Baseline Assessment – Stream Attributes

Reach S-A64 (Pipeline ROW) Ephemeral Spread D Nicholas County, West Virginia

Data	Included
Photos	✓
SWVM Form	✓
FCI Calculator and HGM Form	✓
RBP Physical Characteristics Form	✓
Water Quality Data	N/A - No flow
RBP Habitat Form	✓
RBP Benthic Form	✓
Benthic Identification Sheet	N/A – No flow
Wolman Pebble Count	✓
Reference Reach Software Pebble Count Data	✓
Longitudinal Profile and Cross Sections	✓

Spread D Stream S-A64 (Pipeline ROW) Nicholas County

Photo Type: DS, US View Location, Orientation, Photographer Initials: Downstream Edge of ROW, Upstream View, HK/SK/VM Lat: 38.304538 Long: -80.673827

Photo Type: DS, DS View Location, Orientation, Photographer Initials: Downstream Edge of ROW, Downstream View, HK/SK/VM Lat: 38.304538 Long: -80.673827

Spread D Stream S-A64 (Pipeline ROW) Nicholas County

Photo Type: US View at Center Location, Orientation, Photographer Initials: Center ROW, Upstream View, HK/SK/VM Lat: 38.304538 Long: -80.673827

Photo Type: DS View at Center
Location, Orientation, Photographer Initials: ROW Center, Downstream View, HK/SK/VM
Lat: 38.304538 Long: -80.673827

Spread D Stream S-A64 (Pipeline ROW) Nicholas County

Photo Type: US, US View
Location, Orientation, Photographer Initials: Upstream Edge of ROW, Upstream View, HK/SK/VM
Lat: 38.304538 Long: -80.673827

Photo Type: US, DS View Location, Orientation, Photographer Initials: Upstream Edge of ROW, Downstream View, HK/SK/VM Lat: 38.304538 Long: -80.673827

