Reach S-E52 (Timber Mat Crossing) Intermittent Spread D Webster County, West Virginia

Data	Included
Photos	\checkmark
SWVM Form	\checkmark
FCI Calculator and HGM Form	\checkmark
RBP Physical Characteristics Form	\checkmark
Water Quality Data	N/A – No flow
RBP Habitat Form	\checkmark
RBP Benthic Form	\checkmark
Benthic Identification Sheet	N/A – No flow
Wolman Pebble Count	\checkmark
Reference Reach Software Pebble Count Data	\checkmark
Longitudinal Profile and Cross Sections	\checkmark

Spread D Stream S-E52 (Timber Mat Crossing) Webster County

Photo Type: DS, US View Location, Orientation, Photographer Initials: Downstream Edge of ROW, Upstream View, SM/MW Lat: 38.36911 Long: -80.611761

Photo Type: DS, DS View Location, Orientation, Photographer Initials: Downstream Edge of ROW, Downstream View, SM/MW Lat: 38.36911 Long: -80.611761

Spread D Stream S-E52 (Timber Mat Crossing) Webster County

Photo Type: US View at Center Location, Orientation, Photographer Initials: Center ROW, Upstream View, SM/MW Lat: 38.36911 Long: -80.611761

Photo Type: DS View at Center Location, Orientation, Photographer Initials: ROW Center, Downstream View, SM/MW Lat: 38.36911 Long: -80.611761

Spread D Stream S-E52 (Timber Mat Crossing) Webster County

Photo Type: US, US View Location, Orientation, Photographer Initials: Upstream Edge of ROW, Upstream View, SM/MW Lat: 38.36911 Long: -80.611761

Photo Type: US, DS View Location, Orientation, Photographer Initials: Upstream Edge of ROW, Downstream View, SM/MW Lat: 38.36911 Long: -80.611761

West Virginia Stream and Wetland Valuation Metric (SWVM) Version 2.1, September 2017

USACE FILE NO./ Project Name: (v2.1, Sept 2015)	Mountain	Valley Pipeline	IMPACT COORDINATES: (in Decimal Degrees)	Lat.	38.36911	Lon.	-80.611761	WEATHER:	80% Cloud Cover	DATE:	9/8/2	021
IMPACT STREAM/SITE ID A (watershed size (acreage), un		S-E	52		MITIGATION STREAM CLA (watershed size (ac	SS./SITE ID AND Screage), unaltered or imp				Comments:	N/A - Wate WVSCI (I	
STREAM IMPACT LENGTH:	22 FORM OF MITIGATION:	RESTORATION (Levels I-III)	MIT COORDINATES: (in Decimal Degrees)	Lat.		Lon.		PRECIPITATION PAST 48 HRS:		Mitigation Length:		
Column No. 1- Impact Existing C	Condition (Debit)	Column No. 2- Mitigation Existing Co	endition - Baseline (Credit)		Column No. 3- Mitigatio Post Compl	on Projected at Five letion (Credit)	Years	Column No. 4- Mitigation Proje Post Completion (Column No. 5- Mitigation Project	cted at Maturity (C	redit)
Stream Classification:	Intermittent	Stream Classification:			Stream Classification:		0	Stream Classification:	0	Stream Classification:	c	
Percent Stream Channel Slop	oe 7.8	Percent Stream Channel Slo	pe		Percent Stream Channe	el Slope	0	Percent Stream Channel Sl	ope 0	Percent Stream Channel	Slope	0
HGM Score (attach data	a forms):	HGM Score (attach d	ata forms):		HGM Score (att	tach data forms):		HGM Score (attach da	ata forms):	HGM Score (attach	data forms):	
	Average		Average				Average		Average			Average
Hydrology Biogeochemical Cycling Habitat	0.51 0.19 0.26333333 0.09	Hydrology Biogeochemical Cycling Habitat	0		Hydrology Biogeochemical Cycling Habitat		0	Hydrology Biogeochemical Cycling Habitat	0	Hydrology Biogeochemical Cycling Habitat		0
PART I - Physical, Chemical and Bi		PART I - Physical, Chemical and	Biological Indicators		PART I - Physical, Chemic	cal and Biological In	licators	PART I - Physical, Chemical and	Biological Indicators	PART I - Physical, Chemical an	d Biological Indica	ators
•	Points Scale Range Site Score		Points Scale Range Site Score			Points Scale Range	Site Score		Points Scale Range Site Score		Points Scale Range	Site Score
PHYSICAL INDICATOR (Applies to all streams cla	assifications)	PHYSICAL INDICATOR (Applies to all streams cl	assifications)		PHYSICAL INDICATOR (Applies to all stre	reams classifications)		PHYSICAL INDICATOR (Applies to all streams	classifications)	PHYSICAL INDICATOR (Applies to all stream	s classifications)	
JSEPA RBP (High Gradient Data Sheet)		USEPA RBP (Low Gradient Data Sheet)			USEPA RBP (High Gradient Data Shee			USEPA RBP (High Gradient Data Sheet)		USEPA RBP (High Gradient Data Sheet)		
	0-20 0 0	1. Epifaunal Substrate/Available Cover 2. Pool Substrate Characterization	0-20		1. Epifaunal Substrate/Available Cover 2. Embeddedness	0-20		1. Epifaunal Substrate/Available Cover 2. Embeddedness	0-20	1. Epifaunal Substrate/Available Cover 2. Embeddedness	0-20	
	0-20 0	3. Pool Variability	0-20		3. Velocity/ Depth Regime	0-20		3. Velocity/ Depth Regime	0-20	3. Velocity/ Depth Regime	0-20	
	0-20 20	4. Sediment Deposition	0-20		4. Sediment Deposition	0-20		4. Sediment Deposition	0-20	4. Sediment Deposition	0-20	
	0-20 0-1 0	5. Channel Flow Status	0-20 0-1		5. Channel Flow Status	0-20 0-1		5. Channel Flow Status	0-20 0-1	5. Channel Flow Status	0-20 0-1	
	0-20 0	6. Channel Alteration	0-20		6. Channel Alteration	0-20		6. Channel Alteration	0-20	6. Channel Alteration	0-20	
	0-20	7. Channel Sinuosity	0-20		7. Frequency of Riffles (or bends)	0-20		7. Frequency of Riffles (or bends)	0-20	7. Frequency of Riffles (or bends)	0-20	
	0-20 16	8. Bank Stability (LB & RB) 9. Vegetative Protection (LB & RB)	0-20		8. Bank Stability (LB & RB) 9. Vegetative Protection (LB & RB)	0-20		8. Bank Stability (LB & RB) 9. Vegetative Protection (LB & RB)	0-20	8. Bank Stability (LB & RB) 9. Vegetative Protection (LB & RB)	0-20	
	0-20 8	 Vegetative Protection (LB & RB) Riparian Vegetative Zone Width (LB & RB) 	0-20		 Vegetative Protection (LB & RB) Riparian Vegetative Zone Width (LB & RB) 			 Vegetative Protection (LB & RB) Riparian Vegetative Zone Width (LB & RB) 	0-20	 Vegetative Protection (LB & RB) Riparian Vegetative Zone Width (LB & RB) 		
Total RBP Score	Marginal 97	Total RBP Score	Poor 0		Total RBP Score	Poor	0	Total RBP Score	Poor 0	Total RBP Score	Poor	0
Sub-Total	0.485	Sub-Total	0		Sub-Total		0	Sub-Total	0	Sub-Total		0
CHEMICAL INDICATOR (Applies to Intermittent a	nd Perennial Streams)	CHEMICAL INDICATOR (Applies to Intermittent a	and Perennial Streams)		CHEMICAL INDICATOR (Applies to Interr		eams)	CHEMICAL INDICATOR (Applies to Intermitten		CHEMICAL INDICATOR (Applies to Intermitte		ams)
WVDEP Water Quality Indicators (General) Specific Conductivity		WVDEP Water Quality Indicators (General) Specific Conductivity			WVDEP Water Quality Indicators (Gen Specific Conductivity	neral)		WVDEP Water Quality Indicators (General Specific Conductivity)	WVDEP Water Quality Indicators (General Specific Conductivity	al)	1
specific Conductivity		Specific Conductivity			Specific Conductivity	1		Specific Conductivity	0-90	Specific Conductivity	1	
100-199 - 85 points	0-90		0-90			0-90			0-90		0-90	
H		pH			pH			pH		pH		
	0-80 0-1		5-90 0-1			5-90 0-1			5-90		5-90 0-1	
5.6-5.9 = 45 points		00			20			20		20		
	10-30	55	10-30		80	10-30		80	10-30	80	10-30	
	10-30		10-30			10-30			10-30		10-30	
Sub-Total		Sub-Total	0		Sub-Total		0	Sub-Total	0	Sub-Total		0
BIOLOGICAL INDICATOR (Applies to Intermitten	t and Perennial Streams)	BIOLOGICAL INDICATOR (Applies to Intermitter	and Perennial Streams)		BIOLOGICAL INDICATOR (Applies to In	ntermittent and Perenr	ial Streams)	BIOLOGICAL INDICATOR (Applies to Interm	ittent and Perennial Streams)	BIOLOGICAL INDICATOR (Applies to Inter	mittent and Perenni	al Streams)
WV Stream Condition Index (WVSCI)	0.100 0.1	WV Stream Condition Index (WVSCI)	0.100 0.1		WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)	0.100 0.1	WV Stream Condition Index (WVSCI)	0.100 0.1	
0	0-100 0-1		0-100 0-1			0-100 0-1			0-100 0-1		0-100 0-1	
Sub-Total	0	Sub-Total	0		Sub-Total		0	Sub-Total	0	Sub-Total		0
PART II - Index and Uni	t Score	PART II - Index and L	Init Score		PART II - Index	and Unit Score		PART II - Index and U	nit Score	PART II - Index and	Unit Score	
Index	Linear Feet Unit Score	Index	Linear Feet Unit Score		Index	Linear Feet	Unit Score	Index	Linear Feet Unit Score	Index	Linear Feet	Unit Scor

