Baseline Assessment – Stream Attributes

Reach S-N2 (Timber Mat Crossing) Perennial Spread F Summers County, West Virginia

Data	Included
Photos	✓
SWVM Form	✓
FCI Calculator and HGM Form	N/A – Perennial stream (not shadeable, slope >4%)
RBP Physical Characteristics Form	✓
Water Quality Data	✓
RBP Habitat Form	✓
RBP Benthic Form	✓
Benthic Identification Sheet	✓ FULL PICK<100
Wolman Pebble Count	✓
Reference Reach Software Pebble Count Data	✓
Longitudinal Profile and Cross Sections	✓

Spread F Stream S-N2 (Timber Mat Crossing) Summers County

Photo Type: US Edge of ROW, US View Location, Orientation, Photographer Initials: Upstream Edge of Right of Way, Upstream View, ABK/EW/WP

Photo Type: US Edge of ROW, DS View Location, Orientation, Photographer Initials: Upstream Edge of Right of Way, Downstream View, ABK/EW/WP

Spread F Stream S-N2 (Timber Mat Crossing) Summers County

Photo Type: CP, US View Location, Orientation, Photographer Initials: Center Right of Way, Upstream View, ABK/EW/WP

Photo Type: CP, DS View Location, Orientation, Photographer Initials: Center Right of Way, Downstream View, ABK/EW/WP

Spread F Stream S-N2 (Timber Mat Crossing) Summers County

Photo Type: DS Edge of ROW, US View Location, Orientation, Photographer Initials: Downstream Edge of Right of Way, Upstream View, ABK/EW/WP

Location, Orientation, Photographer Initials: Downstream Edge of Right of Way, Downstream View, ABK/EW/WP

"Q:\Charleston\2021 Projects\21-0244- MVP- STREAM AND WETLAND CONDITIONS ASSESSMENT AND SURVEY PLAN\002 - Pre-Crossing Monitoring\Spread F\S-N2"

West Virginia Stream and Wetland Valuation Metric (SWVM) Version 2.1, September 2017