## COMPAND READ FOR CONTROL (Lawres 10) ## COMPAND READ FOR CONTROL (Lawres 1	USACE FILE NO./ Project Name: (v2.1, Sept 2015)	M	lountain Valley Pipeline	(in Decimal Degrees)	: Lat.	38.304538	Lon.	-80.673827	WEATHER:	,	Sunny	DATE:	9/7/20	021
Silent No. 1 migration of control and a service of control and a servic	IMPACT STREAM/SITE II (watershed size (acreage)	D AND SITE DESCRIPTION: , unaltered or impairments)	5	S-A64								Comments:		
Notice Control Control Digo: December Control Digo: December Dece	STREAM IMPACT LENGTH:				Lat.		Lon.		PRECIPITATION PAST 48 HRS:			Mitigation Length:		
Percent Stream Channel Bigs	Column No. 1- Impact Existin	ng Condition (Debit)	Column No. 2- Mitigation Existing	Condition - Baseline (Credit)				Years			8	Column No. 5- Mitigation Projecte	d at Maturity (Cr	redit)
Cold Score (plants due from:	Stream Classification:	Ephemeral	Stream Classification:			Stream Classification:		0	Stream Classification:	0		Stream Classification:	0	
Armony Armony	Percent Stream Channel S	ilope 18.1	Percent Stream Channel S	lope		Percent Stream Channel	Slope	0	Percent Stream Channel S	lope	0	Percent Stream Channel Sic	ре	0
	HGM Score (attach o	data forms):	HGM Score (attach	data forms):		HGM Score (attac	ch data forms):		HGM Score (attach d	iata forms):		HGM Score (attach da	ta forms):	
Reconstructed Cycling				Average				Average			Average			Average
## PART 1 - Physical, Chemical and Biological Indications ## PART 1 - Physical, Chemical and Biological Indications ### PART 1 - Physical, Chemical Indications ### PART 1 - Physical Indications ###	Biogeochemical Cycling	0.21 0.14666667	Biogeochemical Cycling	0		Biogeochemical Cycling		0	Biogeochemical Cycling		0	Biogeochemical Cycling		0
PMTSCAL NOCATOR (upples to all classes coast-buildings)				nd Biological Indicators		PART I - Physical, Chemical	and Biological I	dicators		Biological Indicat	tors		Biological Indica	itors
SEPARATE Play Ordered Date Details SEPARATE Play Ordered Date Details SEPARATE Play Ordered Date Date Date SEPARATE Play Ordered Date Date SEPARATE Play Ordered Date Date Date Date Date Date Date Date		Points Scale Range Site Score		Points Scale Range Site Score			Points Scale Rany	e Site Score		Points Scale Range	Site Score		Points Scale Range	Site Score
Epithonal Substantividation Cord 2-02 Call Control Substanti	PHYSICAL INDICATOR (Applies to all stream	ns classifications)	PHYSICAL INDICATOR (Applies to all stream	s classifications)		PHYSICAL INDICATOR (Applies to all strea	ms classifications)		PHYSICAL INDICATOR (Applies to all stream	s classifications)		PHYSICAL INDICATOR (Applies to all streams of	lassifications)	
Procedure Process Pr).							
		0-20								0-20				
A Sediment Deposition		0-20		0-20			0-20			0-20				
Common Abstration	Sediment Deposition	0-20		0-20		Sediment Deposition	0-20		Sediment Deposition			Sediment Deposition		
Charmel Albertation 0-20 16 Charmel Albertation 0-20 Charmel A	5. Channel Flow Status		5. Channel Flow Status	0-20 0-1		5. Channel Flow Status	0-20		5. Channel Flow Status	0-20 0.1		5. Channel Flow Status	0-20 0-1	
Rev Speciality (LE A RS)		0-20											0-20	
Vegetative Protection (1.8 x R8)														
10. Equation Vegetation Zone Width (1.6 A R0) 3.0 3.0 5.	8. Bank Stability (LB & RB)		8. Bank Stability (LB & RB)	0-20		8. Bank Stability (LB & RB)	0-20		8. Bank Stability (LB & RB)			8. Bank Stability (LB & RB)		
Total RIPP Score														
Sub-Total 0.56933335 Sub-Total 0.CHBICAL MIDICATOR (Applies to Intermittent and Prevental Streams) WVDEP Water Quality Indicators (General) Specific Conductivity PH Sub-Total BOLOGICAL NOICATOR (Applies to Intermittent and Prevental Streams) WV Stream Condition Index (WVSCI) WV Stream Condition Index (WVSCI) WV Stream Condition Index (WVSCI) PART II - Index and Unit Score Index United Feet Unit Score		0-20					0-20	•			•			•
CHEMICAL NOICATOR (Applies to Intermitted and Perennial Streams) WYDEP Water Quality Indicators (General) Specific Conductivity 100-109- 85 points 100-109- 85 poin		0 50833333					Pool			Pool			POOI	
Specific Conductivity 1(00-190-85 points		•					ttent and Perennial S			ent and Perennial Stream			and Perennial Stres	
## 100-199-88 points 0-00 PH 100-199-86 part 100-199-88 points 0-10 10-30		al)		1)			ral)			al)				
PH	Specific conductivity	0.00	Specific conductivity	0.00		Specific conductivity	0.00		Specific conductivity	0.00		Specific conductivity	0.00	
Seb-5 2	100-199 - 85 points	0.90		0-90			0-90			0-90			0-90	
Seb-5 2	рН	21	рН			pH			pH			рН		
BO DO DO DO DO DO DO DO	5 6 5 0 = 45 points	0-80		5-90			5-90			5-90			5-90	
Sub-Total Sub-To	DO 3.0-3.9 = 43 points	<u> </u>	DO	<u> </u>		DO	_		DO			DO		
Sub-Total		10.30		10-30			10,30			10,30			10,30	
BIOLOGICAL INDICATOR (Applies to Intermittent and Percential Streams) WY Stream Condition Index (WYSCI) WY Stream Condition Index (WYSCI) Sub-Total BIOLOGICAL INDICATOR (Applies to Intermittent and Percential Streams) WY Stream Condition Index (WYSCI) Sub-Total BIOLOGICAL INDICATOR (Applies to Intermittent and Percential Streams) WY Stream Condition Index (WYSCI) Sub-Total BIOLOGICAL INDICATOR (Applies to Intermittent and Percential Streams) WY Stream Condition Index (WYSCI) Sub-Total BIOLOGICAL INDICATOR (Applies to Intermittent and Percential Streams) WY Stream Condition Index (WYSCI) Sub-Total BIOLOGICAL INDICATOR (Applies to Intermittent and Percential Streams) WY Stream Condition Index (WYSCI) Sub-Total BIOLOGICAL INDICATOR (Applies to Intermittent and Percential Streams) WY Stream Condition Index (WYSCI) Sub-Total BIOLOGICAL INDICATOR (Applies to Intermittent and Percential Streams) WY Stream Condition Index (WYSCI) Sub-Total BIOLOGICAL INDICATOR (Applies to Intermittent and Percential Streams) WY Stream Condition Index (WYSCI) Sub-Total BIOLOGICAL INDICATOR (Applies to Intermittent and Percential Streams) WY Stream Condition Index (WYSCI) Sub-Total BIOLOGICAL INDICATOR (Applies to Intermittent and Percential Streams) WY Stream Condition Index (WYSCI) Sub-Total BIOLOGICAL INDICATOR (Applies to Intermittent and Percential Streams) WY Stream Condition Index (WYSCI) Sub-Total BIOLOGICAL INDICATOR (Applies to Intermittent and Percential Streams) WY Stream Condition Index (WYSCI) WY Stream Condition Index (WYSCI) Sub-Total BIOLOGICAL INDICATOR (Applies to Intermittent and Percential Streams) WY Stream Condition Index (WYSCI) Sub-Total BIOLOGICAL INDICATOR (Applies to Intermittent and Percential Streams) WY Stream Condition Index (WYSCI) WY Stream Condition Index (WYSCI) Sub-Total BIOLOGICAL INDICATOR (Applies to Intermittent and Percential Streams) WY Stream Condition Index (WYSCI) Sub-Total BIOLOGICAL INDICATOR (Applies to Intermittent and Percential Streams)											_			
WV Stream Condition Index (WVSCI) WV Stream Condition Index (WVSCI)				0							U			0
	BIOLOGICAL INDICATOR (Applies to Intermi	ittent and Perennial Streams)	BIOLOGICAL INDICATOR (Applies to Intermi	ttent and Perennial Streams)		BIOLOGICAL INDICATOR (Applies to Inte	rmittent and Perer	nial Streams)	BIOLOGICAL INDICATOR (Applies to Intern	mittent and Perennia	d Streams)	BIOLOGICAL INDICATOR (Applies to Intermit	tent and Perennia	al Streams)
	WV Stream Condition Index (WVSCI)		WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)		
Sub-Total 0 Sub-To		0-100 0-1		0-100 0-1			0-100 0-			0-100 0-1			0-100 0-1	
PART II - Index and Unit Score PART II - Index and Unit Score	0						- 1.5.			1 - 1 - 1 - 1				
Index Linear Feet Unit Score Index Linear Fee	Sub-Total	0	Sub-Total	0		Sub-Total		0	Sub-Total		0	Sub-Total		0
Index Linear Feet Unit Score Index Linear Fee	PART II , Index and I	Unit Score	PART II Index on	d Unit Score	_	PART II Index a	and Unit Score		PART II , Index and I	Unit Score		PART II a Index and III	it Score	
	PACT II - III dex allu (onit score	PART II - IIIUEX dili	a dilit acdie		PACT II - IIIGEX &	ind Offic Score		PART II - III dex all d	onit Score		PACT II - III dex and of	iit Score	
0.400 54 21.6225 0 0 0 0 0 0 0 0 0 0 0 0	Index	Linear Feet Unit Score	Index	Linear Feet Unit Score		Index	Linear Fee	t Unit Score	Index	Linear Feet	Unit Score	Index	Linear Feet	Unit Score
	0.400	54 21.6225	0	0 0		0	0	0	0	0	0	0	0	0

FCI Calculator for the High-Gradient Headwater Streams in Appalachia

To ensure accurate calculations, the <u>UPPERMOST STRATUM</u> of the plant community is determined based on the calculated value for V_{CCANOPY} (≥20% cover is required for tree/sapling strata). Go to the SAR Data Entry tab and enter site characteristics and data in the yellow cells. For information on determining how to split a project into SARs, see Chapter 5 of the Operational Draft Regional Guidebook for the Functional Assessment of High-Gradient Headwater Streams and Low-Gradient Perennial Streams in Appalachia (Environmental Laboratory U.S. Army Corps of Engineers 2017).