0.453

9.96416667

FCI Calculator for the High-Gradient Headwater Streams in Appalachia

To ensure accurate calculations, the <u>UPPERMOST STRATUM</u> of the plant community is determined based on the calculated value for V_{CCANOPY} (≥20% cover is required for tree/sapling strata). Go to the SAR Data Entry tab and enter site characteristics and data in the yellow cells. For information on determining how to split a project into SARs, see Chapter 5 of the Operational Draft Regional Guidebook for the Functional Assessment of High-Gradient Headwater Streams and Low-Gradient Perennial Streams in Appalachia (Environmental Laboratory U.S. Army Corps of Engineers 2017).

 Project Name: MVP Stream Assessment Location: Webster County, Stream D Sampling Date: 9/8/21
 Project Site
 Before Project

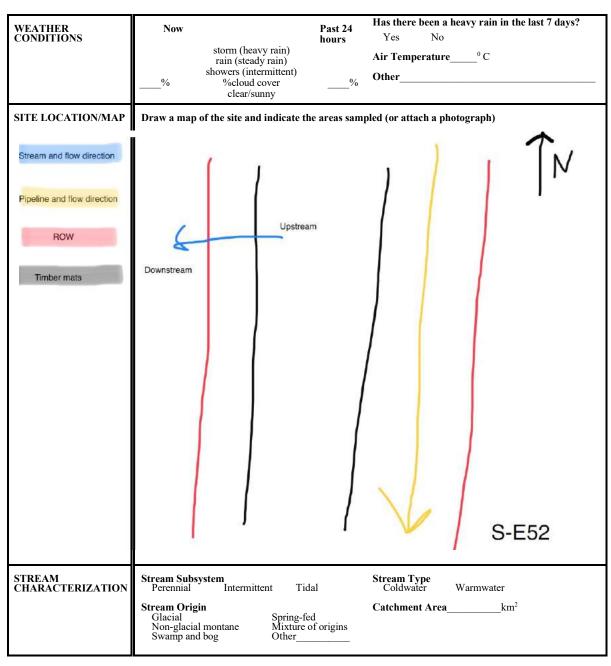
 Subclass for this SAR: Intermittent Stream
 Intermittent Stream
 SAR number:
 S-E52

 Uppermost stratum present at this SAR: Shrub/Herb Strata
 Enter Results in Section A of the Mitigation Sufficiency Calculator

 Functional Results Summary:
 Enter Results in Section A of the Mitigation Sufficiency Calculator

Function	Functional Capacity Index
Hydrology	0.51
Biogeochemical Cycling	0.19
Habitat	0.09

Variable Measure and Subindex Summary:


Variable	Name	Average Measure	Subindex
VCCANOPY	Percent canpoy over channel.	Not Used, <20%	Not Used
VEMBED	Average embeddedness of channel.	1.00	0.10
V _{SUBSTRATE}	Median stream channel substrate particle size.	0.08	0.04
V _{BERO}	Total percent of eroded stream channel bank.	0.00	1.00
V _{LWD}	Number of down woody stems per 100 feet of stream.	0.00	0.00
V _{TDBH}	Average dbh of trees.	Not Used	Not Used
V _{SNAG}	Number of snags per 100 feet of stream.	0.00	0.10
V _{SSD}	Number of saplings and shrubs per 100 feet of stream.	17.14	0.26
V _{SRICH}	Riparian vegetation species richness.	0.00	0.00
VDETRITUS	Average percent cover of leaves, sticks, etc.	20.71	0.25
V _{HERB}			1.00
V _{WLUSE}	Weighted Average of Runoff Score for Catchment.	0.95	1.00

