Reach S-B33 (Timber Mat Crossing) Intermittent Spread D Webster County, West Virginia

Data	Included
Photos	\checkmark
SWVM Form	\checkmark
FCI Calculator and HGM Form	\checkmark
RBP Physical Characteristics Form	\checkmark
Water Quality Data	\checkmark
RBP Habitat Form	\checkmark
RBP Benthic Form	\checkmark
Benthic Identification Sheet	N/A – Low flow
Wolman Pebble Count	\checkmark
Reference Reach Software Pebble Count Data	\checkmark
Longitudinal Profile and Cross Sections	\checkmark

Photo Type: DS, DS View Location, Orientation, Photographer Initials: Downstream Edge of ROW, Downstream View, RH/AR Lat: 38.408941 Long: -80.589063

Photo Type: US View at Center Location, Orientation, Photographer Initials: Center ROW, Upstream View, RH/AR Lat: 38.408941 Long: -80.589063

Photo Type: DS View at Center Location, Orientation, Photographer Initials: ROW Center, Downstream View, RH/AR Lat: 38.408941 Long: -80.589063

Photo Type: US, US View Location, Orientation, Photographer Initials: Upstream Edge of ROW, Upstream View, RH/AR Lat: 38.408941 Long: -80.589063

Photo Type: US, DS View

Location, Orientation, Photographer Initials: Upstream Edge of ROW, Downstream View, RH/AR Lat: 38.408941 Long: -80.589063

Photo Type: DS View Location, Orientation, Photographer Initials: Downstream View of ROW Lat: 38.408884 Long: -80.589108

Photo Type: DS View Location, Orientation, Photographer Initials: Downstream View of ROW Lat: 38.408879 Long: -80.589117

West Virginia Stream and Wetland Valuation Metric (SWVM) Version 2.1, September 2017