Project Name: MVP Stream Assessment **Location:** Nicholas, Spread D

Sampling Date: 9-7-21 Project Site Before Project

Subclass for this SAR:

Ephemeral Stream

Uppermost stratum present at this SAR: SAR number: S-A64

Shrub/Herb Strata

Functional Results Summary: Enter Results in Section A of the Mitigation Sufficiency Calculator

Function	Functional Capacity Index
Hydrology	0.16
Biogeochemical Cycling	0.21
Habitat	0.07

Variable Measure and Subindex Summary:

Variable	Name	Average Measure	Subindex
V _{CCANOPY}	Percent canpoy over channel.	Not Used, <20%	Not Used
V _{EMBED}	Average embeddedness of channel.	1.50	0.28
V _{SUBSTRATE}	Median stream channel substrate particle size.	0.08	0.04
V_{BERO}	Total percent of eroded stream channel bank.	0.00	1.00
V_{LWD}	Number of down woody stems per 100 feet of stream.	0.00	0.00
V_{TDBH}	Average dbh of trees.	Not Used	Not Used
V _{SNAG}	Number of snags per 100 feet of stream.	0.00	0.10
V _{SSD}	Number of saplings and shrubs per 100 feet of stream.	6.41	0.10
V _{SRICH}	Riparian vegetation species richness.	0.00	0.00
V _{DETRITUS}	Average percent cover of leaves, sticks, etc.	15.00	0.18
V_{HERB}	Average percent cover of herbaceous vegetation.	85.00	1.00
V _{WLUSE}	Weighted Average of Runoff Score for Catchment.	0.29	0.31

Version 10-20-17

			High-G			ter Strea			а		
	Team [.]	HK, SK, VI	М	Field L	Jata Sne	et and C			M Northing	38.304538	
Pro			m Assessm	ent			·		_	-80.673827	
	-	Nicholas, S					•	-	npling Date:		
SA	AR Number:	S-A64	Reach	Length (ft):	78	Stream Ty	/pe: Ephe	meral Stream	1		-
	Top Strata:	Shi	rub/Herb St	rata	(determine	d from perce	ent calculate	ed in V _{CCANO}	DPY)		
Site	and Timing:	Project Site	es .			•	Before Proje	ct			•
ample	Variables	1-4 in strea	am channel								
1	V _{CCANOPY}	equidistant 20%, enter	t points alon	g the strear e value betv	n. Measure veen 0 and	nd sapling of only if tree/ 19 to trigger	sapling cov	er is at leas			Not Used <20%
	0										
2	V _{EMBED}	points alon the surface according t rating score	ig the strear e and area s to the follow e of 1. If the	n. Select a urrounding ing table. It bed is con	particle fron the particle f the bed is aposed of be	el. Measure in the bed. E that is cove an artificial s edrock, use	Before movi red by fine s surface, or o a rating sco	ng it, detern sediment, a composed o ere of 5.	nine the per nd enter the f fine sedim	centage of rating ents, use a	1.5
		Minshall 19		ior gravei, c	cobble and i	ooulder parti	icies (resca	led from Pla	ilis, Megana	an, and	
		Rating 5		of surface of		rounded, or				ck)	
		3				, surrounde d, surround					
		2				d, surround					
		1	>75 percer	nt of surface		urrounded, o				cial surface)	
			point below		2	0	2	2	2	2	1
	1	3 1	3	3	3	3 1	3 1	3 1	3	3	
	1	1	1	1	1	1	1	1	1	1	
	1	1	1	1	1	1	1	1	1	1	
			0.0 in, sand 13.00 0.08			th point belo 08 in): 11.50 0.08	13.50 0.08	12.50 0.08	13.00 0.08	99 in, 11.00 0.08	
	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	
	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	
4 ample	V _{BERO}	side and th may be up	ne total perc to 200%. Left Bank:	entage will l	be calculate	Enter the t d If both ba	anks are ere	oded, total e	erosion for t	he stream	0 %
5	V _{LWD}	Number of stream read per 100 fee	down wood ch. Enter the et of stream	y stems (at ne number fi will be calc	least 4 inch rom the enti ulated. Number of	es in diamet re 50'-wide l	ter and 36 in buffer and v	nches in len	gth) per 100 annel, and) feet of the amount	0.0
6	V_{TDBH}	inches (10	cm) in diam	eter. Enter	tree DBHs	_{⊳γ} tree/saplir in inches. (at least 4 i					Not Used
		the stream					•	Right Side			l
	0		5.40			0		5 5.40			
7	V _{SNAG}					per 100 fee et will be ca		Enter num	ber of snag	s on each	0.0
			Left Side:		0		Right Side:		0		
8	V_{SSD}		saplings an	d shrubs (w	oody stems	up to 4 inch	nes dbh) pe	r 100 feet o	f stream (me		
			r 100 ft of st	ream will be	calculated					the	6.4
			Left Side:		4		Right Side:		1		