			High-G		Headwa				•	а	Versio	on 10-20-1
	T	Ch4 . MA4		Field	Data She	et and C	alcu			M N I	20.00044	
Dro		SM, MW	m Assessm	ont						M Northing: FM Easting:		
FIC			ounty, Strea						•	npling Date:		
C A	R Number:			Length (ft):	47.5	Stroom Tu	(no:				5/0/21	-
	Top Strata:	S-E52 Sh	rub/Herb St	0 ()		Stream Ty			mittent Strea			
	and Timing:	Project Site			(4010111110	•	Before			P17		-
		1-4 in strea	9				betore	., i ioje	et.			-27
	V _{CCANOPY} List the per	equidistant 20%, enter	points along at least one	g the stream value betw		only if tree/s 9 to trigger	apling	cove	r is at least	ewer than 1 20%. (If les		Not Used <20%
	0											
2	V _{embed}	along the s surface and to the follow of 1. If the	tream. Sele d area surro ving table. I bed is comp	ect a particle unding the p If the bed is posed of bec	from the be particle that an artificial drock, use a	ed. Before n is covered b surface, or c rating score	noving y fine s compose e of 5.	it, de sedim sed of	termine the nent, and en f fine sedime	ghly equidist percentage ter the rating ents, use a r	of the according ating score	1.0
		Minshall 19	983)		obble and b	oulder partic	cles (re	scale	d from Plat	s, Megahan	, and	
		Rating 5	Rating Des <5 percent		covered sur	rounded or	buried	by fir	ne sediment	(or bedrock)	
		4			ace covered						1	
		3	26 to 50 pe	rcent of sur	face covere	d, surrounde	ed, or b	ouried	by fine sed	iment		1
		2			face covere							
	List the rati	1	>75 percent point below		covered, su	irrounded, o	r burie	d by 1	ine sedimer	nt (or artificia	al surface)	l
1	List the rat	Č.	<u>.</u>		1	1	4		1	4	4	
	1	1	1	1	1	1	1		1	1	1	
	1	1	1	1	1	1	1		1	1	1	
		-		1	-	-			-			
3	V	Median str	am channe	l substrate i	particle size	Measure a	nt no fe	wor t	han 30 roug	hly equidista	ant points	
		le size in in		nearest 0.1						unted as 99	in, asphalt	0.08 in
1	0.08	0.08	0.08	0.08	0.08	0.08	0.0)8	0.08	0.08	0.08	
	0.08	0.08	0.08	0.08	0.08	0.08	0.0)8	0.08	0.08	0.08	
	0.08	0.08	0.08	0.08	0.08	0.08	0.0)8	0.08	0.08	0.08	
4	V _{BERO}	and the tota	al percentag							oded bank o for the strea		0 %
		up to 200%	Left Bank:	C) ft		Right E	Bank:	C	ft		
ample	Variables	5-9 within t	he entire ri	parian/buff	er zone adja	acent to the	strea	m ch	annel (25 fe	et from ead	h bank).	
5	V _{LWD}	stream rea		e number fr	om the entir					th) per 100 nnel, and th		0.0
						f downed wo				0		
6	V _{TDBH}						g cove	erisa	t least 20%)	. Trees are	at least 4	Not Use
		inches (10 cm) in diameter. Enter tree DBHs in inches. List the dbh measurements of individual trees (at least 4 in) within the buffer on each side of										
[the stream	Left Side						Right Side			
								_				
								_				
								_				
7	V	Number	anaga (-1'	ant d" alla	and 26" t-10	nor 100 fr. 1	of -1-		Enter '	or of a	an aa-b	
7	V _{SNAG}				and 36" tall) t per 100 fee				⊏nter numb	er of snags	on each	0.0
			orcan, allu				Suidtet	••				0.0
			Left Side:		0		Right	Side:		0		
8	V _{SSD}									stream (mea		
						gs and shrul	os on e	each s	side of the s	tream, and t	he amount	17.1
			of stream wil									
			Left Side:		0		Right	Sido		3		

