Baseline Assessment – Stream Attributes # Reach S-N2 (Timber Mat Crossing) Perennial Spread F Summers County, West Virginia | Data | Included | |--|---| | Photos | ✓ | | SWVM Form | ✓ | | FCI Calculator and HGM Form | N/A – Perennial stream (not shadeable, slope >4%) | | RBP Physical Characteristics Form | ✓ | | Water Quality Data | ✓ | | RBP Habitat Form | ✓ | | RBP Benthic Form | ✓ | | Benthic Identification Sheet | ✓ FULL PICK<100 | | Wolman Pebble Count | ✓ | | Reference Reach Software Pebble Count Data | ✓ | | Longitudinal Profile and Cross Sections | ✓ | ## Spread F Stream S-N2 (Timber Mat Crossing) Summers County Photo Type: US Edge of ROW, US View Location, Orientation, Photographer Initials: Upstream Edge of Right of Way, Upstream View, ABK/EW/WP Photo Type: US Edge of ROW, DS View Location, Orientation, Photographer Initials: Upstream Edge of Right of Way, Downstream View, ABK/EW/WP ## Spread F Stream S-N2 (Timber Mat Crossing) Summers County Photo Type: CP, US View Location, Orientation, Photographer Initials: Center Right of Way, Upstream View, ABK/EW/WP Photo Type: CP, DS View Location, Orientation, Photographer Initials: Center Right of Way, Downstream View, ABK/EW/WP ## Spread F Stream S-N2 (Timber Mat Crossing) Summers County Photo Type: DS Edge of ROW, US View Location, Orientation, Photographer Initials: Downstream Edge of Right of Way, Upstream View, ABK/EW/WP Location, Orientation, Photographer Initials: Downstream Edge of Right of Way, Downstream View, ABK/EW/WP "Q:\Charleston\2021 Projects\21-0244- MVP- STREAM AND WETLAND CONDITIONS ASSESSMENT AND SURVEY PLAN\002 - Pre-Crossing Monitoring\Spread F\S-N2" #### West Virginia Stream and Wetland Valuation Metric (SWVM) Version 2.1, September 2017 | USACE FILE NO./ Project Name:
(v2.1, Sept 2015) | | MOL | JNTAIN VALLE | Y PIPELINE | IMPACT COOF | | Lat. | 37.694507 | Lon. | -80.736682 | WEAT | HER: | 9 | 0% Cloudy | DAT | E: | 9/7/ | /21 | |---|------------------------|---|--|--|--|--------------|-------------|--|--------------------|----------------------|---|--|-----------------------------|--------------|---|---|-------------------|---------------------| | IMPACT STREAM/SITE ID (watershed size {acreage}, | | | | Hung | ard Creek (S-N2) | | | MITIGATION STREAM CLASS.
(watershed size {acreage | | | | | | | Comm | ents: | | | | STREAM IMPACT LENGTH: | 22 | FORM (| | RESTORATION (Levels I-III) | MIT COORD
(in Decimal l | | Lat. | | Lon. | | PRECIPITATION | PAST 48 HRS: | | | Mitigation | Length: | | | | Column No. 1- Impact Existing | g Condition (Deb | pit) | | Column No. 2- Mitigation Exist | ng Condition - Baseline (C | Credit) | | Column No. 3- Mitigation Pr
Post Completio | | 'ears | Column No | o. 4- Mitigation Proj
Post Completion | | ars | Column No. 5 | - Mitigation Projecte | ed at Maturity | (Credit) | | Stream Classification: | Pere | nnial | Stre | am Classification: | | | s | tream Classification: | | 0 | Stream Classification: | : | (| D | Stream Classification: | | | 0 | | Percent Stream Channel Sle | оре | 0.4 | | Percent Stream Channe | el Slope | | | Percent Stream Channel S | оре | 0 | Percent S | Stream Channel SI | оре | 0 | Percent | Stream Channel Slo | ope | 0 | | HGM Score (attach d | ata forms): | | | HGM Score (att | ach data forms): | | | HGM Score (attach | data forms): | | HGM Score (attach data forms): | | | | HG | M Score (attach da | ata forms): | | | Hydrology
Biogeochemical Cycling
Habitat | | Average
0 | Biog | rology
eochemical Cycling | | Average
0 | Е | ydrology
iogeochemical Cycling | | Average
0 | Hydrology
Biogeochemical Cycli | ing | | Average
0 | Hydrology
Biogeochemical Cycli | ng | | Average 0 | | PART I - Physical, Chemical and | Biological Indic | ators | Habi | PART I - Physical, Chemic | al and Biological Indicator | rs | Ŀ | PART I - Physical, Chemical a | nd Biological Ind | licators | Habitat
PART I - Phys | sical, Chemical and | Biological Indic | cators | Habitat
PART I - Phy | sical, Chemical and | Biological Inc | dicators | | | Points Scale Range | Site Score | | | Points Scale Range | Site Score | | | Points Scale Range | Site Score | | | Points Scale Range | Site Score | | | Points Scale Ran | nge Site Score | | PHYSICAL INDICATOR (Applies to all streams | s classifications) | | PHY | SICAL INDICATOR (Applies to all str | eams classifications) | | P | HYSICAL INDICATOR (Applies to all stream | s classifications) | | PHYSICAL INDICATOR | R (Applies to all stream | s classifications) | | PHYSICAL INDICATOR | (Applies to all streams | classifications) | | | USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover 2. Embeddedness 3. Velocity/ Depth Regime 4. Sediment Deposition 5. Channel Flow Status 6. Channel Alteration 7. Frequency of Riffles (or bends) 8. Bank Stability (LB & RB) 9. Vegetative Protection (LB & RB) 10. Riparian Vegetative Zone Width (LB & RB) Total RBP Score Sub-Total CHEMICAL INDICATOR (Applies to Intermitte WVDEP Water Quality Indicators (General Specific Conductivity <=99 - 90 points PH 6.0-8.0 = 80 points DO >5.0 = 30 points | | 16
18
11
17
14
19
15
16
16
12
154
0.77
reams) | 1. E;
