Baseline Assessment – Stream Attributes

Reach S-A3a (Pipeline ROW) Intermittent Spread A Wetzel County, West Virginia

Data	Included
Photos	✓
SWVM Form	✓
FCI Calculator and HGM Form	✓
RBP Physical Characteristics Form	✓
Water Quality Data	✓
RBP Habitat Form	✓
RBP Benthic Form	✓
Benthic Identification Sheet	✓
Wolman Pebble Count	✓
Reference Reach Software Pebble Count Data	√
Longitudinal Profile and Cross Sections	√

Photo Type: DS, US View
Location, Orientation, Photographer Initials: Downstream Edge of ROW, Upstream View, JR/MB
Lat: 39.551814 Long: -80.545633

Photo Type: DS, DS View
Location, Orientation, Photographer Initials: Downstream Edge of ROW, Downstream View, JR/MB
Lat: 39.551814 Long: -80.545633

Photo Type: US View at Center Location, Orientation, Photographer Initials: Center ROW, Upstream View, JR/MB Lat: 39.551814 Long: -80.545633

Photo Type: DS View at Center Location, Orientation, Photographer Initials: ROW Center, Downstream View, JR/MB Lat: 39.551814 Long: -80.545633

Photo Type: US, US View Location, Orientation, Photographer Initials: Upstream Edge of ROW, Upstream View, JR/MB Lat: 39.551814 Long: -80.545633

Photo Type: US, DS View Location, Orientation, Photographer Initials: Upstream Edge of ROW, Downstream View, JR/MB Lat: 39.551814 Long: -80.545633

Photo Type: Riffle, DS View Location, Orientation, Photographer Initials: Upstream of Riffle, Downstream View, JR/MB Lat: 39.551814 Long: -80.545633

Photo Type: Riffle, US View Location, Orientation, Photographer Initials: Downstream of Riffle, Upstream View, JR/MB Lat: 39.551814 Long: -80.545633

Photo Type: Pool, DS View
Location, Orientation, Photographer Initials: Upstream of Pool, Downstream View, JR/MB
Lat: 39.551814 Long: -80.545633

Photo Type: Pool, US View Location, Orientation, Photographer Initials: Downstream of Pool, Upstream View, JR/MB Lat: 39.551814 Long: -80.545633

IMPACT STREAM/SITE ID AND SITE DESCRIPTION: S-A3a MITIGATION STREAM CLASS/SITE ID AND SITE DESCRIPTION: (watershed size (percapp), unaflatered or impairments) Comments:	
	and and Manharates (Compile)
STREAM IMPACT LENGTH: 80 FORM OF MITTIGATION: RESTORATION (Levels I-III) MIT COORDINATES: (in Decimal Degrees) Lat. Lon. PRECIPITATION PAST 48 HRS: Mitigation Length:	and at Maturity (Cardin)
Column No. 1- Impact Existing Condition (Debit) Column No. 2- Mitigation Existing Condition - Baseline (Credit) Column No. 3- Mitigation Projected at Five Years Post Completion (Credit) Column No. 4- Mitigation Projected at Ten Years Post Completion (Credit) Column No. 4- Mitigation Projected at Ten Years Post Completion (Credit)	acted at Maturity (Credit)
Stream Classification: Stream Classification: O Stream Classification: O Stream Classification: O Stream Classification: O Stream Classification:	0
Percent Stream Channel Slope 5.3 Percent Stream Channel Slope 0 Percent Stream Channel Slope 0 Percent Stream Channel Slope	el Slope 0
HGM Score (attach data forms):	n data forms):
Average Average Average Average	Average
Hydrology 0.56 Hydrology Hydrology Hydrology Hydrology	
Biogeochemical Cycling 0.54 0.4533333 Biogeochemical Cycling 0 Biogeochemical Cycling 0 Biogeochemical Cycling 0 Biogeochemical Cycling 0 Biogeochemical Cycling	0
Habitat 0.26 Habitat PART I - Physical, Chemical and Biological Indicators PART I - Physical, Chemical and Biological In	and Biological Indicators
Print Serve Services Serve Services Serve Services Servic	Points Scale Range Site Score
PHYSICAL INDICATOR (Applies to all streams classifications)	ams classifications)
USEPA RBP (High Gradient Data Sheet)	i)
1. Epifaunal Substrate/Available Cover 0-20 2 1. Epifaunal Substrate/Available Cover 0-20 1. Epifaunal Substra	0-20
2. Embeddedness 0.20 18 2. Pool Substrate Characterization 0.20 2. Embeddedness 0.20 2. Embed	0-20
3. Velocity Depth Regime 0.20 4. Sediment Deposition 0.20 4. Sediment Deposi	0-20
50 17 01	0-20
6. Ordinari of Galds	
6. Channel Alteration 0.20 19 6. Channel Alteration 0.20 5. Channel Alteration 0.20 6. Channel Alteration 0.20 5. Channel Alteration 0.20 7. Frequency of Riffles (or bands) 0.20 7. Frequency 0.20 7. Frequ	0-20
1	0-20
D. Dellin Suddininy (L.D. & RD)	0-20
10. Riparian Vegetative Zone Width (LB & RB) 0,20 10. Riparian Vegetative Zone Width (LB & RB) 0	
Total RBP Score Suboptimal 135 Total RBP Score Poor 0 Total RBP Score Poor 0 Total RBP Score Poor 0 Total RBP Score	Poor 0
Sub-Total 0.675 Sub-Total 0 Sub-Total 0 Sub-Total 0 Sub-Total	0
CHEMICAL INDICATOR (Applies to Intermittent and Perennial Streams)	ittent and Perennial Streams)
WVDEP Water Quality Indicators (General)	eral)
Specific Conductivity Spec	
100-199 - 85 points 0-90 119.9	0-90
pH pH pH	
0.60 0.1 7.81 5.90 0.1 5.90 0.1	5-90 0-1
6.0-8.0 = 80 points	
DO DO 1030 7.89 DO DO 1030 1030 1030	10-30
>5.0 = 30 points	
Sub-Total BIOLOGICAL INDICATOR (Applies to Intermittent and Perennial Streams)	0
W Stream Condition Index (WSCI) W Stream Condition Index (WSCI) W Stream Condition Index (WSCI)	and i didminal durants)
Grev Zone 0-100 0-1 64.99 0-100 0-1 0-100 0-1 0-100 0-1	0-100 0-1
Sub-Total Sub-Total	0
PART II - Index and Unit Score	nd Unit Score
Index Linear Feet Unit Score	Linear Feet Unit Score
0.610 80 48.796667 0 0 0 0 0 0 0 0 0	0 0