USACE FILE NO./ Project Name: (v2.1, Sept 2015)		Mountain V	Valley Pipeline	IMPACT COORDINATES: (in Decimal Degrees)	Lat.	38.408941 Lon	1.	-80.589063	WEATHER:	Sunny	DATE:	09/08/2	21
IMPACT STREAM/SITE ID (watershed size (acreage),			S-B33 Timber	Mat Crossing		MITIGATION STREAM CLASS./SITE I (watershed size (acreage), unalt					Comments:		
STREAM IMPACT LENGTH:	22	FORM OF MITIGATION:	RESTORATION (Levels I-III)	MIT COORDINATES: (in Decimal Degrees)	Lat.	Lon	1.		PRECIPITATION PAST 48 HRS:		Mitigation Length:		
Column No. 1- Impact Existing	g Condition (Del	bit)	Column No. 2- Mitigation Existing Co	ondition - Baseline (Credit)	•	Column No. 3- Mitigation Projecter Post Completion (Cred		5	Column No. 4- Mitigation Projec Post Completion (Cr		Column No. 5- Mitigation Project	ted at Maturity (Cre	edit)
Stream Classification:	Intern	nittent	Stream Classification:			Stream Classification:	0		Stream Classification:	0	Stream Classification:	0	
Percent Stream Channel SI	lope	18.4	Percent Stream Channel Slo	pe		Percent Stream Channel Slope		0	Percent Stream Channel Slop	De O	Percent Stream Channel S	ilope	0
HGM Score (attach da	ata forms):		HGM Score (attach d	ata forms):		HGM Score (attach data	forms):		HGM Score (attach dat	a forms):	HGM Score (attach o	lata forms):	
		Average		Average				Average		Average			Average
Hydrology	0.39		Hydrology			Hydrology			Hydrology		Hydrology		
Biogeochemical Cycling Habitat	0.3	0.26666667	Biogeochemical Cycling Habitat	0		Biogeochemical Cycling Habitat		0	Biogeochemical Cycling Habitat	0	Biogeochemical Cycling Habitat		0
PART I - Physical, Chemical and		ators	PART I - Physical, Chemical and	Biological Indicators		PART I - Physical, Chemical and Biol	logical Indicato	ors	PART I - Physical, Chemical and Bi	ological Indicators	PART I - Physical, Chemical and	Biological Indicato	tors
	Points Scale Range	Site Score		Points Scale Range Site Score		Points	Scale Range	Site Score		Points Scale Range Site Score		Points Scale Range	Site Score
PHYSICAL INDICATOR (Applies to all streams	s classifications)		PHYSICAL INDICATOR (Applies to all streams cl	assifications)		PHYSICAL INDICATOR (Applies to all streams classifi	lications)		PHYSICAL INDICATOR (Applies to all streams cl	assifications)	PHYSICAL INDICATOR (Applies to all stream	s classifications)	
USEPA RBP (High Gradient Data Sheet)			USEPA RBP (Low Gradient Data Sheet)			USEPA RBP (High Gradient Data Sheet)			USEPA RBP (High Gradient Data Sheet)		USEPA RBP (High Gradient Data Sheet)		
1. Epifaunal Substrate/Available Cover 2. Embeddedness	0-20	7	1. Epifaunal Substrate/Available Cover 2. Pool Substrate Characterization	0-20		1. Epifaunal Substrate/Available Cover 0.2 2. Embeddedness 0.2			1. Epifaunal Substrate/Available Cover 2. Embeddedness	0-20	1. Epifaunal Substrate/Available Cover 2. Embeddedness	0-20	(
3. Velocity/ Depth Regime	0-20	1	3. Pool Variability	0-20		3. Velocity/ Depth Regime 0.2			3. Velocity/ Depth Regime	0-20	3. Velocity/ Depth Regime	0-20	
4. Sediment Deposition	0-20	8	4. Sediment Deposition	0-20		4. Sediment Deposition 0-2			4. Sediment Deposition	0-20	 Sediment Deposition 	0-20	
5. Channel Flow Status	0-20 0-1	6	5. Channel Flow Status	0-20 0-1		5. Channel Flow Status 0-2			5. Channel Flow Status	0-20 0-1	5. Channel Flow Status	0-20 0-1	
6. Channel Alteration	0-20	13	6. Channel Alteration	0-20		6. Channel Alteration 0-2			6. Channel Alteration	0-20	6. Channel Alteration	0-20	
7. Frequency of Riffles (or bends) 8. Bank Stability (LB & RB)	0-20	2	7. Channel Sinuosity 8. Bank Stability (LB & RB)	0-20		7. Frequency of Riffles (or bends) 0-2 8. Bank Stability (LB & RB) 0-2			7. Frequency of Riffles (or bends) 8. Bank Stability (LB & RB)	0-20	7. Frequency of Riffles (or bends) 8. Bank Stability (LB & RB)	0-20	
9. Vegetative Protection (LB & RB)	0-20	10	9. Vegetative Protection (LB & RB)	0-20		9. Vegetative Protection (LB & RB) 0-2			9. Vegetative Protection (LB & RB)	0-20	9. Vegetative Protection (LB & RB)	0-20	
10. Riparian Vegetative Zone Width (LB & RB)	0-20	14	10. Riparian Vegetative Zone Width (LB & RB)	0-20		10. Riparian Vegetative Zone Width (LB & RB) 0.2			10. Riparian Vegetative Zone Width (LB & RB)	0-20	10. Riparian Vegetative Zone Width (LB & RB)	0-20	
Total RBP Score	Marginal	71	Total RBP Score	Poor 0			Poor	0	Total RBP Score	Poor 0	Total RBP Score	Poor	0
Sub-Total		0.355	Sub-Total	0		Sub-Total		0	Sub-Total	0	Sub-Total		0
CHEMICAL INDICATOR (Applies to Intermitten	nt and Perennial Str	eams)	CHEMICAL INDICATOR (Applies to Intermittent a	and Perennial Streams)		CHEMICAL INDICATOR (Applies to Intermittent and P	Perennial Streams))	CHEMICAL INDICATOR (Applies to Intermittent a	and Perennial Streams)	CHEMICAL INDICATOR (Applies to Intermitte	nt and Perennial Stream	ms)
WVDEP Water Quality Indicators (General	Ŋ		WVDEP Water Quality Indicators (General)			WVDEP Water Quality Indicators (General)			WVDEP Water Quality Indicators (General)		WVDEP Water Quality Indicators (General	D.	
Specific Conductivity	1		Specific Conductivity			Specific Conductivity	_		Specific Conductivity		Specific Conductivity		
100-199 - 85 points	0-90	193.9		0-90		0.9	90			0-90		0-90	
рН	0.1		рН			pH	0.1		pH	0.1	pH	0.1	
6.0-8.0 = 80 points	0-80 0-1	7.71		5-90 0-1		5-9	90 0-1			5-90		5-90 0-1	1
DO			DO			DO			DO		DO		
>5.0 = 30 points	10-30	7.44		10-30		10-	-30			10-30		10-30	1
Sub-Total	1	0.975	Sub-Total	0		Sub-Total		0	Sub-Total	0	Sub-Total		0
BIOLOGICAL INDICATOR (Applies to Intermitt	tent and Perennial	Streams)	BIOLOGICAL INDICATOR (Applies to Intermitter	nt and Perennial Streams)		BIOLOGICAL INDICATOR (Applies to Intermittent a	and Perennial Str	reams)	BIOLOGICAL INDICATOR (Applies to Intermit	tent and Perennial Streams)	BIOLOGICAL INDICATOR (Applies to Interr	nittent and Perennial	I Streams)
WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)		WV Stream Condition Index (WVSCI)		
â	0-100 0-1			0-100 0-1		0-1	100 0-1			0-100 0-1		0-100 0-1	
Sub-Total	4 - I	0	Sub-Total	0		Sub-Total		0	Sub-Total	0	Sub-Total		0
PART II - Index and U	Jnit Score		PART II - Index and U	Jnit Score		PART II - Index and Unit S	Score		PART II - Index and Uni	t Score	PART II - Index and	Unit Score	
Index	Linear Feet	Unit Score	Index	Linear Feet Unit Score		Index Lin	near Feet	Unit Score	Index	Linear Feet Unit Score	Index	Linear Feet	Unit Score