9	VSRICH	Group 1 in richness pe	er 100 feet a	and the sub	IIIUEX WIII DE	carculated	mom mese					
		Grou	p 1 = 1.0					Gro	up 2	2 (-1.0)		
]	Acer rubrui			Magnolia t	ripetala		Ailanthus a		<u> </u>		Lonicera ja	aponica
	Acer sacch			Nyssa sylv			Albizia julib				Lonicera ta	•
]							-					
	Aesculus fl			-	n arboreum		Alliaria pet	oiala			Lotus corn	
	Asimina tril	oba		Prunus sei	rotina		Alternanthe				Lythrum sa	alicaria
	Betula alleg	phaniensis		Quercus a	lba		philoxeroid	es		V	Microstegiu	m vimineu
	Betula lent	а		Quercus c	occinea		Aster tatan	cus			Paulownia	tomento
	Carya alba			Quercus in	nbricaria		Cerastium	fontanur	n		Polygonum	cuspidatu
]	Carya glab	ra		Quercus p	rinus		Coronilla v	aria			Pueraria m	ontana
]	Carya oval			Quercus ru	ıbra		Elaeagnus i	ımbellata		V	Rosa multi	flora
]	Carya ovat			Quercus v			Lespedeza				Sorghum h	
	-						•					
	Cornus flor			Sassafras			Lespedeza				Verbena b	rasiliensi
	Fagus grar	ndifolia		Tilia ameri	cana		Ligustrum o	btusifoliur	n			
]	Fraxinus a	mericana		Tsuga can	adensis		Ligustrum	sinense				
l	Liriodendron	tulipifera		Ulmus ame	ericana							
	Magnolia a	cuminata										
		0	Species in	Group 1				2		Species in	Group 2	
	le Variables The four su V _{DETRITUS}	bplots sho Average pe	uld be plac ercent cover	ed roughly of leaves,	equidistan sticks, or oth	tly along e ner organic		the stre	am. bris	<4" diame		om each 15.00
			Left	Side			Righ	Side			1	
		20	20	10	10	20	20	10		10		
							asure only i					
	include woody stems at least 4" dbh and 36" vegetation percentages up through 200% are at each subplot. Left Side					Enter the pe					85 %	
	le Variable 1				90 the stream.		80	90		90		0.29
ımpl 12		2 within th	e entire cat	chment of	the stream.						% in	0.29
		2 within th	e entire cat Average of I	chment of Runoff Scor	the stream.	hed:				90 Runoff Score	% in Catch- ment	Runnin Percer
	V _{WLUSE}	2 within the	e entire cat Average of I	chment of Runoff Scor Use (Choos	the stream.	hed:		90	•	Runoff Score	Catch- ment	Runnin Percer (not >10
	VwLusE Forest and n	2 within the Weighted A	e entire cat Average of I Land	chment of Runoff Scor Use (Choos	the stream. e for waters	hed:		90	•	Runoff Score	Catch- ment 30.31	Runnin Percer (not >10
	VwLusE Forest and n	2 within the Weighted A	e entire cat Average of I Land	chment of Runoff Scor Use (Choos	the stream. e for waters	hed:		90	*	Runoff Score	Catch- ment	Runnin Percer (not >10
	VwLusE Forest and n	2 within the Weighted A	e entire cat Average of I Land	chment of Runoff Scor Use (Choos	the stream. e for waters	hed:		90	* * * * * * * * * * * * * * * * * * *	Runoff Score	Catch- ment 30.31	Runnin Percer (not >10
	VwLusE Forest and n	2 within the Weighted A	e entire cat Average of I Land	chment of Runoff Scor Use (Choos	the stream. e for waters	hed:		90	* * * * * * * * * * * * * * * * * * *	Runoff Score	Catch- ment 30.31	Runnir Percer (not >10
	VwLusE Forest and n	2 within the Weighted A	e entire cat Average of I Land	chment of Runoff Scor Use (Choos	the stream. e for waters	hed:		90	* * * * * * * * * * * * * * * * * * *	Runoff Score	Catch- ment 30.31	Runnir Percer (not >10
	VwLusE Forest and n	2 within the Weighted A	e entire cat Average of I Land	chment of Runoff Scor Use (Choos	the stream. e for waters	hed:		90	* * * * * * * * * * * * * * * * * * *	Runoff Score	Catch- ment 30.31	Runnir Percer (not >10
	VwLusE Forest and n	2 within the Weighted A	e entire cat Average of I Land	chment of Runoff Scor Use (Choos	the stream. e for waters	hed:		90	*	Runoff Score	Catch- ment 30.31	Runnin Percer (not >10
	VwLusE Forest and n	2 within the Weighted A	e entire cat Average of I Land	chment of Runoff Scor Use (Choos	the stream. e for waters	hed:		90	• • • •	Runoff Score	Catch- ment 30.31	Runnir Percer (not >10
	VwLusE Forest and n	2 within the Weighted A	e entire cat Average of I Land	chment of Runoff Scor Use (Choos	the stream. e for waters	hed:		90	~ · · · · · · · · · · · · · · · · · · ·	Runoff Score	Catch- ment 30.31	Runnin Percer (not >10
	VwLusE Forest and n	2 within the Weighted A	e entire cat Average of I Land	chment of Runoff Scor Use (Choos	the stream. e for waters	hed:		90	• • • •	Runoff Score	Catch- ment 30.31	Runnir Percer (not >10
	Forest and n	2 within the Weighted A	e entire cat Average of I Land	chment of Runoff Scor Use (Choos	the stream. e for waters	hed:	80	90	· · · · · ·	Runoff Score	Catch- ment 30.31	Runnir Percer (not >10
12	Forest and n Open space	2 within th Weighted / weighted / ative range (- (pasture, law)	e entire cat Average of I Land <50% ground	chment of Runoff Scor Use (Choos	the stream. e for waters	hed:	80	90	· · · · · ·	Runoff Score	Catch- ment 30.31	Runnir Percer (not >10
12	Forest and n	2 within th Weighted / ative range (- (pasture, law)	e entire cat Average of I Land	chment of Runoff Scor Use (Choos	the stream. e for waters	hed:	80	90	· · · · · ·	Runoff Score	Catch- ment 30.31	Runnir Percer (not >10
V	Forest and n Open space	2 within th Weighted / weighted / ative range (- (pasture, law)	e entire cat Average of I Land <50% ground	chment of Runoff Scor Use (Choos	the stream. e for waters	hed:	80	90	· · · · · ·	Runoff Score	Catch- ment 30.31	Runnir Percer (not >10
