSERV Indicate estimated Porifera Hydrozoa Platyhelminthes	0 0 0	1 1 1	2 2 2	3 3 3	0 0 0 ACI 0 = orgs	1 1 ROB Abseanism Ania Zyg Hen	2 3 2 3 ENTH ent/No ens), 3=	4 4 4 IOS t Obse Abut	0 0 0	Ma Fis 1 = >10	Rar org	3 3 3	-3 or sms)	rganisms), 2 = Con , 4 = Dominant (>) Chironomidae Ephemeroptera Trichoptera	0 0 0 mmo 50 or	1 1 1 m (3 rgan 1 1 1 1 1	2 2 2 9 nism 2 2 2	3 3 3 3 3 3	4 4 4 4
Periphyton Filamentous Algae Macrophytes FIELD OBSERV. Indicate estimated Porifera Hydrozoa Platyhelminthes Turbellaria	0 0 0 0	1 1 1 1	2 2 2 2	3 3 3 3	0 0 0 0 = 0 orgs	1 1 ROB Abseanism Ania Zyg Her Col	2 3 2 3 ENTH ent/No ns), 3= sopter goptera mipters eopter	4 4 4 IOS t Obse Abut	0 0 0 0	Ma Fis 1 = >10	Rar org	3 3 3 3	-3 or sms)	rganisms), 2 = Cor , 4 = Dominant (> Chironomidae Ephemeroptera	0 0 0 mmo 50 or	1 1 n (3 rgan	2 2 -9 nism 2 2	3 3 3 3	4 4 4
Periphyton Filamentous Algae Macrophytes FIELD OBSERV Indicate estimated Porifera Hydrozoa Platyhelminthes Turbellaria Hirudinea	0 0 0 0 0	1 1 1 1	2 2 2 2 2	3 3 3 3	0 0 0 0 0 = orgs	1 1 Abseanism Anism Zyg Hen Col Lep	2 3 2 3 ENTHent/Nons), 3= sopteramipteraeopteraidopter	4 4 4 IOS t Obse Abut	0 0 0 0 0	Ma Fis 1 = >10	Rar org	3 3 3 3 3	4 4 4 4 4	rganisms), 2 = Con , 4 = Dominant (>) Chironomidae Ephemeroptera Trichoptera	0 0 0 mmo 50 or	1 1 1 m (3 rgan 1 1 1 1 1	2 2 2 9 nism 2 2 2	3 3 3 3 3 3	4 4 4 4
Periphyton Filamentous Algae Macrophytes FIELD OBSERV Indicate estimated Porifera Hydrozoa Platyhelminthes Turbellaria Hirudinea Oligochaeta	0 0 0 0 0	1 1 1 1 1	2 2 2 2 2 2	3 3 3 3 3	0 0 0 0 = orgs	1 1 1 Anism Anism Zyg Her Col Lep Sia	2 3 2 3 ENTH ent/Nons), 3= sopter goptera mipters eopter bidopte lidae	4 4 4 IOS t Obse Abut a a a a	0 0 0 0 0	Ma Fis 1 = >10	Rar org	3 3 3 3 3 3	-3 on sms) 4 4 4 4 4 4	rganisms), 2 = Con , 4 = Dominant (>) Chironomidae Ephemeroptera Trichoptera	0 0 0 mmo 50 or	1 1 1 m (3 rgan 1 1 1 1 1	2 2 2 9 nism 2 2 2	3 3 3 3 3 3	4 4 4 4
Periphyton Filamentous Algae Macrophytes FIELD OBSERV Indicate estimated Porifera Hydrozoa Platyhelminthes Turbellaria Hirudinea Oligochaeta Isopoda	0 0 0 0 0 0	1 1 1 1 1 1 1	2 2 2 2 2 2 2 2	3 3 3 3 3 3 3	0 0 0 = 0 = 0 org: 4 4 4 4 4 4 4 4	1 1 1 Anism Anism Zyg Hei Col Lep Sia Con	2 3 2 3 ENTH ent/No ns), 3= sopter goptera mipters eopter bidopte lidae rydalid	4 4 4 IOS t Obse Abut a a a a a a a a	0 0 0 0 0 0	Ma Fis 1 = >10	Rarrorg 2 2 2 2 2 2 2 2	3 3 3 3 3 3 3	-3 or sms) 4 4 4 4 4 4 4	rganisms), 2 = Con , 4 = Dominant (>) Chironomidae Ephemeroptera Trichoptera	0 0 0 mmo 50 or	1 1 1 m (3 rgan 1 1 1 1 1	2 2 2 9 nism 2 2 2	3 3 3 3 3 3	4 4 4 4