USACE FILE NO./ Project Name: (v2.1, Sept 2015)		MOL	JNTAIN VALLE	Y PIPELINE	IMPACT COOF		Lat.	37.694507	Lon.	-80.736682	WEAT	HER:	9	0% Cloudy	DAT	E:	9/7/	/21
IMPACT STREAM/SITE ID (watershed size {acreage},				Hung	ard Creek (S-N2)			MITIGATION STREAM CLASS. (watershed size {acreage							Comm	ents:		
STREAM IMPACT LENGTH:	22	FORM (RESTORATION (Levels I-III)	MIT COORD (in Decimal l		Lat.		Lon.		PRECIPITATION	PAST 48 HRS:			Mitigation	Length:		
Column No. 1- Impact Existing	g Condition (Deb	pit)		Column No. 2- Mitigation Exist	ng Condition - Baseline (C	Credit)		Column No. 3- Mitigation Pr Post Completio		'ears	Column No	o. 4- Mitigation Proj Post Completion		ars	Column No. 5	- Mitigation Projecte	ed at Maturity	(Credit)
Stream Classification:	Pere	nnial	Stre	am Classification:			s	tream Classification:		0	Stream Classification:	:	(D	Stream Classification:			0
Percent Stream Channel Sle	оре	0.4		Percent Stream Channe	el Slope			Percent Stream Channel S	оре	0	Percent S	Stream Channel SI	оре	0	Percent	Stream Channel Slo	ope	0
HGM Score (attach d	ata forms):			HGM Score (att	ach data forms):			HGM Score (attach	data forms):		HGM Score (attach data forms):				HG	M Score (attach da	ata forms):	
Hydrology Biogeochemical Cycling Habitat		Average 0	Biog	rology eochemical Cycling		Average 0	Е	ydrology iogeochemical Cycling		Average 0	Hydrology Biogeochemical Cycli	ing		Average 0	Hydrology Biogeochemical Cycli	ng		Average 0
PART I - Physical, Chemical and	Biological Indic	ators	Habi	PART I - Physical, Chemic	al and Biological Indicator	rs	Ŀ	PART I - Physical, Chemical a	nd Biological Ind	licators	Habitat PART I - Phys	sical, Chemical and	Biological Indic	cators	Habitat PART I - Phy	sical, Chemical and	Biological Inc	dicators
	Points Scale Range	Site Score			Points Scale Range	Site Score			Points Scale Range	Site Score			Points Scale Range	Site Score			Points Scale Ran	nge Site Score
PHYSICAL INDICATOR (Applies to all streams	s classifications)		PHY	SICAL INDICATOR (Applies to all str	eams classifications)		P	HYSICAL INDICATOR (Applies to all stream	s classifications)		PHYSICAL INDICATOR	R (Applies to all stream	s classifications)		PHYSICAL INDICATOR	(Applies to all streams	classifications)	
USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover 2. Embeddedness 3. Velocity/ Depth Regime 4. Sediment Deposition 5. Channel Flow Status 6. Channel Alteration 7. Frequency of Riffles (or bends) 8. Bank Stability (LB & RB) 9. Vegetative Protection (LB & RB) 10. Riparian Vegetative Zone Width (LB & RB) Total RBP Score Sub-Total CHEMICAL INDICATOR (Applies to Intermitte WVDEP Water Quality Indicators (General Specific Conductivity <=99 - 90 points PH 6.0-8.0 = 80 points DO >5.0 = 30 points		16 18 11 17 14 19 15 16 16 12 154 0.77 reams)	1. E; 2. Pc 3. P.P. 4. Se 5. Cl 7. Cl 8. Ba 9. Vc 10. F. Total Sub- CHE	PA RBP (Low Gradient Data Shee) idiqunal Substrate/Available Cover bol Substrate Characterization bol Variability idiment Deposition nannel Flow Status nannel Alteration nannel Sinuosity nannel Sinuosity in Stability (LB & RB) getative Protection (LB & RB) tiparian Vegetative Zone Width (LB & R Total MICAL INDICATOR (Applies to Inten DEP Water Quality Indicators (Ger diffic Conductivity	0-20 0-20	0 0	234567891TS	SEPA RBP (High Gradient Data Sheet) Epifaunal Substrate/Available Cover Embeddedness Velocity/ Depth Regime Sediment Deposition Channel Flow Status Channel Alteration Frequency of Riffles (or bends) Bank Stability (LB & RB) Vegetative Protection (LB & RB) O. Riparian Vegetative Zone Width (LB & RB) total RBP Score ub-Total HEMICAL INDICATOR (Applies to Intermitte WDEP Water Quality Indicators (General Pecific Conductivity H		0 0 0 eams)	USEPA RBP (High Gre 1. Epifaunal Substrate/ 2. Embeddedness 3. Velocity/ Depth Regir 4. Sediment Deposition 5. Channel Flow Status 6. Channel Alteration 7. Frequency of Riffles 8. Bank Stability (LB & I 9. Vegetative Protection 10. Riparian Vegetative Z Total RBP Score Sub-Total CHEMICAL INDICATO WVDEP Water Quality Specific Conductivity PH DO	Available Cover me (or bends) RB) n (LB & RB) one Width (LB & RB) R (Applies to Intermitte	Poor ent and Perennial S	0 0 treams)	USEPA RBP (High Gra 1. Epifaunal Substrate// 2. Embeddedness 3. Velocity/ Depth Regir 4. Sediment Deposition 5. Channel Flow Status 6. Channel Alteration 7. Frequency of Riffles (8. Bank Stability (LB & F.) 9. Vegetative Protection 10. Riparian Vegetative Zi Total RBP Score Sub-Total CHEMICAL INDICATO WYDEP Water Quality Specific Conductivity DO	or bends) (LB & RB) (LB & RB) (Applies to Intermitten		0 0 Streams)
Sub-Total BIOLOGICAL INDICATOR (Applies to Intermi	ttant and Parannial	1 Strooms)		Total OGICAL INDICATOR (Applies to International Control of Internatio	armittant and Darannial Stream	0	S	ub-Total IOLOGICAL INDICATOR (Applies to Interr	sittent and Barann	0	Sub-Total BIOLOGICAL INDICAT	FOR (Applies to Inter	mittant and Barons	0	Sub-Total BIOLOGICAL INDICAT	OP (Applies to Interm	aittant and Bars	O nniel Streeme)
WV Stream Condition Index (WVSCI)	tterit and r ereriniar	oueams)		Stream Condition Index (WVSCI)	erritterit and r eremilai Ottean	113)	-	W Stream Condition Index (WVSCI)	intent and Perenn	lai Streams)	WV Stream Condition		mittent and Fereni	nai Streams)	WV Stream Condition		itterit and Ferei	illiai Sueallis)
Grey Zone	0-100 0-1	61.6			0-100 0-1		Ī	(0-100 0-1				0-100 0-1			(0-100 0-	-1
Sub-Total	1 1	0.616	Sub-	Total	1 1	0	S	ub-Total		0	Sub-Total		<u> </u>	0	Sub-Total			0
PART II - Index and U	Init Score			PART II - Index	and Unit Score			PART II - Index and	I Unit Score		P.	ART II - Index and U	Jnit Score		P	ART II - Index and U	nit Score	
Index	Linear Feet	Unit Score		Index	Linear Feet U	Unit Score		Index	Linear Feet	Unit Score	Inde	ex	Linear Feet	Unit Score	Inde	×	Linear Fee	et Unit Score
0.795	22	17.49733333		0	0	0	f	0	0	0	0		0	0	0		0	0