FCI Calculator for the High-Gradient Headwater Streams in Appalachia

To ensure accurate calculations, the <u>UPPERMOST STRATUM</u> of the plant community is determined based on the calculated value for V_{CCANOPY} (≥20% cover is required for tree/sapling strata). Go to the SAR Data Entry tab and enter site characteristics and data in the yellow cells. For information on determining how to split a project into SARs, see Chapter 5 of the Operational Draft Regional Guidebook for the Functional Assessment of High-Gradient Headwater Streams and Low-Gradient Perennial Streams in Appalachia (Environmental Laboratory U.S. Army Corps of Engineers 2017).

Project Name: MVP Stream Assessment **Location:** Wetzel County; Spread A

Sampling Date: 8/24/21 Project Site Before Project

Subclass for this SAR:

Intermittent Stream

Uppermost stratum present at this SAR: SAR number: S-A3a

Shrub/Herb Strata

Functional Results Summary: Enter Results in Section A of the Mitigation Sufficiency Calculator

Function	Functional Capacity Index
Hydrology	0.56
Biogeochemical Cycling	0.54
Habitat	0.26

Variable Measure and Subindex Summary:

Variable	Name	Average Measure	Subindex
V _{CCANOPY}	Percent canpoy over channel.	Not Used, <20%	Not Used
V_{EMBED}	Average embeddedness of channel.	2.90	0.78
V _{SUBSTRATE}	Median stream channel substrate particle size.	0.70	0.35
V_{BERO}	Total percent of eroded stream channel bank.	10.00	1.00
V_{LWD}	Number of down woody stems per 100 feet of stream.	0.00	0.00
V_{TDBH}	Average dbh of trees.	Not Used	Not Used
V _{SNAG}	Number of snags per 100 feet of stream.	0.00	0.10
V _{SSD}	Number of saplings and shrubs per 100 feet of stream.	116.67	1.00
V _{SRICH}	Riparian vegetation species richness.	0.00	0.00
V _{DETRITUS}	Average percent cover of leaves, sticks, etc.	11.25	0.14
V_{HERB}	Average percent cover of herbaceous vegetation.	85.63	1.00
V _{WLUSE}	Weighted Average of Runoff Score for Catchment.	0.90	0.95