9	V _{SRICH}	Group 1 in	the tallest st	tratum. Che	eck all exotic	and invas	am reach. Ch ive species p from these d	resent in a			0.00
			p 1 = 1.0			Galoalatoa			o 2 (-1.0)		
	Acer rubru			Magnolia t	rinetala		Ailanthus a		52 (-1.0)	Lonicera ja	nonica
	Acer sacch			Nyssa sylv			Albizia julib			Lonicera ta	
	Aesculus fl	ava		Oxydendrur	n arboreum		Alliaria peti	olata		Lotus corni	iculatus
	Asimina tril	oba		Prunus sei	rotina		Alternanthe	ra		Lythrum sa	licaria
	Betula alleg	haniensis		Quercus a	lba		philoxeroid	es		Microstegiur	n vimineum
	Betula lenta	а		Quercus c	occinea		Aster tatari	cus		Paulownia	tomentosa
	Carya alba			Quercus in			Cerastium			Polygonum	cusnidatum
							Coronilla va				-
_	Carya glab			Quercus p						Pueraria m	
	Carya oval			Quercus ru			Elaeagnus u			Rosa multi	
	Carya ovat	а		Quercus v	elutina		Lespedeza	bicolor		Sorghum h	alepense
	Cornus flor	ida		Sassafras	albidum		Lespedeza	cuneata		Verbena bi	rasiliensis
	Fagus grar	ndifolia		Tilia ameri	cana		Ligustrum ol	otusifolium			
	Fraxinus ai	mericana		Tsuga can	adensis		Ligustrum s	inense			
	Liriodendron	tulipifera		Ulmus ame	ericana						
	Magnolia a										
	waynona a	cuminata									
		0	Species in	Group 1				0	Species in	Group 2	
		oplots shou Average pe	IId be place ercent cover	d roughly of leaves,	equidistantl sticks, or oth	y along e er organic) in the ripar i ach side of tl material. Wo ayer at each s	ne stream. body debris			n each 20.71 %
			Left	Side			Right	Side			
		25	50	20	30	10	0	10			
11	V _{HERB}	include woo	ody stems a percentages	t least 4" dt s up through	oh and 36" ta	II. Because	easure only if e there may b Enter the per	e several	ayers of grou	und cover	81 %
			Leit	Side			Right	Jue			
Sampl	o Variablo 1	75	50	80	70	90	100	90	90		
Sampl	e Variable 1 V _{WLUSE}	2 within the	entire cato	chment of t			100		90		0.95
		2 within the	entire cato	chment of t Runoff Score	the stream.	ned:	100		90 Runoff Score	% in Catch- ment	Running Percent
	V _{wluse}	2 within the	e entire cato verage of R Land	chment of t Runoff Score	the stream. e for watersh se From Dro	ned:	100		Runoff Score	Catch- ment	Running Percent (not >100)
	V _{wLUSE} Newly grade	2 within the Weighted A ed areas (bare	e entire cato werage of R Land soil, no vege	chment of t Runoff Score Use (Choos	the stream. e for watersh se From Dro	ned:	100		Runoff	Catch- ment 1.32	Running Percent (not >100) 1.32
	V _{wLUSE} Newly grade	2 within the	e entire cato werage of R Land soil, no vege	chment of t Runoff Score Use (Choos	the stream. e for watersh se From Dro	ned:	100		Runoff Score	Catch- ment	Running Percent (not >100)
	V _{WLUSE} Newly grade Forest and n	2 within the Weighted A ed areas (bare ative range (:	e entire cato werage of R Land soil, no vege	chment of t Runoff Score Use (Choos tation or pay cover)	the stream. e for watersh se From Dro rement)	ned:	100		Runoff Score 0 1	Catch- ment 1.32	Running Percent (not >100) 1.32
-	V _{WLUSE} Newly grade Forest and n	2 within the Weighted A ed areas (bare	e entire cato werage of R Land soil, no vege	chment of t Runoff Score Use (Choos tation or pay cover)	the stream. e for watersh se From Dro rement)	ned:	100	90	Runoff Score 0	Catch- ment 1.32 94.23	Running Percent (not >100) 1.32 95.55
-	V _{WLUSE} Newly grade Forest and n	2 within the Weighted A ed areas (bare ative range (:	e entire cato werage of R Land soil, no vege	chment of t Runoff Score Use (Choos tation or pay cover)	the stream. e for watersh se From Dro rement)	ned:	100		Runoff Score 0 1	Catch- ment 1.32 94.23	Running Percent (not >100) 1.32 95.55
	V _{WLUSE} Newly grade Forest and n	2 within the Weighted A ed areas (bare ative range (:	e entire cato werage of R Land soil, no vege	chment of t Runoff Score Use (Choos tation or pay cover)	the stream. e for watersh se From Dro rement)	ned:	100	90	Runoff Score 0 1	Catch- ment 1.32 94.23	Running Percent (not >100) 1.32 95.55
-	V _{WLUSE} Newly grade Forest and n	2 within the Weighted A ed areas (bare ative range (:	e entire cato werage of R Land soil, no vege	chment of t Runoff Score Use (Choos tation or pay cover)	the stream. e for watersh se From Dro rement)	ned:	100	90	Runoff Score 0 1	Catch- ment 1.32 94.23	Running Percent (not >100) 1.32 95.55
-	V _{WLUSE} Newly grade Forest and n	2 within the Weighted A ed areas (bare ative range (:	e entire cato werage of R Land soil, no vege	chment of t Runoff Score Use (Choos tation or pay cover)	the stream. e for watersh se From Dro rement)	ned:	100	90	Runoff Score 0 1	Catch- ment 1.32 94.23	Running Percent (not >100) 1.32 95.55
-	V _{WLUSE} Newly grade Forest and n	2 within the Weighted A ed areas (bare ative range (:	e entire cato werage of R Land soil, no vege	chment of t Runoff Score Use (Choos tation or pay cover)	the stream. e for watersh se From Dro rement)	ned:	100	90	Runoff Score 0 1	Catch- ment 1.32 94.23	Running Percent (not >100) 1.32 95.55
-	V _{WLUSE} Newly grade Forest and n	2 within the Weighted A ed areas (bare ative range (:	e entire cato werage of R Land soil, no vege	chment of t Runoff Score Use (Choos tation or pay cover)	the stream. e for watersh se From Dro rement)	ned:	100	90	Runoff Score 0 1	Catch- ment 1.32 94.23	Running Percent (not >100) 1.32 95.55
-	V _{wLUSE} Newly grade Forest and n Open space	2 within the Weighted A ed areas (bare ative range (: (pasture, law	e entire cato werage of R Land soil, no vege	chment of t Runoff Score Use (Choos tation or pay cover)	the stream. e for watersh se From Dro rement)	ned:			Runoff Score 0 1	Catch- ment 1.32 94.23	Running Percent (not >100) 1.32 95.55
12	V _{wLUSE} Newly grade Forest and m Open space	2 within the Weighted A ed areas (bare ative range (: (pasture, law)	e entire cato werage of R Land soil, no vege 75% ground ns, parks, etc.	chment of t Runoff Score Use (Choos tation or pay cover)	the stream. e for watersh se From Dro rement)	ned:		90	Runoff Score 0 1	Catch- ment 1.32 94.23	Running Percent (not >100) 1.32 95.55
12	V _{wLUSE} Newly grade Forest and n Open space	2 within the Weighted A ed areas (bare ative range (: (pasture, law G-E52 Value	e entire cato werage of R Land soil, no vege	chment of t Runoff Score Use (Choos tation or pay cover)	the stream. e for watersh se From Dro rement)	ned:			Runoff Score 0 1	Catch- ment 1.32 94.23	Running Percent (not >100) 1.32 95.55
12 V	V _{wLUSE} Newly grade Forest and m Open space	2 within the Weighted A ed areas (bare ative range (: (pasture, lawn S-E52 Value Not Used,	e entire cato werage of R Land soil, no vege 75% ground ns, parks, etc.	chment of t Runoff Score Use (Choos tation or pay cover)	the stream. e for watersh se From Dro rement)	ned:			Runoff Score 0 1	Catch- ment 1.32 94.23	Running Percent (not >100) 1.32 95.55
12 V	V _{wLUSE} Newly grade Forest and n Open space Granable V _{CCANOPY}	2 within the Weighted A ed areas (bare ative range (: (pasture, lawn s-E52 Value Not Used, <20%	Verage of R Land soil, no vege 75% ground ns, parks, etc.) VSI Not Used	chment of t Runoff Score Use (Choos tation or pay cover)	the stream. e for watersh se From Dro rement)	ned:			Runoff Score 0 1	Catch- ment 1.32 94.23	Running Percent (not >100) 1.32 95.55
12 v	V _{wLUSE} Newly grade Forest and m Open space Open space	2 within the Weighted A ed areas (bare ative range (: (pasture, lawn G-E52 Value Not Used, <20% 1.0	Verage of R Land Soll, no vege 75% ground ns, parks, etc. VSI Not Used 0.10	chment of t Runoff Score Use (Choos tation or pay cover)	the stream. e for watersh se From Dro rement)	ned:			Runoff Score 0 1	Catch- ment 1.32 94.23	Running Percent (not >100) 1.32 95.55
12 V	V _{wLUSE} Newly grade Forest and n Open space Granable V _{CCANOPY}	2 within the Weighted A ed areas (bare ative range (: (pasture, lawn s-E52 Value Not Used, <20%	Verage of R Land soil, no vege 75% ground ns, parks, etc.) VSI Not Used	chment of t Runoff Score Use (Choos tation or pay cover)	the stream. e for watersh se From Dro rement)	ned:			Runoff Score 0 1	Catch- ment 1.32 94.23	Running Percent (not >100) 1.32 95.55
12 V	VwLuse Newly grade Forest and n Open space Variable VccANOPY VEMBED Vsubstrate	2 within the Weighted A ed areas (bare ative range (: (pasture, lawn G-E52 Value Not Used, <20% 1.0	Verage of R Land Soll, no vege 75% ground ns, parks, etc. VSI Not Used 0.10	chment of t Runoff Score Use (Choos tation or pay cover)	the stream. e for watersh se From Dro rement)	ned:			Runoff Score 0 1	Catch- ment 1.32 94.23	Running Percent (not >100) 1.32 95.55
12 V	V _{wLUSE} Newly grade Forest and m Open space Open space S Yariable VccaNOPY VEMBED VSUBSTRATE VBERO	2 within the Weighted A ed areas (bare ative range (: (pasture, lawn s-E52 Value Not Used, <20% 1.0 0.08 in 0 %	Verage of R Land soil, no vege 75% ground ns, parks, etc.) VSI Not Used 0.10 0.04 1.00	chment of t Runoff Score Use (Choos tation or pay cover)	the stream. e for watersh se From Dro rement)	ned:			Runoff Score 0 1	Catch- ment 1.32 94.23	Running Percent (not >100) 1.32 95.55
12 V	VwLuse Newly grade Forest and n Open space Variable VccANOPY VEMBED Vsubstrate	2 within the Weighted A ed areas (bare ative range (: (pasture, lawn c) (pasture, lawn c) S-E52 Value Not Used, <20% 1.0 0.08 in	Verage of R Land Soil, no vege 75% ground ns, parks, etc.) VSI Not Used 0.10 0.04	chment of t Runoff Score Use (Choos tation or pay cover)	the stream. e for watersh se From Dro rement)	ned:			Runoff Score 0 1	Catch- ment 1.32 94.23	Running Percent (not >100) 1.32 95.55
12 12	V _{wLUSE} Newly grade Forest and m Open space Open space S Yariable VccaNOPY VEMBED VSUBSTRATE VBERO	2 within the Weighted A ed areas (bare ative range (: (pasture, lawn s-E52 Value Not Used, <20% 1.0 0.08 in 0 %	Verage of R Land soil, no vege 75% ground ns, parks, etc.) VSI Not Used 0.10 0.04 1.00	chment of t Runoff Score Use (Choos tation or pay cover)	the stream. e for watersh se From Dro rement)	ned:			Runoff Score 0 1	Catch- ment 1.32 94.23	Running Percent (not >100) 1.32 95.55
V V	VwLuse Newly grade Forest and n Open space 'ariable VccaNOPY VEMBED Vsubstrate VBERO VLWD VTDBH	2 within the Weighted A ed areas (bare ative range (: (pasture, lawn) S-E52 Value Not Used, <20% 1.0 0.08 in 0 % 0.0 Not Used	VSI Not Used Not Used	chment of t Runoff Score Use (Choos tation or pay cover)	the stream. e for watersh se From Dro rement)	ned:			Runoff Score 0 1	Catch- ment 1.32 94.23	Running Percent (not >100) 1.32 95.55
v v	V _{WLUSE} Newly grade Forest and n Open space Graniable Vccanopy VemBeD Vsubstrate VBERO VLWD VTDBH Vsnag	2 within the Weighted A ed areas (bare ative range (: (pasture, lawn) S-E52 Value Not Used, <20% 1.0 0.08 in 0 % 0.0 Not Used 0.0	Verage of R Land soil, no vege 75% ground ns, parks, etc.) VSI Not Used 0.10 0.04 1.00 0.00 Not Used 0.10	chment of t Runoff Score Use (Choos tation or pay cover)	the stream. e for watersh se From Dro rement)	ned:			Runoff Score 0 1	Catch- ment 1.32 94.23	Running Percent (not >100) 1.32 95.55
V V	VwLuse Newly grade Forest and n Open space 'ariable VccaNOPY VEMBED Vsubstrate VBERO VLWD VTDBH	2 within the Weighted A ed areas (bare ative range (: (pasture, lawn) S-E52 Value Not Used, <20% 1.0 0.08 in 0 % 0.0 Not Used	Verage of R Land Soll, no vege 75% ground ns, parks, etc.) VSI Not Used 0.10 0.04 1.00 0.00 Not Used	chment of t Runoff Score Use (Choos tation or pay cover)	the stream. e for watersh se From Dro rement)	ned:			Runoff Score 0 1	Catch- ment 1.32 94.23	Running Percent (not >100) 1.32 95.55
12 V	V _{WLUSE} Newly grade Forest and n Open space Graniable Vccanopy VemBeD Vsubstrate VBERO VLWD VTDBH Vsnag	2 within the Weighted A ed areas (bare ative range (: (pasture, lawn) S-E52 Value Not Used, <20% 1.0 0.08 in 0 % 0.0 Not Used 0.0	Verage of R Land soil, no vege 75% ground ns, parks, etc.) VSI Not Used 0.10 0.04 1.00 0.00 Not Used 0.10	chment of t Runoff Score Use (Choos tation or pay cover)	the stream. e for watersh se From Dro rement)	ned:			Runoff Score 0 1	Catch- ment 1.32 94.23	Running Percent (not >100) 1.32 95.55
V V V	V _{WLUSE} Newly grade Forest and n Open space Grariable Vccanopy VEMBED Vsubstrate VBERO VLWD VTDBH VSNAG VSSD VSRICH	2 within the Weighted A ed areas (bare ative range (3 (pasture, lawn G-E52 Value Not Used, <20% 1.0 0.08 in 0 % 0.0 Not Used 0.0 17.1 0.00	Verage of R Land soil, no vege 75% ground ns, parks, etc.) VSI Not Used 0.10 0.04 1.00 0.00 Not Used 0.10 0.26 0.00	chment of t Runoff Score Use (Choos tation or pay cover)	the stream. e for watersh se From Dro rement)	ned:			Runoff Score 0 1	Catch- ment 1.32 94.23	Running Percent (not >100) 1.32 95.55
V V	VwLUSE Newly grade Forest and n Open space S Variable VccANOPY VEMBED VsUBSTRATE VBERO VLWD VTDBH VSNAG VSRICH VSRICH	2 within the Weighted A ed areas (bare ative range (: (pasture, lawn) S-E52 Value Not Used, <20% 1.0 0.08 in 0 % 0.0 Not Used 0.0 17.1 0.00 20.7 %	Verage of R Land soil, no vege 75% ground ns, parks, etc.) VSI Not Used 0.10 0.04 1.00 0.00 Not Used 0.10 0.26 0.00 0.25	chment of t Runoff Score Use (Choos tation or pay cover)	the stream. e for watersh se From Dro rement)	ned:			Runoff Score 0 1	Catch- ment 1.32 94.23	Running Percent (not >100) 1.32 95.55
V V	V _{WLUSE} Newly grade Forest and n Open space Grariable Vccanopy VEMBED Vsubstrate VBERO VLWD VTDBH VSNAG VSSD VSRICH	2 within the Weighted A ed areas (bare ative range (3 (pasture, lawn G-E52 Value Not Used, <20% 1.0 0.08 in 0 % 0.0 Not Used 0.0 17.1 0.00	Verage of R Land soil, no vege 75% ground ns, parks, etc.) VSI Not Used 0.10 0.04 1.00 0.00 Not Used 0.10 0.26 0.00	chment of t Runoff Score Use (Choos tation or pay cover)	the stream. e for watersh se From Dro rement)	ned:			Runoff Score 0 1	Catch- ment 1.32 94.23	Running Percent (not >100) 1.32 95.55