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

STREAM NAMES-	N2 Hungard Creek	LOCATION Summers/F		
STATION #	RIVERMILE	STREAM CLASS Perennia	al	▼
LAT 37.694507	LONG -80.736682	COUNTY Summers	E .	▼
STORET#		AGENCYPotesta/Edge		
INVESTIGATORS	ABK/EW/WP			
FORM COMPLETE	A. Kincaid	DATE 9-7-2021 TIME 1000	REASON FOR SUR	VEY Preliminary Assessment
WEATHER CONDITIONS	rain showe	n (heavy rain) (steady rain) rs (intermittent) cloud cover lear/sunny	Has there been a heavy Yes No Air Temperature 70 F Other	y rain in the last 7 days?
SITE LOCATION/	MAP Draw a map of the si	ite and indicate the areas samp	pled (or attach a photogi	raph)
	LDB	o CPV	J J J	TA13 5
	EX. 70	cobble/Bould	ater der Root	TMB 3
	7 V V			THE 2
STREAM	Stream Subsystem	ali — 4000 — a a <u>s</u> econstitutos	Stream Type	
CHARACTERIZA	TION Perennial In Stream Origin Glacial Non-glacial montar Swamp and bog	Spring-fed Mixture of origins Other	□Coldwater ☑War Catchment Area	mwater km²

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

WATERS		Predon	inant Surrounding Lan	duse	Local Watershed NPS						
FEATUR	ES	Fores	Pasture Industria	al	□No evidence	ne potential sources					
l		Agric Resid	ultural Other Palential	peline ROW	Local Watershed Eros	ion					
					✓ None	Heavy					
RIPARIA VEGETA		Indicate	e the dominant type and	record the do	minant species present He	erbaceous					
(18 meter			int species present	inuos							
INCEDE	M			ft _m	C - C -						
INSTREA FEATURI		252 32	15.4	CA.	Canopy Cover ☐ Partly open ☐ Part	ly shaded Shaded					
		2.5376.002.0366	cu su cam vilum	m 1^2 m²	High Water Mark	2.0 ft _m					
		· .	-	- 16	Proportion of Reach R	epresented by Stream					
		0.5000000000000000000000000000000000000		km²	Morphology Types Riffless	Run 45 %					
		Estimat	ed Stream Depth 0.4		Pool 25 %	32000 ACC					
		Surface (at that	Velocity 0.3 ft/sec m	/sec	Channelized Yes	☑No					
		Stream	Dry 🔲		Dam Present ☐ Yes	☑No					
LARGE V DEBRIS	VOODY	LWD	0 m^2		n/a						
DEBRIS		Density	of LWD 0 n	n ² /km ² (LWD /	_{reach area)} n/a						
AQUATIO	0	Indicat	e the dominant type and	record the do	record the dominant species present						
VĚGETA	TION		Rooted emergent Rooted submergent Rooted floating Free floating Algae								
		Domina	int species present								
		Portion	of the reach with aquat	ic vegetation _	40 _%						
WATER (QUALITY	Temper	rature 16.3 °C		Water Odors						
1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	QUILLI I	C	Conductance 96.7 us/cm		■Normal/None ■Sewage	Chemical					
		(2)	ed Oxygen 9.25 mg/L			Other					
		pH 7.6	6 su		Water Surface Oils ☐ Slick ☐ Sheen ☐	Globs Flecks					
			ity 10.70 ntu		None Other	□None □Other					
		10-410-6000-6000	strument Used ^{YSI/Turbidi}	ty Meter	Turbidity (if not measured) ☐Clear ☐Slightly turbid ☐Turbid						
		WQIIIS	drument Oseu	<u></u>	Opaque Stained Turbid Other						
SEDIMEN		<u>O</u> dors	ties — w	neres tyros a r	Deposits						
SUBSTRA	ATE	✓ Norm Chem	nical Anaerobic	Petroleum None	Sludge □Sawdust □Paper fiber □Sand □Relict shells □Other						
		Other	f		Looking at stones which	h are not deeply embedded,					
		Oils Absen	nt Slight Moderat	te Profu	are the undersides blac se □Yes ☑No	ck in color?					
	*										
INC		STRATE dd up to 1	COMPONENTS (00%)		ORGANIC SUBSTRATE C (does not necessarily add						
Substrate Type	Diamet	er	% Composition in Sampling Reach	Substrate Type	Characteristic	% Composition in Sampling Area					
Bedrock			0	Detritus	sticks, wood, coarse plant	~ 5					
Boulder	> 256 mm (10")	١	10		materials (CPOM)	<5					
Cobble	64-256 mm (2.5	"-10")	35	Muck-Mud	black, very fine organic	0					
Gravel	2-64 mm (0.1"-2	2.5")	45		(FPOM)	U					
Sand	0.06-2mm (gritt	y)	0 Marl		grey, shell fragments	0					
Silt	0.004-0.06 mm		10								
Clay	< 0.004 mm (sli	ck)	0	1							