High-Gradient Headwater Streams in Appalachia Field Data Sheet and Calculator											
	Team:	JR MB		1 10101 -			0.1.0	Latitude/UTI	M Northina:	39.551814	
Pro	oject Name:		m Assessm	ent				Longitude/U7	_		3
	-	ocation: Wetzel County; Spread A Sampling Date: 8/24/21									
SA	AR Number:	S-A3a	Reach	Length (ft):	60	Stream Ty	/pe: In	termittent Strea	m		_
Top Strata: Shrub/Herb Strata (determined from percent calculated in V _{CCANOPY})											
Site	and Timing:	Project Site				•	Before Pro	oject			•
Sample	Variables	1-4 in strea	ım channel								
Equivisiant points along the stream. Weasure only intree/sapiling cover is at least 20 /0. (In less than									Not Used, <20%		
	List the per	cent cover r	measureme	nts at each	point below:						-
	0										
2	V_{EMBED}							ver than 30 rou oving it, determ			2.9
								e sediment, ar			
								r composed of			
		rating score	of 1. If the	bed is com	posed of be	edrock, use	a rating s	core of 5.			
		Embeddedi Minshall 19	•	for gravel, c	obble and b	oulder parti	cles (resc	caled from Pla	tts, Megaha	ın, and	
		Rating	Rating Des								
		5						/ fine sedimen		k)	
		4						ed by fine sedi			
		3 2						ried by fine sec ried by fine sec			
		1						by fine sedime		ial surface)	
	List the rati	ngs at each	point below		•	,		,	,	,	1
	2	1	1	5	3	1	1	5	5	3	
	4	3	1	3	1	3	1	5	3	5	1
	5	1	3	3	5	1	1	3	4	5	1
											1
3	$V_{SUBSTRATE}$				particle size pints and pa			er than 30 rou _{IBED} .	ghly equidis	tant points	0.70 in
	Enter partic	le size in in	ches to the	nearest 0.1	inch at eacl	n point belo	w (bedroo	k should be c	ounted as 9	9 in,	
					ticles as 0.0		`				_
	0.40	6.00	0.08	2.50	0.80	5.60	0.08	2.30	1.40	5.00	
	1.50	9.00	0.08	0.50	0.08	0.60	4.20	0.30	0.20	2.00	
	0.10	2.20	3.80	0.30	0.08	0.30	0.30	3.20	0.30	4.10	
4	V_{BERO}	•						er of feet of e			
		side and the		entage will b	e calculated	d If both ba	nks are 6	eroded, total e	rosion for th	ne stream	10 %
			Left Bank:	1	ft	ı	Right Ban	k: 5	ft		

Sample Variables 5-9 within the entire riparian/buffer zone adjacent to the stream channel (25 feet from each bank).

5 V	$V_{ m LWD}$	stream reach. Enter the number from the entire 50'-wide buffer and within the channel, and the amount								0.0	
	per 100 feet of stream will be calculated. Number of downed woody stems: 0										
6 V	V_{TDBH}	Average dbh of trees (measure only if V _{CCANOPY} tree/sapling cover is at least 20%). Trees are at least 4 inches (10 cm) in diameter. Enter tree DBHs in inches.									Not Used
	List the dbh measurements of individual trees (at least 4 in) within the buffer on each side of the stream below:										
			Left Side					Right Side			
	0					0					
_											
_											
_											
7 V	V _{SNAG}			east 4" dbh a d the amoun			et of stream. alculated.	Enter num	ber of sna	gs on each	0.0
			Left Side:	()		Right Side:		0		
8 V	$V_{ m SSD}$. •	•	•	•	, .		•	neasure only	
				Enter numb ream will be			ubs on each	side of the	stream, an	d the	116.7
		amount por	Left Side:		5		Right Side:	3	35		
9 V	V _{SRICH}						am reach. C				
							ive species perion these of		ili strata. S	pecies	0.00
		Grou	p 1 = 1.0					Group	2 (-1.0)		
A	Acer rubrui	m		Magnolia tr	ipetala		Ailanthus a	Itissima		Lonicera ja	ponica
	Acer sacch	narum		Nyssa sylv	atica		Albizia julib	rissin		Lonicera ta	tarica
	Aesculus fl	lava		Oxydendrum	arboreum		Alliaria peti	olata		Lotus corni	culatus
A	Asimina trii	loba		Prunus ser	otina		Alternanthe	era		Lythrum sa	licaria
□ в	Betula alleg	haniensis		Quercus al	ba		philoxeroid	es		Microstegiun	n vimineum
	Betula lent	а		Quercus co	occinea		Aster tatari	cus		Paulownia	tomentosa
	Carya alba			Quercus im	nbricaria		Cerastium	fontanum		Polygonum o	cuspidatum
	Carya glab	ra		Quercus pr	rinus		Coronilla va	aria		Pueraria m	ontana
	Carya oval	is		Quercus ru	bra		Elaeagnus u	mbellata	\checkmark	Rosa multin	flora
	Carya ovat	ʻa		Quercus ve	elutina		Lespedeza	bicolor		Sorghum h	alepense
	Cornus flor	rida		Sassafras	albidum		Lespedeza	cuneata		Verbena br	rasiliensis
	⊏agus grar	ndifolia		Tilia amerio	cana		Ligustrum ob	otusifolium			
	Fraxinus a	mericana		Tsuga cana	adensis		Ligustrum s	sinense			_
	Liriodendron	tulipifera		Ulmus ame	ericana						
^	Magnolia a	cuminata									
		0	Species in	Creun 1				1	Species ir	0 0	

Sample Variables 10-11 within at least 8 subplots (40" x 40", or 1m x 1m) in the riparian/buffer zone within 25 feet from each bank. The four subplots should be placed roughly equidistantly along each side of the stream.