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

STREAM NAME	LOCATION	
STATION # RIVERMILE	STREAM CLASS	
LAT LONG	RIVER BASIN	
STORET #	AGENCY	
INVESTIGATORS		
FORM COMPLETED BY	DATE TIME	REASON FOR SURVEY

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

WATERSHED FEATURES RIPARIAN VEGETATION (18 meter buffer)	Predominant Surrounding Landuse Local Watershed NPS Pollution Forest Commercial Field/Pasture Industrial Agricultural Other Residential Other Indicate the dominant type and record the dominant species present Herbaceous Trees Shrubs Grasses Dominant species present Herbaceous
INSTREAM FEATURES	Dominant species present
LARGE WOODY	LWDm ²
DEBRIS	Density of LWDm ² /km ² (LWD/ reach area)
AQUATIC	Indicate the dominant type and record the dominant species present
VEGETATION	Rooted emergent Rooted submergent Rooted floating Free floating Floating Algae Attached Algae Booted floating Free floating Free floating Dominant species present
WATER QUALITY (DS, US)	Temperature0 C Water Odors Normal/None Sewage Specific Conductance Petroleum Fishy Chemical Other Dissolved Oxygen Water Surface Oils Slick Sheen None Globs Flecks pH Turbidity (if not measured) Clear Slightly turbid Turbid Turbid Turbid Opaque Turbid
SEDIMENT/	Odors
SUBSTRATE	Normal Sewage Petroleum Deposits Chemical Anaerobic None Sludge Sawdust Paper fiber Sand Other Other Epoking at stones which are not deeply embedded are the undersides black in color? How are the undersides black in color?