HABITAT ASSESSMENT FIELD DATA SHEET - HG - USE ON ALL STREAMS (FRONT)

STREAM NAMES	-N2 Hungard Creek	LOCATION	
STATION #	RIVERMILE	_ STREAM CLASS Perennial	Ţ
LAT 37.694507	LONG -80.736682	_ COUNTY Summers	1
STORET#		AGENCY Potesta/Edge	
INVESTIGATORS	ABK/EW/WP		
FORM COMPLETE A. Kincaid	ED BY	DATE 9-7-2021 REASON FOR SURVEY Preliminary Assessment	

	Habitat		Condition	ı Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
	SCORE 16▼	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.
ed ir	SCORE 18 ▼	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime N/A	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).
aram	SCORE 11 <u></u>	20 19 18 17 16	15 14 13 12 🚺	10 9 8 7 6	5 4 3 2 1 0
ra .	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
	SCORE 17 ▼	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
	5. Channel Flow Status N/A	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
	SCORE 14	20 19 18 17 16	15 🚺 13 12 11	10 9 8 7 6	5 4 3 2 1 0

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

	Habitat		Condition Category											
	Parameter	Optimal	Suboptimal	Marginal	Poor									
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.									
	SCORE 19 ▼	20 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0									
ing reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.									
ampl	SCORE 15▼	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0									
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing deuranteen.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.									
e eva	SCORE 9	Left Bank 10	8 7 6	5 4 3	2 1 0									
to be	SCORE 7	Right Bank 10 9	8 7 6	5 4 3	2 1 0									
Parameter	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.									
	SCORE 8	Left Bank 10 9	8 7 6	5 4 3	2 1 0									
	SCORE 8	Right Bank 10 9	8 7 6	5 4 3	2 1 0									
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.									
	SCORE 6	Left Bank 10 9	8 7 6	5 4 3	2 1 0									
	SCORE 6 ▼)	Right Bank 10 9	8 7 6	5 4 3	2 1 0									