FCI Calculator for the High-Gradient Headwater Streams in Appalachia

To ensure accurate calculations, the <u>UPPERMOST STRATUM</u> of the plant community is determined based on the calculated value for $V_{CCANOPY}$ ($\geq 20\%$ cover is required for tree/sapling strata). Go to the SAR Data Entry tab and enter site characteristics and data in the yellow cells. For information on determining how to split a project into SARs, see Chapter 5 of the Operational Draft Regional Guidebook for the Functional Assessment of High-Gradient Headwater Streams and Low-Gradient Perennial Streams in Appalachia (Environmental Laboratory U.S. Army Corps of Engineers 2017).

Project Name: MVP Stream Assessment Location: Webster, Spread D Sampling Date: 9/8/2021	Project Site	Before Project
Subclass for this SAR:		
Intermittent Stream		
Uppermost stratum present at this SAR:	SAR number:	S-B33

Shrub/Herb Strata

Functional Results Summary:

Enter Results in Section A of the Mitigation Sufficiency Calculator

Function	Functional Capacity Index
Hydrology	0.39
Biogeochemical Cycling	0.30
Habitat	0.11

Variable Measure and Subindex Summary:

Variable	Name	Average Measure	Subindex
VCCANOPY	Percent canpoy over channel.	Not Used, <20%	Not Used
VEMBED	Average embeddedness of channel.	1.60	0.32
V _{SUBSTRATE}	Median stream channel substrate particle size.	0.08	0.04
V _{BERO}	Total percent of eroded stream channel bank.	173.91	0.14
V _{LWD}	Number of down woody stems per 100 feet of stream.	4.35	0.54
V _{TDBH}	Average dbh of trees.	Not Used	Not Used
V _{SNAG}	Number of snags per 100 feet of stream.	0.00	0.10
V _{SSD}	Number of saplings and shrubs per 100 feet of stream.	139.13	1.00
V _{SRICH}	Riparian vegetation species richness.	0.00	0.00
V _{DETRITUS}			0.23
V _{HERB}			0.90
V _{WLUSE}	Weighted Average of Runoff Score for Catchment.	0.46	0.48