2. Pc
3. P.P.
4. Se
5. Cl
7. Cl
8. Ba
9. Vc
10. F.
Total
Sub-
CHE | PA RBP (Low Gradient Data Shee) idiqunal Substrate/Available Cover bol Substrate Characterization bol Variability idiment Deposition nannel Flow Status nannel Alteration nannel Sinuosity nannel Sinuosity in Stability (LB & RB) getative Protection (LB & RB) tiparian Vegetative Zone Width (LB & R Total MICAL INDICATOR (Applies to Inten DEP Water Quality Indicators (Ger diffic Conductivity | 0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20 | 0 0 | 234567891TS | SEPA RBP (High Gradient Data Sheet) Epifaunal Substrate/Available Cover Embeddedness Velocity/ Depth Regime Sediment Deposition Channel Flow Status Channel Alteration Frequency of Riffles (or bends) Bank Stability (LB & RB) Vegetative Protection (LB & RB) O. Riparian Vegetative Zone Width (LB & RB) total RBP Score ub-Total HEMICAL INDICATOR (Applies to Intermitte WDEP Water Quality Indicators (General Pecific Conductivity H | | 0
0
0
eams) | USEPA RBP (High Gre 1. Epifaunal Substrate/ 2. Embeddedness 3. Velocity/ Depth Regir 4. Sediment Deposition 5. Channel Flow Status 6. Channel Alteration 7. Frequency of Riffles 8. Bank Stability (LB & I 9. Vegetative Protection 10. Riparian Vegetative Z Total RBP Score Sub-Total CHEMICAL INDICATO WVDEP Water Quality Specific Conductivity PH DO | Available Cover me (or bends) RB) n (LB & RB) one Width (LB & RB) R (Applies to Intermitte | Poor
ent and Perennial S | 0 0 treams) | USEPA RBP (High Gra 1. Epifaunal Substrate// 2. Embeddedness 3. Velocity/ Depth Regir 4. Sediment Deposition 5. Channel Flow Status 6. Channel Alteration 7. Frequency of Riffles (8. Bank Stability (LB & F.) 9. Vegetative Protection 10. Riparian Vegetative Zi Total RBP Score Sub-Total CHEMICAL INDICATO WYDEP Water Quality Specific Conductivity DO | or bends) (LB & RB) (LB & RB) (Applies to Intermitten | | 0 0 Streams) | | Sub-Total BIOLOGICAL INDICATOR (Applies to Intermi | ttant and Parannial | 1
Strooms) | | Total OGICAL INDICATOR (Applies to International Control of Internatio | armittant and Darannial Stream | 0 | S | ub-Total IOLOGICAL INDICATOR (Applies to Interr | sittent and Barann | 0 | Sub-Total BIOLOGICAL INDICAT | FOR (Applies to Inter | mittant and Barons | 0 | Sub-Total BIOLOGICAL INDICAT | OP (Applies to Interm | aittant and Bars | O
nniel Streeme) | | WV Stream Condition Index (WVSCI) | tterit and r ereriniar | oueams) | | Stream Condition Index (WVSCI) | erritterit and r eremilai Ottean | 113) | - | W Stream Condition Index (WVSCI) | intent and Perenn | lai Streams) | WV Stream Condition | | mittent and Fereni | nai Streams) | WV Stream Condition | | itterit and Ferei | illiai Sueallis) | | Grey Zone | 0-100 0-1 | 61.6 | | | 0-100 0-1 | | Ī | (| 0-100 0-1 | | | | 0-100 0-1 | | | (| 0-100 0- | -1 | | Sub-Total | 1 1 | 0.616 | Sub- | Total | 1 1 | 0 | S | ub-Total | | 0 | Sub-Total | | <u> </u> | 0 | Sub-Total | | | 0 | | PART II - Index and U | Init Score | | | PART II - Index | and Unit Score | | | PART II - Index and | I Unit Score | | P. | ART II - Index and U | Jnit Score | | P | ART II - Index and U | nit Score | | | Index | Linear Feet | Unit Score | | Index | Linear Feet U | Unit Score | | Index | Linear Feet | Unit Score | Inde | ex | Linear Feet | Unit Score | Inde | × | Linear Fee | et Unit Score | | 0.795 | 22 | 17.49733333 | | 0 | 0 | 0 | f | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | | 0 | 0 | # PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT) | STREAM NAMES- | N2 Hungard Creek | LOCATION Summers/F | | | |-----------------------|---|---|---|-------------------------------| | STATION # | RIVERMILE | STREAM CLASS Perennia | al | ▼ | | LAT 37.694507 | LONG -80.736682 | COUNTY Summers | E . | ▼ | | STORET# | | AGENCYPotesta/Edge | | | | INVESTIGATORS | ABK/EW/WP | | | | | FORM COMPLETE | A. Kincaid | DATE 9-7-2021