BENTHIC MACROINVERTEBRATE FIELD DATA SHEET

STREAM NAMES-N	12 H	lung	gard	Cr	eek		LO	CATION	I .										
STATION #	_ R	IVE	RMI	ILE_			STF	REAM C	LASS F	Pere	ennia	ıl						[▼
LAT 37.694507	_ L	ONO	J -80.7	36692			CO	UNTY	Su	ımm	ers							_[•
STORET#							AG	ENCYF	otesta	/Ed	lge								
INVESTIGATORSA	BK/E	EW/	/WP)								1	LOT	NUMBER					
FORM COMPLETED	ВY	Α.	Ki	inc	aid	d	DA'		_			1	REA!	SON FOR SURVEY Pre	eliminar	y Ass	essm	ient	
HABITAT TYPES		C	obbl	e	9	6	of each Snags_ s_	habitat %	\Box V	eget	nt tated Other	Bani	ks	%	%				
SAMPLE	G	ear	nsed	Г	lD-fi	ame	₩ kiel	c-net		Пс)ther								
COLLECTION	1000																		
	н	ow v	were	the	samp	oles co	llected	? [wadin	9		froi	n bar	ık ☐from boa	t				
	~	Cob	ble_	+		r of ja	nags	ks taken	$\Box v$	eget	bitat tated Other	Ban	e. ks	Sand	_				
GENERAL COMMENTS	11		d h cra			, nc	t a l	ot of	macr	oir	rve	erta	ıbra	ates. Handful d	of fis	sh	see	∍n;	
Dominant					0 = 2	Absei	nt/Not	Obser	ved, 1				= C	ommon, 3= Abuno	17903	-500	200	Parel	400
Periphyton					0		2 3				mes		- 2		0	1	2	3	4
Filamentous Algae					0	1	1001					nve	rtebi	rates	0	1		3	4
Macrophytes					0	1	2 3	4		Fis	h				0	1	2	3	4
FIELD OBSERVA Indicate estimated					0 =	Abse	nt/No	t Obse						rganisms), 2 = Cor , 4 = Dominant (>				ıs)	
Porifera	0	1	2	3	4	Ani	sopter	a	0	1	2	3	4	Chironomidae	0	1	2	3	4
Hydrozoa	0	1	2	3	4		goptera		0	1	2	3	4	Ephemeroptera	0	1	2	3	4
Platyhelminthes	0	1	2	3	4		nipter		0	1	2	3	4	Trichoptera	0	1	2	3	4
Turbellaria	0	1	2	3	4		eopter		0	1	2	3	4	Other	0	1	2	3	4
Hirudinea	0	1	2	3	4		idopte	era	0	1	2	3	4						
Oligochaeta	0	1	2	3	4		lidae		0	1	2	3	4						
Isopoda	0	1	2	3	4		ydalid		0	1	2	3	4						
Amphipoda	0	1	2	3	4	_	ulidae		0	1	2	3	4						
Decapoda	0	1	2	3	4		pidida		0	1	2	3	4						
Gastropoda	0	1	2	3	4		nuliida		0	1	2	3	4						
Bivalvia	0	1	2	3	4		oinidae	•	0	1	2	3	4						
						Cul	cidae		0	1	2	3	4						

Insects	Count	Tolerance	TV	Insects	Count	Tolerance	TV	Non-Insects	Count	Tolerance	TV
Ephemeroptera			35	Odonata			0	Crustacea			0
Ameletidae		2	0	Aeshnidae		3	0	Asellidae		7	0
Baetidae	7	4	28	Calopterygidae		6	0	Cambaridae		5	0
Beatiscidae		4	0	Coenagrionidae		7	0	Gammaridae		5	0
Caenidae		5	0	Cordulegastridae		3	0	Palaemonidae		5	0
Ephemerellidae		3	0	Gomphidae		5	0	Annelida			0
Ephemeridae		5	0	Lestidae		7	0	Hirudinea		10	0
Heptageniidae	28	3	84	Libellulidae		7	0	Nematoda		10	0
Isonychiidae		3	0	Coleoptera	•		3	Nematomorpha		10	0
Leptophlebiidae		4	0	Chrysomelidae		7	0	Oligochaeta		10	0
Potamanthidae		5	0	Dryopidae		5	0	Turbellaria			0
Siphlonuridae		3	0	Dytiscidae		6	0	Turbellaria		7	0
Tricorythidae		5	0	Elmidae	2	4	8	Bivalvia			0
Plecoptera	•	•	3	Gyrinidae		5	0	Corbiculidae		6	0
Capniidae		2	0	Haliplidae		7	0	Sphaeriidae		5	0
Chloroperlidae		2	0	Hydrophilidae		7	0	Unionidae		4	0
Leuctridae		2	0	Psephenidae	1	3	3	Gastropoda			0
Nemouridae		2	0	Ptilodactylidae		5	0	Ancylidae		7	0
Peltoperlidae		1	0	Hemiptera			0	Hydrobiidae		4	0
Perlidae	3	1	3	Belostomatidae		8	0	Physidae		7	0
Perlodidae		1	0	Corixidae		8	0	Planorbidae		5	0
Pteronarcyidae		1	0	Gerridae		10	0	Pleuroceridae		5	0
Taeniopterygidae		2	0	Hydrometridae		8	0	Viviparidae		5	0
Trichoptera			36	Nepidae		8	0	Miscellaneous			0
Brachycentridae		2	0	Notonectidae		8	0	Collembola		6	0
Glossosomatidae		2	0	Megaloptera			1	Lepidoptera		5	0
Helicopsychidae		3	0	Corydalidae	1	3	3	Neuroptera		5	0
Hydropsychidae	36	5	180	Sialidae		6	0	Hydrachnidae		6	0
Hydroptilidae		3	0	Diptera			14	Totals	Total	number	92
Lepidostomatidae		3	0	Athericidae		3	0	Totals	Total	families	9
Leptoceridae		3	0	Blephariceridae		2	0			М	etric calcı