I			Left	Side		1	Righ	t Side		1	
		20	30	30	0	5	0	5	0		
									000()	<u> </u>	
11	V_{HERB}	Average percentage cover of herbaceous vegetation (measure only if tree cover is <20%). Do <i>not</i> include woody stems at least 4" dbh and 36" tall. Because there may be several layers of ground cover vegetation percentages up through 200% are accepted. Enter the percent cover of ground vegetation at each subplot.									
				Side				t Side			
		80	70	70	100	90	90	90	95		
Samp	le Variable '	12 within th	e entire cat	chment of	the stream						
12	V _{WLUSE}	Weighted A	Average of F	Runoff Scor	e for waters	hed:					0.90
			Land	Use (Choos	se From Dro	pp List)			Runoff Score	% in Catch- ment	Running Percent (not >100)
	Open space	(pasture, law	ns, parks, etc.), grass cover	>75%			~	0.3	0	0
	Forest and r	native range (>75% ground	cover)				~	1	87.93	87.93
	Forest and native range (>75% ground cover)									1.65	89.58
	Newly grade	ed areas (bare	soil, no vege	tation or pay	ation or pavement)					10.42	100
								•			
								~			
	-							_			
	▼										
		S-A3a					No	ites:			
\	/ariable	Value	VSI		er Analysis			_			
V	CCANOPY	Not Used, <20%	Not Used		rom Lands d boundari						S.
V	EMBED	2.9	0.78	*Percenta	iges in cato	chment val	ues have b	een rounde	ed to the n	earest full	number.
	SUBSTRATE	0.70 in	0.35								
V	BERO	10 %	1.00								
	LWD	0.0	0.00								
	V _{TDBH} Not Used Not Used										
	SNAG	0.0	0.10								
	SSD	116.7	1.00								
	SRICH	0.00	0.00								
	DETRITUS	11.3 %	0.14								
	HERB	86 %	1.00								
	WLUSE	0.9	0.95								

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

STREAM NAME	LOCATION		
STATION # RIVERMILE	STREAM CLASS		
LAT LONG	RIVER BASIN		
STORET#	AGENCY		
INVESTIGATORS			
FORM COMPLETED BY	DATETIME	REASON FOR SURVEY	

WEATHER CONDITIONS	Now storm (heavy rain (steady showers (internous) % %cloud conclear/sunr	rain) nittent) ver %	Has there been a heavy rain in the last 7 days? Yes No Air Temperature0 C Other
SITE LOCATION/MAP	Draw a map of the site and	MOS	PIPE S-A3a
STREAM CHARACTERIZATION	Stream Subsystem Perennial Intermitter Stream Origin Glacial Non-glacial montane Swamp and bog	t Tidal Spring-fed Mixture of origins Other	Stream Type Coldwater Warmwater Catchment Areakm²

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

WATERS FEATURI		Fores Field Agric	Pasture Industri	ercial	No evidence Son Obvious sources Local Watershed Erosi None Moderate	ne potential sources				
RIPARIA VEGETA (18 meter	ΓΙΟΝ	Trees	Indicate the dominant type and record the dominant species present Trees Shrubs Grasses Herbaceous Dominant species present							
INSTREA FEATURI			ted Reach Length		Canopy Cover Partly open Part	ly shaded Shaded				
				m	High Water Mark	m				
					Proportion of Reach Re	epresented by Stream				
			km² (m²x1000) ted Stream Depth	km²	Morphology Types Riffle Pool %	Run%				
			Velocity		Channelized Yes	No				
		(111 11111			Dam Present Yes	No				
LARGE V DEBRIS	VOODY		m² of LWDn	n ² /km ² (LWD /	reach area)					
AQUATIO VEGETA		Indicate Roote Floati Domina	e the dominant type and demergent R ng Algae A	l record the do ooted submerge ttached Algae	minant species present nt Rooted floating	C				
		Portion	of the reach with aqua	tic vegetation _	%					
WATER (QUALITY	Specific	rature0 C Conductance	-	Water Odors Normal/None Sewage Petroleum Fishy	Chemical Other				
		рН	ed Oxygen		Water Surface Oils Slick Sheen None Other	Globs Flecks				
			strument Used		Turbidity (if not measu Clear ☐ Slightly tur Opaque Stained	r ed) rbid Turbid Other				
SEDIMEN SUBSTRA		Odors Norm Chem		Petroleum None	Deposits Sludge Sawdust Relict shells	Paper fiber Sand Other				
		Oils Abser		te Profu	are the undersides blac	h are not deeply embedded, k in color?				
INC	ORGANIC SUBS		COMPONENTS (00%)		ORGANIC SUBSTRATE C (does not necessarily add					
Substrate Type	Diamete	er	% Composition in Sampling Reach	Substrate Type	Characteristic	% Composition in Sampling Area				
Bedrock				Detritus	sticks, wood, coarse plant					
Boulder	> 256 mm (10")				materials (CPOM)					
Cobble	bble 64-256 mm (2.5"-10")			Muck-Mud	black, very fine organic					

Gravel

Sand

Silt

Clay

2-64 mm (0.1"-2.5")

0.06-2mm (gritty)

< 0.004 mm (slick)

0.004-0.06 mm

grey, shell fragments

Marl

HABITAT ASSESSMENT FIELD DATA SHEET - HG - USE ON ALL STREAMS (FRONT)

STREAM NAME	LOCATION		
STATION # RIVERMILE	STREAM CLASS		
LAT LONG	RIVER BASIN		
STORET#	AGENCY		
INVESTIGATORS			
FORM COMPLETED BY	DATE AM PM	REASON FOR SURVEY	

