Baseline Assessment – Stream Attributes

Reach S-J23 EPH (Pipeline ROW) Ephemeral Spread D Nicholas County, West Virginia

Data	Included
Photos	✓
SWVM Form	✓
FCI Calculator and HGM Form	✓
RBP Physical Characteristics Form	✓
Water Quality Data	N/A – No flow
RBP Habitat Form	✓
RBP Benthic Form	✓
Benthic Identification Sheet	N/A – No flow
Wolman Pebble Count	✓
Reference Reach Software Pebble Count Data	✓
Longitudinal Profile and Cross Sections	✓

Spread D Stream S-J23 EPH (Pipeline ROW) Nicholas County

Photo Type: DS, US View
Location, Orientation, Photographer Initials: Downstream Edge of ROW, Upstream View, HC/MAG
Lat: 38.234331 Long: -80.707513

Photo Type: DS, DS View Location, Orientation, Photographer Initials: Downstream Edge of ROW, Downstream View, HC/MAG Lat: 38.234331 Long: -80.707513

Spread D Stream S-J23 EPH (Pipeline ROW) Nicholas County

Photo Type: US View at Center Location, Orientation, Photographer Initials: Center ROW, Upstream View, HC/MAG Lat: 38.234331 Long: -80.707513

Photo Type: DS View at Center Location, Orientation, Photographer Initials: ROW Center, Downstream View, HC/MAG Lat: 38.234331 Long: -80.707513

Spread D Stream S-J23 EPH (Pipeline ROW) Nicholas County

Photo Type: US, US View
Location, Orientation, Photographer Initials: Upstream Edge of ROW, Upstream View, HC/MAG
Lat: 38.234331 Long: -80.707513

Location, Orientation, Photographer Initials: Upstream Edge of ROW, Downstream View, HC/MAG Lat: 38.234331 Long: -80.707513

