## **Baseline Assessment – Stream Attributes**

# Reach S-K75 (Pipeline ROW) Intermittent Spread A Harrison County, West Virginia

| Data                                       | Included       |
|--------------------------------------------|----------------|
| Photos                                     | ✓              |
| SWVM Form                                  | ✓              |
| FCI Calculator and HGM Form                | ✓              |
| RBP Physical Characteristics Form          | ✓              |
| Water Quality Data                         | ✓ - Low Flow   |
| RBP Habitat Form                           | ✓              |
| RBP Benthic Form                           | ✓              |
| Benthic Identification Sheet               | N/A – Low Flow |
| Wolman Pebble Count                        | ✓              |
| Reference Reach Software Pebble Count Data | ✓              |
| Longitudinal Profile and Cross Sections    | ✓              |



Photo Type: DS, DS View
Location, Orientation, Photographer Initials: Downstream Edge of ROW, Downstream View, SM/JM/CC
Lat: 39.243509 Long: -80.554028



Photo Type: US View at Center Location, Orientation, Photographer Initials: Center ROW, Upstream View, SM/JM/CC Lat: 39.243509 Long: -80.554028



Photo Type: US, US View
Location, Orientation, Photographer Initials: Upstream Edge of ROW, Upstream View, SM/JM/CC
Lat: 39.243509 Long: -80.554028



Photo Type: US, DS View
Location, Orientation, Photographer Initials: Upstream Edge of ROW, Downstream View, SM/JM/CC
Lat: 39.243509 Long: -80.554028



Photo Type: US View Location, Orientation, Photographer Initials: Upstream View of ROW Lat: 39.243531 Long: -80.553901



Photo Type: US View Location, Orientation, Photographer Initials: Upstream View of ROW Lat: 39.243558 Long: -80.553913



Photo Type: DS View Location, Orientation, Photographer Initials: Downstream View of ROW Lat: 39.243537 Long: -80.553977



Photo Type: DS View Location, Orientation, Photographer Initials: Downstream View of ROW Lat: 39.243522 Long: -80.553996