INORGANIC SUBSTRATE COMPONENTS (should add up to 100%)			ORGANIC SUBSTRATE COMPONENTS (does not necessarily add up to 100%)			
Substrate Type	Diameter	% Composition in Sampling Reach	Substrate Type	Characteristic	% Composition in Sampling Area	
Bedrock			Detritus	sticks, wood, coarse plant		
Boulder	> 256 mm (10")			materials (CPOM)		
Cobble	64-256 mm (2.5"-10")		Muck-Mud	black, very fine organic		
Gravel	2-64 mm (0.1"-2.5")			(FPOM)		
Sand	0.06-2mm (gritty)		Marl	grey, shell fragments		
Silt	0.004-0.06 mm					
Clay	< 0.004 mm (slick)					

HABITAT ASSESSMENT FIELD DATA SHEET - HG - USE ON ALL STREAMS (FRONT)

STREAM NAME	LOCATION		
STATION # RIVERMILE	STREAM CLASS		
LAT LONG	RIVER BASIN		
STORET #	AGENCY		
INVESTIGATORS			
FORM COMPLETED BY	DATE TIME AM PM	REASON FOR SURVEY	

	Habitat		Condition	ı Category		
	Parameter	Optimal	Suboptimal	Marginal	Poor	
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are <u>not</u> new fall and <u>not</u> transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.	
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
n sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.	
ted i	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow- deep, slow-shallow, fast- deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast- shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).	
uram	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
Pa	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.	
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.	
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	

Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, Second Edition - Form 2

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

Habitat		Condition Category									
Parameter	Optimal	Suboptimal	Marginal	Poor							
6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.							
SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0							
7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.							
SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0							
 SCORE 8. Bank Stability (score each bank) Note: determine left or right side by facing downstream. SCORE (LB) SCORE (RB) 9. Vegetative Protection (score each bank) 	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30- 60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.							
SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0							
SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0							
9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well- represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.							
SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0							
SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0							
10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.							
SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0							
SCORE(RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0							

Total Score _____

BENTHIC MACROINVERTEBRATE FIELD DATA SHEET

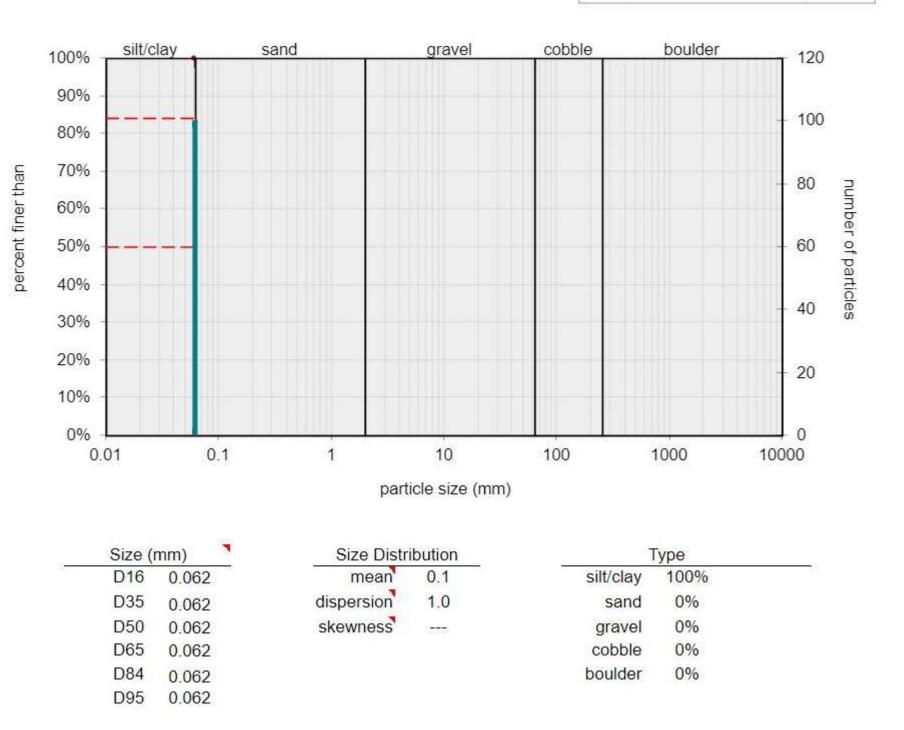
STREAM NAME		LOCATION							
STATION #	_ RIVERMILE	STREAM CLASS							
LAT	LONG	RIVER BASIN							
STORET #		AGENCY	AGENCY						
INVESTIGATORS			LOT NUMBER						
FORM COMPLETED	BY	DATE TIME	REASON FOR SURVEY						
HABITAT TYPES	Cobble% Sn	Indicate the percentage of each habitat type present Cobble% Snags% Vegetated Banks% Sand% Submerged Macrophytes% Other ()%							
SAMPLE COLLECTION	Indicate the number of jab	lected? wading fi ps/kicks taken in each habitat ty lags Vegetated B	anks Sand						
GENERAL COMMENTS									

QUALITATIVE LISTING OF AQUATIC BIOTA

Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare, 2 = Common, 3= Abundant, 4 = Dominant

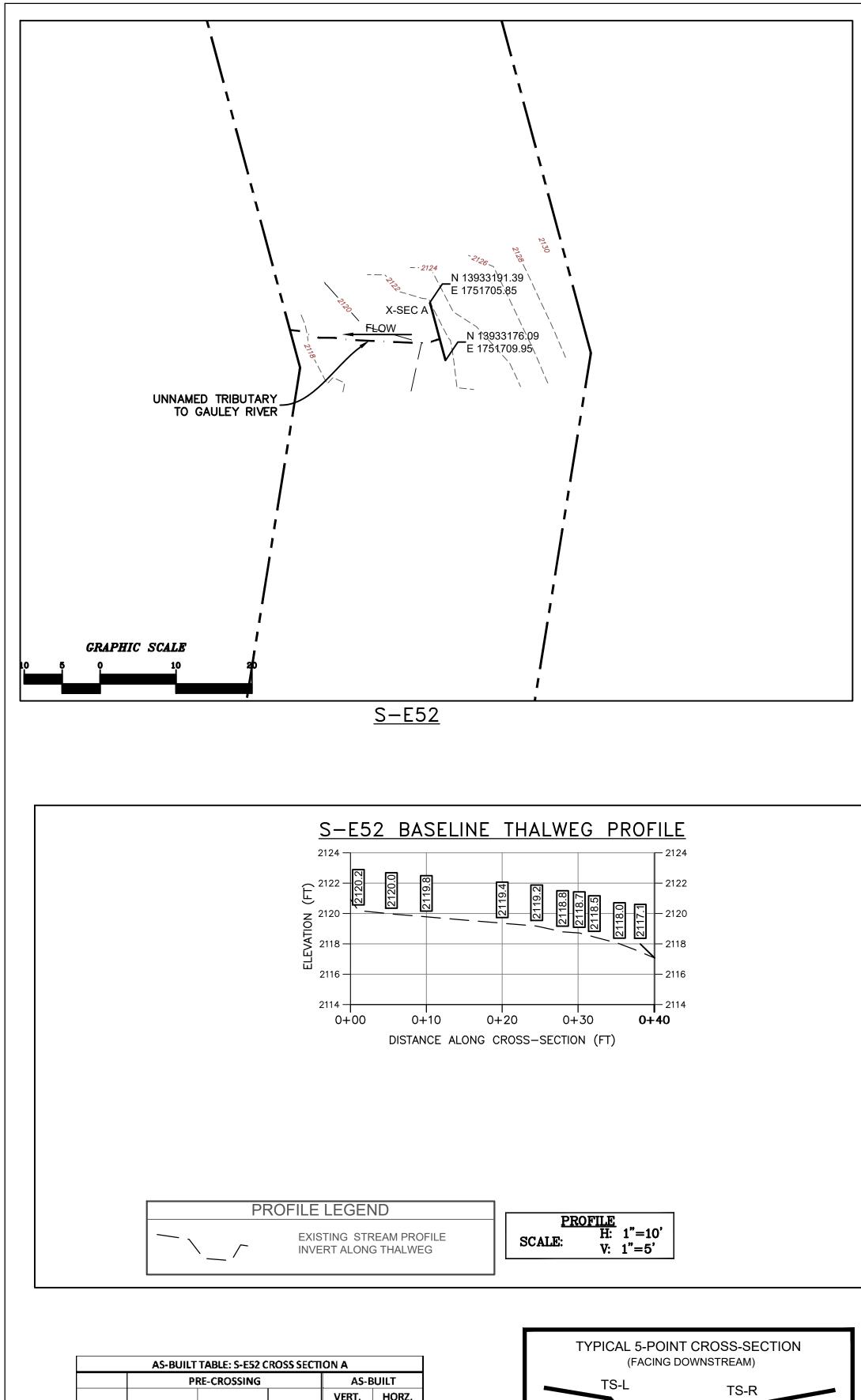
Periphyton	0	1	2	3	4	Slimes	0	1	2	3	4
Filamentous Algae	0	1	2	3	4	Macroinvertebrates	0	1	2	3	4
Macrophytes	0	1	2	3	4	Fish	0	1	2	3	4

