Baseline Assessment – Stream Attributes

Reach S-A73 (Pipeline ROW) Intermittent Spread D Nicholas County, West Virginia

Data	Included
Photos	✓
SWVM Form	✓
FCI Calculator and HGM Form	✓
RBP Physical Characteristics Form	✓
Water Quality Data	N/A – No flow
RBP Habitat Form	✓
RBP Benthic Form	✓
Benthic Identification Sheet	N/A – No flow
Wolman Pebble Count	✓
Reference Reach Software Pebble Count Data	✓
Longitudinal Profile and Cross Sections	√

Spread D Stream S-A73 (Pipeline ROW) Nicholas County

Photo Type: DS, US View
Location, Orientation, Photographer Initials: Downstream Edge of ROW, Upstream View, RH/SM
Lat: 38.323815 Long: -80.670069

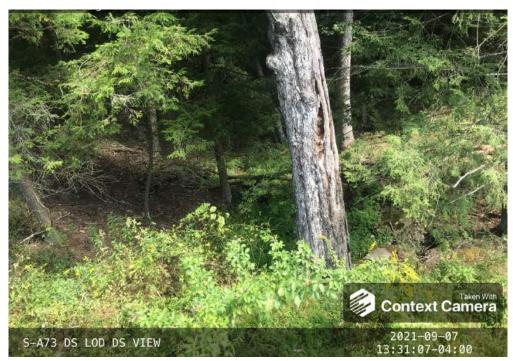


Photo Type: DS, DS View Location, Orientation, Photographer Initials: Downstream Edge of ROW, Downstream View, RH/SM Lat: 38.323815 Long: -80.670069

Spread D Stream S-A73 (Pipeline ROW) Nicholas County

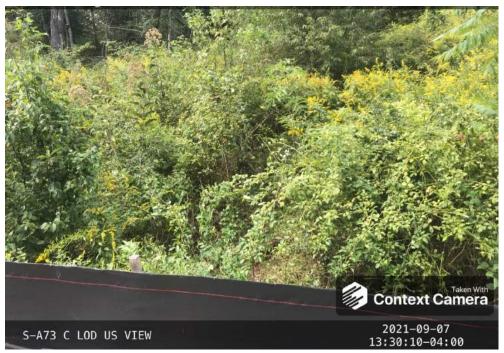


Photo Type: US View at Center Location, Orientation, Photographer Initials: Center ROW, Upstream View, RH/SM Lat: 38.323815 Long: -80.670069

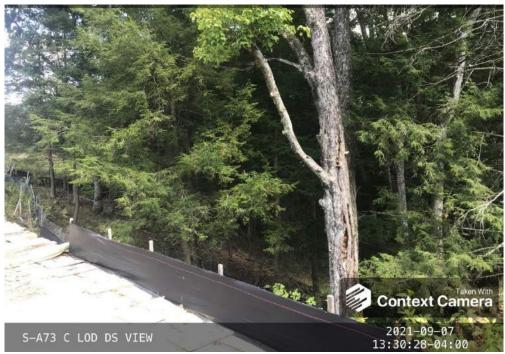


Photo Type: DS View at Center Location, Orientation, Photographer Initials: Center ROW, Downstream View, RH/SM Lat: 38.323815 Long: -80.670069

Spread D Stream S-A73 (Pipeline ROW) Nicholas County

Photo Type: US, US View Location, Orientation, Photographer Initials: Upstream Edge of ROW, Upstream View, RH/SM Lat: 38.323815 Long: -80.670069

Photo Type: US, DS View
Location, Orientation, Photographer Initials: Upstream Edge of ROW, Downstream View, RH/SM
Lat: 38.323815 Long: -80.670069