MITCATON SETOMATOR Levels 19	USACE FILE NO./ Project Name: (v2.1, Sept 2015)		Mounta	n Valley Pipeline	IMPACT COORDINATES: (in Decimal Degrees)	Lat.	38.234331	Lon.	-80.707513	WEATHER:		Sunny	DATE:	09/16	6/21
March Column Service Col				S-Ji	23 EPH								Comments:		
Mathematical Control State Mathematical C	STREAM IMPACT LENGTH:	109		RESTORATION (Levels I-III)		Lat.		Lon.		PRECIPITATION PAST 48 HRS:			Mitigation Length:		
Proceed States Channel Stope	Column No. 1- Impact Existing	g Condition (Det	bit)	Column No. 2- Mitigation Existing (Condition - Baseline (Credit)				e Years			rs	Column No. 5- Mitigation Project	ted at Maturity (C	Credit)
Cold Score (patch size from 1 1 1 1 1 1 1 1 1 1	Stream Classification:	Ephe	meral	Stream Classification:			Stream Classification:		0	Stream Classification:	0		Stream Classification:	1	0
Part	Percent Stream Channel SI	оре	8.2	Percent Stream Channel SI	ope		Percent Stream Chann	nel Slope	0	Percent Stream Channel S	lope	0	Percent Stream Channel S	Slope	0
Marting 1.5 Marting 1.	HGM Score (attach d	ata forms):		HGM Score (attach	data forms):		HGM Score (at	tach data forms):	:	HGM Score (attach o	iata forms):		HGM Score (attach o	data forms):	
Page			Average		Average				Average			Average			Average
Mode															
## PATT - Physics, Chemical and Biological Indicators PATT - Physics, Chemical and Biological Indicators			0.25		0				0			0			0
PMYSICAL NDCATOR (pigens to all exame constructions)			ators		d Biological Indicators			cal and Biological I	Indicators		l Biological Indica	tors		d Biological Indic	ators
PREAR Part December Part December Part December Part December Part December Part December Part Part December December Part December Dece		Points Scale Range	Site Score		Points Scale Range Site Score			Points Scale Ran	nge Site Score		Points Scale Range	Site Score		Points Scale Range	Site Score
Egithand Schottenschrabitistic Core 2-20	PHYSICAL INDICATOR (Applies to all streams	classifications)		PHYSICAL INDICATOR (Applies to all streams	classifications)		PHYSICAL INDICATOR (Applies to all st	reams classifications)		PHYSICAL INDICATOR (Applies to all stream	s classifications)		PHYSICAL INDICATOR (Applies to all stream	is classifications)	
1	USEPA RBP (High Gradient Data Sheet)			USEPA RBP (Low Gradient Data Sheet)			USEPA RBP (High Gradient Data She	eet)		USEPA RBP (High Gradient Data Sheet)			USEPA RBP (High Gradient Data Sheet)		
3. New Configures															
S. Chernel Plane Statis	3. Velocity/ Depth Regime						3. Velocity/ Depth Regime						3. Velocity/ Depth Regime		
Chemical Alleration															
Frequency of Riffes (or bands)									-1						
S. Bark Statistin/LB A RSD															
			16												
10, Repeatur Vegetables Zone Width (18.4 RB) 20.5			18												
Sub-Total 0.8 CHEMICAL NDICATOR (Applies to Intermittent and Prevential Streams) WODEP Water Quality Indicators (General) Specific Conductivity WODEP Water Quality Indicators (General) Sp	10. Riparian Vegetative Zone Width (LB & RB)		18		0-20									0-20	
CHEMICAL INDICATOR (Applies to Intermittent and Perennial Streams) WYDEP Water Quality Indicators (General) Specific Conductivity 100-190-85 points 100-190-85 poi		Suboptimal						Poor	0		Poor			Poor	
W/DEP Water Quality Indicators (General) Specific Conductivity Specific	Sub-Total		0.8	Sub-Total	0		Sub-Total		0	Sub-Total		0	Sub-Total		0
Specific Conductivity 10.109 - 85 points	CHEMICAL INDICATOR (Applies to Intermitter	nt and Perennial Str	eams)	CHEMICAL INDICATOR (Applies to Intermitten	t and Perennial Streams)		CHEMICAL INDICATOR (Applies to Inter	rmittent and Perennial	Streams)	CHEMICAL INDICATOR (Applies to Intermitte	ent and Perennial Stree	ams)	CHEMICAL INDICATOR (Applies to Intermitte	nt and Perennial Str	eams)
## Dot 100-100 - 85 points Dod	WVDEP Water Quality Indicators (General	0		WVDEP Water Quality Indicators (General)		WVDEP Water Quality Indicators (Ge	neral)		WVDEP Water Quality Indicators (General	ıl)		WVDEP Water Quality Indicators (General	ıl)	
## 100-190-85 points pH pH pH pH pH pH pH p	Specific Conductivity			Specific Conductivity			Specific Conductivity			Specific Conductivity			Specific Conductivity	_	
BH S-56 5 5 5 5 5 5 5 5 5	100-100 - 85 points	0-90			0-90			0-90			0-90			0-90	
DO 10-30 1	pH			pH			pH			pH			pH		
DO 10-30 1		0-80			5-90 0-1	l		5-90	4		5-90 0-1			5-90 0-1	
Sub-Total 10-30 Sub-To															
Sub-Total	ВО			DO	T		DO			DU	T		טט		
BIOLOGICAL INDICATOR (Applies to Intermittent and Perennial Streams) WY Stream Condition Index (WYSCI) WY Stream Condition Index (WYSCI) Sub-Total PART II - Index and Unit Score Index Linear Feet Unit Score Index In		10-30			10-30	l		10-30			10-30			10-30	
W Stream Condition Index (WVSCI) W Stream Condition Index (WVSCI) WV Stream Condition Index (WVSCI) UV Stream Condition Index (WVSC	Sub-Total				0				0						
O	BIOLOGICAL INDICATOR (Applies to Intermit	tent and Perennial S	Streams)	BIOLOGICAL INDICATOR (Applies to Intermit	ent and Perennial Streams)		BIOLOGICAL INDICATOR (Applies to I	Intermittent and Pere	nnial Streams)	BIOLOGICAL INDICATOR (Applies to Inter	mittent and Perennia	al Streams)	BIOLOGICAL INDICATOR (Applies to Intere	mittent and Perenn	ial Streams)
Sub-Total 0 Sub-To	WV Stream Condition Index (WVSCI)	T T		WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)	1	
PART II - Index and Unit Score Index Linear Feet Unit Score	0	U-100 0-1			0-100 0-1			0-100 0-			0-100 0-1			0-100 0-1	
Index Linear Feet Unit Score Index Linear Fee	Sub-Total		0	Sub-Total	0	l	Sub-Total		0	Sub-Total		0	Sub-Total		0
Index Linear Feet Unit Score Index Linear Fee	PART II - Index and U	Init Score		PART II - Index and	Unit Score	1	PART II - Inde	x and Unit Score		PART II - Index and	Unit Score		PART II - Index and	Unit Score	
0.525 109 57.225 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Index	Linear Feet	Unit Score	Index	Linear Feet Unit Score		Index	Linear Fee	et Unit Score	Index	Linear Feet	Unit Score	Index	Linear Feet	Unit Score
	0.525	109	57.225	0	0 0		0	0	0	0	0	0	0	0	0

Ver. 10-20-17

FCI Calculator for the High-Gradient Headwater Streams in Appalachia

To ensure accurate calculations, the <u>UPPERMOST STRATUM</u> of the plant community is determined based on the calculated value for V_{CCANOPY} (≥20% cover is required for tree/sapling strata). Go to the SAR Data Entry tab and enter site characteristics and data in the yellow cells. For information on determining how to split a project into SARs, see Chapter 5 of the Operational Draft Regional Guidebook for the Functional Assessment of High-Gradient Headwater Streams and Low-Gradient Perennial Streams in Appalachia (Environmental Laboratory U.S. Army Corps of Engineers 2017).