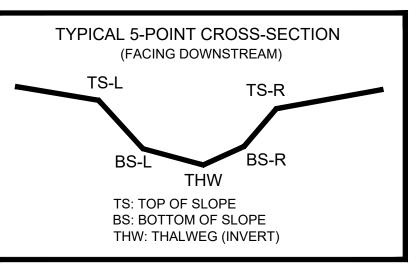
FIELD OBSERVATIONS OF MACROBENTHOS


Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare (1-3 organisms), 2 = Common (3-9 organisms), 3= Abundant (>10 organisms), 4 = Dominant (>50 organisms)

Porifera	0	1	2	3	4	Anisoptera	0	1	2	3	4	Chironomidae	0	1	2	3	4
Hydrozoa	0	1	2	3	4	Zygoptera	0	1	2	3	4	Ephemeroptera	0	1	2	3	4
Platyhelminthes	0	1	2	3	4	Hemiptera	0	1	2	3	4	Trichoptera	0	1	2	3	4
Turbellaria	0	1	2	3	4	Coleoptera	0	1	2	3	4	Other	0	1	2	3	4
Hirudinea	0	1	2	3	4	Lepidoptera	0	1	2	3	4						
Oligochaeta	0	1	2	3	4	Sialidae	0	1	2	3	4						
Isopoda	0	1	2	3	4	Corydalidae	0	1	2	3	4						
Amphipoda	0	1	2	3	4	Tipulidae	0	1	2	3	4						
Decapoda	0	1	2	3	4	Empididae	0	1	2	3	4						
Gastropoda	0	1	2	3	4	Simuliidae	0	1	2	3	4						
Bivalvia	0	1	2	3	4	Tabinidae	0	1	2	3	4						
						Culcidae	0	1	2	3	4						