V	Forest and n Open space	2 within th Weighted / ative range (- (pasture, law) 6-A64 Value Not Used, <20%	e entire cat Average of I Land <50% ground ns, parks, etc. VSI Not Used	chment of Runoff Scor Use (Choos	the stream. e for waters	hed:	80	90	· · · · · ·	Runoff Score	Catch- ment 30.31	Runnir Percer (not >10
V	Forest and n Open space Variable Vccanopy Vembed	2 within th Weighted / weighted / ative range (- (pasture, law) 6-A64 Value Not Used, <20% 1.5	e entire cat Average of I Land <50% ground ns, parks, etc. VSI Not Used 0.28	chment of Runoff Scor Use (Choos	the stream. e for waters	hed:	80	90	· · · · · ·	Runoff Score	Catch- ment 30.31	Runnir Percer (not >10
V	Forest and n Open space	2 within th Weighted / ative range (- (pasture, law) 6-A64 Value Not Used, <20%	e entire cat Average of I Land <50% ground ns, parks, etc. VSI Not Used	chment of Runoff Scor Use (Choos	the stream. e for waters	hed:	80	90	· · · · · ·	Runoff Score	Catch- ment 30.31	Runnir Percer (not >10
V	Forest and n Open space Variable Vccanopy Vembed	2 within th Weighted / weighted / ative range (- (pasture, law) 6-A64 Value Not Used, <20% 1.5	e entire cat Average of I Land <50% ground ns, parks, etc. VSI Not Used 0.28	chment of Runoff Scor Use (Choos	the stream. e for waters	hed:	80	90	· · · · · ·	Runoff Score	Catch- ment 30.31	Runnir Percer (not >10
V	Forest and n Open space S Variable Vccanopy Vembed Vsubstrate Vbero	2 within th Weighted / ative range ((pasture, lawi) S-A64 Value Not Used, <20% 1.5 0.08 in 0 %	e entire cat Average of I Land C 50% ground ns, parks, etc. VSI Not Used 0.28 0.04 1.00	chment of Runoff Scor Use (Choos	the stream. e for waters	hed:	80	90	· · · · · ·	Runoff Score	Catch- ment 30.31	Runnir Percer (not >10
V	Forest and n Open space Variable Vccanopy Vembed Vsubstrate Vbero VLWD	2 within th Weighted / ative range (- (pasture, law) 5-A64 Value Not Used, <20% 1.5 0.08 in	VSI Not Used 0.28 0.04	chment of Runoff Scor Use (Choos	the stream. e for waters	hed:	80	90	· · · · · ·	Runoff Score	Catch- ment 30.31	Runnir Percer (not >10
V	Forest and n Open space S Variable Vccanopy Vembed Vsubstrate Vbero	2 within th Weighted / ative range ((pasture, lawi) S-A64 Value Not Used, <20% 1.5 0.08 in 0 %	e entire cat Average of I Land C 50% ground ns, parks, etc. VSI Not Used 0.28 0.04 1.00	chment of Runoff Scor Use (Choos	the stream. e for waters	hed:	80	90	· · · · · ·	Runoff Score	Catch- ment 30.31	Runnir Percer (not >10
V	Forest and n Open space Variable Vccanopy Vsubstrate VBERO VLWD VTDBH	2 within th Weighted / ative range (- (pasture, lawi) 5-A64 Value Not Used, <20% 1.5 0.08 in 0 % 0.0 Not Used	VSI Not Used 0.00 Not Used	chment of Runoff Scor Use (Choos	the stream. e for waters	hed:	80	90	· · · · · ·	Runoff Score	Catch- ment 30.31	Runnir Percer (not >10
V , , , , , , , , , , , , , , , , , , ,	Forest and n Open space S Variable Vccanopy Vembed Vsubstrate VBERO VLWD VTDBH VSNAG	2 within th Weighted / ative range ((pasture, lawi) 6-A64 Value Not Used, <20% 1.5 0.08 in 0 % 0.0 Not Used 0.0	VSI Not Used 0.28 0.04 1.00 Not Used 0.10	chment of Runoff Scor Use (Choos	the stream. e for waters	hed:	80	90	· · · · · ·	Runoff Score	Catch- ment 30.31	Runnir Percer (not >10
V , , , , , , , , , , , , , , , , , , ,	Forest and n Open space Variable Vccanopy Vsubstrate VBERO VLWD VTDBH	2 within th Weighted / ative range (- (pasture, lawi) 5-A64 Value Not Used, <20% 1.5 0.08 in 0 % 0.0 Not Used	VSI Not Used 0.00 Not Used	chment of Runoff Scor Use (Choos	the stream. e for waters	hed:	80	90	· · · · · ·	Runoff Score	Catch- ment 30.31	Runnir Percer (not >10
V	Forest and n Open space Variable Vccanopy Vembed Vsubstrate Vbero VLWD Vtobh Vsnag Vssd	2 within th Weighted / ative range ((pasture, lawi) 6-A64 Value Not Used, <20% 1.5 0.08 in 0 % 0.0 Not Used 0.0	VSI Not Used 0.28 0.04 1.00 Not Used 0.10	chment of Runoff Scor Use (Choos	the stream. e for waters	hed:	80	90	· · · · · ·	Runoff Score	Catch- ment 30.31	Runnir Percer (not >10
V	Forest and n Open space Variable Variable Vacanopy Vembed Vsubstrate Vbero VLWD Vtobh Vsnag Vssd Vssd Vssd Vsslch	2 within th Weighted / ative range (- (pasture, lawn) 3-A64 Value Not Used, <20% 1.5 0.08 in 0 % 0.0 Not Used 0.0 6.4 0.00	VSI Not Used 0.00 Not Used 0.10 0.00	chment of Runoff Scor Use (Choos	the stream. e for waters	hed:	80	90	· · · · · ·	Runoff Score	Catch- ment 30.31	Runnir Percer (not >10
V	Forest and n Open space Variable Vccanopy Vsubstrate VBERO VLWD VTDBH VSNAG VSSD VSRICH VDETRITUS	2 within th Weighted / ative range (- (pasture, lawn) 6-A64 Value Not Used, <20% 1.5 0.08 in 0 % 0.0 Not Used 0.0 6.4 0.00 15.0 %	VSI Not Used 0.10 0.10 0.10 0.18	chment of Runoff Scor Use (Choos	the stream. e for waters	hed:	80	90	· · · · · ·	Runoff Score	Catch- ment 30.31	Runnir Percer (not >10
V	Forest and n Open space Variable Variable Vacanopy Vembed Vsubstrate Vbero VLWD Vtobh Vsnag Vssd Vssd Vssd Vsslch	2 within th Weighted / ative range (- (pasture, lawn) 3-A64 Value Not Used, <20% 1.5 0.08 in 0 % 0.0 Not Used 0.0 6.4 0.00	VSI Not Used 0.00 Not Used 0.10 0.00	chment of Runoff Scor Use (Choos	the stream. e for waters	hed:	80	90	· · · · · ·	Runoff Score	Catch- ment 30.31	Runnir Percer (not >10