Project Name: MVP - Stream Assessment **Location:** Nicholas County, Spread D

Sampling Date: 9/16/21 Project Site Before Project

Subclass for this SAR:

Ephemeral Stream

Uppermost stratum present at this SAR: SAR number: S-J23EPH

Shrub/Herb Strata

Functional Results Summary: Enter Results in Section A of the Mitigation Sufficiency Calculator

Function	Functional Capacity Index
Hydrology	0.38
Biogeochemical Cycling	0.25
Habitat	0.12

Variable Measure and Subindex Summary:

Variable	Name	Average Measure	Subindex
V _{CCANOPY}	Percent canpoy over channel.	Not Used, <20%	Not Used
V _{EMBED}	Average embeddedness of channel.	1.36	0.23
V _{SUBSTRATE}	Median stream channel substrate particle size.	0.08	0.04
V _{BERO}	Total percent of eroded stream channel bank.	2.11	1.00
V_{LWD}	Number of down woody stems per 100 feet of stream.	0.00	0.00
V _{TDBH}	Average dbh of trees.	Not Used	Not Used
V _{SNAG}	Number of snags per 100 feet of stream.	0.00	0.10
V _{SSD}	Number of saplings and shrubs per 100 feet of stream.	9.47	0.15
V _{SRICH}	Riparian vegetation species richness.	0.00	0.00
V _{DETRITUS}			0.91
V _{HERB}	V _{HERB} Average percent cover of herbaceous vegetation.		0.33
V _{WLUSE}			0.74

Version 10-20-17

High-Gradient Headwater Streams in Appalachia Field Data Sheet and Calculator											
	T	LIC MC		Field	Jata She	et and C			M Nauthiaa.	20 224224	
Pro		MVP - Stre	am Assessn	nent				Latitude/UT	•	-80.707513	1
		Location: Nicholas County, Spread D Sampling Date: 9/16/21									
SA	AR Number:	S-J23EPH	Reach	Length (ft):	95	Stream Ty	ype: Ephe	emeral Stream			•
	Top Strata:	Sh	rub/Herb Sti	rata	(determine	d from perce	ent calculate	ed in V _{CCANO}	_{PY})		
Site	and Timing:	Project Site				•	Before Proje	ct			•
Sample	Variables	1-4 in strea									
1	V _{CCANOPY}	equidistant 20%, enter	points along at least one	g the stream value betw	n. Measure een 0 and 1	only if tree/s	anopy. Measapling cover Top Strata	er is at least			Not Used, <20%
	5	cent cover r	0 0	nts at each p	0	0	0	0	0	0	
			-	Ū	-	-		-	-	-	
2	V _{EMBED}	along the s surface and	tream. Sele d area surro	ect a particle unding the p	from the be particle that	ed. Before r is covered b	at no fewer moving it, de by fine sedir	etermine the nent, and er	percentage nter the ratir	of the	1.4
	according to the following table. If the bed is an artificial surface, or composed of fine sediments, use a rating score of 1. If the bed is composed of bedrock, use a rating score of 5. Embeddedness rating for gravel, cobble and boulder particles (rescaled from Platts, Megahan, and										1
		Minshall 19	983)			odider parti	cies (rescare	sa iroiii i iai	is, Megariai	i, and	
		Rating 5	Rating Des <5 percent		overed. sur	rounded. or	buried by fi	ne sediment	(or bedrocl	<)	
		4					d, or buried			7	
		3					ed, or buried ed, or buried				
		1					or buried by			al surface)	
		ngs at each	<u> </u>	r: 4	2	2	1 2	4		,	•
	3 1	1	5 1	1	3 1	1	1	1	1	3 1	
	1	1	1	1	1	1	1	1	1	1	
	1	1	1	1	1	1	1	1	1	1	
3	1	1 Median stre	1	1 Leubetrato r	1	1 Moneuro 1	1	1 han 20 roug	1	1	
	Enter partic	along the s cle size in in	tream; use t ches to the	he same po nearest 0.1	ints and par inch at eacl	rticles as us n point belo	ed in V _{EMBED}).			0.08 in
	asphalt or o	concrete as	_				F 20	0.00	0.00	1.00	
	3.50	0.90	1.30 0.08	1.40 0.08	0.70	7.00 0.08	5.20 0.08	0.08	0.08	1.80 0.08	
	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	
	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	
4	0.08 V _{BERO}	0.08 Total perce	0.08 ent of eroded	0.08 stream cha	0.08 annel bank.	0.08 Enter the to	0.08 otal number	0.08 of feet of er	0.08 oded bank o	0.08 on each	
	DEMO	side and th may be up		entage will b	e calculate	d If both ba	nks are ero	ded, total er	osion for th	e stream	2 %
			Left Bank:	1	ft		Right Bank:	1	ft		
Sample	Variables	5-9 within t	he entire ri	parian/buff	er zone adj	acent to the	e stream ch	annel (25 fe	eet from ea	ch bank).	
5	V_{LWD}						er and 36 in ouffer and w				0.0
				will be calcu	ılated.						
6	V_{TDBH}	Average dh	h of trees (r	measure on			oody stems: ng cover is a		Trees are	at least 1	
	* IDBH	inches (10 List the dbh	cm) in diam	eter. Enter	tree DBHs i	n inches.	n) within the			at loadt 4	Not Used
		the stream	below: Left Side					Right Side			I
			Ecit Gide					rtight Oldo			
7	V _{SNAG}	Number of	snags (at le	ast 4" dhh a	nd 36" tall)	per 100 fee	t of stream.	Enter numb	er of snage	on each	
l	• SNAG			the amount				_mor numb	or or orago	511 GdG11	0.0
			Left Side:		0		Right Side:		0		
8	V _{SSD}		saplings an	d shrubs (w	oody stems		es dbh) per	100 feet of	stream (mea		
			,	Enter numb		gs and shru	bs on each	side of the s	tream, and	the amount	9.5