USACE FILE NO./ Project Name: Mountain V	/alley Pipeline		COORDINATES: imal Degrees)	Lat.	38.323815	Lon.	-80.670069	WEATHER:	Sunny	DATE:	9/7/2	2021
IMPACT STREAM/SITE ID AND SITE DESCRIPTION: (watershed size (acreage), unaltered or impalments)	S-A	A73			MITIGATION STREAM CLASS. (watershed size {acreage			N:		Comments:		
STREAM IMPACT LENGTH: 83 FORM OF MITIGATION:	RESTORATION (Levels I-III)		ORDINATES: imal Degrees)	Lat.		Lon.		PRECIPITATION PAST 48 HRS		Mitigation Length:		
Column No. 1- Impact Existing Condition (Debit)	Column No. 2- Mitigation Existing Co	ondition - Basel	ine (Credit)		Column No. 3- Mitigation Pr Post Completio		Years	Column No. 4- Mitigation Post Completi		Column No. 5- Mitigation Projected	at Maturity (Credit)
Stream Classification: Intermittent	Stream Classification:				Stream Classification:		0	Stream Classification:	0	Stream Classification:		0
Percent Stream Channel Slope 9.7	Percent Stream Channel Slo	ре			Percent Stream Channel S	lope	0	Percent Stream Channe	el Slope 0	Percent Stream Channel Slo	ре	0
HGM Score (attach data forms):	HGM Score (attach d	lata forms):			HGM Score (attach	data forms):		HGM Score (attac	ch data forms):	HGM Score (attach dat	a forms):	
Average Hydrology 0.46			Average				Average		Average			Average
Biogeochemical Cycling 0.27 0.33666667	Hydrology Biogeochemical Cycling		0		Hydrology Biogeochemical Cycling		0	Hydrology Biogeochemical Cycling	0	Hydrology Biogeochemical Cycling		0
PART I - Physical, Chemical and Biological Indicators	PART I - Physical, Chemical and	l Biological Indi	cators		Habitat PART I - Physical, Chemical as	nd Biological Inc	licators	PART I - Physical, Chemical	and Biological Indicators	Habitat PART I - Physical, Chemical and B	iological Indic	cators
Paleta Scale Range Site Scane		Points Scale Range	Site Score			Points Scale Range	Site Score		Points Scale Range Site Score		Points Scale Range	s Site Score
PHYSICAL INDICATOR (Applies to all streams classifications)	PHYSICAL INDICATOR (Applies to all streams of	lassifications)			PHYSICAL INDICATOR (Applies to all streams	s classifications)		PHYSICAL INDICATOR (Applies to all str	eams classifications)	PHYSICAL INDICATOR (Applies to all streams of	assifications)	
USEPA RBP (High Gradient Data Sheet)	USEPA RBP (Low Gradient Data Sheet)				USEPA RBP (High Gradient Data Sheet)			USEPA RBP (High Gradient Data She		USEPA RBP (High Gradient Data Sheet)		
1. Epifaunal Substrate/Available Cover 0-20 0 2. Embeddedness 0-20 1	Epifaunal Substrate/Available Cover Pool Substrate Characterization	0-20			Epifaunal Substrate/Available Cover Embeddedness	0-20		Epifaunal Substrate/Available Cover Embeddedness	0-20	Epifaunal Substrate/Available Cover Embeddedness	0-20	
2. Embeddedness 0.20 1 3. Velocity/ Depth Regime 0.20 0	Pool Substrate Characterization Pool Variability	0-20			Lembeddedness Velocity/ Depth Regime	0-20		S. Velocity/ Depth Regime	0-20	Velocity/ Depth Regime	0-20	
4. Sediment Deposition 0-20 20	4. Sediment Deposition	0-20			4. Sediment Deposition	0-20		Velocity Depart Regime A. Sediment Deposition	0-20	Sediment Deposition	0-20	
5. Channel Flow Status 0-20 0.4 0	5. Channel Flow Status	0-20			5. Channel Flow Status	0-20		5. Channel Flow Status	0-20	5. Channel Flow Status	0-20	
6. Channel Alteration 0-20 U-1 20	6. Channel Alteration	0-20			6. Channel Alteration	0-20		6. Channel Alteration	0-20	6. Channel Alteration	0-20	
7. Frequency of Riffles (or bends) 0-20 0	7. Channel Sinuosity	0-20			7. Frequency of Riffles (or bends)	0-20		7. Frequency of Riffles (or bends)	0-20	7. Frequency of Riffles (or bends)	0-20	
8. Bank Stability (LB & RB) 0-20 12	8. Bank Stability (LB & RB)	0-20			8. Bank Stability (LB & RB)	0-20		8. Bank Stability (LB & RB)	0-20	8. Bank Stability (LB & RB)	0-20	
9. Vegetative Protection (LB & RB) 0-20 16	9. Vegetative Protection (LB & RB)	0-20			9. Vegetative Protection (LB & RB)	0-20		9. Vegetative Protection (LB & RB)	0-20	9. Vegetative Protection (LB & RB)	0-20	
10. Riparian Vegetative Zone Width (LB & RB) 0-20 16	10. Riparian Vegetative Zone Width (LB & RB)	0-20			10. Riparian Vegetative Zone Width (LB & RB)	0-20		 Riparian Vegetative Zone Width (LB & R 		 Riparian Vegetative Zone Width (LB & RB) 	0-20	
Total RBP Score Marginal 85	Total RBP Score	Poor	0		Total RBP Score	Poor	0	Total RBP Score	Poor 0	Total RBP Score	Poor	0
Sub-Total CHEMICAL INDICATOR (Applies to Intermittent and Perennial Streams)	Sub-Total CHEMICAL INDICATOR (Applies to Intermittent a	and Perennial Stres	, ,		Sub-Total CHEMICAL INDICATOR (Applies to Intermitter	nt and Perennial Str		Sub-Total CHEMICAL INDICATOR (Applies to Inten		Sub-Total CHEMICAL INDICATOR (Applies to Intermittent:	and Perennial Str	0 reams)
WVDEP Water Quality Indicators (General)	WVDEP Water Quality Indicators (General)				WVDEP Water Quality Indicators (General		,	WVDEP Water Quality Indicators (Ger		WVDEP Water Quality Indicators (General)		
Specific Conductivity	Specific Conductivity				Specific Conductivity	,		Specific Conductivity	let at)	Specific Conductivity		
100-199 - 85 points		0-90				0-90		, , , , , , , , , , , , , , , , , , , ,	0-90		0-90	
pH	pH				pH			рН		pH		
0-80 0-1		5-90				5-90 0-1			5-90 0-1		5-90 0-1	
5.6-5.9 = 45 points												
DO	DO	_			DO	_		DO		DO		
10-30		10-30				10-30			10-30		10-30	
Sub-Total	Sub-Total		0		Sub-Total	1	0	Sub-Total	0	Sub-Total	1	0
BIOLOGICAL INDICATOR (Applies to Intermittent and Perennial Streams)	BIOLOGICAL INDICATOR (Applies to Intermitter	nt and Perennial St	treams)		BIOLOGICAL INDICATOR (Applies to Interm	nittent and Perenn	ial Streams)	BIOLOGICAL INDICATOR (Applies to In	ntermittent and Perennial Streams)	BIOLOGICAL INDICATOR (Applies to Intermit	ent and Perenn	nial Streams)
WV Stream Condition Index (WVSCI)	WV Stream Condition Index (WVSCI)				WV Stream Condition Index (WVSCI)	, ,		WV Stream Condition Index (WVSCI)		WV Stream Condition Index (WVSCI)		
0 0-100 0-1		0-100 0-1				0-100 0-1			0-100 0-1		0-100 0-1	
Sub-Total 0	Sub-Total		0		Sub-Total		0	Sub-Total	0	Sub-Total	_	0
PART II - Index and Unit Score	PART II - Index and L	Jnit Score			PART II - Index and	d Unit Score		PART II - Index a	nd Unit Score	PART II - Index and Un	it Score	
Index Linear Feet Unit Score	Index	Linear Feet	Unit Score		Index	Linear Feet	Unit Score	Index	Linear Feet Unit Score	Index	Linear Feet	Unit Score
0.475 83 39.3904167	0	0	0		0	0	0	0	0 0	0	0	0