	Habitat		Condition	ı Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
n sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0-25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.
ted in	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/depth regime (usually slow-deep).
ıram	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Pa	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

	Habitat		Condition	n Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
oling reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.
samp	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.
e eva	SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
to be	SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0
Parameters	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
	SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.
	SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
ĺ	SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0

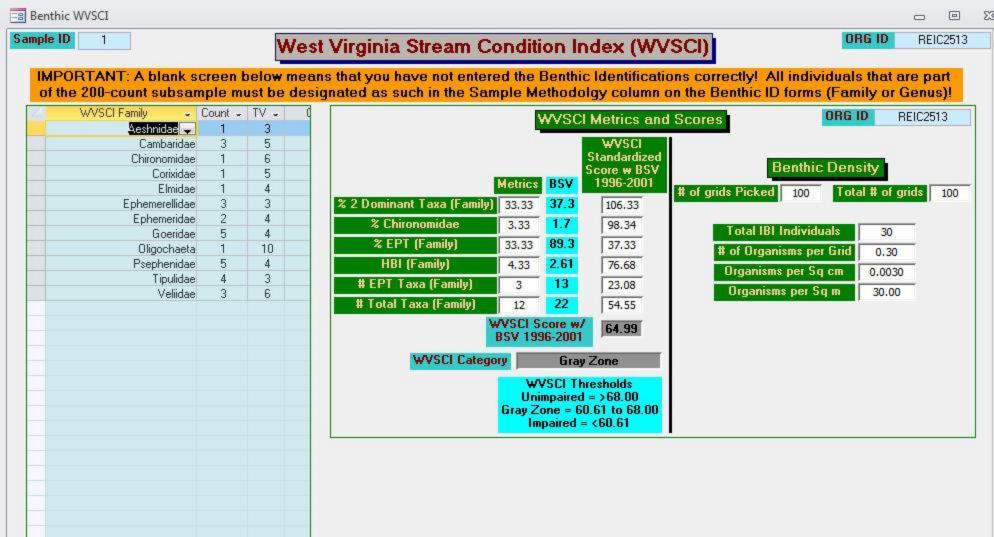
Total	Caare	
i otai	Score	

BENTHIC MACROINVERTEBRATE FIELD DATA SHEET

STREAM NAME	LOCATION	
STATION # RIVERMILE	STREAM CLASS	
LAT LONG	RIVER BASIN	
STORET#	AGENCY	
INVESTIGATORS		LOT NUMBER
FORM COMPLETED BY	DATETIME	REASON FOR SURVEY
HARITAT TVPFS Indicate the percentage of	each habitat tyne present	

HABITAT TYPES	Indicate the percentage of each habitat type present Cobble% Snags% Vegetated Banks% Sand% Submerged Macrophytes% Other ()%
SAMPLE COLLECTION	Gear used D-frame kick-net Other
	How were the samples collected? wading from bank from boat
	Indicate the number of jabs/kicks taken in each habitat type. Cobble Snags Vegetated Banks Sand Submerged Macrophytes Other ()
GENERAL COMMENTS	

QUALITATIVE LISTING OF AQUATIC BIOTA


Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare, 2 = Common, 3= Abundant, 4 = Dominant

		\					_				
Periphyton	0	1	2	3	4	Slimes	0	1	2	3	4
Filamentous Algae	0	1	2	3	4	Macroinvertebrates	0	1	2	3	4
Macrophytes	0	<u>/1</u>	2	3	4	Fish	0	1	2	3	4
<u> </u>	$\overline{}$						$\overline{}$	_			