Periphyton Filamentous Algae Macrophytes FIELD OBSERV. Indicate estimated Porifera Hydrozoa Platyhelminthes Turbellaria Hirudinea Oligochaeta Isopoda Amphipoda	0 0 0 0 0 0	1 1 1 1 1 1 1	2 2 2 2 2 2 2 2 2 2	3 3 3 3 3 3 3 3	0 0 0 0 0 = 0 orgs	1 1 1 Anism Anism Anism Zyg Hei Col Lep Sia Con Tip	2 3 2 3 ENTH ent/No ens), 3= sopter goptera mipter- eopter bidopte lidae rydalid ulidae	4 4 4 IOS t Obse Abut a a a a a a a a	0 0 0 0 0 0 0	Ma Fis 1 = >10	Rar org	3 3 3 3 3 3 3 3 3 3	-3 or 4 4 4 4 4 4 4 4 4 4	rganisms), 2 = Con , 4 = Dominant (>) Chironomidae Ephemeroptera Trichoptera	0 0 0 mmo 50 or	1 1 1 m (3 rgan 1 1 1 1 1	2 2 2 9 nism 2 2 2	3 3 3 3 3 3	4 4 4 4
Periphyton Filamentous Algae Macrophytes FIELD OBSERV Indicate estimated Porifera Hydrozoa Platyhelminthes Turbellaria Hirudinea Oligochaeta Isopoda Amphipoda Decapoda	0 0 0 0 0 0 0	1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 3 3 3 3 3 3 3 3	0 0 0 0 0 = orgs	1 1 1 ROB Abse	2 3 2 3 ENTH ent/No as), 3= asopter goptera mipter eopter bidopte lidae rydalid ulidae pidida	4 4 4 IOS t Obse Abut a a a a a a a a a a	0 0 0 0 0 0 0	Ma Fis 1 = >10 1 1 1 1 1 1 1 1 1	Rar org 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 3 3 3 3 3 3 3 3	-3 on 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	rganisms), 2 = Con , 4 = Dominant (>) Chironomidae Ephemeroptera Trichoptera	0 0 0 mmo 50 or	1 1 1 m (3 rgan 1 1 1 1 1	2 2 2 9 nism 2 2 2	3 3 3 3 3 3	4 4 4 4
Periphyton Filamentous Algae Macrophytes FIELD OBSERV. Indicate estimated Porifera Hydrozoa Platyhelminthes Turbellaria Hirudinea Oligochaeta Isopoda Amphipoda	0 0 0 0 0 0	1 1 1 1 1 1 1	2 2 2 2 2 2 2 2 2 2	3 3 3 3 3 3 3 3	0 0 0 0 0 = 0 orgs	1 1 1 Anism Anism Anism Col Lep Sia Con Tip Em	2 3 2 3 ENTH ent/No ens), 3= sopter goptera mipter eopter bidopte lidae rydalid ulidae	4 4 4 IOS t Obse Abut a a a a a a a a a a a a a a a a a a	0 0 0 0 0 0 0	Ma Fis 1 = >10	Rar org	3 3 3 3 3 3 3 3 3 3	-3 or 4 4 4 4 4 4 4 4 4 4	rganisms), 2 = Con , 4 = Dominant (>) Chironomidae Ephemeroptera Trichoptera	0 0 0 mmo 50 or	1 1 1 m (3 rgan 1 1 1 1 1	2 2 2 9 nism 2 2 2	3 3 3 3 3 3	4 4 4 4