SITE ID:	S-N2
	0/7/2021

9/7/2021

Glossosomatidae		2	0	Megaloptera			1	Lepidoptera		5	0		
Helicopsychidae		3	0	Corydalidae	1	3	3	Neuroptera	5 0				
Hydropsychidae	36	5	180	Sialidae		6	0	Hydrachnidae		6	0		
Hydroptilidae		3	0	Diptera			14	Totals	Total	number	92		
Lepidostomatidae		3	0	Athericidae		3	0	Totals	Total	families	9		
Leptoceridae		3	0	Blephariceridae		2	0	Metric calculations					
Limnephilidae		4	0	Ceratopogonidae		8	0	WVSCI Metric Scores Additional metrics					
Molannidae		3	0	Chironomidae	13	9	117	- VVV3	ci wetric	scores		Ephemeroptera Taxa	2
Philopotamidae		4	0	Culicidae		10	0	Total Taxa	1	9	40.9	Plecoptera Taxa	1
Phryganeidae		4	0	Dixidae		6	0	EPT Taxa		4	30.8	Trichoptera Taxa	1
Polycentropodidae		5	0	Empididae		7	0	% EPT Abunda	ance	80.4	90.1	Long-lived Taxa	5
Psychomiidae		4	0	Psychodidae		8	0	% Chironomi	dae	14.1	87.4	Odonata Taxa	0
Rhyacophilidae		3	0	Ptychopteridae		8	0	Hilsenhoff Biotic In	idex (HBI)	4.68	71.9	Diptera Taxa	2
Uenoidae		2	0	Simuliidae		7	0	% 2 Dominant	Taxa	69.6	48.5	COET Taxa	5
	Total Tole	rance Value	431	Stratiomyidae		10	0					% Sensitive	35.9
West Virginia Strea		•		Syrphidae		10	0					% Tolerant	14.1
Gerritson, J., J. Burton, an condition index for West \				Tabanidae		7	0	WV Stream	Condition	Index	61.6	% Clingers	37.0
Tech, Inc. Owing Mills, MI	-	ieavie streams	. retra	Tipulidae	1	5	5					% Net-spinners	39.1
Spreadsheet uses updated		dard Values [B	SV] for eac	h metric per WVSCI Adde	nda dated	March 23, 201	.0						

			rgard				_			
OLLECTOR	r(s): <u>E.W</u> (<u> </u>								
	ble Count (R		11/15	100	150-0-	100	0 -0	120	1 /4 /	NOTES:
205	270	171	44	62 37	195	125	250	130	40	,
400	210	235	31	74	198	22	65	270	360	1
295	125	158	32	177	76		7	142	120	
34	ш3	1	210	95	130	FS	73	350	330	
30	110	210	345	60	115	51	25	q	60	
290	155	37	340	125	11	220	255	365	CS	
420	55	110	200	95	500	150	82	90	19	
765	174	155	425	410	40	765	15	110	CS.	
19U	115	220	160	60	110	295	120	30	25	
ffle Pebble	e Count	0.81/ 4-02		100	(4.20 Hg) (1		XIII TAA			NOTES:
								7		NOTES.
					-					
				-		-				
					1				-	
					J				J	
A country in										NOTES:
										•
			1	TI.	1					1
				-						