TIME 1000 | REASON FOR SUR | VEY
Preliminary Assessment | | WEATHER
CONDITIONS | rain showe | n (heavy rain) (steady rain) rs (intermittent) cloud cover lear/sunny | Has there been a heavy Yes No Air Temperature 70 F Other | y rain in the last 7 days? | | SITE LOCATION/ | MAP Draw a map of the si | ite and indicate the areas samp | pled (or attach a photogi | raph) | | | LDB | o CPV | J J J | TA13 5 | | | EX. 70 | cobble/Bould | ater der Root | TMB 3 | | | 7 V V | | | THE 2 | | STREAM | Stream Subsystem | ali — 4000 — a a <u>s</u> econstitutos | Stream Type | | | CHARACTERIZA | TION Perennial In Stream Origin Glacial Non-glacial montar Swamp and bog | Spring-fed Mixture of origins Other | □Coldwater ☑War
Catchment Area | mwater
km² | # PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK) | WATERS | | Predon | inant Surrounding Lan | duse | Local Watershed NPS | | | | | | | |---|-----------------|---|---|--|---|-----------------------------------|--|--|--|--|--| | FEATUR | ES | Fores | Pasture Industria | al | □No evidence | ne potential sources | | | | | | | l | | Agric
Resid | ultural Other Palential | peline ROW | Local Watershed Eros | ion | | | | | | | | | | | | ✓ None | Heavy | | | | | | | RIPARIA
VEGETA | | Indicate | e the dominant type and | record the do | minant species present He | erbaceous | | | | | | | (18 meter | | | int species present | inuos | | | | | | | | | INCEDE | M | | | ft _m | C - C - | | | | | | | | INSTREA
FEATURI | | 252 32 | 15.4 | CA. | Canopy Cover ☐ Partly open ☐ Part | ly shaded Shaded | | | | | | | | | 2.5376.002.0366 | cu su cam vilum | m
1^2 m² | High Water Mark | 2.0 ft _m | | | | | | | | | · . | - | - 16 | Proportion of Reach R | epresented by Stream | | | | | | | | | 0.5000000000000000000000000000000000000 | | km² | Morphology Types
Riffless | Run 45 % | | | | | | | | | Estimat | ed Stream Depth 0.4 | | Pool 25 % | 32000 ACC | | | | | | | | | Surface
(at that | Velocity 0.3 ft/sec m | /sec | Channelized Yes | ☑No | | | | | | | | | Stream | Dry 🔲 | | Dam Present ☐ Yes | ☑No | | | | | | | LARGE V
DEBRIS | VOODY | LWD | 0 m^2 | | n/a | | | | | | | | DEBRIS | | Density | of LWD 0 n | n ² /km ² (LWD / | _{reach area)} n/a | | | | | | | | AQUATIO | 0 | Indicat | e the dominant type and | record the do | record the dominant species present | | | | | | | | VĚGETA | TION | | Rooted emergent Rooted submergent Rooted floating Free floating Algae | | | | | | | | | | | | Domina | int species present | | | | | | | | | | | | Portion | of the reach with aquat | ic vegetation _ | 40 _% | | | | | | | | WATER (| QUALITY | Temper | rature 16.3 °C | | Water Odors | | | | | | | | 1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | QUILLI I | C | Conductance 96.7 us/cm | | ■Normal/None ■Sewage | Chemical | | | | | | | | | (2) | ed Oxygen 9.25 mg/L | | | Other | | | | | | | | | pH 7.6 | 6 su | | Water Surface Oils ☐ Slick ☐ Sheen ☐ | Globs Flecks | | | | | | | | | | ity 10.70 ntu | | None Other | □None □Other | | | | | | | | | 10-410-6000-6000 | strument Used ^{YSI/Turbidi} | ty Meter | Turbidity (if not measured) ☐Clear ☐Slightly turbid ☐Turbid | | | | | | | | | | WQIIIS | drument Oseu | <u></u> | Opaque Stained Turbid Other | | | | | | | | SEDIMEN | | <u>O</u> dors | ties — w | neres tyros a r | Deposits | | | | | | | | SUBSTRA | ATE | ✓ Norm
Chem | nical Anaerobic | Petroleum
None | Sludge □Sawdust □Paper fiber □Sand □Relict shells □Other | | | | | | | | | | Other | f | | Looking at stones which | h are not deeply embedded, | | | | | | | | | Oils Absen | nt Slight Moderat | te Profu | are the undersides blac
se □Yes ☑No | ck in color? | | | | | | | | * | | | | | | | | | | | | INC | | STRATE
dd up to 1 | COMPONENTS
(00%) | | ORGANIC SUBSTRATE C
(does not necessarily add | | | | | | | | Substrate
Type | Diamet | er | % Composition in
Sampling Reach | Substrate