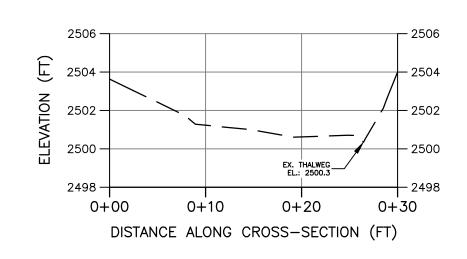
S-L35 TEMP AR

AS-BUILT TABLE: S-L35 TEMP AR CROSS SECTION A									
	Pi	PRE-CROSSING							
PT. LOC.	NORTHING	EASTING	ELEV	VERT. DIFF.	HORZ. DIFF.				
TS-L	13873115.22	1720899.01	2503.03						
BS-L	13873113.37	1720905.20	2501.28						
THW	13873108.34	1720921.97	2500.34						
BS-R	13873108.09	1720922.81	2501.10						
TS-R	13873107.64	1720924.29	2502.59						

SURVEY NOTES:

LEGEND

STUDY AREA (EASEMENT)


1176.87 **+**

EXISTING SURVEY-LOCATED THALWEG

EXISTING SURVEYED GROUND SHOT ELEVATION

- 1. THIS MAP HAS BEEN ORIENTED TO NAD 1983 UTM ZONE 17N, AND VERTICALLY TO THE NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD 88), USING REAL TIME DGPS. FIELD LOCATIONS WERE COMPLETED ON AUGUST 24, 2021.
- 2. EASEMENT LINES SHOWN ON PLAN VIEW WERE PROVIDED BY MOUNTAIN VALLEY PIPELINE.
- 3. SURVEY POINTS FOR CROSS SECTIONS AND THALWEG PROFILES COLLECTED IN 2021 HAVE BEEN USED IN COMBINATION WITH SURVEY POINTS COLLECTED PREVIOUSLY IN 2020 IN ORDER TO GENERATE THE PRE-CROSSING SURFACE SHOWN IN PLAN. DUE TO NATURAL EROSIONAL STREAM PROCESSES THAT CAN OCCUR OVER TIME, MINOR ADJUSTMENTS TO THE PROFILE ALIGNMENTS MAY HAVE BEEN REQUIRED IN ORDER TO GENERATE A CLEAN PRE-CROSSING SURFACE.
- 4. ALL SECTION VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.
- 5. POST-CROSSING SURVEY INFORMATION SHOWN IN RED. DATA PENDING.
- 6. POST-CROSSING SURVEY POINTS FOR CROSS SECTIONS AND THALWEG ARE PROJECTED ONTO PRE-CROSSING SECTION AND PROFILE VIEWS FOR COMPARISON.

S-L35 TEMP AR BASELINE CROSS-SECTION A DOWNSTREAM FROM BRIDGE

CROSS SECTION LEGEND — EXISTING GRADE

CROSS SECTION

H: 1"=10'

V: 1"=5'

NOTE: ALL SECTIONS VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.

PRE-CROSSING PHOTOS

PHOTO TAKEN LOOKING DOWNSTREAM FROM UPSTREAM IMPACT LIMITS

PHOTO TAKEN LOOKING UPSTREAM FROM DOWNSTREAM IMPACT LIMITS

POST-CROSSING PHOTOS

PENDING CROSSING

PHOTO TAKEN LOOKING DOWNSTREAM FROM UPSTREAM IMPACT LIMITS

PENDING CROSSING

PHOTO TAKEN LOOKING UPSTREAM FROM

PRE-CROSSING

DOWNSTREAM IMPACT LIMITS

CAD File No.

Drawing No