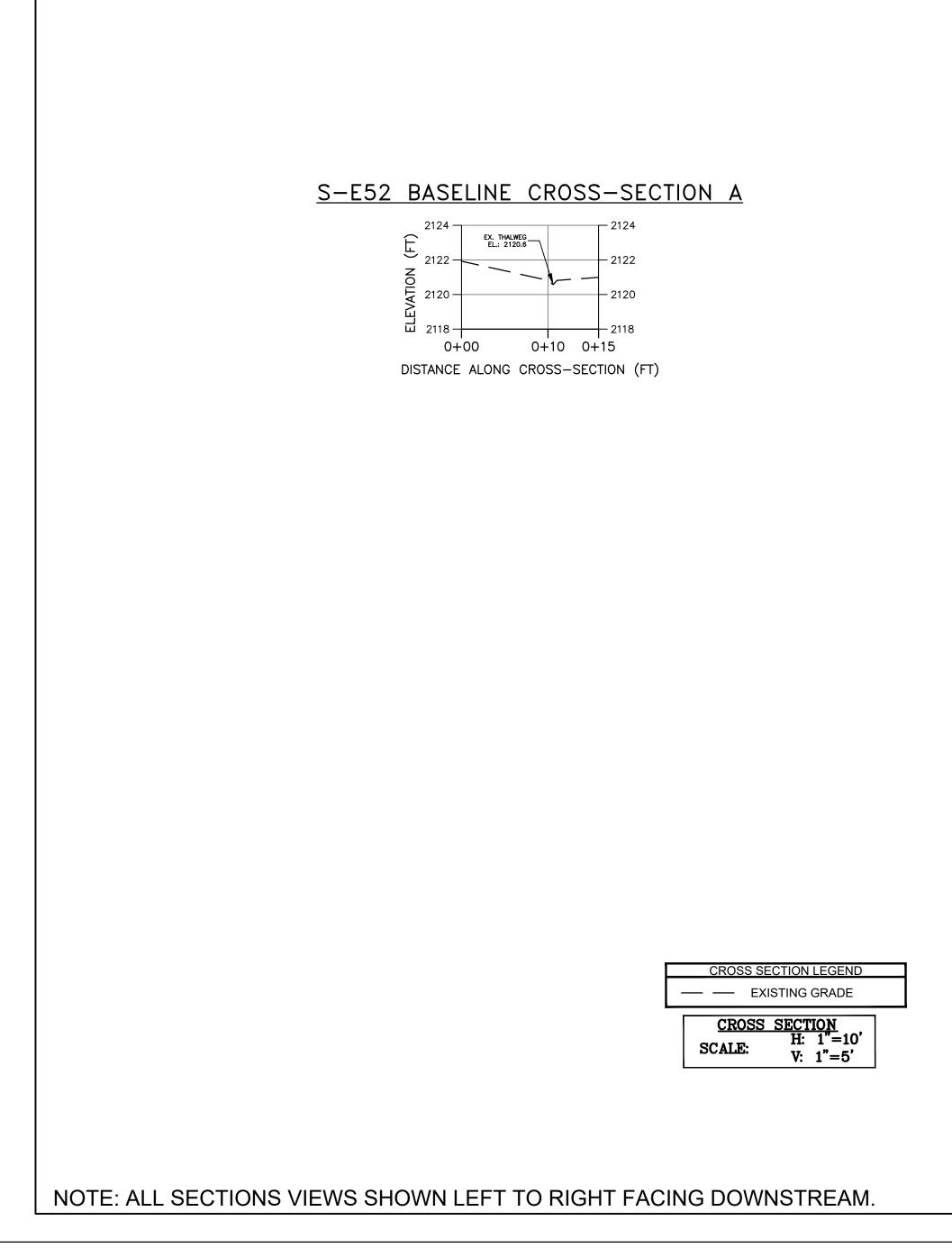
WOLMAN PEBBLE COUNT FORM

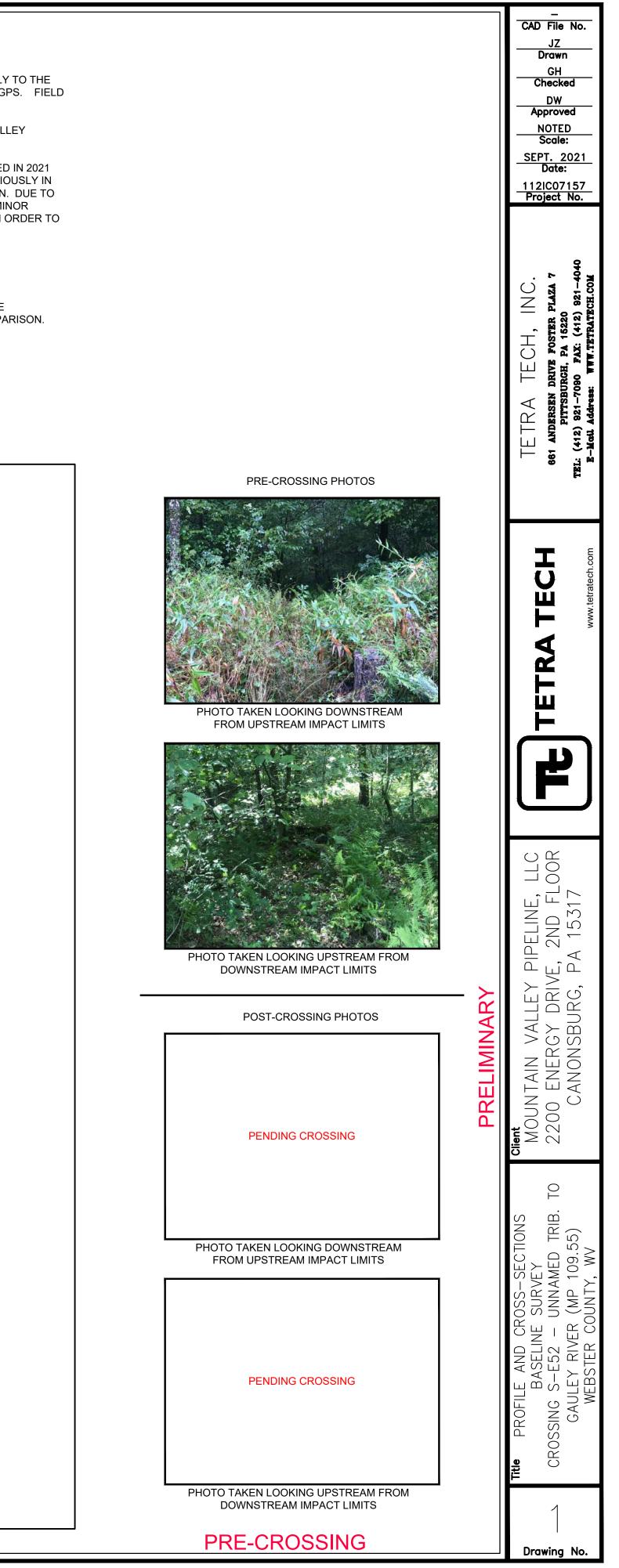

County:	Webster	Stream ID:	S-E52
Stream Name:	UNT to Gauley River		
HUC Code:		Basin:	
Survey Date:	9/8/2021		
Surveyors:	SM MW	Impact Reach:	5.334 m
Type:	Bankfull Channel		


		PEBB	LE COUNT				
Inches	PARTICLE	Millimeters		Particle Count	Total #	Item %	% Cum
	Silt/Clay	< .062	S/C	▲ ▼	100	100.00	100.00
	Very Fine	.062125		•	0	0.00	100.00
	Fine	.12525		•	0	0.00	100.00
	Medium	.255	SAND	▲ ▼	0	0.00	100.00
	Coarse	.50-1.0		▲ ▼	0	0.00	100.00
.0408	Very Coarse	1.0-2		▲ ▼	0	0.00	100.00
.0816	Very Fine	2 -4		▲ ▼	0	0.00	100.00
.1622	Fine	4 -5.7		▲ ▼	0	0.00	100.00
.2231	Fine	5.7 - 8		▲ ▼	0	0.00	100.00
.3144	Medium	8 -11.3	GRAVEL	▲ ▼	0	0.00	100.00
.4463	Medium	11.3 - 16		▲ ▼	0	0.00	100.00
.6389	Coarse	16 -22.6		▲ ▼	0	0.00	100.00
.89 - 1.26	Coarse	22.6 - 32		▲ ▼	0	0.00	100.00
1.26 - 1.77	Vry Coarse	32 - 45		▲ ▼	0	0.00	100.00
1.77 -2.5	Vry Coarse	45 - 64		▲ ▼	0	0.00	100.00
2.5 - 3.5	Small	64 - 90		• •	0	0.00	100.00
3.5 - 5.0	Small	90 - 128		▲ ▼	0	0.00	100.00
5.0 - 7.1	Large	128 - 180	COBBLE	•	0	0.00	100.00
7.1 - 10.1	Large	180 - 256		▲ ▼	0	0.00	100.00
10.1 - 14.3	Small	256 - 362		▲ ▼	0	0.00	100.00
14.3 - 20	Small	362 - 512	1	▲ ▼	0	0.00	100.00
20 - 40	Medium	512 - 1024	BOULDER	▲ ▼	0	0.00	100.00
40 - 80	Large	1024 -2048	1	▲ ▼	0	0.00	100.00
80 - 160	Vry Large	2048 -4096	1	▲ ▼	0	0.00	100.00
	Bedrock		BDRK	▲ ▼	0	0.00	100.00
				Totals:	100		
	Total Tally:						

Bankfull Channel Pebble Count, S-E52, UNT to Gauley River

-cumulative % -----# of particles




LEGEND — — — — STUDY AREA (EASEMENT) — — — — EXISTING SURVEY-LOCATED THALWEG 1176.87 + EXISTING SURVEYED GROUND SHOT ELEVATION SURVEY NOTES:

- 1. THIS MAP HAS BEEN ORIENTED TO NAD 1983 UTM ZONE 17N, AND VERTICALLY TO THE NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD 88), USING REAL TIME DGPS. FIELD LOCATIONS WERE COMPLETED ON AUGUST 25, 2021.
- 2. EASEMENT LINES SHOWN ON PLAN VIEW WERE PROVIDED BY MOUNTAIN VALLEY PIPELINE.

3. SURVEY POINTS FOR CROSS SECTIONS AND THALWEG PROFILES COLLECTED IN 2021 HAVE BEEN USED IN COMBINATION WITH SURVEY POINTS COLLECTED PREVIOUSLY IN 2020 IN ORDER TO GENERATE THE PRE-CROSSING SURFACE SHOWN IN PLAN. DUE TO NATURAL EROSIONAL STREAM PROCESSES THAT CAN OCCUR OVER TIME, MINOR ADJUSTMENTS TO THE PROFILE ALIGNMENTS MAY HAVE BEEN REQUIRED IN ORDER TO GENERATE A CLEAN PRE-CROSSING SURFACE.

- 4. ALL SECTION VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.
- 5. POST-CROSSING SURVEY INFORMATION SHOWN IN RED. DATA PENDING.
- 6. POST-CROSSING SURVEY POINTS FOR CROSS SECTIONS AND THALWEG ARE PROJECTED ONTO PRE-CROSSING SECTION AND PROFILE VIEWS FOR COMPARISON.