Type | Characteristic | % Composition in
Sampling Area | | | | | | | Bedrock | | | 0 | Detritus | sticks, wood, coarse plant | ~ 5 | | | | | | | Boulder | > 256 mm (10") | ١ | 10 | | materials (CPOM) | <5 | | | | | | | Cobble | 64-256 mm (2.5 | "-10") | 35 | Muck-Mud | black, very fine organic | 0 | | | | | | | Gravel | 2-64 mm (0.1"-2 | 2.5") | 45 | | (FPOM) | U | | | | | | | Sand | 0.06-2mm (gritt | y) | 0 Marl | | grey, shell fragments | 0 | | | | | | | Silt | 0.004-0.06 mm | | 10 | | | | | | | | | | Clay | < 0.004 mm (sli | ck) | 0 | 1 | | | | | | | | #### HABITAT ASSESSMENT FIELD DATA SHEET - HG - USE ON ALL STREAMS (FRONT) | STREAM NAMES | -N2 Hungard Creek | LOCATION | | |-----------------------------|-------------------|--|---| | STATION # | RIVERMILE | _ STREAM CLASS Perennial | Ţ | | LAT 37.694507 | LONG -80.736682 | _ COUNTY Summers | 1 | | STORET# | | AGENCY Potesta/Edge | | | INVESTIGATORS | ABK/EW/WP | | | | FORM COMPLETE
A. Kincaid | ED BY | DATE 9-7-2021 REASON FOR SURVEY Preliminary Assessment | | | | Habitat | | Condition | ı Category | | |--|---|---|---|---|---| | | Parameter | Optimal | Suboptimal | Marginal | Poor | | | 1. Epifaunal Substrate/ Available Cover | Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient). | 40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale). | 20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed. | Less than 20% stable
habitat; lack of habitat is
obvious; substrate
unstable or lacking. | | | SCORE 16▼ | 20 19 18 17 16 | 15 14 13 12 11 | 10 9 8 7 6 | 5 4 3 2 1 0 | | sampling reach | 2. Embeddedness | Gravel, cobble, and
boulder particles are 0-
25% surrounded by fine
sediment. Layering of
cobble provides diversity
of niche space. | Gravel, cobble, and
boulder particles are 25-
50% surrounded by fine
sediment. | Gravel, cobble, and
boulder particles are 50-
75% surrounded by fine
sediment. | Gravel, cobble, and
boulder particles are more
than 75% surrounded by
fine sediment. | | ed ir | SCORE 18 ▼ | 20 19 18 17 16 | 15 14 13 12 11 | 10 9 8 7 6 | 5 4 3 2 1 0 | | Parameters to be evaluated in sampling reach | 3. Velocity/Depth Regime N/A | All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.) | Only 3 of the 4 regimes
present (if fast-shallow is
missing, score lower than
if missing other regimes). | Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low). | Dominated by 1 velocity/
depth regime (usually
slow-deep). | | aram | SCORE 11 <u></u> | 20 19 18 17 16 | 15 14 13 12 🚺 | 10 9 8 7 6 | 5 4 3 2 1 0 | | ra . | 4. Sediment
Deposition | Little or no enlargement
of islands or point bars
and less than 5% of the
bottom affected by
sediment deposition. | Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools. | Moderate deposition of
new gravel, sand or fine
sediment on old and new
bars; 30-50% of the
bottom affected; sediment
deposits at obstructions,
constrictions, and bends;
moderate deposition of
pools prevalent. | Heavy deposits of fine
material, increased bar
development; more than
50% of the bottom
changing frequently;
pools almost absent due to
substantial sediment
deposition. | | | SCORE 17 ▼ | 20 19 18 17 16 | 15 14 13 12 11 | 10 9 8 7 6 | 5 4 3 2 1 0 | | | 5. Channel Flow
Status N/A | Water reaches base of
both lower banks, and
minimal amount of
channel substrate is
exposed. | Water fills >75% of the
available channel; or
<25% of channel
substrate is exposed. | Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed. | Very little water in
channel and mostly
present as standing pools. | | | SCORE 14 | 20 19 18 17 16 | 15 🚺 13 12 11 | 10 9 8 7 6 | 5 4 3 2 1 0 | #### HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK) | | Habitat | | Condition Category | | | | | | | | | | | | |--|---|--|--|--|---|--|--|--|--|--|--|--|--|--| | | Parameter | Optimal | Suboptimal | Marginal | Poor | | | | | | | | | | | | 6. Channel