| USACE FILE NO./ Project Name:<br>(v2.1, Sept 2015)           |                      | Mountain               | Valley Pipeline                                              |                       | COORDINATES:<br>imal Degrees) | Lat. | 39.243509                                         | Lon.                             | -80.554028   | WEATHER:                                                     | 50% Cloud Cover               | DATE:                                                        | 08/26/21                      |
|--------------------------------------------------------------|----------------------|------------------------|--------------------------------------------------------------|-----------------------|-------------------------------|------|---------------------------------------------------|----------------------------------|--------------|--------------------------------------------------------------|-------------------------------|--------------------------------------------------------------|-------------------------------|
| IMPACT STREAM/SITE ID (watershed size (acreage),             |                      |                        | S-l                                                          | K75                   |                               |      | MITIGATION STREAM CLASS<br>(watershed size {acres |                                  |              |                                                              |                               | Comments:                                                    |                               |
| STREAM IMPACT LENGTH:                                        | 96                   | FORM OF<br>MITIGATION: | RESTORATION (Levels I-III)                                   |                       | ORDINATES:<br>imal Degrees)   | Lat. |                                                   | Lon.                             |              | PRECIPITATION PAST 48 HRS:                                   |                               | Mitigation Length:                                           |                               |
| Column No. 1- Impact Existing                                | g Condition (De      | bit)                   | Column No. 2- Mitigation Existing C                          | ondition - Baseli     | ine (Credit)                  |      | Column No. 3- Mitigation<br>Post Complet          | Projected at Five<br>on (Credit) | Years        | Column No. 4- Mitigation Proj<br>Post Completion (           |                               | Column No. 5- Mitigation Project                             | ted at Maturity (Credit)      |
| Stream Classification:                                       | Interr               | mittent                | Stream Classification:                                       |                       |                               |      | Stream Classification:                            |                                  | 0            | Stream Classification:                                       | 0                             | Stream Classification:                                       | 0                             |
| Percent Stream Channel SI                                    | оре                  | 5.1                    | Percent Stream Channel Slo                                   | оре                   |                               |      | Percent Stream Channel                            | Slope                            | 0            | Percent Stream Channel SI                                    | ope 0                         | Percent Stream Channel S                                     | Slope 0                       |
| HGM Score (attach d                                          | ata forms):          |                        | HGM Score (attach o                                          | data forms):          |                               |      | HGM Score (attac                                  | h data forms):                   |              | HGM Score (attach d                                          | ata forms):                   | HGM Score (attach o                                          | data forms):                  |
|                                                              |                      | Average                |                                                              |                       | Average                       |      |                                                   |                                  | Average      |                                                              | Average                       |                                                              | Average                       |
| Hydrology<br>Biogeochemical Cycling                          | 0.51<br>0.19         | 0.26                   | Hydrology<br>Biogeochemical Cycling                          |                       | 0                             |      | Hydrology<br>Biogeochemical Cycling               |                                  | 0            | Hydrology<br>Biogeochemical Cycling                          | 0                             | Hydrology<br>Biogeochemical Cycling                          | 0                             |
| Habitat PART I - Physical, Chemical and                      | 0.08                 | cators                 | Habitat PART I - Physical, Chemical and                      | d Biological Indic    | cators                        |      | Habitat  PART I - Physical, Chemical              | and Biological Ir                | dicators     | Habitat PART I - Physical, Chemical and                      | Biological Indicators         | Habitat  PART I - Physical, Chemical and                     | d Biological Indicators       |
|                                                              | Points Scale Range   | Site Score             |                                                              | Points Scale Range    | Site Score                    |      |                                                   | Points Scale Rang                | s Site Score |                                                              | Points Scale Range Site Score |                                                              | Points Scale Range Site Score |
| PHYSICAL INDICATOR (Applies to all streams                   | classifications)     |                        | PHYSICAL INDICATOR (Applies to all streams                   | classifications)      |                               |      | PHYSICAL INDICATOR (Applies to all stream         | ns classifications)              |              | PHYSICAL INDICATOR (Applies to all streams                   | classifications)              | PHYSICAL INDICATOR (Applies to all stream                    | s classifications)            |