Ver. 10-20-17

FCI Calculator for the High-Gradient Headwater Streams in Appalachia

To ensure accurate calculations, the <u>UPPERMOST STRATUM</u> of the plant community is determined based on the calculated value for V_{CCANOPY} (≥20% cover is required for tree/sapling strata). Go to the SAR Data Entry tab and enter site characteristics and data in the yellow cells. For information on determining how to split a project into SARs, see Chapter 5 of the Operational Draft Regional Guidebook for the Functional Assessment of High-Gradient Headwater Streams and Low-Gradient Perennial Streams in Appalachia (Environmental Laboratory U.S. Army Corps of Engineers 2017).

Project Name: MVP Stream Assessment **Location:** Nicholas County, Spread D

Sampling Date: 9/7/21 Project Site Before Project

Subclass for this SAR:

Intermittent Stream

Uppermost stratum present at this SAR: SAR number: S-A73

Shrub/Herb Strata

Functional Results Summary: Enter Results in Section A of the Mitigation Sufficiency Calculator

Function	Functional Capacity Index
Hydrology	0.46
Biogeochemical Cycling	0.27
Habitat	0.28

Variable Measure and Subindex Summary:

Variable	Name	Average Measure	Subindex
V _{CCANOPY}	Percent canpoy over channel.	Not Used, <20%	Not Used
V _{EMBED}	Average embeddedness of channel.	1.53	0.29
V _{SUBSTRATE}	Median stream channel substrate particle size.	1.10	0.55
V _{BERO}	Total percent of eroded stream channel bank.	38.10	0.87
V_{LWD}	Number of down woody stems per 100 feet of stream.	4.76	0.60
V _{TDBH}	Average dbh of trees.	Not Used	Not Used
V _{SNAG}	Number of snags per 100 feet of stream.	0.00	0.10
V _{SSD}	Number of saplings and shrubs per 100 feet of stream.	16.67	0.26
V _{SRICH}	Riparian vegetation species richness.	0.00	0.00
V _{DETRITUS}	Average percent cover of leaves, sticks, etc.	9.38	0.11
V _{HERB}	Average percent cover of herbaceous vegetation.	88.13	1.00
V _{WLUSE}	Weighted Average of Runoff Score for Catchment.	0.45	0.47

			High-G		Headwat Oata She			•	•	a		
	Team:	SM, RH								M Northing:	38.323815	
Pro	ject Name:		m Assessm	ent						•	-80.670069)
	Location:	Nicholas C	ounty, Spre	ad D					Sam	pling Date:	9/7/21	
SA	R Number:	S-A73	Reach	Length (ft):	42	Stream T	уре:	Intern	nittent Strea	m		•
	Top Strata:	Shi	Shrub/Herb Strata (determined from percent calculated in V _{CCANOPY})									
	and Timing:	Project Site Before Project The state of									•	
	e Variables											
20%, enter at least one value between 0 and 19 to trigger Top Strata choice.)									Not Used, <20%			
			measureme				0		0	0	0	
	0	0	0	0	0	0	0		0	0	0	
2	V_{EMBED}	points alon the surface	nbeddednes g the strean and area s o the follow	n. Select a urrounding	particle fror the particle	n the bed. that is cove	Before red by	movir fine s	ng it, deterr sediment, a	mine the pe nd enter the	rcentage of e rating	1.5
										ii iiile seuiii	ienis, use	
		Embedded	a rating score of 1. If the bed is composed of bedrock, use a rating score of 5. Embeddedness rating for gravel, cobble and boulder particles (rescaled from Platts, Megahan, and Minshall 1983)									
			Rating Des									
		5 4			covered, sur						ck)	
		3	5 to 25 per 26 to 50 pe									
		2	51 to 75 pe									
		1	>75 percen								cial	
ı	List the rati	ngs at each	point belov	/ :								
	1	1	1	1	1	1	1		3	1	1	
	3	1	3	4	1	1	1		1	1	1	
	3	1	3	4	1	1	1		1	1	1	
^	V	Madicus		l = 1 l= 2 f = - f		Marrin	-4 - 1		th a.e. 00 ::	adalis e aust 11	stant v sist	
3	V _{SUBSTRATE}		eam channe tream; use i							ighly equidi	stant points	1.10 in
·			ches to the 0.0 in, sand				ow (bed	rock	should be o	counted as	99 in,	_
	0.80	0.08	0.08	0.08	0.08	0.08	0.0	8	25.00	0.08	0.08	
	2.10	4.20	4.40	5.30	1.40	0.80	0.0	8	0.08	2.10	4.20	
	2.10	4.20	4.40	5.30	1.40	0.80	0.0	8	0.08	2.10	4.20	
4	V_{BERO}		ent of eroded e total perce to 200%.									38 %
			Left Bank:	8	ft	ı	Right Ba	ank:	8	ft		