Alteration | Channelization or
dredging absent or
minimal; stream with
normal pattern. | Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present. | Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted. | Banks shored with gabion
or cement; over 80% of
the stream reach
channelized and
disrupted. Instream
habitat greatly altered or
removed entirely. | | | | | | | | | | | | SCORE 19 ▼ | 20 18 17 16 | 15 14 13 12 11 | 10 9 8 7 6 | 5 4 3 2 1 0 | | | | | | | | | | | ing reach | 7. Frequency of Riffles (or bends) | Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important. | Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15. | Occasional riffle or bend;
bottom contours provide
some habitat; distance
between riffles divided by
the width of the stream is
between 15 to 25. | Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25. | | | | | | | | | | | ampl | SCORE 15▼ | 20 19 18 17 16 | 15 14 13 12 11 | 10 9 8 7 6 | 5 4 3 2 1 0 | | | | | | | | | | | Parameters to be evaluated broader than sampling reach | 8. Bank Stability (score each bank) Note: determine left or right side by facing deuranteen. | Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected. | Moderately stable;
infrequent, small areas of
erosion mostly healed
over. 5-30% of bank in
reach has areas of erosion. | Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods. | Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars. | | | | | | | | | | | e eva | SCORE 9 | Left Bank 10 | 8 7 6 | 5 4 3 | 2 1 0 | | | | | | | | | | | to be | SCORE 7 | Right Bank 10 9 | 8 7 6 | 5 4 3 | 2 1 0 | | | | | | | | | | | Parameter | 9. Vegetative
Protection (score
each bank) | More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally. | 70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining. | 50-70% of the
streambank surfaces
covered by vegetation;
disruption obvious;
patches of bare soil or
closely cropped vegetation
common; less than one-
half of the potential plant
stubble height remaining. | Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height. | | | | | | | | | | | | SCORE 8 | Left Bank 10 9 | 8 7 6 | 5 4 3 | 2 1 0 | | | | | | | | | | | | SCORE 8 | Right Bank 10 9 | 8 7 6 | 5 4 3 | 2 1 0 | | | | | | | | | | | | 10. Riparian Vegetative Zone Width (score each bank riparian zone) | Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone. | Width of riparian zone
12-18 meters; human
activities have impacted
zone only minimally. | Width of riparian zone 6-
12 meters; human
activities have impacted
zone a great deal. | Width of riparian zone <6 meters: little or no riparian vegetation due to human activities. | | | | | | | | | | | | SCORE 6 | Left Bank 10 9 | 8 7 6 | 5 4 3 | 2 1 0 | | | | | | | | | | | | SCORE 6 ▼) | Right Bank 10 9 | 8 7 6 | 5 4 3 | 2 1 0 | | | | | | | | | | #### BENTHIC MACROINVERTEBRATE FIELD DATA SHEET | STREAM NAMES-N | 12 H | lung | gard | Cr | eek | | LO | CATION | I . | | | | | | | | | | | |-------------------------------------|------|------|------------|-------|-------|---------|-------------------------|--------------|----------|------|-------------------------|------|----------|---|----------|-------|------|-------|-----| | STATION # | _ R | IVE | RMI | ILE_ | | | STF | REAM C | LASS F | Pere | ennia | ıl | | | | | | [| ▼ | | LAT 37.694507 | _ L | ONO | J -80.7 | 36692 | | | CO | UNTY | Su | ımm | ers | | | | | | | _[| • | | STORET# | | | | | | | AG | ENCYF | otesta | /Ed | lge | | | | | | | | | | INVESTIGATORSA | BK/E | EW/ | /WP |) | | | | | | | | 1 | LOT | NUMBER | | | | | | | FORM COMPLETED | ВY | Α. | Ki | inc | aid | d | DA' | | _ | | | 1 | REA! | SON FOR SURVEY
Pre | eliminar | y Ass | essm | ient | | | HABITAT TYPES | | C | obbl | e | 9 | 6 | of each
Snags_
s_ | habitat
% | \Box V | eget | nt
tated