| USEPA RBP (High Gradient Data Sheet)                         |                      |                        | USEPA RBP (Low Gradient Data Sheet)                          | •                     |                               |      | USEPARBP (High Gradient Data Sheet)               |                                  |              | USEPA RBP (High Gradient Data Sheet)                         |                               | USEPA RBP (High Gradient Data Sheet)                         | •                             |
| Epifaunal Substrate/Available Cover                          | 0-20                 | 0                      | Epifaunal Substrate/Available Cover                          | 0-20                  |                               |      | Epifaunal Substrate/Available Cover               | 0-20                             |              | Epifaunal Substrate/Available Cover                          | 0-20                          | Epifaunal Substrate/Available Cover                          | 0-20                          |
| Embeddedness     Velocity/ Depth Regime                      | 0-20                 | 1                      | Pool Substrate Characterization     Pool Variability         | 0-20                  |                               |      | Embeddedness     Velocity/ Depth Regime           | 0-20                             |              | Embeddedness     Velocity/ Depth Regime                      | 0-20                          | Embeddedness     Velocity/ Depth Regime                      | 0-20                          |
| Velocity Depart regime     Sediment Deposition               | 0-20                 | 6                      | Sediment Deposition                                          | 0-20                  |                               |      | Velocity Departregime     Sediment Deposition     | 0-20                             |              | Velocity Depart regime     Sediment Deposition               | 0-20                          | Velocity Depart Regime     Sediment Deposition               | 0-20                          |
| 5. Channel Flow Status                                       | 0-20 0-1             | 1                      | 5. Channel Flow Status                                       | 0-20                  |                               |      | 5. Channel Flow Status                            | 0-20                             |              | 5. Channel Flow Status                                       | 0-20                          | 5. Channel Flow Status                                       | 0-20                          |
| 6. Channel Alteration                                        | 0-20                 | 20                     | 6. Channel Alteration                                        | 0-20                  |                               |      | 6. Channel Alteration                             | 0-20                             |              | 6. Channel Alteration                                        | 0-20                          | 6. Channel Alteration                                        | 0-20                          |
| 7. Frequency of Riffles (or bends)                           | 0-20                 | 0                      | 7. Channel Sinuosity                                         | 0-20                  |                               |      | 7. Frequency of Riffles (or bends)                | 0-20                             |              | 7. Frequency of Riffles (or bends)                           | 0-20                          | 7. Frequency of Riffles (or bends)                           | 0-20                          |
| 8. Bank Stability (LB & RB)                                  | 0-20                 | 18                     | 8. Bank Stability (LB & RB)                                  | 0-20                  |                               |      | 8. Bank Stability (LB & RB)                       | 0-20                             |              | 8. Bank Stability (LB & RB)                                  | 0-20                          | 8. Bank Stability (LB & RB)                                  | 0-20                          |
| Vegetative Protection (LB & RB)                              | 0-20                 | 16                     | Vegetative Protection (LB & RB)                              | 0-20                  |                               |      | Vegetative Protection (LB & RB)                   | 0-20                             |              | 9. Vegetative Protection (LB & RB)                           | 0-20                          | <ol><li>Vegetative Protection (LB &amp; RB)</li></ol>        | 0-20                          |
| Riparian Vegetative Zone Width (LB & RB)     Total RBP Score | 0-20                 | 12<br>75               | 10. Riparian Vegetative Zone Width (LB & RB) Total RBP Score | 0-20                  | •                             |      | 10. Riparian Vegetative Zone Width (LB & RB)      | 0-20                             | •            | Riparian Vegetative Zone Width (LB & RB)     Total RBP Score | 0-20                          | Riparian Vegetative Zone Width (LB & RB)     Total RBP Score | 0-20                          |
| Total RBP Score<br>Sub-Total                                 | Marginal             | 0.375                  | Total RBP Score<br>Sub-Total                                 | Poor                  | 0                             |      | Total RBP Score<br>Sub-Total                      | Poor                             | 0            | Total RBP Score<br>Sub-Total                                 | Poor 0                        | Total RBP Score<br>Sub-Total                                 | Poor 0                        |
| CHEMICAL INDICATOR (Applies to Intermitter                   | nt and Perennial Str |                        | CHEMICAL INDICATOR (Applies to Intermittent                  | and Perennial Strea   | ams)                          |      | CHEMICAL INDICATOR (Applies to Intermit           | ent and Perennial S              |              | CHEMICAL INDICATOR (Applies to Intermitter                   |                               | CHEMICAL INDICATOR (Applies to Intermitte                    |                               |
| WVDEP Water Quality Indicators (General                      | )                    |                        | WVDEP Water Quality Indicators (General)                     |                       |                               |      | WVDEP Water Quality Indicators (Gener             | al)                              |              | WVDEP Water Quality Indicators (General                      | )                             | WVDEP Water Quality Indicators (General                      | ıl)                           |