			High-G			ter Strea et and C			• •	а		
	Team	Reed H, Ar	no P	T IEIU L			aicu			M Northing:	38 /080/1	
Pro	oject Name:			ont						TM Easting:		
	-	Webster, S		ont					•	npling Date:		
~						o: T					5/0/2021	
SA	AR Number: Top Strata:	S-B33	Reach rub/Herb Sti	Length (ft):	23	Stream Ty			mittent Strea			1
Site	and Timing:			ata	(determine		Before			рү/		-
	e Variables	1.140.000	-9				Delote	Pioje	ci			
1	V _{CCANOPY}	Average pe equidistant 20%, enter	ercent cover points alonç at least one	the stream value betw	. Measure een 0 and 1	only if tree/s	apling	cove	r is at least			Not Used <20%
			neasureme			0			0	0	0	1
	0	0	0	0	0	0	0		0	0	0	
2	V _{EMBED}	along the s surface and to the follow of 1. If the	nbeddednes tream. Sele d area surro ving table. I bed is comp	ect a particle unding the p f the bed is posed of bec	from the be particle that i an artificial s drock, use a	ed. Before n is covered b surface, or c rating score	noving by fine s compos e of 5.	it, de sedim sed of	termine the nent, and en f fine sedime	percentage ter the rating ents, use a r	of the g according rating score	1.6
		Minshall 19			oddie and d	ouider partic	cies (re	scale	d from Plat	s, meganan	, and	
		Rating 5	Second		overed sur	rounded or	buried	by fir	ne sediment	(or bedrock	:)	
		4				, surrounded		_			7	
		3	26 to 50 pe	rcent of sur	face covere	d, surrounde	ed, or b	uried	by fine sed	iment		1
		2				d, surrounde						
		1			covered, su	irrounded, o	r burie	d by 1	ine sedimer	nt (or artificia	al surface)	l
		, č	point below		0	4			4		4	
	3	1	1	2	3	1	2		1	1	1	
	4	2	3	2	1	1			1	1	1	
	3	2	2	1	1	1	1		2	1	1	
3		Maadiaaa atau	eam channe			M			20			
U	Enter partic	along the s le size in in	tream; use t ches to the i and or finer	he same po nearest 0.1	ints and par inch at each	ticles as use	ed in V	EMBED).			0.08 in
	2.90	1.60	0.08	0.80	5.90	0.20	3.0	0	1.10	0.08	0.08	
	2.10	0.40	0.90	3.00	0.08	0.08	0.0		0.08	0.08	0.08	
	0.40	0.08	0.08	3.00	0.08	0.08	0.0		0.08	0.40	0.08	
4	V _{BERO}		nt of erodec									174 %
		up to 200%) ft		Right E) ft	am may be	174 %
		5 0ithin t					U				- h h -	
5	Variables	Number of stream read	down wood ch. Enter th	y stems (at l e number fr	east 4 inche om the entir	es in diamet	er and	36 in	ches in leng	th) per 100	feet of	4.3
		per 100 tee	t of stream	will de calcu		f downed wo	ndv et	eme.		1		
6	V _{TDBH}	Average dr	h of trees (r	neasure on					t least 20%	. Trees are	at least 4	
 V_{TDBH} Average dbh of trees (measure only if V_{CCANOPY} tree/sapling cover is at least 20%). Trees are at least 4 inches (10 cm) in diameter. Enter tree DBHs in inches. List the dbh measurements of individual trees (at least 4 in) within the buffer on each side of the stream below: 							Not Use					
			Left Side						Right Side			
	0					0		_				
7	V _{SNAG}		snags (at le						Enter numb	er of snags	on each	
		side of the	stream, and	the amount	per 100 fee	et will be cal	culated	Ι.				0.0
			1.04.011		0		D:! · ·	Di-I		0		
0	M	Number	Left Side:		0 andu atama	un to A '	Right :			0 otro oro (m or		
8	V _{SSD}		saplings and r is <20%).									139.1
			of stream wil							,		
			Left Side:		5			Side:		7		