Sample Variables 5-9 within the entire riparian/buffer zone adjacent to the stream channel (25 feet from each bank).

5	V_{LWD}	stream rea	ach. Enter t	dy stems (at least 4 inchine he number from the ent	ire 50'-wid					4.8
		amount pe	er 100 feet o	of stream will be calculat		woody stoms:	2)		
6	V_{TDBH}	Average d	hh of trees	(measure only if V _{CCANO}		woody stems:			are at least	
	▼ TDBH			ameter. Enter tree DBH			at 16ast 20 /0	i). Tiees	are at least	Not Used
			h measurei am below:	ments of individual trees	(at least	4 in) within the	buffer on e	ach side		
			Left Side				1			
							Right Side			
]
7	V_{SNAG}	Number of	f snags (at l	east 4" dbh and 36" tall	per 100 f	eet of stream.	Enter num	ber of sn	ags on each	
	014710			d the amount per 100 fe					Ü	0.0
			Left Side	. 0		Dialet Cide	O			
8	V_{SSD}	Number of		: 0 nd shrubs (woody stems	s up to 4 ir	Right Side:			measure	
	• 550	only if tree	cover is <2	20%). Enter number of s	saplings a					16.7
		amount pe		stream will be calculated						
9	V _{SRICH}	Pinarian v	Left Side	: 3 pecies richness per 100	feet of str	Right Side:	heck all sno		sent from	
	▼ SRICH	Group 1 in	the tallest	stratum. Check all exot and the subindex will be	ic and inva	asive species _l	present in a			0.00
			up 1 = 1.0	and the submack will be	Calculate		Group 2	2 (-1 0)		
	Acer rubr		П	Magnolia tripetala		Ailanthus ai			Lonicera ja	ponica
	Acer sace			Nyssa sylvatica		Albizia julibi			Lonicera ta	-
	Aesculus			Oxydendrum arboreum		Alliaria petio			Lotus corn	
	Asimina t			Prunus serotina		•			Lythrum sa	
						Alternanthe philoxeroide			Microstegiui	
		eghaniensis		Quercus alba					•	
	Betula ler			Quercus coccinea		Aster tatario				tomentosa
	Carya alb			Quercus imbricaria		Cerastium f			Polygonum	
	Carya gla			Quercus prinus		Coronilla va			Pueraria m	
	Carya ova	alis		Quercus rubra		Elaeagnus ui	mbellata		Rosa multi	flora
	Carya ova	ata		Quercus velutina		Lespedeza	bicolor		Sorghum h	alepense
	Cornus flo	orida		Sassafras albidum		Lespedeza	cuneata		Verbena bi	rasiliensis
	Fagus gra	andifolia		Tilia americana		Ligustrum ob	tusifolium			
	Fraxinus	americana		Tsuga canadensis		Ligustrum s	sinense			•
	Liriodendro	on tulipifera		Ulmus americana						
	Magnolia	acuminata								
		0	Species in	Group 1			0	Chasias	in Croup 2	
		0	Species in	i Gioup i			0	opecies	in Group 2	

Sample Variables 10-11 within at least 8 subplots (40" x 40", or 1m x 1m) in the riparian/buffer zone within 25 feet from each bank. The four subplots should be placed roughly equidistantly along each side of the stream.