| Specific Conductivity  100-199 - 85 points                   | 0-90                 | 168                    | Specific Conductivity                                        | 0-90                  |                               |      | Specific Conductivity                             | 0-90                             |              | Specific Conductivity                                        | 0-90                          | Specific Conductivity                                        | 0-90                          |
| pH                                                           |                      |                        | pH                                                           |                       |                               |      | pH                                                |                                  |              | pH                                                           |                               | pH                                                           |                               |
| 6.0-8.0 = 80 points                                          | 0-80                 | 6.87                   |                                                              | 5-90 0-1              |                               |      |                                                   | 5-90                             |              |                                                              | 5-90 0-1                      |                                                              | 5-90 0-1                      |
| DO                                                           | 10-30                | 2.72                   | DO                                                           | 10-30                 |                               |      | DO                                                | 10-30                            |              | DO                                                           | 10-30                         | DO                                                           | 10-30                         |
| <5.0 = 10 points<br>Sub-Total                                |                      | 0.875                  | Sub-Total                                                    | 1                     | 0                             |      | Sub-Total                                         |                                  | 0            | Sub-Total                                                    | 0                             | Sub-Total                                                    | 0                             |
| BIOLOGICAL INDICATOR (Applies to Intermit                    | tent and Perennial   |                        | BIOLOGICAL INDICATOR (Applies to Intermitte                  | ent and Perennial Str | reams)                        |      | BIOLOGICAL INDICATOR (Applies to Inte             | mittent and Peren                |              | BIOLOGICAL INDICATOR (Applies to Intern                      |                               | BIOLOGICAL INDICATOR (Applies to Intern                      |                               |
| WV Stream Condition Index (WVSCI)                            |                      |                        | WV Stream Condition Index (WVSCI)                            |                       |                               |      | WV Stream Condition Index (WVSCI)                 |                                  |              | WV Stream Condition Index (WVSCI)                            |                               | WV Stream Condition Index (WVSCI)                            |                               |
| 0                                                            | 0-100 0-1            |                        |                                                              | 0-100 0-1             |                               |      |                                                   | 0-100 0-                         |              |                                                              | 0-100 0-1                     |                                                              | 0-100 0-1                     |
| Sub-Total                                                    | + +                  | 0                      | Sub-Total                                                    | ' '                   | 0                             |      | Sub-Total                                         |                                  | 0            | Sub-Total                                                    | 0                             | Sub-Total                                                    | 0                             |
| PART II - Index and U                                        | Jnit Score           |                        | PART II - Index and                                          | Unit Score            |                               |      | PART II - Index a                                 | nd Unit Score                    |              | PART II - Index and U                                        | nit Score                     | PART II - Index and                                          | Unit Score                    |
| Index                                                        | Linear Feet          | Unit Score             | Index                                                        | Linear Feet           | Unit Score                    |      | Index                                             | Linear Fee                       | Unit Score   | Index                                                        | Linear Feet Unit Score        | Index                                                        | Linear Feet Unit Score        |
| 0.443                                                        | 96                   | 42.48                  | 0                                                            | 0                     | 0                             |      | 0                                                 | 0                                | 0            | 0                                                            | 0 0                           | 0                                                            | 0 0                           |
| L                                                            | 1                    |                        | μ                                                            | 1                     |                               |      |                                                   |                                  |              | μ                                                            |                               | 1                                                            | 1 1                           |