9	V _{SRICH}	Group 1 in	the tallest st	ecies richness p ratum. Check and the subinde	all exotic	and invas	ive species p	resent in all			0.00
richness per 100 feet and the subindex will be o Group 1 = 1.0					Group 2 (-1.0)						
	Acer rubru	m		Magnolia tripet	ala		Ailanthus a			Lonicera ja	ponica
	Acer sacch	narum		Nyssa sylvatic	а		Albizia julib	rissin		Lonicera ta	tarica
	Aesculus fi	ava		Oxydendrum an			Alliaria peti	olata		Lotus corni	culatus
	Asimina tril	oba		Prunus serotin	а		Alternanthe			Lythrum sa	
	Betula alleg			Quercus alba	-		philoxeroid			Microstegiur	
	Betula lent			Quercus cocci	nea		Aster tatari			Paulownia	
				Quercus imbrid			Cerastium			Polygonum	
	Carya alba										
	Carya glab			Quercus prinus			Coronilla va			Pueraria m	
	Carya oval			Quercus rubra			Elaeagnus u			Rosa multi	
	Carya ovat			Quercus veluti			Lespedeza			Sorghum h	
	Cornus flor			Sassafras albio			Lespedeza			Verbena bi	asiliensis
	Fagus grar	ndifolia		Tilia americana			Ligustrum ol	otusifolium			
	Fraxinus a	mericana		Tsuga canadei	nsis		Ligustrum s	sinense			
	Liriodendron	tulipifera		Ulmus america	ana						
	Magnolia a	cuminata									
		0	Species in	Group 1				0	Species in	Group 2	
										•	-
		bplots shou	Id be place	subplots (40" : d roughly equi of leaves, stick	idistantl	ly along ea	ch side of t	ne stream.			1 each
10	DETRITUS	• •		the percent co		•		•	diamote		18.75 %
			Left					Side		1	
		30	20			20	5				
11	V _{HERB}	include woo	ody stems a percentages	over of herbaced t least 4" dbh ai s up through 20	nd 36" ta	all. Because	e there may b	e several la	yers of grou	and cover	68 %
				Side				Side			
		70	40			80	80				
12	V _{wluse}	Weighted A	Verage of F	unoff Score for	watersh	ned:				% in	0.46 Running
			Land	Use (Choose F	rom Dro	p List)			Runoff Score	Catch- ment	Percent (not >100)
Î	Impervious	areas (parking	lots, roofs, d	riveways, etc)				-	0	7.52	7.52
Î	Impervious	areas (parking	lots, roofs. d	riveways, etc)				0.01	7.53		
Î				Concert Becadence	194			-	0		
				, grass cover <50					0.1	26.21	33.74
Î	Forest and r	ative range (5	50% to 75% g	round cover)				•	0.7	53.84	87.58
Î	Forest and r	ative range (<50% ground	cover)				•	0.5	12.33	99.91
	Open space	(pasture, law	ns, parks, etc.)	, grass cover <50	9%			-	0.1	0.09	100
Î								-			
Î	-							•			
	-							•			
Î	5	S-B33					No	tes:			
\ \	/ariable	Value	VSI								
		Not Used,	Not Used								
	V _{CCANOPY}	<20%									
ĺ '	V _{EMBED}	1.6	0.32								
· ·	V _{SUBSTRATE}	0.08 in	0.04								
· ·	V _{BERO}	174 %	0.14								
			0.54								
		4.3									
· `	V _{TDBH}	Not Used	Not Used								
	V _{SNAG}	0.0	0.10								
		139.1	1.00								
		139.1	1.00								
	▼ssd V _{SRICH}	0.00	0.00								
		0.00 18.8 %									
	V _{SRICH}		0.00								
,	V _{SRICH} V _{DETRITUS}	18.8 %	0.00 0.23								

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

STREAM NAME	LOCATION		
STATION # RIVERMILE	STREAM CLASS		
LAT LONG	RIVER BASIN		
STORET #	AGENCY		
INVESTIGATORS			
FORM COMPLETED BY	DATE TIME	REASON FOR SURVEY	

WEATHER CONDITIONS SITE LOCATION/MAP	Now Past 24 hours Has there been a heavy rain in the last 7 days? Yes storm (heavy rain) rain (steady rain) showers (intermittent)
	Timber Mat
	Pipe CL Coming In Coming Disconti
STREAM CHARACTERIZATION	Stream Subsystem Perennial Stream Type Intermittent Stream Type Coldwater Warmwater Stream Origin Glacial Spring-fed Mixture of origins Swamp and bog Catchment Areakm ²

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

WATERSHED FEATURES RIPARIAN VEGETATION (18 meter buffer)	Fredominant Surrounding Landuse Forest Commercial Field/Pasture Industrial Agricultural Other Residential Lo	Decal Watershed NPS Pollution No evidence Some potential sources Obvious sources Decal Watershed Erosion None Moderate Heavy Sepecies present asses Herbaceous
INSTREAM FEATURES	Estimated Reach Length m Ca Estimated Stream Width m m Sampling Reach Area m² Pr Area in km² (m²x1000) km² M Estimated Stream Depth m Surface Velocity (at thalweg) m/sec Ch	anopy Cover Partly open Partly shaded Shaded igh Water Markm roportion of Reach Represented by Stream orphology Types Riffle % Run% Pool% No hannelized Yes No am Present Yes No
LARGE WOODY DEBRIS	LWDm ² Density of LWDm ² /km ² (LWD/ reach are	ea)
AQUATIC VEGETATION	Indicate the dominant type and record the dominant s Rooted emergent Rooted submergent Floating Algae Attached Algae Dominant species present	Rooted floating Free floating
water quality (ds, us) DS	Specific Conductance Pe Dissolved Oxygen Fit Dissolved Oxygen W pH Turbidity WO Instrument Used Tu	Tater Odors ormal/None Sewage troleum Chemical shy Other Tater Surface Oils Slick Slick Sheen Globs None Other urbidity (if not measured) Clear Clear Slightly turbid Turbid Opaque Stained Other
SEDIMENT/ SUBSTRATE	Normal Sewage Petroleum Chemical Anaerobic None Other	eposits Sludge Sawdust Paper fiber Sand Relict shells Other ooking at stones which are not deeply embedded, e the undersides black in color? Yes No