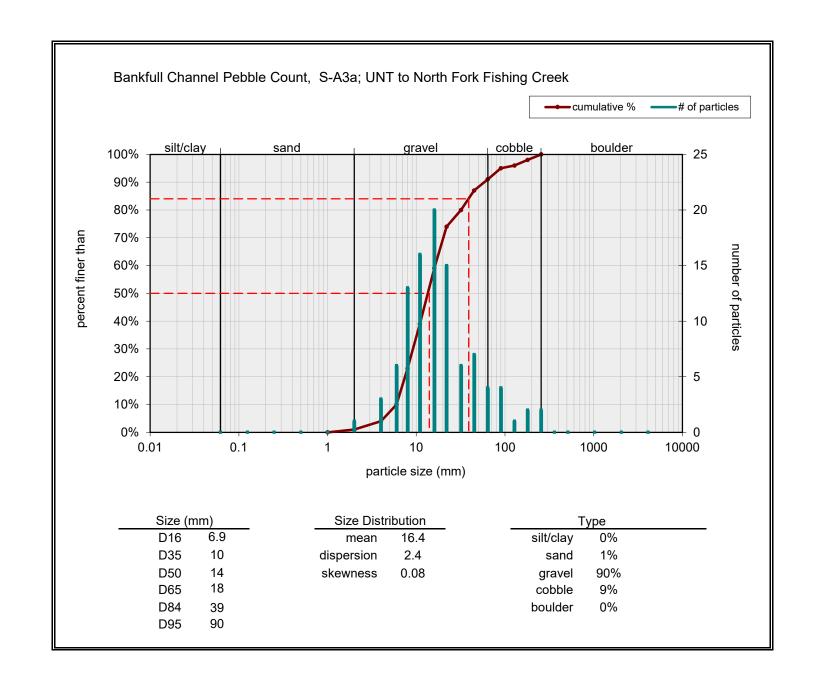
FIELD OBSERVATIONS OF MACROBENTHOS

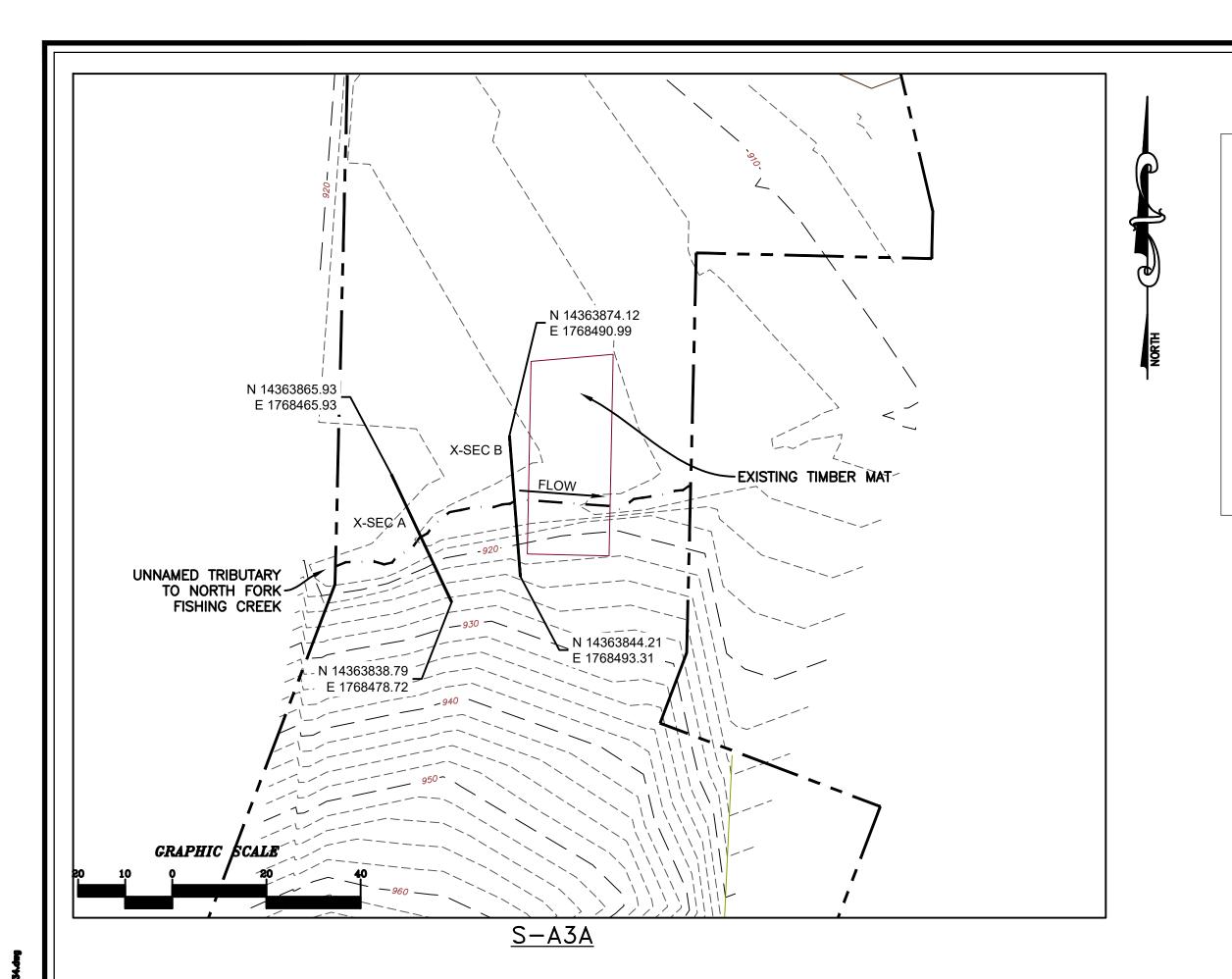
Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare (1-3 organisms), 2 = Common (3-9 organisms), 3 = Abundant (>10 organisms), 4 = Dominant (>50 organisms)