10	V _{DETRITUS}				of leaves, sticks, or other organic material. Woody debris <4" diameter and Enter the percent cover of the detrital layer at each subplot.						
			Left	Side			Right	Side] '	
		0	0	5	0	0	40	0	30]	
11	V	Average pe	rcontago o	over of borb	aceous veg	otation (mo	asuro only i	f troo cover	is <20%)	Do not	
11	V_{HERB}				bh and 36" t						00.0/
		cover vege vegetation			through 200	% are acce	pted. Enter	the percent	t cover of gr	round	88 %
		vegetation		Side			Right	Side		1	
		100	100	95	100	100	50	100	60	1	
_					the stream						
12	V _{WLUSE}	Weighted A	Average of F	Runoff Scor	e for waters	hed:					0.45
				(0)		1. 0			Runoff	% in	Running
			Land	Use (Cnoos	se From Dro	p List)			Score	Catch- ment	Percent (not >100)
	Forest and n	ative range (>	>75% ground	cover)				~	1	21.19	21.19
	Open space	(pasture, lawr	ns, parks, etc.), grass cover	50% - 75%			•	0.2	1.99	23.18
	Open space	(pasture, lawr	ns, parks, etc.), grass cover	>75%			-	0.3	76.82	100
	_							•			
	_							•			
								•			
	_							•			
	_							_			
	<u>l</u> S	S-A73					No	tes:			
Va	ariable	Value	VSI								
Vc	CANOPY	Not Used, <20%	Not Used								
VE	MBED	1.5	0.29								
Vs	UBSTRATE	1.10 in	0.55								
V _B	ERO	38 %	0.87								
VL	WD	4.8	0.60								
V _{TI}	ОВН	Not Used	Not Used								
Vs	NAG	0.0	0.10								
Vs	SD	16.7	0.26								
Vs	RICH	0.00	0.00								
V _D	ETRITUS	9.4 %	0.11								
V _H	ERB	88 %	1.00								
V _w	LUSE	0.45	0.47								

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

STREAM NAME	LOCATION			
STATION # RIVERMILE	STREAM CLASS			
LAT LONG	RIVER BASIN			
STORET#	AGENCY			
INVESTIGATORS				
FORM COMPLETED BY	DATE	REASON FOR SURVEY		

WEATHER CONDITIONS	Now storm (heavy rain) rain (steady rain) showers (intermittent) % %cloud cover clear/sunny	Past 24 hours Has there been a heavy rain in the last 7 days? Yes No Air Temperature0 C Other
SITE LOCATION/MAP	Stream and flow direction Pipeline and flow direction POW Timber mats	etland Upstream Downstream
STREAM CHARACTERIZATION	Stream Subsystem Perennial Intermittent Tid Stream Origin Glacial Spring-fe Non-glacial montane Mixture of Swamp and bog Other	Catchment Area km ²

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

WATERS FEATURI		Fores Field Agric	Pasture Industria	rcial	No evidence Sor Obvious sources Local Watershed Erosi None Moderate	ne potential sources
RIPARIA VEGETA (18 meter	ΓION	Trees	e the dominant type and Sl ant species present	hrubs	Grasses He	brbaceous
INSTREA FEATURI		Estimat Samplin Area in Estimat	red Stream Depthm	m m² km² m	Canopy Cover Partly open Part High Water Mark Proportion of Reach R Morphology Types Riffle Pool 9 Channelized Yes Dam Present Yes	epresented by Stream Run% No
LARGE V DEBRIS	VOODY		m² of LWDm	1 ² /km ² (LWD / 1	reach area)	
AQUATIO VEGETA		Domina			minant species present nt Rooted floating	Ü
WATER ((DS, US)	QUALITY	Specific Dissolve pH Turbidi	rature0 C Conductance ed Oxygen ty trument Used		Water Odors Normal/None Sewage Petroleum Fishy Water Surface Oils Slick Sheen None Other Turbidity (if not measu Clear ☐ Slightly tu Opaque Stained	Chemical Other Globs Flecks
SEDIMEN SUBSTRA		Odors Norm Chen Other Oils Abser	al Sewage nical Anaerobic 		are the undersides blac	th are not deeply embedded,
INC	ORGANIC SUBS (should a		COMPONENTS 00%)		ORGANIC SUBSTRATE C (does not necessarily add	
Substrate Type	Diamet	er	% Composition in Sampling Reach	Substrate Type	Characteristic	% Composition in Sampling Area
Bedrock				Detritus	sticks, wood, coarse plant materials (CPOM)	
Boulder Cobble	> 256 mm (10") 64-256 mm (2.5			Muck-Mud	black, very fine organic	
Gravel	2-64 mm (0.1"-2			IVIUCK-IVIUU	(FPOM)	

Sand

Silt

Clay

0.06-2mm (gritty)

< 0.004 mm (slick)

0.004-0.06 mm

grey, shell fragments

Marl

HABITAT ASSESSMENT FIELD DATA SHEET - HG - USE ON ALL STREAMS (FRONT)

STREAM NAME	LOCATION	
STATION # RIVERMILE	STREAM CLASS	
LAT LONG	RIVER BASIN	
STORET#	AGENCY	
INVESTIGATORS		
FORM COMPLETED BY	DATE AM PM	REASON FOR SURVEY

	Habitat		Condition	ı Category		
	Parameter	Optimal	Suboptimal	Marginal	Poor	
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.	
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
n sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0-25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.	
ted in	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/depth regime (usually slow-deep).	
ıram	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
Pa	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.	
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.	
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

	Habitat		Condition	n Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
oling reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.
samp	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.
e eva	SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
to be	SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0
Parameters	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
	SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.
	SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
ĺ	SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0

Total	Caare	
i otai	Score	

BENTHIC MACROINVERTEBRATE FIELD DATA SHEET

STREAM NAME		LOCATION					
STATION #	_ RIVERMILE	STREAM CLASS					
LAT	LONG	RIVER BASIN					
STORET#		AGENCY					
INVESTIGATORS			LOT NUMBER				
FORM COMPLETED	FORM COMPLETED BY		REASON FOR SURVEY				
HABITAT TYPES	Indicate the percentage of	each habitat type present	onks % Sand %				