INC	ORGANIC SUBSTRATE (should add up to		ORGANIC SUBSTRATE COMPONENTS (does not necessarily add up to 100%)				
Substrate Type	Diameter	% Composition in Sampling Reach	Substrate Type	Characteristic	% Composition in Sampling Area		
Bedrock			Detritus	sticks, wood, coarse plant			
Boulder	> 256 mm (10")			materials (CPOM)			
Cobble	64-256 mm (2.5"-10")		Muck-Mud	black, very fine organic			
Gravel	2-64 mm (0.1"-2.5")			(FPOM)			
Sand	0.06-2mm (gritty)		Marl	grey, shell fragments			
Silt	0.004-0.06 mm						
Clay	< 0.004 mm (slick)						

HABITAT ASSESSMENT FIELD DATA SHEET - HG - USE ON ALL STREAMS (FRONT)

STREAM NAME	LOCATION		
STATION # RIVERMILE	STREAM CLASS		
LAT LONG	RIVER BASIN		
STORET #	AGENCY		
INVESTIGATORS			
FORM COMPLETED BY	DATE TIME AM PM	REASON FOR SURVEY	

	Habitat		Condition	ı Category			
	Parameter	Optimal	Suboptimal	Marginal	Poor		
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are <u>not</u> new fall and <u>not</u> transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.		
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
n sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.		
ted i	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow- deep, slow-shallow, fast- deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast- shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).		
uram	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
Pa	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom		
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.		
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		

Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, Second Edition - Form 2

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

Habitat		Condition	1 Category	
Parameter	Optimal	Suboptimal	Marginal	Poor
6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.
SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
 SCORE 8. Bank Stability (score each bank) Note: determine left or right side by facing downstream. SCORE (LB) SCORE (RB) 9. Vegetative Protection (score each bank) 	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30- 60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.
SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0
9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well- represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
SCORE(LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
SCORE(RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0
10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.
SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0

Total Score _____

BENTHIC MACROINVERTEBRATE FIELD DATA SHEET

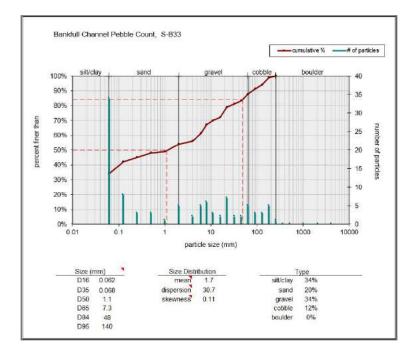
STREAM NAME		LOCATION						
STATION #	_ RIVERMILE	STREAM CLASS	STREAM CLASS					
LAT	LONG	RIVER BASIN						
STORET #		AGENCY	AGENCY					
INVESTIGATORS			LOT NUMBER					
FORM COMPLETED	BY	DATE TIME	REASON FOR SURVEY					
HABITAT TYPES	Indicate the percentage of Cobble% Sn Submerged Macrophytes	ags% Vegetated B	anks% Sand%)%					
SAMPLE COLLECTION	Indicate the number of jab	lected? wading fi ps/kicks taken in each habitat ty lags Vegetated B	anks Sand					
GENERAL COMMENTS								