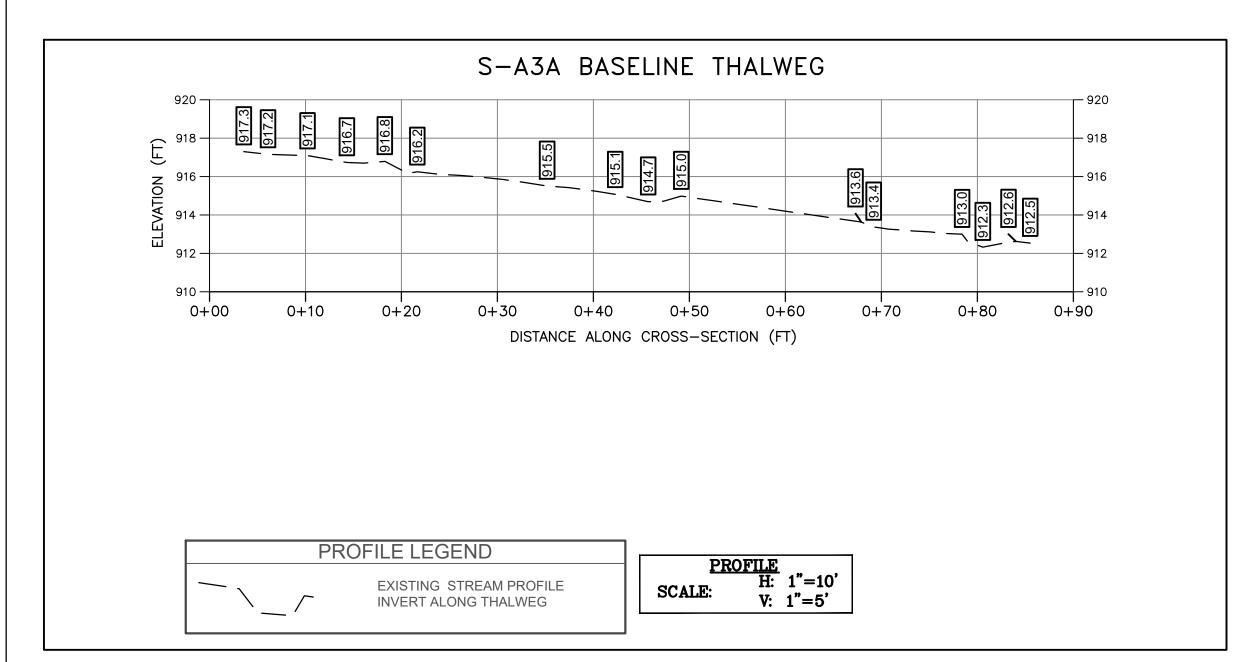
Porifera	0	1	2	3	4	Anisoptera	0	1	2	3	4	Chironomidae	0	1	2	3	4
Hydrozoa	0	1	2	3	4	Zygoptera	0	1	2	3	4	Ephemeroptera	0	1	2	3	4
Platyhelminthes	0	1	2	3	4	Hemiptera	0	1	2	3	4	Trichoptera	0	1	2	3	4
Turbellaria	0	1	2	3	4	Coleoptera	0	1	2	3	4	Other	0	1	2	3	4
Hirudinea	0	1	2	3	4	Lepidoptera	0	1	2	3	4						
Oligochaeta	0	1	2	3	4	Sialidae	0	1	2	3	4						
Isopoda	0	1	2	3	4	Corydalidae	0	1	2	3	4						
Amphipoda	0	1	2	3	4	Tipulidae	0	1	2	3	4						
Decapoda	0	1	2	3	4	Empididae	0	1	2	3	4						
Gastropoda	0	1	2	3	4	Simuliidae	0	1	2	3	4						
Bivalvia	0	1	2	3	4	Tabinidae	0	1	2	3	4						
						Culcidae	0	1	2	3	4						