9	V_{SRICH}	Group 1 in	the tallest s	tratum. Che	eck all exotic	and invas	am reach. Ch live species p from these do	resent in all			0.00
			p 1 = 1.0					Group :	2 (-1.0)		
	Acer rubru	m		Magnolia ti	ripetala		Ailanthus ai	tissima		Lonicera ja	ponica
	Acer sacch	narum		Nyssa sylv	atica		Albizia julibi	rissin		Lonicera ta	tarica
	Aesculus fi	ava		Oxydendrum	n arboreum		Alliaria petio	olata		Lotus corni	culatus
	Asimina trii	oba		Prunus ser	rotina		Alternanthe	ra		Lythrum sa	licaria
	Betula alleg	haniensis		Quercus a	lba		philoxeroides			Microstegium	vimineum
	Betula lent	а		Quercus co	occinea		Aster tatario	cus		Paulownia	tomentosa
	Carya alba			Quercus in	nbricaria		Cerastium f	ontanum		Polygonum c	uspidatum
	Carya glab	ra		Quercus p	rinus		Coronilla va	ria		Pueraria m	ontana
	Carya oval	is		Quercus ru	ubra		Elaeagnus un	nbellata		Rosa multil	lora
	Carya ovat	'a		Quercus ve	elutina		Lespedeza	bicolor		Sorghum h	alepense
	Cornus flor	rida		Sassafras	albidum		Lespedeza	cuneata		Verbena br	asiliensis
	Fagus grai	ndifolia		Tilia ameri	cana		Ligustrum ob	usifolium			
	Fraxinus a	mericana		Tsuga can	adensis		Ligustrum s	inense			
	Liriodendron	tulipifera		Ulmus ame	ericana						
	Magnolia a	cuminata									
			0	0							
		0	Species in	Group 1				0	Species in	Group 2	
		bplots sho u Average pe	ıld be place ercent cover	of leaves,	equidistant sticks, or oth	ly along ea) in the ripari ach side of the material. Wo ayer at each s	ne stream.			75.00 %
		long are in	Left			o dountai i	Right			1	
		70	70	70	70	80	80	80	80		
11	V _{HERB}	include woo	ody stems a percentages ot.	t least 4" db s up through	oh and 36" ta	all. Because	asure only if the there may be Enter the per	e several la cent cover c	yers of gro	und cover	25 %
		30	Left 30	Side 30	30	20	Right 20	Side 20	20		
		30	30	30	30	20	20	20	20	ł	
12	V _{WLUSE}		Average of F	Runoff Score	e for watersh				Runoff Score	% in Catch-	0.70 Running Percent
									00010	mont	(not >100)
	Forest and n	ative range (5	0% to 75% gr	ound cover)				~	0.7	100	100
								•			
								•			
								_			
								_			
								•			
								•			
-								*			
1	S	J23EPH					Not	▼			
1.			\/Q1				Not	▼			
	/ariable	Value Not Used,	VSI				Not	▼			
		Value	VSI Not Used				Not	▼			
Vo	/ariable	Value Not Used,					Not	▼			
V _C	/ariable	Value Not Used, <20%	Not Used				Not	▼			
V _C V _E V _S	/ariable CCANOPY	Value Not Used, <20% 1.4	Not Used 0.23				Not	▼			
V _C V _E V _S	CCANOPY EMBED SUBSTRATE BERO	Value Not Used, <20% 1.4 0.08 in 2 %	0.23 0.04 1.00				Not	▼			
V _C V _E V _E V _L	Variable CCANOPY EMBED SUBSTRATE BERO	Value Not Used, <20% 1.4 0.08 in 2 % 0.0	Not Used 0.23 0.04 1.00 0.00				Not	▼			
V _C V _E V _S V _E V _L	dariable CANOPY EMBED SUBSTRATE BERO LWD	Value Not Used, <20% 1.4 0.08 in 2 %	0.23 0.04 1.00				Not	▼			
V _C V _E V _S V _E V _L	Variable CCANOPY EMBED SUBSTRATE BERO	Value Not Used, <20% 1.4 0.08 in 2 % 0.0	Not Used 0.23 0.04 1.00 0.00				Not	▼			
V _C V _E V _S V _E V _L	Variable CCANOPY EMBED SUBSTRATE BERO WD TDBH	Value Not Used, <20% 1.4 0.08 in 2 % 0.0 Not Used	Not Used 0.23 0.04 1.00 0.00 Not Used				Not	▼			
V _C V _E V _S V _L V _T V _S V _S	CANOPY EMBED SUBSTRATE BERO WD TOBH SNAG	Value Not Used, <20% 1.4 0.08 in 2 % 0.0 Not Used 0.0	Not Used 0.23 0.04 1.00 0.00 Not Used 0.10				Not	▼			
V _C V _E V _S V _E V _L V _T V _S V _S	CANOPY EMBED SUBSTRATE BERO WD TOBH ENAG	Value Not Used, <20% 1.4 0.08 in 2 % 0.0 Not Used 0.0 9.5	0.23 0.04 1.00 0.00 Not Used 0.10 0.15				Not	▼			
V _C V _E V _S V _L V _T V _S V _S V _S V _C	CANOPY EMBED BUBSTRATE BERO WD TOBH BNAG SSD GRICH DETRITUS	Value Not Used, <20% 1.4 0.08 in 2 % 0.0 Not Used 0.0 9.5 0.00 75.0 %	Not Used 0.23 0.04 1.00 0.00 Not Used 0.10 0.15 0.00 0.91				Not	▼			
V _C V _E V _S V _E V _L V _T V _S V _S V _S V _S V _C	CANOPY EMBED SUBSTRATE BERO WD TOBH ENAG	Value Not Used, <20% 1.4 0.08 in 2 % 0.0 Not Used 0.0 9.5	0.23 0.04 1.00 0.00 Not Used 0.10 0.15				Not	▼			