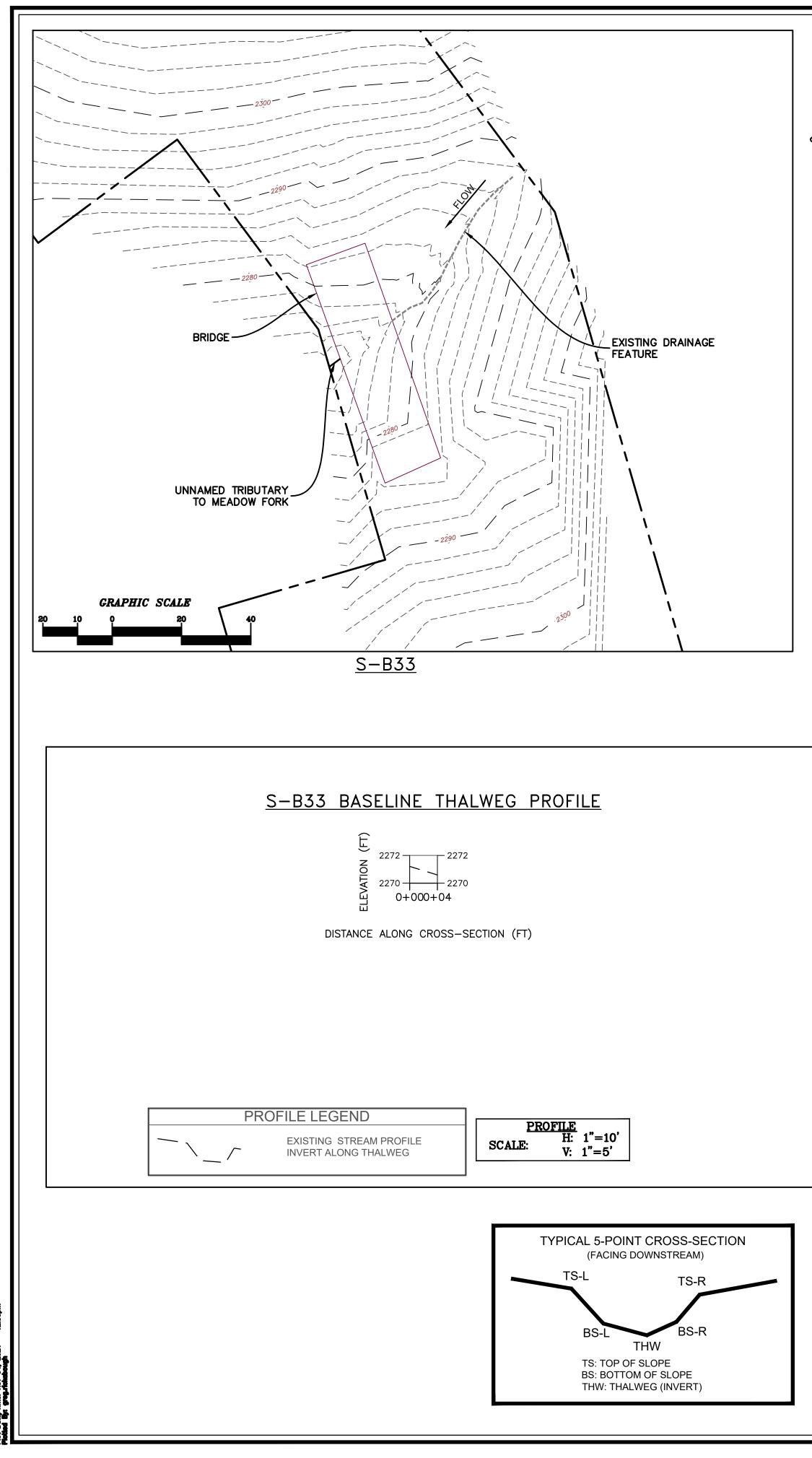
QUALITATIVE LISTING OF AQUATIC BIOTA

Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare, 2 = Common, 3= Abundant, 4 = Dominant

Periphyton	0	1	2	3	4	Slimes	0	1	2	3	4
Filamentous Algae	0	1	2	3	4	Macroinvertebrates	0	1	2	3	4
Macrophytes	0	1	2	3	4	Fish	0	1	2	3	4

FIELD OBSERVATIONS OF MACROBENTHOS


Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare (1-3 organisms), 2 = Common (3-9 organisms), 3= Abundant (>10 organisms), 4 = Dominant (>50 organisms)


Porifera	0	1	2	3	4	Anisoptera	0	1	2	3	4	Chironomidae	0	1	2	3	4
Hydrozoa	0	1	2	3	4	Zygoptera	0	1	2	3	4	Ephemeroptera	0	1	2	3	4
Platyhelminthes	0	1	2	3	4	Hemiptera	0	1	2	3	4	Trichoptera	0	1	2	3	4
Turbellaria	0	1	2	3	4	Coleoptera	0	1	2	3	4	Other	0	1	2	3	4
Hirudinea	0	1	2	3	4	Lepidoptera	0	1	2	3	4						
Oligochaeta	0	1	2	3	4	Sialidae	0	1	2	3	4						
Isopoda	0	1	2	3	4	Corydalidae	0	1	2	3	4						
Amphipoda	0	1	2	3	4	Tipulidae	0	1	2	3	4						
Decapoda	0	1	2	3	4	Empididae	0	1	2	3	4						
Gastropoda	0	1	2	3	4	Simuliidae	0	1	2	3	4						
Bivalvia	0	1	2	3	4	Tabinidae	0	1	2	3	4						
						Culcidae	0	1	2	3	4						