Inches	PARTICLE	Millimeters	
	Sit / Clay	< .062	S/C
	Very Fine	.062125	SA
	Fine	.12525	
	Medium	.2550	A
	Coarse	.50 - 1.0	N D
04 - 08	Very Coarse	1.0 - 2	
.0816	Very Fine	2-4	GR
.1622	Fine	4 - 5.7	
.2231	Fine	5.7 - 8	
3144	Medium	8 - 11.3	
.44 - ,63	Medium	11.3 - 15	
.5389	Coarse	16 - 22.6	
89-1,3	Coarse	22.6 - 32	
1,3 - 1,8	Very Coarse	32 - 45	
1.8 - 2.5	Very Coarse	45 - 64	
2.5 - 3,5	Small	64 - 90	Commit
3.5 + 5.0	Small	90 - 128	
5.0 - 7.1	Large	128 - 180	
7.1 - 10.1	Large	180 - 256	
10.1 - 14.3	Small	256 - 362	B
14.3 - 20	Small	362 - 512	S
20 - 40	Medium	512 - 1024	PE
40 - 80	Large-Vry Large	1024 - 2048	R
	Bedrock		BDRK

Bankfull Channel			
Material Size Range (mm	Count		
silt/clay 0 - 0.062			
very fine sand 0.062 - 0.125			
fine sand 0.125 - 0.25	2		
medium sand 0.25 - 0.5			
coarse sand 0.5 - 1	2		
very coarse sand 1 - 2			
very fine gravel 2 - 4	2		
fine gravel 4 - 6			
fine gravel 6 - 8	1		
medium gravel 8 - 11	2		
medium gravel 11 - 16	1		
coarse gravel 16 - 22	1		
coarse gravel 22 - 32	7		
very coarse gravel 32 - 45	3		
very coarse gravel 45 - 64	7		
small cobble 64 - 90	7		
medium cobble 90 - 128	10		
large cobble 128 - 180	21		
very large cobble 180 - 256	13		
small boulder 256 - 362	12		
small boulder 362 - 512	7		
medium boulder 512 - 1024	2		
large boulder 1024 - 2048			
very large boulder 2048 - 4096			
total particle count: 100			
bedrock			
clay hardpan			
detritus/wood			
artificial			
total count:	100		
Note:			

LEGEND

STUDY AREA (EASEMENT)

EXISTING SURVEY-LOCATED THALWEG

1176.87 **+** EXISTING SURVEYED GROUND SHOT ELEVATION

SURVEY NOTES:

- 1. THIS MAP HAS BEEN ORIENTED TO NAD 1983 UTM ZONE 17N, AND VERTICALLY TO THE NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD 88), USING REAL TIME DGPS. FIELD LOCATIONS WERE COMPLETED ON
- 2. EASEMENT LINES SHOWN ON PLAN VIEW WERE PROVIDED BY MOUNTAIN VALLEY PIPELINE.
- 3. SURVEY POINTS FOR CROSS SECTIONS AND THALWEG PROFILES COLLECTED IN 2021 HAVE BEEN USED IN COMBINATION WITH SURVEY POINTS AND COLLECTED PREVIOUSLY IN 2020 IN ORDER TO GENERATE THE PRE-CROSSING SURFACE SHOWN IN PLAN. DUE TO NATURAL EROSIONAL STREAM PROCESSES THAT OCCUR OVER TIME, MINOR ADJUSTMENTS TO THE PROFILE ALIGNMENTS MAY HAVE BEEN REQUIRED IN ORDER TO GENERATE A CLEAN PRE-CROSSING SURFACE.
- 4. ALL SECTION VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.
- 5. POST-CROSSING SURVEY INFORMATION SHOWN IN RED. DATA PENDING.
- 6. POST-CROSSING SURVEY POINTS FOR CROSS SECTIONS AND THALWEG ARE PROJECTED ONTO PRE-CROSSING SECTION AND PROFILE VIEWS FOR COMPARISON.

S-N2 BASELINE CROSS-SECTION A

S-N2 BASELINE CROSS-SECTION B

— EXISTING GRADE

CROSS SECTION LEGEND

NOTE: ALL SECTION VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.

PRE-CROSSING PHOTOS

PHOTO TAKEN LOOKING DOWNSTREAM FROM UPSTREAM IMPACT LIMITS

PHOTO TAKEN LOOKING UPSTREAM FROM DOWNSTREAM IMPACT LIMITS

POST-CROSSING PHOTOS

PENDING CROSSING

PHOTO TAKEN LOOKING DOWNSTREAM UPSTREAM FROM IMPACT LIMITS

PENDING CROSSING

PHOTO TAKEN LOOKING UPSTREAM FROM UPSTREAM IMPACT LIMITS

PRE-CROSSING

Checked

Approved NOTED Scale:

SEPT. 2021 Date:

21-0244-005 Project No.

Drawing No