Other | Bani | ks | % | % | | | | | | SAMPLE | G | ear | nsed | Г | lD-fi | ame | ₩ kiel | c-net | | Пс |)ther | | | | | | | | | | COLLECTION | 1000 | н | ow v | were | the | samp | oles co | llected | ? [| wadin | 9 | | froi | n bar | ık ☐from boa | t | | | | | | | ~ | Cob | ble_ | + | | r of ja | nags | ks taken | $\Box v$ | eget | bitat
tated
Other | Ban | e.
ks | Sand | _ | | | | | | GENERAL
COMMENTS | 11 | | d h
cra | | | , nc | t a l | ot of | macr | oir | rve | erta | ıbra | ates. Handful d | of fis | sh | see | ∍n; | Dominant | | | | | 0 = 2 | Absei | nt/Not | Obser | ved, 1 | | | | = C | ommon, 3= Abuno | 17903 | -500 | 200 | Parel | 400 | | Periphyton | | | | | 0 | | 2 3 | | | | mes | | - 2 | | 0 | 1 | 2 | 3 | 4 | | Filamentous Algae | | | | | 0 | 1 | 1001 | | | | | nve | rtebi | rates | 0 | 1 | | 3 | 4 | | Macrophytes | | | | | 0 | 1 | 2 3 | 4 | | Fis | h | | | | 0 | 1 | 2 | 3 | 4 | | FIELD OBSERVA
Indicate estimated | | | | | 0 = | Abse | nt/No | t Obse | | | | | | rganisms), 2 = Cor
, 4 = Dominant (> | | | | ıs) | | | Porifera | 0 | 1 | 2 | 3 | 4 | Ani | sopter | a | 0 | 1 | 2 | 3 | 4 | Chironomidae | 0 | 1 | 2 | 3 | 4 | | Hydrozoa | 0 | 1 | 2 | 3 | 4 | | goptera | | 0 | 1 | 2 | 3 | 4 | Ephemeroptera | 0 | 1 | 2 | 3 | 4 | | Platyhelminthes | 0 | 1 | 2 | 3 | 4 | | nipter | | 0 | 1 | 2 | 3 | 4 | Trichoptera | 0 | 1 | 2 | 3 | 4 | | Turbellaria | 0 | 1 | 2 | 3 | 4 | | eopter | | 0 | 1 | 2 | 3 | 4 | Other | 0 | 1 | 2 | 3 | 4 | | Hirudinea | 0 | 1 | 2 | 3 | 4 | | idopte | era | 0 | 1 | 2 | 3 | 4 | | | | | | | | Oligochaeta | 0 | 1 | 2 | 3 | 4 | | lidae | | 0 | 1 | 2 | 3 | 4 | | | | | | | | Isopoda | 0 | 1 | 2 | 3 | 4 | | ydalid | | 0 | 1 | 2 | 3 | 4 | | | | | | | | Amphipoda | 0 | 1 | 2 | 3 | 4 | _ | ulidae | | 0 | 1 | 2 | 3 | 4 | | | | | | | | Decapoda | 0 | 1 | 2 | 3 | 4 | | pidida | | 0 | 1 | 2 | 3 | 4 | | | | | | | | Gastropoda | 0 | 1 | 2 | 3 | 4 | | nuliida | | 0 | 1 | 2 | 3 | 4 | | | | | | | | Bivalvia | 0 | 1 | 2 | 3 | 4 | | oinidae | • | 0 | 1 | 2 | 3 | 4 | | | | | | | | | | | | | | Cul | cidae | | 0 | 1 | 2 | 3 | 4 | | | | | | | | Insects | Count | Tolerance | TV | Insects | Count | Tolerance | TV | Non-Insects | Count | Tolerance | TV | |------------------|-------|-----------|-----|------------------|-------|-----------|----|---------------|-------|-----------|-------------| | Ephemeroptera | | | 35 | Odonata | | | 0 | Crustacea | | | 0 | | Ameletidae | | 2 | 0 | Aeshnidae | | 3 | 0 | Asellidae | | 7 | 0 | | Baetidae | 7 | 4 | 28 | Calopterygidae | | 6 | 0 | Cambaridae | | 5 | 0 | | Beatiscidae | | 4 | 0 | Coenagrionidae | | 7 | 0 | Gammaridae | | 5 | 0 | | Caenidae | | 5 | 0 | Cordulegastridae | | 3 | 0 | Palaemonidae | | 5 | 0 | | Ephemerellidae | | 3 | 0 | Gomphidae | | 5 | 0 | Annelida | | | 0 | | Ephemeridae | | 5 | 0 | Lestidae | | 7 | 0 | Hirudinea | | 10 | 0 | | Heptageniidae | 28 | 3 | 84 | Libellulidae | | 7 | 0 | Nematoda | | 10 | 0 | | Isonychiidae | | 3 | 0 | Coleoptera | • | | 3 | Nematomorpha | | 10 | 0 | | Leptophlebiidae | | 4 | 0 | Chrysomelidae | | 7 | 0 | Oligochaeta | | 10 | 0 | | Potamanthidae | | 5 | 0 | Dryopidae | | 5 | 0 | Turbellaria | | | 0 | | Siphlonuridae | | 3 | 0 | Dytiscidae | | 6 | 0 | Turbellaria | | 7 | 0 | | Tricorythidae | | 5 | 0 | Elmidae | 2 | 4 | 8 | Bivalvia | | | 0 | | Plecoptera | • | • | 3 | Gyrinidae | | 5 | 0 | Corbiculidae | | 6 | 0 | | Capniidae | | 2 | 0 | Haliplidae | | 7 | 0 | Sphaeriidae | | 5 | 0 | | Chloroperlidae | | 2 | 0 | Hydrophilidae | | 7 | 0 | Unionidae | | 4 | 0 | | Leuctridae | | 2 | 0 | Psephenidae | 1 | 3 | 3 | Gastropoda | | | 0 | | Nemouridae | | 2 | 0 | Ptilodactylidae | | 5 | 0 | Ancylidae | | 7 | 0 | | Peltoperlidae | | 1 | 0 | Hemiptera | | | 0 | Hydrobiidae | | 4 | 0 | | Perlidae | 3 | 1 | 3 | Belostomatidae | | 8 | 0 | Physidae | | 7 | 0 | | Perlodidae | | 1 | 0 | Corixidae | | 8 | 0 | Planorbidae | | 5 | 0 | | Pteronarcyidae | | 1 | 0 | Gerridae | | 10 | 0 | Pleuroceridae | | 5 | 0 | | Taeniopterygidae | | 2 | 0 | Hydrometridae | | 8 | 0 | Viviparidae | | 5 | 0 | | Trichoptera | | | 36 | Nepidae | | 8 | 0 | Miscellaneous | | | 0 | | Brachycentridae | | 2 | 0 | Notonectidae | | 8 | 0 | Collembola | | 6 | 0 | | Glossosomatidae | | 2 | 0 | Megaloptera | | | 1 | Lepidoptera | | 5 | 0 | | Helicopsychidae | | 3 | 0 | Corydalidae | 1 | 3 | 3 | Neuroptera | | 5 | 0 | | Hydropsychidae | 36 | 5 | 180 | Sialidae | | 6 | 0 | Hydrachnidae | | 6 | 0 | | Hydroptilidae | | 3 | 0 | Diptera | | | 14 | Totals | Total | number | 92 | | Lepidostomatidae | | 3 | 0 | Athericidae | | 3 | 0 | Totals | Total | families | 9 | | Leptoceridae | | 3 | 0 | Blephariceridae | | 2 | 0 | | | М | etric calcı | | SITE ID: | S-N2 | |----------|----------| | | 0/7/2021 | 9/7/2021 | Glossosomatidae | | 2 | 0 | Megaloptera | | | 1 | Lepidoptera | | 5 | 0 | | | |--|------------|----------------|-------------|-------------------------|-----------|---------------|-----|--|------------|----------|------|--------------------|------| | Helicopsychidae | | 3 | 0 | Corydalidae | 1 | 3 | 3 | Neuroptera | 5 0 | | | | | | Hydropsychidae | 36 | 5 | 180 | Sialidae | | 6 | 0 | Hydrachnidae | | 6 | 0 | | | | Hydroptilidae | | 3 | 0 | Diptera | | | 14 | Totals | Total | number | 92 | | | | Lepidostomatidae | | 3 | 0 | Athericidae | | 3 | 0 | Totals | Total | families | 9 | | | | Leptoceridae | | 3 | 0 | Blephariceridae | | 2 | 0 | Metric calculations | | | | | | | Limnephilidae | | 4 | 0 | Ceratopogonidae | | 8 | 0 | WVSCI Metric Scores Additional metrics | | | | | | | Molannidae | | 3 | 0 | Chironomidae | 13 | 9 | 117 | - VVV3 | ci wetric | scores | | Ephemeroptera Taxa | 2 | | Philopotamidae | | 4 | 0 | Culicidae | | 10 | 0 | Total Taxa | 1 | 9 | 40.9 | Plecoptera Taxa | 1 | | Phryganeidae | | 4 | 0 | Dixidae | | 6 | 0 | EPT Taxa | | 4 | 30.8 | Trichoptera Taxa | 1 | | Polycentropodidae | | 5 | 0 | Empididae | | 7 | 0 | % EPT Abunda | ance | 80.4 | 90.1 | Long-lived Taxa | 5 | | Psychomiidae | | 4 | 0 | Psychodidae | | 8 | 0 | % Chironomi | dae | 14.1 | 87.4 | Odonata Taxa | 0 | | Rhyacophilidae | | 3 | 0 | Ptychopteridae | | 8 | 0 | Hilsenhoff Biotic In | idex (HBI) | 4.68 | 71.9 | Diptera Taxa | 2 | | Uenoidae | | 2 | 0 | Simuliidae | | 7 | 0 | % 2 Dominant | Taxa | 69.6 | 48.5 | COET Taxa | 5 | | | Total Tole | rance Value | 431 | Stratiomyidae | | 10 | 0 | | | | | % Sensitive | 35.9 | | West Virginia Strea | | • | | Syrphidae | | 10 | 0 | | | | | % Tolerant | 14.1 | | Gerritson, J., J. Burton, an
condition index for West \ | | | | Tabanidae | | 7 | 0 | WV Stream | Condition | Index | 61.6 | % Clingers | 37.0 | | Tech, Inc. Owing Mills, MI | - | ieavie streams | . retra | Tipulidae | 1 | 5 | 5 | | | | | % Net-spinners | 39.1 | | Spreadsheet uses updated | | dard Values [B | SV] for eac | h metric per WVSCI Adde | nda dated | March 23, 201 | .0 | | | | | | | | | | | rgard | | | | _ | | | | |--------------|--------------------|------------|-------|----------|--------------|-----|----------|-----|--------|--------| | OLLECTOR | r(s): <u>E.W</u> (| <u> </u> | | | | | | | | | | | ble Count (R | | 11/15 | 100 | 150-0- | 100 | 0 -0 | 120 | 1 /4 / | NOTES: | | 205 | 270 | 171 | 44 | 62
37 | 195 | 125 | 250 | 130 | 40 | , | | 400 | 210 | 235 | 31 | 74 | 198 | 22 | 65 | 270 | 360 | 1 | | 295 | 125 | 158 | 32 | 177 | 76 | | 7 | 142 | 120 | | | 34 | ш3 | 1 | 210 | 95 | 130 | FS | 73 | 350 | 330 | | | 30 | 110 | 210 | 345 | 60 | 115 | 51 | 25 | q | 60 | | | 290 | 155 | 37 | 340 | 125 | 11 | 220 | 255 | 365 | CS | | | 420 | 55 | 110 | 200 | 95 | 500 | 150 | 82 | 90 | 19 | | | 765 | 174 | 155 | 425 | 410 | 40 | 765 | 15 | 110 | CS. | | | 19U | 115 | 220 | 160 | 60 | 110 | 295 | 120 | 30 | 25 | | | ffle Pebble | e Count | 0.81/ 4-02 | | 100 | (4.20 Hg) (1 | | XIII TAA | | | NOTES: | | | | | | | | | | 7 | | NOTES. | - | | | | | | | | | | | - | | - | | | | | | | | | | | 1 | | | | - | | | | | | | | J | | | | J | | | A country in | | | | | | | | | | NOTES: | • | | | | | 1 | TI. | 1 | | | | | 1 | | | | | | - | Inches | PARTICLE | Millimeters | | |-------------|-----------------|-------------|--------| | | Sit / Clay | < .062 | S/C | | | Very Fine | .062125 | SA | | | Fine | .12525 | | | | Medium | .2550 | A | | | Coarse | .50 - 1.0 | N