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

STREAM NAME	LOCATION				
STATION # RIVERMILE	STREAM CLASS				
LAT LONG	RIVER BASIN				
STORET#	AGENCY				
INVESTIGATORS					
FORM COMPLETED BY	DATE	REASON FOR SURVEY			

WEATHER CONDITIONS		Past 24 hours Yes No Air Temperature Cloud cover clear/sunny Has there been a heavy rain in the last 7 days? Yes No Air Temperature Other
SITE LOCATION/MAP	Draw a map of the state of the	The site and indicate the areas sampled (or attach a photograph) S-A64 Ephemeral
STREAM CHARACTERIZATION	Stream Subsyste Perennial Stream Origin Glacial Non-glacial mc Swamp and bog	Catchment Areakm² Spring-fed ontane Mixture of origins

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

WATERS FEATURI		Fores Field Agric	Pasture Industria	rcial	No evidence Sor Obvious sources Local Watershed Erosi None Moderate	ne potential sources
RIPARIA VEGETA (18 meter	ΓION	Trees	e the dominant type and Sl ant species present	hrubs	Grasses He	brbaceous
INSTREA FEATURI		Estimat Samplin Area in Estimat	red Stream Depthm	m m² km² m	Canopy Cover Partly open Part High Water Mark Proportion of Reach R Morphology Types Riffle Pool 9 Channelized Yes Dam Present Yes	epresented by Stream Run% No
LARGE V DEBRIS	VOODY		m² of LWDm	1 ² /km ² (LWD / 1	reach area)	
AQUATIO VEGETA		Domina			minant species present nt Rooted floating	Ü
WATER ((DS, US)	QUALITY	Specific Dissolve pH Turbidi	rature0 C Conductance ed Oxygen ty trument Used		Water Odors Normal/None Sewage Petroleum Fishy Water Surface Oils Slick Sheen None Other Turbidity (if not measu Clear ☐ Slightly tu Opaque Stained	Chemical Other Globs Flecks
SEDIMEN SUBSTRA		Odors Norm Chem Other Oils Abser	al Sewage nical Anaerobic 		are the undersides blac	th are not deeply embedded,
INC	ORGANIC SUBS (should a		COMPONENTS 00%)		ORGANIC SUBSTRATE C (does not necessarily add	
Substrate Type	Diamet	er	% Composition in Sampling Reach	Substrate Type	Characteristic	% Composition in Sampling Area
Bedrock				Detritus	sticks, wood, coarse plant materials (CPOM)	
Boulder Cobble	> 256 mm (10") 64-256 mm (2.5			Muck-Mud	black, very fine organic	
Gravel	2-64 mm (0.1"-2			IVIUCK-IVIUU	(FPOM)	

Sand

Silt

Clay

0.06-2mm (gritty)

< 0.004 mm (slick)

0.004-0.06 mm

grey, shell fragments

Marl

HABITAT ASSESSMENT FIELD DATA SHEET - HG - USE ON ALL STREAMS (FRONT)

STREAM NAME	LOCATION	
STATION # RIVERMILE	STREAM CLASS	
LAT LONG	RIVER BASIN	
STORET#	AGENCY	
INVESTIGATORS		
FORM COMPLETED BY	DATE AM PM	REASON FOR SURVEY

	Habitat		Condition	ı Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
n sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0-25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.
ted in	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/depth regime (usually slow-deep).
ıram	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Pa	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

	Habitat		Condition	n Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
oling reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.
samp	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.
e eva	SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
to be	SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0
Parameters	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
	SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.
	SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
ĺ	SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0

Total	Caare	
i otai	Score	

BENTHIC MACROINVERTEBRATE FIELD DATA SHEET

STREAM NAME		LOCATION	
STATION #	_ RIVERMILE	STREAM CLASS	
LAT	LONG	RIVER BASIN	
STORET#		AGENCY	
INVESTIGATORS			LOT NUMBER
FORM COMPLETED	ВҮ	DATE TIME	REASON FOR SURVEY
HABITAT TYPES	Indicate the percentage of	each habitat type present	onks % Sand %

HABITAT TYPES	Indicate the percentage of each habitat type present Cobble% Snags% Vegetated Banks% Sand% Submerged Macrophytes% Other ()%
SAMPLE COLLECTION	Gear used D-frame kick-net Other
	How were the samples collected? wading from bank from boat
	Indicate the number of jabs/kicks taken in each habitat type. Cobble Snags Vegetated Banks Sand Submerged Macrophytes Other ()
GENERAL COMMENTS	