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

STREAM NAME	LOCATION				
STATION # RIVERMILE	STREAM CLASS				
LAT LONG	RIVER BASIN				
STORET#	AGENCY				
INVESTIGATORS					
FORM COMPLETED BY	DATE TIME	REASON FOR SURVEY			

WEATHER CONDITIONS	Now Past 24 hours Yes No storm (heavy rain) rain (steady rain) showers (intermittent) % cloud cover clear/sunny Has there been a heavy rain in the last 7 days? Yes No Air Temperature0 C Other
SITE LOCATION/MAP	Draw a map of the site and indicate the areas sampled (or attach a photograph) Timber mat NG Pipeline S-J23 EPH Silt screen Silt screen
STREAM CHARACTERIZATION	Stream Subsystem Perennial Intermittent Tidal Stream Origin Glacial Spring-fed Non-glacial montane Swamp and bog Stream Type Coldwater Warmwater Catchment Area km²

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

WATERS FEATURI		Fores Field Agric	Pasture Industria	rcial	No evidence Sor Obvious sources Local Watershed Erosi None Moderate	ne potential sources
RIPARIA VEGETA (18 meter	ΓION	Trees	e the dominant type and Sl ant species present	hrubs	Grasses He	brbaceous
INSTREA FEATURI		Estimat Samplin Area in Estimat	red Stream Depthm	m m² km² m	Canopy Cover Partly open Part High Water Mark Proportion of Reach R Morphology Types Riffle Pool 9 Channelized Yes Dam Present Yes	epresented by Stream Run% No
LARGE V DEBRIS	VOODY		m² of LWDm	1 ² /km ² (LWD / 1	reach area)	
AQUATIO VEGETA		Domina			minant species present nt Rooted floating	Ü
WATER ((DS, US)	QUALITY	Specific Dissolve pH Turbidi	rature0 C Conductance ed Oxygen ty trument Used		Water Odors Normal/None Sewage Petroleum Fishy Water Surface Oils Slick Sheen None Other Turbidity (if not measu Clear ☐ Slightly tu Opaque Stained	Chemical Other Globs Flecks
SEDIMEN SUBSTRA		Odors Norm Chen Other Oils Abser	al Sewage nical Anaerobic 		are the undersides blac	th are not deeply embedded,
INC	ORGANIC SUBS (should a		COMPONENTS 00%)		ORGANIC SUBSTRATE C (does not necessarily add	
Substrate Type	Diamet	er	% Composition in Sampling Reach	Substrate Type	Characteristic	% Composition in Sampling Area
Bedrock				Detritus	sticks, wood, coarse plant materials (CPOM)	
Boulder Cobble	> 256 mm (10")			Muck-Mud	black, very fine organic	
Gravel	64-256 mm (2.5"-10") 2-64 mm (0.1"-2.5")			IVIUCK-IVIUU	(FPOM)	

Sand

Silt

Clay

0.06-2mm (gritty)

< 0.004 mm (slick)

0.004-0.06 mm

grey, shell fragments

Marl

HABITAT ASSESSMENT FIELD DATA SHEET - HG - USE ON ALL STREAMS (FRONT)

STREAM NAME	LOCATION	
STATION # RIVERMILE	STREAM CLASS	
LAT LONG	RIVER BASIN	
STORET#	AGENCY	
INVESTIGATORS		
FORM COMPLETED BY	DATE AM PM	REASON FOR SURVEY

	Habitat		Condition	ı Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
n sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0-25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.
ted in	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast- shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/depth regime (usually slow-deep).
ıram	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Pa	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

	Habitat		Condition	n Category			
	Parameter	Optimal	Suboptimal	Marginal	Poor		
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.		
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
oling reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.		
samp	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.		
e eva	SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0		
to be	SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0		
Parameters	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.		
	SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0		
	SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0		
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.		
	SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0		
ĺ	SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0		

Total	Caare	
i otai	Score	

BENTHIC MACROINVERTEBRATE FIELD DATA SHEET

STREAM NAME		LOCATION					
STATION #	_ RIVERMILE	STREAM CLASS					
LAT	LONG	RIVER BASIN					
STORET#		AGENCY					
INVESTIGATORS		LOT NUMBER					
FORM COMPLETED	ВҮ	DATE TIME	REASON FOR SURVEY				
HABITAT TYPES	Indicate the percentage of	each habitat type present	onks % Sand %				

HABITAT TYPES	Indicate the percentage of each habitat type present Cobble% Snags% Vegetated Banks% Sand% Submerged Macrophytes% Other ()%
SAMPLE COLLECTION	Gear used D-frame kick-net Other
	How were the samples collected? wading from bank from boat
	Indicate the number of jabs/kicks taken in each habitat type. Cobble Snags Vegetated Banks Sand Submerged Macrophytes Other ()
GENERAL COMMENTS	