HABITAT TYPES	Indicate the percentage of each habitat type present Cobble% Snags% Vegetated Banks% Sand% Submerged Macrophytes% Other ()%
SAMPLE COLLECTION	Gear used D-frame kick-net Other
	How were the samples collected? wading from bank from boat
	Indicate the number of jabs/kicks taken in each habitat type. Cobble Snags Vegetated Banks Sand Submerged Macrophytes Other ()
GENERAL COMMENTS	

QUALITATIVE LISTING OF AQUATIC BIOTA

Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare, 2 = Common, 3= Abundant, 4 = Dominant

Periphyton	0	1	2	3	4	Slimes	0	1	2	3	4
Filamentous Algae	0	1	2	3	4	Macroinvertebrates	0	1	2	3	4
Macrophytes	0	1	2	3	4	Fish	0	1	2	3	4

FIELD OBSERVATIONS OF MACROBENTHOS

Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare (1-3 organisms), 2 = Common (3-9 organisms), 3 = Abundant (>10 organisms), 4 = Dominant (>50 organisms)

Porifera	0	1	2	3	4	Anisoptera	0	1	2	3	4	Chironomidae	0	1	2	3	4
Hydrozoa	0	1	2	3	4	Zygoptera	0	1	2	3	4	Ephemeroptera	0	1	2	3	4
Platyhelminthes	0	1	2	3	4	Hemiptera	0	1	2	3	4	Trichoptera	0	1	2	3	4
Turbellaria	0	1	2	3	4	Coleoptera	0	1	2	3	4	Other	0	1	2	3	4
Hirudinea	0	1	2	3	4	Lepidoptera	0	1	2	3	4						
Oligochaeta	0	1	2	3	4	Sialidae	0	1	2	3	4						
Isopoda	0	1	2	3	4	Corydalidae	0	1	2	3	4						
Amphipoda	0	1	2	3	4	Tipulidae	0	1	2	3	4						
Decapoda	0	1	2	3	4	Empididae	0	1	2	3	4						
Gastropoda	0	1	2	3	4	Simuliidae	0	1	2	3	4						
Bivalvia	0	1	2	3	4	Tabinidae	0	1	2	3	4						
						Culcidae	0	1	2	3	4						

WOLMAN PEBBLE COUNT FORM

County: Nicholas Stream ID: S-A73

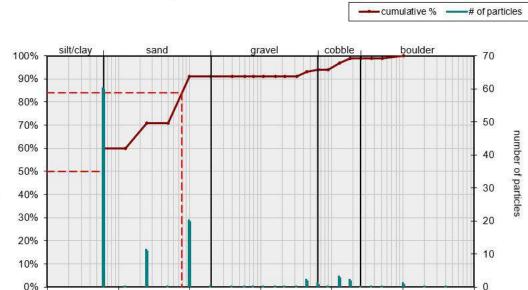
Stream Name: UNT to Big Beaver Creek

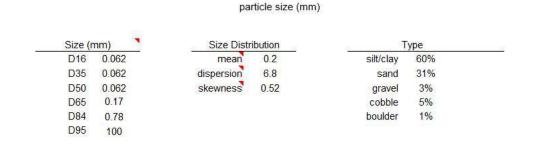
HUC Code: Basin:

Survey Date: 9/7/2021

Surveyors: SM, RH Impact Reach: 12.8 m

Type: Bankfull Channel

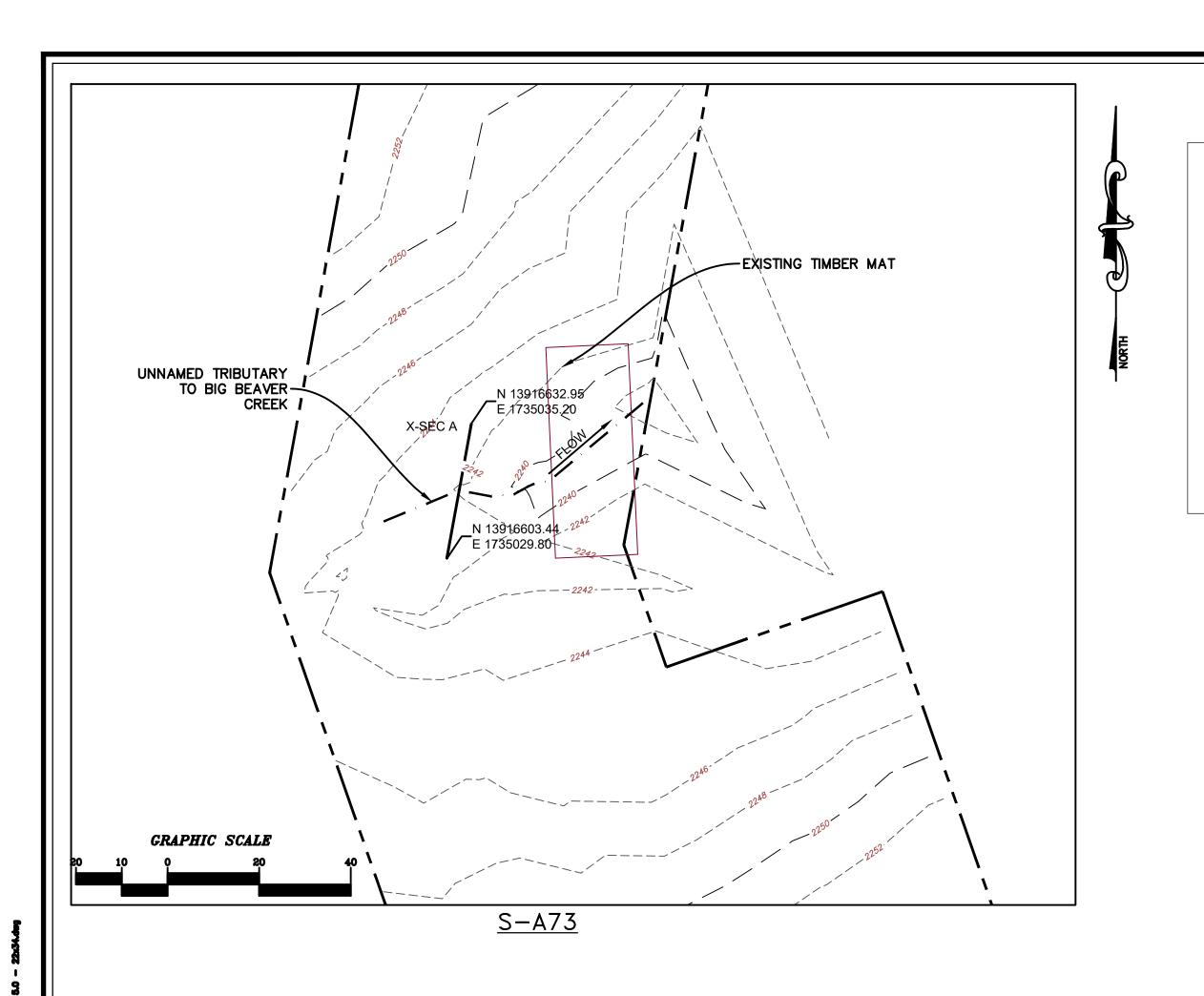

		PEF	BBLE COUNT				
Inches	PARTICLE	Millimeters		Particle Count	Total #	Item %	% Cun
	Silt/Clay	< .062	S/C	^	60	60.00	60.00
	Very Fine	.062125		^	0	0.00	60.00
	Fine	.12525	1	4	11	11.00	71.00
	Medium	.255	SAND	4	0	0.00	71.00
	Coarse	.50-1.0	1	4	20	20.00	91.00
.0408	Very Coarse	1.0-2		4	0	0.00	91.00
.0816	Very Fine	2 -4		^	0	0.00	91.00
.1622	Fine	4 -5.7		A	0	0.00	91.00
.2231	Fine	5.7 - 8	1	A	0	0.00	91.00
.3144	Medium	8 -11.3	1	^	0	0.00	91.00
.4463	Medium	11.3 - 16	GRAVEL	<u> </u>	0	0.00	91.00
.6389	Coarse	16 -22.6			0	0.00	91.00
.89 - 1.26	Coarse	22.6 - 32			0	0.00	91.00
1.26 - 1.77	Vry Coarse	32 - 45			2	2.00	93.00
1.77 -2.5	Vry Coarse	45 - 64			1	1.00	94.00
2.5 - 3.5	Small	64 - 90			0	0.00	94.00
3.5 - 5.0	Small	90 - 128	1	^	3	3.00	97.00
5.0 - 7.1	Large	128 - 180	COBBLE		2	2.00	99.00
7.1 - 10.1	Large	180 - 256	1		0	0.00	99.00
10.1 - 14.3	Small	256 - 362		<u> </u>	0	0.00	99.00
14.3 - 20	Small	362 - 512	1	<u> </u>	0	0.00	99.00
20 - 40	Medium	512 - 1024	BOULDER	<u> </u>	1	1.00	100.0
40 - 80	Large	1024 -2048		<u> </u>	0	0.00	100.0
80 - 160	Vry Large	2048 -4096	1		0	0.00	100.0
	Bedrock		BDRK	<u> </u>	0	0.00	100.0
				Totals:	100		