WOLMAN PEBBLE COUNT FORM

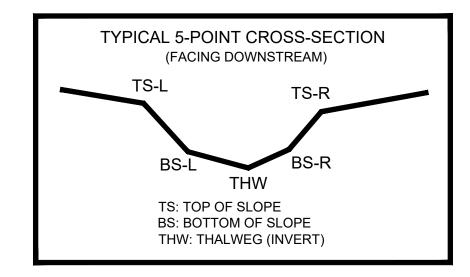
County: Wetzel Stream ID: S-A3a


Stream Name: UNT to North Fork Fishing Creek


HUC Code: 5030201 Basin: Little Muskingum-Middle Island


HUC Code: 5030201 Survey Date: 8/24/2021 Surveyors: DP, BC

Type: Bankfull Channel

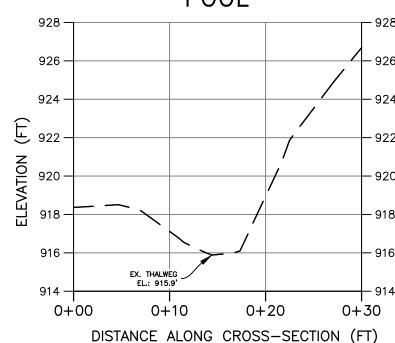

			LE COUNT			T	
Inches	PARTICLE	Millimeters		Particle Count	Total #	Item %	% Cun
	Silt/Clay	< .062	S/C	A	0	0.00	0.00
	Very Fine	.062125		A	0	0.00	0.00
	Fine	.12525		*	0	0.00	0.00
	Medium	.255	SAND	*	0	0.00	0.00
	Coarse	.50-1.0		*	0	0.00	0.00
.0408	Very Coarse	1.0-2		▲	1	1.00	1.00
.0816	Very Fine	2 -4		^	3	3.00	4.00
.1622	Fine	4 -5.7		^	6	6.00	10.00
.2231	Fine	5.7 - 8]	^	13	13.00	23.00
.3144	Medium	8 -11.3	1	^	16	16.00	39.00
.4463	Medium	11.3 - 16	GRAVEL	A	20	20.00	59.00
.6389	Coarse	16 -22.6	1	A	15	15.00	74.00
.89 - 1.26	Coarse	22.6 - 32	1	*	6	6.00	80.00
1.26 - 1.77	Vry Coarse	32 - 45	1	^	7	7.00	87.00
1.77 -2.5	Vry Coarse	45 - 64	1	^	4	4.00	91.00
2.5 - 3.5	Small	64 - 90		^	4	4.00	95.00
3.5 - 5.0	Small	90 - 128	1	^	1	1.00	96.00
5.0 - 7.1	Large	128 - 180	COBBLE	^	2	2.00	98.00
7.1 - 10.1	Large	180 - 256	7	^	2	2.00	100.0
10.1 - 14.3	Small	256 - 362		A	0	0.00	100.0
14.3 - 20	Small	362 - 512		A	0	0.00	100.0
20 - 40	Medium	512 - 1024	BOULDER	A	0	0.00	100.0
40 - 80	Large	1024 -2048	1	A	0	0.00	100.0
80 - 160	Vry Large	2048 -4096	1	A	0	0.00	100.0
	Bedrock		BDRK	<u>^</u>	0	0.00	100.0
				Totals:	100		

	AS-BUILT	TABLE: S-A3A (CROSS SECT	IÓN B	
	PI		AŞ-E	BUILT	
PT. LOC.	NORTHING	EASTING	ELEV	VERT. DIFF.	HORZ. DIFF.
TS-L	14363869.54	1768493.20	916.29		
BS-L	14363861.94	1768492.46	914.81		
THW	14363860.26	1768492.14	914.72		
BS-R	14363858.92	1768492.45	914.82		
TS-R	14363852.71	1768492.87	918.14		

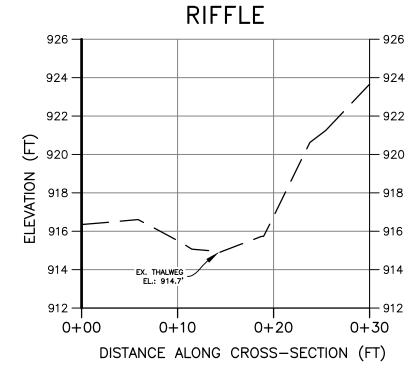
SURVEY NOTES:

LEGEND

STUDY AREA (EASEMENT)


1176.87 十

EXISTING SURVEY-LOCATED THALWEG


EXISTING SURVEYED GROUND SHOT ELEVATION

- 1. THIS MAP HAS BEEN ORIENTED TO NAD 1983 UTM ZONE 17N, AND VERTICALLY TO THE NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD 88), USING REAL TIME DGPS. FIELD LOCATIONS WERE COMPLETED ON AUGUST 24, 2021.
- 2. EASEMENT LINES SHOWN ON PLAN VIEW WERE PROVIDED BY MOUNTAIN VALLEY PIPELINE.
- 3. SURVEY POINTS FOR CROSS SECTIONS AND THALWEG PROFILES COLLECTED IN 2021 HAVE BEEN USED IN COMBINATION WITH SURVEY POINTS COLLECTED PREVIOUSLY IN 2020 IN ORDER TO GENERATE THE PRE-CROSSING SURFACE SHOWN IN PLAN. DUE TO NATURAL EROSIONAL STREAM PROCESSES THAT CAN OCCUR OVER TIME, MINOR ADJUSTMENTS TO THE PROFILE ALIGNMENTS MAY HAVE BEEN REQUIRED IN ORDER TO GENERATE A CLEAN PRE-CROSSING SURFACE.
- 4. ALL SECTION VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.
- 5. POST-CROSSING SURVEY INFORMATION SHOWN IN RED. DATA PENDING.
- 6. POST-CROSSING SURVEY POINTS FOR CROSS SECTIONS AND THALWEG ARE PROJECTED ONTO PRE-CROSSING SECTION AND PROFILE VIEWS FOR COMPARISON.

S-A3A BASELINE CROSS-SECTION A POOL

S-A3A BASELINE CROSS-SECTION B

CROSS SECTION LEGEND — EXISTING GRADE

CROSS SECTION

H: 1"=10'
V: 1"=5'

NOTE: ALL SECTIONS VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.

PRE-CROSSING PHOTOS

PHOTO TAKEN LOOKING DOWNSTREAM FROM UPSTREAM IMPACT LIMITS

PHOTO TAKEN LOOKING UPSTREAM FROM

DOWNSTREAM IMPACT LIMITS POST-CROSSING PHOTOS

PENDING CROSSING

PHOTO TAKEN LOOKING DOWNSTREAM FROM UPSTREAM IMPACT LIMITS

PENDING CROSSING

PHOTO TAKEN LOOKING UPSTREAM FROM

DOWNSTREAM IMPACT LIMITS

PRE-CROSSING

Drawing No

CAD File No.

Checked