QUALITATIVE LISTING OF AQUATIC BIOTA

Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare, 2 = Common, 3= Abundant, 4 = Dominant

Periphyton	0	1	2	3	4	Slimes	0	1	2	3	4
Filamentous Algae	0	1	2	3	4	Macroinvertebrates	0	1	2	3	4
Macrophytes	0	1	2	3	4	Fish	0	1	2	3	4

FIELD OBSERVATIONS OF MACROBENTHOS

Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare (1-3 organisms), 2 = Common (3-9 organisms), 3 = Abundant (>10 organisms), 4 = Dominant (>50 organisms)

Porifera	0	1	2	3	4	Anisoptera	0	1	2	3	4	Chironomidae	0	1	2	3	4
Hydrozoa	0	1	2	3	4	Zygoptera	0	1	2	3	4	Ephemeroptera	0	1	2	3	4
Platyhelminthes	0	1	2	3	4	Hemiptera	0	1	2	3	4	Trichoptera	0	1	2	3	4
Turbellaria	0	1	2	3	4	Coleoptera	0	1	2	3	4	Other	0	1	2	3	4
Hirudinea	0	1	2	3	4	Lepidoptera	0	1	2	3	4						
Oligochaeta	0	1	2	3	4	Sialidae	0	1	2	3	4						
Isopoda	0	1	2	3	4	Corydalidae	0	1	2	3	4						
Amphipoda	0	1	2	3	4	Tipulidae	0	1	2	3	4						
Decapoda	0	1	2	3	4	Empididae	0	1	2	3	4						
Gastropoda	0	1	2	3	4	Simuliidae	0	1	2	3	4						
Bivalvia	0	1	2	3	4	Tabinidae	0	1	2	3	4						
						Culcidae	0	1	2	3	4						

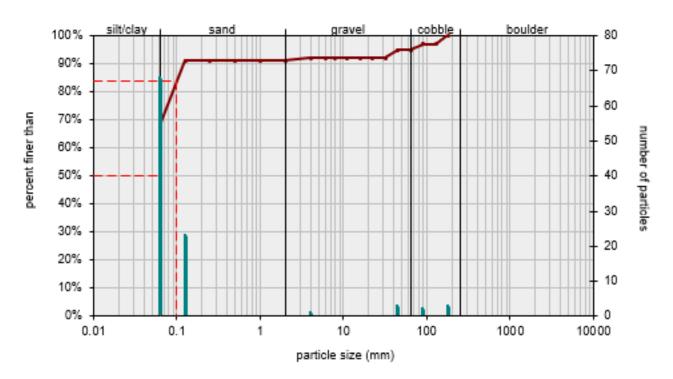
WOLMAN PEBBLE COUNT FORM

Basin:

County: Nicholas Stream ID: S-J23 EPH

Stream Name: UNT to Little Laurel Creek

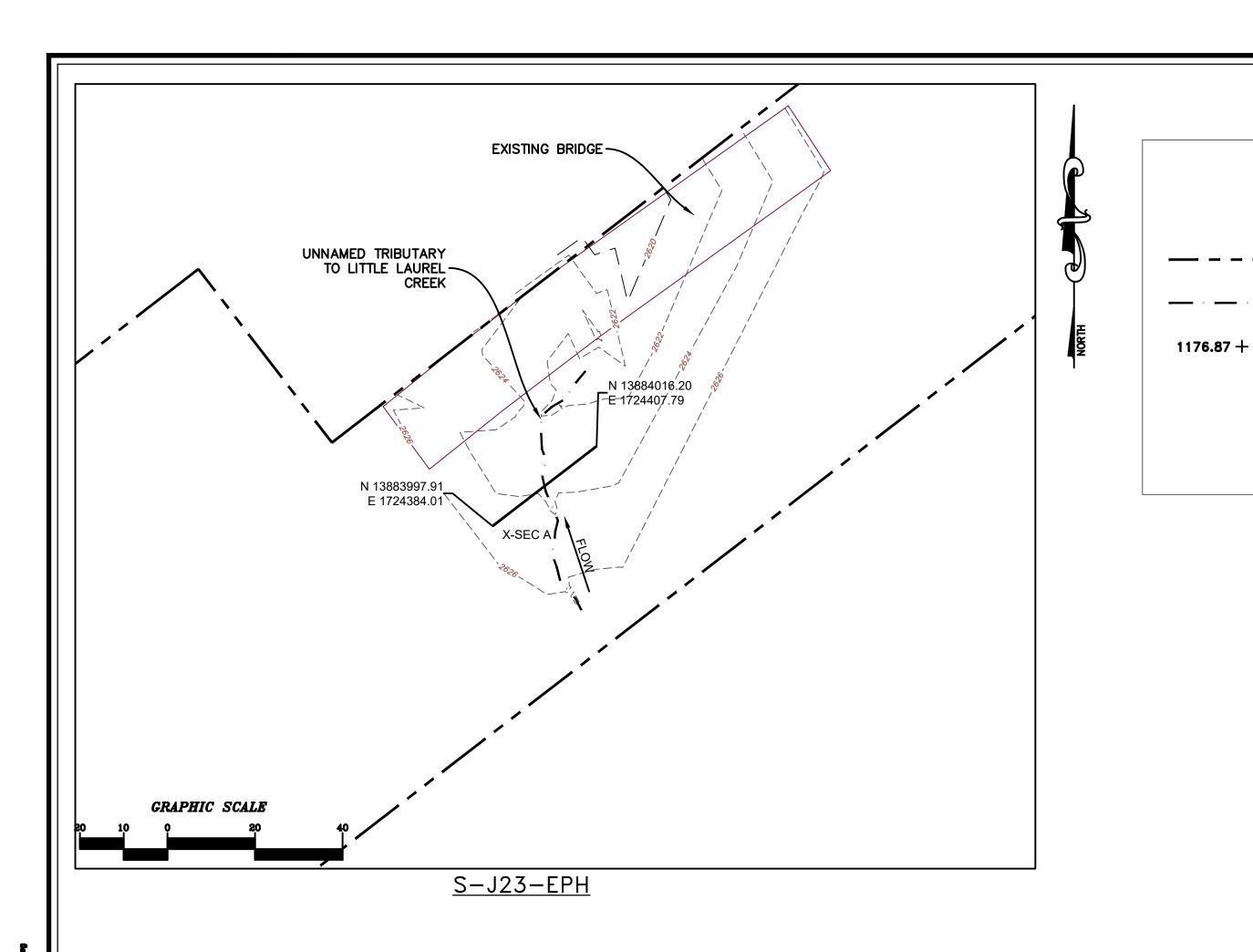
HUC Code:

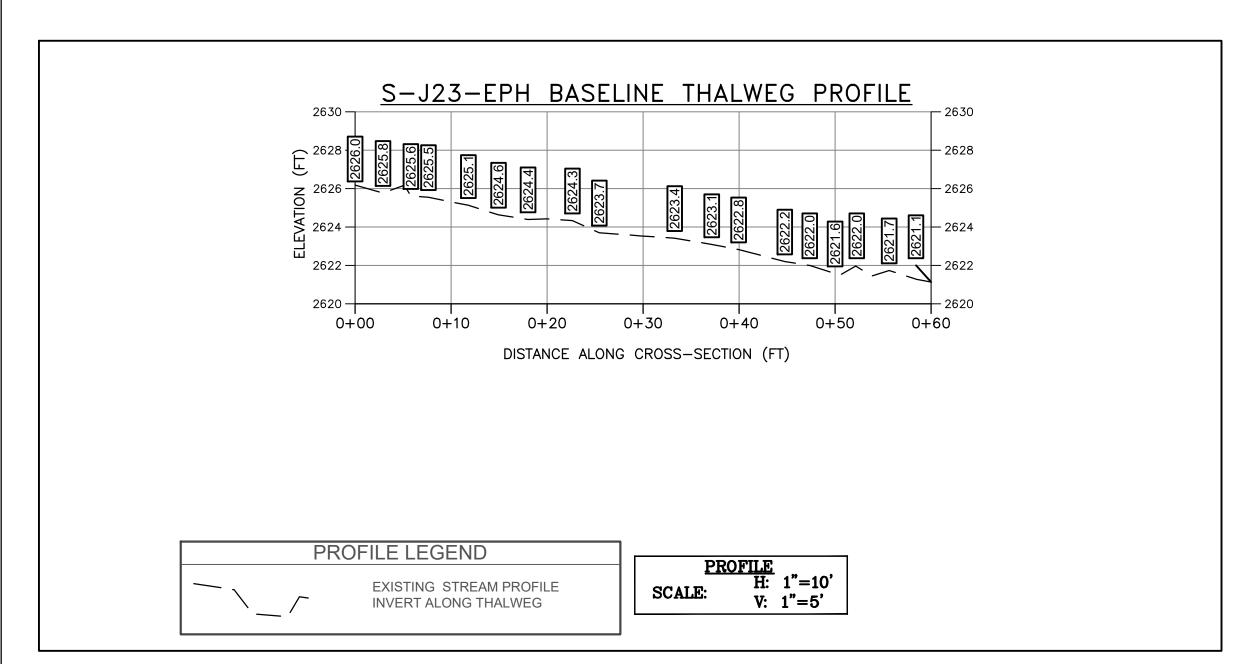

Survey Date: 9/15/2021

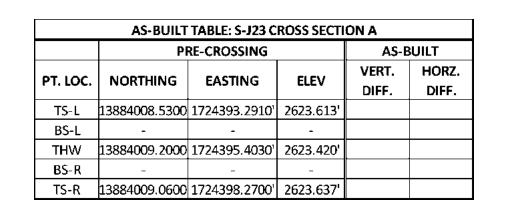
Surveyors: HC, MG Impact Reach: 29 m

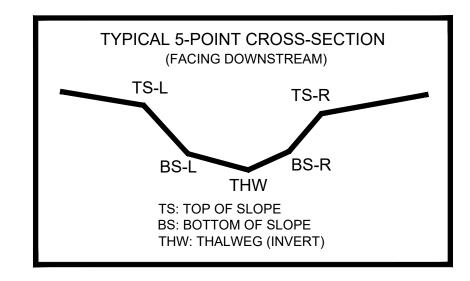
Type: Bankfull Channel

			LE COUNT				_
Inches	PARTICLE	Millimeters		Particle Count	Total #	Item %	% Cun
	Silt/Clay	< .062	S/C	•	68	68.00	68.00
	Very Fine	.062125		*	23	23.00	91.00
	Fine	.12525		•	0	0.00	91.00
	Medium	.255	SAND	*	0	0.00	91.00
	Coarse	.50-1.0		^	0	0.00	91.00
.0408	Very Coarse	1.0-2		*	0	0.00	91.00
.0816	Very Fine	2 -4		*	1	1.00	92.00
.1622	Fine	4 -5.7		*	0	0.00	92.00
.2231	Fine	5.7 - 8		*	0	0.00	92.00
.3144	Medium	8 -11.3		^	0	0.00	92.00
.4463	Medium	11.3 - 16	GRAVEL	^	0	0.00	92.00
.6389	Coarse	16 -22.6		^	0	0.00	92.00
.89 - 1.26	Coarse	22.6 - 32		A	0	0.00	92.00
1.26 - 1.77	Vry Coarse	32 - 45		A	3	3.00	95.00
1.77 -2.5	Vry Coarse	45 - 64		^	0	0.00	95.00
2.5 - 3.5	Small	64 - 90		^	2	2.00	97.00
3.5 - 5.0	Small	90 - 128		^	0	0.00	97.00
5.0 - 7.1	Large	128 - 180	COBBLE	^	3	3.00	100.0
7.1 - 10.1	Large	180 - 256		^	0	0.00	100.0
10.1 - 14.3	Small	256 - 362		A	0	0.00	100.0
14.3 - 20	Small	362 - 512	1	A	0	0.00	100.0
20 - 40	Medium	512 - 1024	BOULDER	A	0	0.00	100.0
40 - 80	Large	1024 -2048	1	<u> </u>	0	0.00	100.0
80 - 160	Vry Large	2048 -4096		<u> </u>	0	0.00	100.0
	Bedrock		BDRK	<u> </u>	0	0.00	100.0
				Totals:	100		





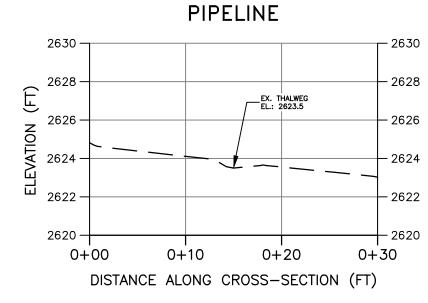

Sia	ze (mn	n)	1
D	16	0.062	
D:	35	0.062	
D!	50 (0.062	
D	85	0.062	
D	34	0.1	
D:	95	64	


Size Distribution				
mean	0.1			
dispersion	1.3			
skewness	0.23			

Туре					
silt/clay	68%				
sand	23%				
gravel	4%				
cobble	5%				
boulder	0%				

SURVEY NOTES:

LEGEND


STUDY AREA (EASEMENT)

EXISTING SURVEY-LOCATED THALWEG

EXISTING SURVEYED GROUND SHOT ELEVATION

- 1. THIS MAP HAS BEEN ORIENTED TO NAD 1983 UTM ZONE 17N, AND VERTICALLY TO THE NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD 88), USING REAL TIME DGPS. FIELD LOCATIONS WERE COMPLETED ON SEPTEMBER 4, 2021.
- 2. EASEMENT LINES SHOWN ON PLAN VIEW WERE PROVIDED BY MOUNTAIN VALLEY PIPELINE.
- 3. SURVEY POINTS FOR CROSS SECTIONS AND THALWEG PROFILES COLLECTED IN 2021 HAVE BEEN USED IN COMBINATION WITH SURVEY POINTS COLLECTED PREVIOUSLY IN 2020 IN ORDER TO GENERATE THE PRE-CROSSING SURFACE SHOWN IN PLAN. DUE TO NATURAL EROSIONAL STREAM PROCESSES THAT CAN OCCUR OVER TIME, MINOR ADJUSTMENTS TO THE PROFILE ALIGNMENTS MAY HAVE BEEN REQUIRED IN ORDER TO GENERATE A CLEAN PRE-CROSSING SURFACE.
- 4. ALL SECTION VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.
- 5. POST-CROSSING SURVEY INFORMATION SHOWN IN RED. DATA PENDING.
- 6. POST-CROSSING SURVEY POINTS FOR CROSS SECTIONS AND THALWEG ARE PROJECTED ONTO PRE-CROSSING SECTION AND PROFILE VIEWS FOR COMPARISON.

S-J23-EPH BASELINE CROSS-SECTION A

CROSS SECTION LEGEND — EXISTING GRADE

CROSS SECTION

H: 1"=10'
V: 1"=5'

NOTE: ALL SECTIONS VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.

PRE-CROSSING PHOTOS

PHOTO TAKEN LOOKING DOWNSTREAM FROM UPSTREAM IMPACT LIMITS

PHOTO TAKEN LOOKING UPSTREAM FROM DOWNSTREAM IMPACT LIMITS

POST-CROSSING PHOTOS

PENDING CROSSING

PHOTO TAKEN LOOKING DOWNSTREAM FROM UPSTREAM IMPACT LIMITS

PENDING CROSSING

PHOTO TAKEN LOOKING UPSTREAM FROM DOWNSTREAM IMPACT LIMITS

PRE-CROSSING

CAD File No.

Checked

Drawing No