D | | 04 - 08 | Very Coarse | 1.0 - 2 | | | .0816 | Very Fine | 2-4 | GR | | .1622 | Fine | 4 - 5.7 | | | .2231 | Fine | 5.7 - 8 | | | 3144 | Medium | 8 - 11.3 | | | .44 - ,63 | Medium | 11.3 - 15 | | | .5389 | Coarse | 16 - 22.6 | | | 89-1,3 | Coarse | 22.6 - 32 | | | 1,3 - 1,8 | Very Coarse | 32 - 45 | | | 1.8 - 2.5 | Very Coarse | 45 - 64 | | | 2.5 - 3,5 | Small | 64 - 90 | Commit | | 3.5 + 5.0 | Small | 90 - 128 | | | 5.0 - 7.1 | Large | 128 - 180 | | | 7.1 - 10.1 | Large | 180 - 256 | | | 10.1 - 14.3 | Small | 256 - 362 | B | | 14.3 - 20 | Small | 362 - 512 | S | | 20 - 40 | Medium | 512 - 1024 | PE | | 40 - 80 | Large-Vry Large | 1024 - 2048 | R | | | Bedrock | | BDRK | | Bankfull Channel | | | | |--------------------------------|-------|--|--| | Material Size Range (mm | Count | | | | silt/clay 0 - 0.062 | | | | | very fine sand 0.062 - 0.125 | | | | | fine sand 0.125 - 0.25 | 2 | | | | medium sand 0.25 - 0.5 | | | | | coarse sand 0.5 - 1 | 2 | | | | very coarse sand 1 - 2 | | | | | very fine gravel 2 - 4 | 2 | | | | fine gravel 4 - 6 | | | | | fine gravel 6 - 8 | 1 | | | | medium gravel 8 - 11 | 2 | | | | medium gravel 11 - 16 | 1 | | | | coarse gravel 16 - 22 | 1 | | | | coarse gravel 22 - 32 | 7 | | | | very coarse gravel 32 - 45 | 3 | | | | very coarse gravel 45 - 64 | 7 | | | | small cobble 64 - 90 | 7 | | | | medium cobble 90 - 128 | 10 | | | | large cobble 128 - 180 | 21 | | | | very large cobble 180 - 256 | 13 | | | | small boulder 256 - 362 | 12 | | | | small boulder 362 - 512 | 7 | | | | medium boulder 512 - 1024 | 2 | | | | large boulder 1024 - 2048 | | | | | very large boulder 2048 - 4096 | | | | | total particle count: 100 | | | | | bedrock | | | | | clay hardpan | | | | | detritus/wood | | | | | artificial | | | | | total count: | 100 | | | | Note: | | | | ## LEGEND STUDY AREA (EASEMENT) EXISTING SURVEY-LOCATED THALWEG 1176.87 **+** EXISTING SURVEYED GROUND SHOT ELEVATION #### SURVEY NOTES: - 1. THIS MAP HAS BEEN ORIENTED TO NAD 1983 UTM ZONE 17N, AND VERTICALLY TO THE NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD 88), USING REAL TIME DGPS. FIELD LOCATIONS WERE COMPLETED ON - 2. EASEMENT LINES SHOWN ON PLAN VIEW WERE PROVIDED BY MOUNTAIN VALLEY PIPELINE. - 3. SURVEY POINTS FOR CROSS SECTIONS AND THALWEG PROFILES COLLECTED IN 2021 HAVE BEEN USED IN COMBINATION WITH SURVEY POINTS AND COLLECTED PREVIOUSLY IN 2020 IN ORDER TO GENERATE THE PRE-CROSSING SURFACE SHOWN IN PLAN. DUE TO NATURAL EROSIONAL STREAM PROCESSES THAT OCCUR OVER TIME, MINOR ADJUSTMENTS TO THE PROFILE ALIGNMENTS MAY HAVE BEEN REQUIRED IN ORDER TO GENERATE A CLEAN PRE-CROSSING SURFACE. - 4. ALL SECTION VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM. - 5. POST-CROSSING SURVEY INFORMATION SHOWN IN RED. DATA PENDING. - 6. POST-CROSSING SURVEY POINTS FOR CROSS SECTIONS AND THALWEG ARE PROJECTED ONTO PRE-CROSSING SECTION AND PROFILE VIEWS FOR COMPARISON. # S-N2 BASELINE CROSS-SECTION A ## S-N2 BASELINE CROSS-SECTION B — EXISTING GRADE CROSS SECTION LEGEND NOTE: ALL SECTION VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM. PRE-CROSSING PHOTOS PHOTO TAKEN LOOKING DOWNSTREAM FROM UPSTREAM IMPACT LIMITS PHOTO TAKEN LOOKING UPSTREAM FROM DOWNSTREAM IMPACT LIMITS POST-CROSSING PHOTOS PENDING CROSSING PHOTO TAKEN LOOKING DOWNSTREAM UPSTREAM FROM IMPACT LIMITS PENDING CROSSING PHOTO TAKEN LOOKING UPSTREAM FROM UPSTREAM IMPACT LIMITS PRE-CROSSING Checked Approved NOTED Scale: SEPT. 2021 Date: 21-0244-005 Project No. Drawing No