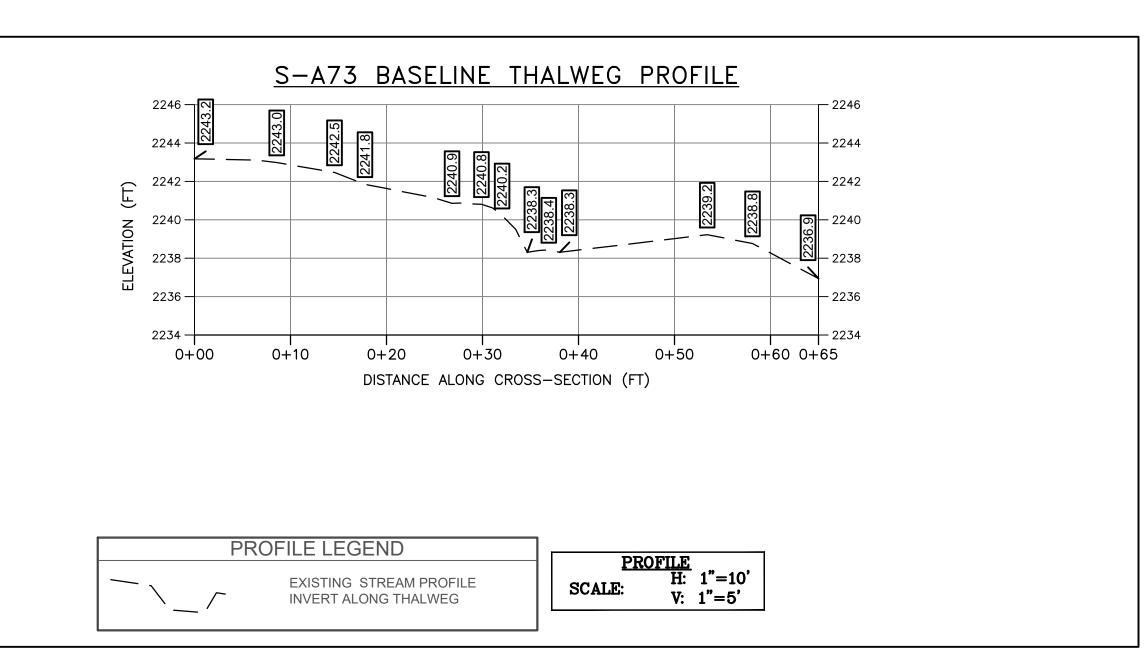


0.1

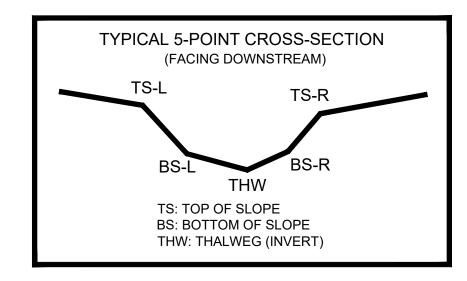
percent finer than

0.01




10

100


1000

10000

AS-BUILT TABLE: S-A73 CROSS SECTION A									
	PI	PRE-CROSSING							
PT. LOC.	NORTHING	EASTING	ELEV	VERT. DIFF.	HORZ. DIFF.				
TS-L	13916620.6300	1735034.1440	2242.142'						
BS-L	-	•	-						
THW	13916618.3900	1735032.5350	2241.847'						
BS-R	_	-	_						
TS-R	13916611.3900	1735025.52401	2242.813'						

SURVEY NOTES:

LEGEND

STUDY AREA (EASEMENT)

1176.87 十

EXISTING SURVEY-LOCATED THALWEG

EXISTING SURVEYED GROUND SHOT ELEVATION

- 1. THIS MAP HAS BEEN ORIENTED TO NAD 1983 UTM ZONE 17N, AND VERTICALLY TO THE NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD 88), USING REAL TIME DGPS. FIELD LOCATIONS WERE COMPLETED ON SEPTEMBER 7, 2021.
- 2. EASEMENT LINES SHOWN ON PLAN VIEW WERE PROVIDED BY MOUNTAIN VALLEY PIPELINE.
- 3. SURVEY POINTS FOR CROSS SECTIONS AND THALWEG PROFILES COLLECTED IN 2021 HAVE BEEN USED IN COMBINATION WITH SURVEY POINTS COLLECTED PREVIOUSLY IN 2020 IN ORDER TO GENERATE THE PRE-CROSSING SURFACE SHOWN IN PLAN. DUE TO NATURAL EROSIONAL STREAM PROCESSES THAT CAN OCCUR OVER TIME, MINOR ADJUSTMENTS TO THE PROFILE ALIGNMENTS MAY HAVE BEEN REQUIRED IN ORDER TO GENERATE A CLEAN PRE-CROSSING SURFACE.
- 4. ALL SECTION VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.
- 5. POST-CROSSING SURVEY INFORMATION SHOWN IN RED. DATA PENDING.
- 6. POST-CROSSING SURVEY POINTS FOR CROSS SECTIONS AND THALWEG ARE PROJECTED ONTO PRE-CROSSING SECTION AND PROFILE VIEWS FOR COMPARISON.

PRE-CROSSING PHOTOS

PHOTO TAKEN LOOKING DOWNSTREAM FROM UPSTREAM IMPACT LIMITS

PHOTO TAKEN LOOKING UPSTREAM FROM

DOWNSTREAM IMPACT LIMITS POST-CROSSING PHOTOS

PENDING CROSSING

PHOTO TAKEN LOOKING DOWNSTREAM FROM UPSTREAM IMPACT LIMITS

PENDING CROSSING

PHOTO TAKEN LOOKING UPSTREAM FROM DOWNSTREAM IMPACT LIMITS

CAD File No.

Drawing No.

PRE-CROSSING

S-A73 BASELINE CROSS-SECTION A - 2244 급 2240 -- 2240 0+200 + 300+00 0+10 DISTANCE ALONG CROSS-SECTION (FT)

> CROSS SECTION LEGEND — EXISTING GRADE CROSS SECTION
> H: 1"=10'
> V: 1"=5'

NOTE: ALL SECTIONS VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.