WOLMAN PEBBLE COUNT FORM

County:	Webster	Stream ID:	S-B33
Stream Name:	UNT to Meadow Fork		
HUC Code:		Basin:	
Survey Date:	9/8/2021		
Surveyors:	RH AR	Impact:	7m
Type:	Bankfull Channel		

¥ 1	D I D T I I I I		LE COUNT				a:
Inches	PARTICLE	Millimeters		Particle Count	Total #	Item %	% Cum
	Silt/Clay	< .062	▲ ▼	34	34.00	34.00	
	Very Fine	.062125		▲ ▼	8	8.00	42.00
	Fine	.12525		* *	3	3.00	45.00
	Medium	.255	S A N D	* *	3	3.00	48.00
	Coarse	.50-1.0		▲ ▼	1	1.00	49.00
.0408	Very Coarse	1.0-2	1	▲ ▼	5	5.00	54.00
.0816	Very Fine	2 -4		▲ ▼	2	2.00	56.00
.1622	Fine	4 -5.7		• •	5	5.00	61.00
.2231	Fine	5.7 - 8		▲ ▼	6	6.00	67.00
.3144	Medium	8 -11.3		▲ ▼	3	3.00	70.00
.4463	Medium	11.3 - 16	GRAVEL	* *	2	2.00	72.00
.6389	Coarse	16 -22.6		* *	7	7.00	79.00
.89 - 1.26	Coarse	22.6 - 32		▲ ▼	2	2.00	81.00
1.26 - 1.77	Vry Coarse	32 - 45		▲ ▼	2	2.00	83.00
1.77 -2.5	Vry Coarse	45 - 64		* *	5	5.00	88.00
2.5 - 3.5	Small	64 - 90		• •	3	3.00	91.00
3.5 - 5.0	Small	90 - 128		• •	3	3.00	94.00
5.0 - 7.1	Large	128 - 180	COBBLE	▲ ▼	5	5.00	99.00
7.1 - 10.1	Large	180 - 256		• •	1	1.00	100.00
10.1 - 14.3	Small	256 - 362		* *	0	0.00	100.00
14.3 - 20	Small	362 - 512	1	* *	0	0.00	100.00
20 - 40	Medium	512 - 1024	BOULDER	* *	0	0.00	100.00
40 - 80	Large	1024 -2048	1	• •	0	0.00	100.00
80 - 160	Vry Large	2048 -4096	1	• •	0	0.00	100.00
	Bedrock		BDRK	• •	0	0.00	100.00
				Totals:	100		

 SURVEY NOTES:

- 1. THIS MAP HAS BEEN ORIENTED TO NAD 1983 UTM ZONE 17N, AND VERTICALLY TO THE NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD 88), USING REAL TIME DGPS. FIELD LOCATIONS WERE COMPLETED ON SEPTEMBER 8, 2021.
- 2. EASEMENT LINES SHOWN ON PLAN VIEW WERE PROVIDED BY MOUNTAIN VALLEY PIPELINE.


3. SURVEY POINTS FOR CROSS SECTIONS AND THALWEG PROFILES COLLECTED IN 2021 HAVE BEEN USED IN COMBINATION WITH SURVEY POINTS COLLECTED PREVIOUSLY IN 2020 IN ORDER TO GENERATE THE PRE-CROSSING SURFACE SHOWN IN PLAN. DUE TO NATURAL EROSIONAL STREAM PROCESSES THAT CAN OCCUR OVER TIME, MINOR ADJUSTMENTS TO THE PROFILE ALIGNMENTS MAY HAVE BEEN REQUIRED IN ORDER TO GENERATE A CLEAN PRE-CROSSING SURFACE.

- 4. ALL SECTION VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.
- 5. POST-CROSSING SURVEY INFORMATION SHOWN IN RED. DATA PENDING.
- 6. POST-CROSSING SURVEY POINTS FOR CROSS SECTIONS AND THALWEG ARE PROJECTED ONTO PRE-CROSSING SECTION AND PROFILE VIEWS FOR COMPARISON.

CROSS SECTIONS COULD NOT OBTAINED DUE TO LIMITED SPACE

CROSS	SECTION LEGEND
E	EXISTING GRADE
CPOS	S SECTION
SCALE:	<u>H: 1"=10'</u>

NOTE: ALL SECTIONS VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.