QUALITATIVE LISTING OF AQUATIC BIOTA

Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare, 2 = Common, 3= Abundant, 4 = Dominant

Periphyton	0	1	2	3	4	Slimes	0	1	2	3	4
Filamentous Algae	0	1	2	3	4	Macroinvertebrates	0	1	2	3	4
Macrophytes	0	1	2	3	4	Fish	0	1	2	3	4

FIELD OBSERVATIONS OF MACROBENTHOS

Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare (1-3 organisms), 2 = Common (3-9 organisms), 3 = Abundant (>10 organisms), 4 = Dominant (>50 organisms)

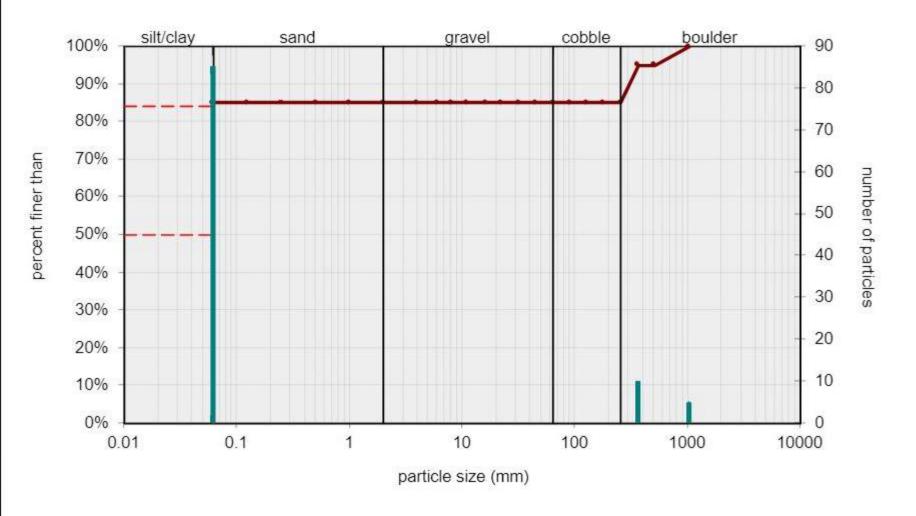
Porifera	0	1	2	3	4	Anisoptera	0	1	2	3	4	Chironomidae	0	1	2	3	4
Hydrozoa	0	1	2	3	4	Zygoptera	0	1	2	3	4	Ephemeroptera	0	1	2	3	4
Platyhelminthes	0	1	2	3	4	Hemiptera	0	1	2	3	4	Trichoptera	0	1	2	3	4
Turbellaria	0	1	2	3	4	Coleoptera	0	1	2	3	4	Other	0	1	2	3	4
Hirudinea	0	1	2	3	4	Lepidoptera	0	1	2	3	4						
Oligochaeta	0	1	2	3	4	Sialidae	0	1	2	3	4						
Isopoda	0	1	2	3	4	Corydalidae	0	1	2	3	4						
Amphipoda	0	1	2	3	4	Tipulidae	0	1	2	3	4						
Decapoda	0	1	2	3	4	Empididae	0	1	2	3	4						
Gastropoda	0	1	2	3	4	Simuliidae	0	1	2	3	4						
Bivalvia	0	1	2	3	4	Tabinidae	0	1	2	3	4						
						Culcidae	0	1	2	3	4						

WOLMAN PEBBLE COUNT FORM

County: Nicholas Stream ID: S-A64

Stream Name: UNT to Granny Run

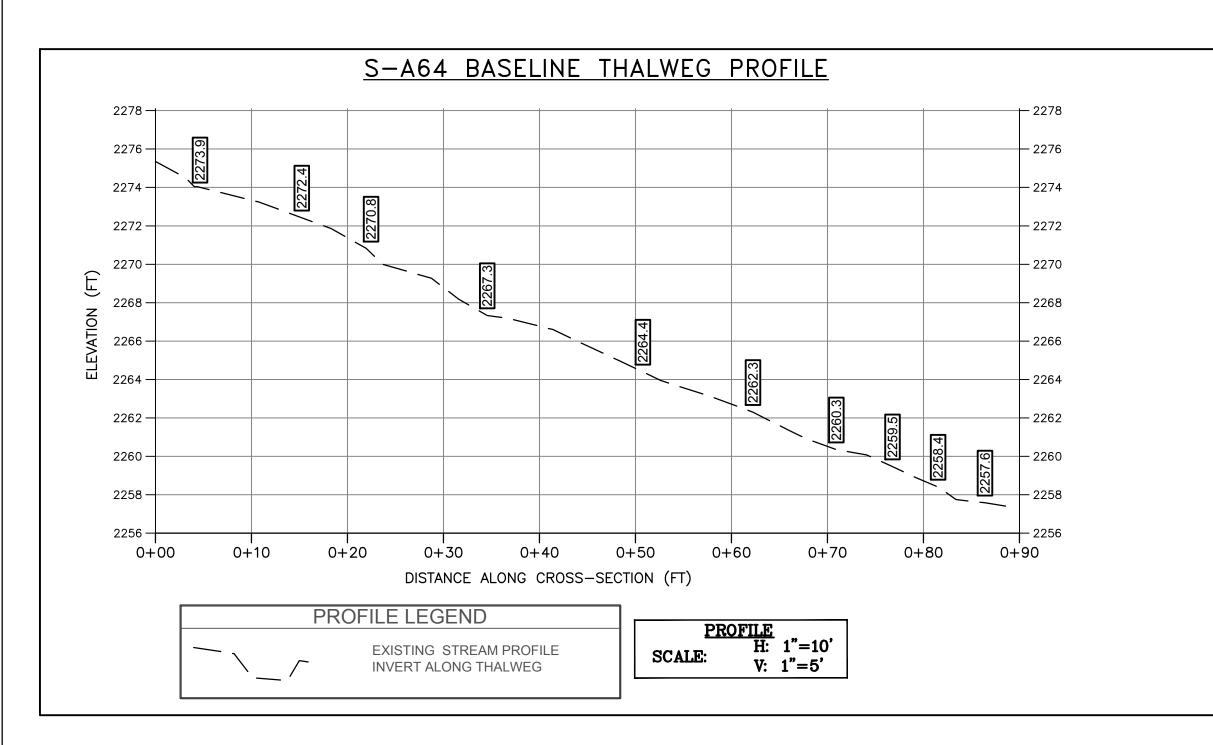
HUC Code: Basin:


Survey Date: 9/7/2021

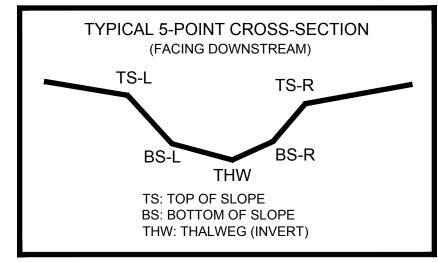
Surveyors: HK SK VM Impact Reach: 23.77 m

Surveyors: HK SK VM Type: Bankfull Channel

PEBB				_	
Millimeters		Particle Count	Total #	Item %	% Cum
< .062	S/C	A	85	85.00	85.00
.062125		A	0	0.00	85.00
.12525		*	0	0.00	85.00
.255	SAND	A	0	0.00	85.00
.50-1.0		A	0	0.00	85.00
1.0-2		A	0	0.00	85.00
2 -4		A	0	0.00	85.00
4 -5.7		A	0	0.00	85.00
5.7 - 8		A	0	0.00	85.00
8 -11.3		*	0	0.00	85.00
11.3 - 16	GRAVEL	A	0	0.00	85.00
16 -22.6		A	0	0.00	85.00
22.6 - 32		^	0	0.00	85.00
32 - 45		A	0	0.00	85.00
45 - 64		^	0	0.00	85.00
64 - 90		^	0	0.00	85.00
90 - 128		^	0	0.00	85.00
128 - 180	COBBLE	△	0	0.00	85.00
180 - 256		△	0	0.00	85.00
256 - 362		A	10	10.00	95.00
362 - 512	1	A	0	0.00	95.00
512 - 1024	BOULDER	A	5	5.00	100.00
1024 -2048	1	A	0	0.00	100.00
2048 -4096	1	A	0	0.00	100.00
	BDRK	A	0	0.00	100.00
		Totals:	100		
	2048 -4096		BDRK A	BDRK 0	BDRK 0 0.00






Size (mm)	•
D16	0.062	
D35	0.062	
D50	0.062	
D65	0.062	
D84	0.062	
D95	360	

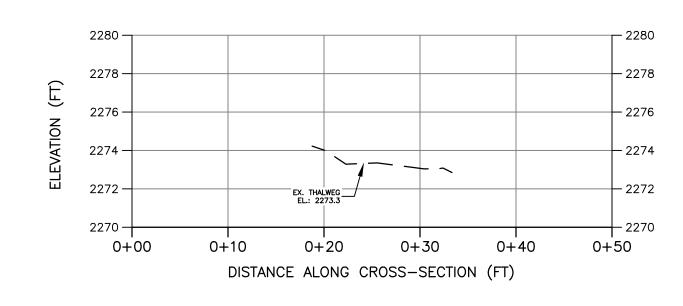
mean	0.1
dispersion	1.0
skewness	252

	ype
silt/clay	85%
sand	0%
gravel	0%
cobble	0%
boulder	15%

SURVEY NOTES:

LEGEND

STUDY AREA (EASEMENT)


1176.87 十

EXISTING SURVEY-LOCATED THALWEG

EXISTING SURVEYED GROUND SHOT ELEVATION

- 1. THIS MAP HAS BEEN ORIENTED TO NAD 1983 UTM ZONE 17N, AND VERTICALLY TO THE NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD 88), USING REAL TIME DGPS. FIELD LOCATIONS WERE COMPLETED ON SEPTEMBER 7, 2021.
- 2. EASEMENT LINES SHOWN ON PLAN VIEW WERE PROVIDED BY MOUNTAIN VALLEY PIPELINE.
- 3. SURVEY POINTS FOR CROSS SECTIONS AND THALWEG PROFILES COLLECTED IN 2021 HAVE BEEN USED IN COMBINATION WITH SURVEY POINTS COLLECTED PREVIOUSLY IN 2020 IN ORDER TO GENERATE THE PRE-CROSSING SURFACE SHOWN IN PLAN. DUE TO NATURAL EROSIONAL STREAM PROCESSES THAT CAN OCCUR OVER TIME, MINOR ADJUSTMENTS TO THE PROFILE ALIGNMENTS MAY HAVE BEEN REQUIRED IN ORDER TO GENERATE A CLEAN PRE-CROSSING SURFACE.
- 4. ALL SECTION VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.
- 5. POST-CROSSING SURVEY INFORMATION SHOWN IN RED. DATA PENDING.
- 6. POST-CROSSING SURVEY POINTS FOR CROSS SECTIONS AND THALWEG ARE PROJECTED ONTO PRE-CROSSING SECTION AND PROFILE VIEWS FOR COMPARISON.

S-A64 BASELINE CROSS-SECTION A PIPELINE CENTER

CROSS SECTION LEGEND

— EXISTING GRADE CROSS SECTION

H: 1"=10'
V: 1"=5'

NOTE: ALL SECTIONS VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.

PRE-CROSSING PHOTOS

PHOTO TAKEN LOOKING DOWNSTREAM FROM UPSTREAM IMPACT LIMITS

DOWNSTREAM IMPACT LIMITS

POST-CROSSING PHOTOS

PENDING CROSSING

PHOTO TAKEN LOOKING DOWNSTREAM FROM UPSTREAM IMPACT LIMITS

PENDING CROSSING

PHOTO TAKEN LOOKING UPSTREAM FROM

DOWNSTREAM IMPACT LIMITS

PRE-CROSSING

CAD File No.

Drawing No