## FCI Calculator for the High-Gradient Headwater Streams in Appalachia

To ensure accurate calculations, the <u>UPPERMOST STRATUM</u> of the plant community is determined based on the calculated value for V<sub>CCANOPY</sub> (≥20% cover is required for tree/sapling strata). Go to the SAR Data Entry tab and enter site characteristics and data in the yellow cells. For information on determining how to split a project into SARs, see Chapter 5 of the Operational Draft Regional Guidebook for the Functional Assessment of High-Gradient Headwater Streams and Low-Gradient Perennial Streams in Appalachia (Environmental Laboratory U.S. Army Corps of Engineers 2017).

Project Name: MVP

Location: Harrison, Spread A

Sampling Date: 8/26/21 Project Site Before Project

Subclass for this SAR:

Intermittent Stream

**Uppermost stratum present at this SAR:**SAR number: S-K75

Shrub/Herb Strata

Functional Results Summary: Enter Res

**Enter Results in Section A of the Mitigation Sufficiency Calculator** 

| Function               | Functional<br>Capacity Index |
|------------------------|------------------------------|
| Hydrology              | 0.51                         |
| Biogeochemical Cycling | 0.19                         |
| Habitat                | 0.08                         |

Variable Measure and Subindex Summary:

| Variable               | Name                                                  | Average<br>Measure | Subindex |
|------------------------|-------------------------------------------------------|--------------------|----------|
| V <sub>CCANOPY</sub>   | Percent canpoy over channel.                          | Not Used, <20%     | Not Used |
| V <sub>EMBED</sub>     | Average embeddedness of channel.                      | 1.00               | 0.10     |
| V <sub>SUBSTRATE</sub> | Median stream channel substrate particle size.        | 0.08               | 0.04     |
| $V_{BERO}$             | Total percent of eroded stream channel bank.          | 0.00               | 1.00     |
| $V_{LWD}$              | Number of down woody stems per 100 feet of stream.    | 0.00               | 0.00     |
| V <sub>TDBH</sub>      | Average dbh of trees.                                 | Not Used           | Not Used |
| V <sub>SNAG</sub>      | Number of snags per 100 feet of stream.               | 0.00               | 0.10     |
| V <sub>SSD</sub>       | Number of saplings and shrubs per 100 feet of stream. | 28.14              | 0.43     |
| V <sub>SRICH</sub>     | Riparian vegetation species richness.                 | 0.00               | 0.00     |
| V <sub>DETRITUS</sub>  | Average percent cover of leaves, sticks, etc.         | 7.50               | 0.09     |
| V <sub>HERB</sub>      | Average percent cover of herbaceous vegetation.       | 87.00              | 1.00     |
| V <sub>WLUSE</sub>     | Weighted Average of Runoff Score for Catchment.       | 0.97               | 1.00     |

Version 10-20-17

|          |                      |                                                           | High-G                                                      |                                                               |                                                                | ter Strea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                |                                                        | а                                           |                               |                  |
|----------|----------------------|-----------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------|-------------------------------|------------------|
|          | Toom                 | SM, JM, CO                                                |                                                             | Field L                                                       | Jata She                                                       | et and C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                | =                                                      | M Northing:                                 | 39.243509                     |                  |
| Pr       | oject Name:          |                                                           | ,                                                           |                                                               |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                                                        | _                                           | -80.554028                    | 3                |
| • • •    | ,                    | Harrison, S                                               | pread A                                                     |                                                               |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                | -                                                      | npling Date:                                |                               | ,                |
| S        | AR Number:           | S-K75                                                     |                                                             | Length (ft):                                                  | 42.65                                                          | Stream Ty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rpe: Inter                                                     | mittent Strea                                          |                                             |                               |                  |
| ٠.       | Top Strata:          |                                                           | rub/Herb Sti                                                |                                                               |                                                                | d from perce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                |                                                        |                                             |                               |                  |
| Site     | and Timing:          |                                                           | Y .                                                         |                                                               |                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Before Proje                                                   |                                                        |                                             |                               | ~                |
|          | e Variables          | Dan Streetman                                             | F 1                                                         |                                                               |                                                                | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                |                                                        |                                             |                               | 100              |
| 1        | V <sub>CCANOPY</sub> | Average pe<br>equidistant                                 | rcent cover<br>points alon<br>at least one                  | g the strean<br>e value betw                                  | n. Measure<br>veen 0 and 1                                     | nd sapling c<br>only if tree/s<br>l9 to trigger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sapling cove                                                   | er is at least                                         |                                             |                               | Not Used<br><20% |
|          | 0                    |                                                           |                                                             |                                                               |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                                                        |                                             |                               | 1                |
|          |                      |                                                           |                                                             |                                                               |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                                                        |                                             |                               | 1                |
| 2        | V <sub>EMBED</sub>   | along the s<br>surface and<br>according t<br>rating score | tream. Seled<br>area surro<br>the following<br>of 1. If the | ect a particle<br>unding the p<br>ing table. If<br>bed is com | e from the be<br>particle that<br>the bed is a<br>sposed of be | I. Measure<br>ed. Before r<br>is covered b<br>an artificial s<br>edrock, use a<br>oulder partio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | noving it, de<br>by fine sedir<br>urface, or c<br>a rating sco | etermine the<br>ment, and er<br>omposed of<br>re of 5. | percentage<br>nter the ratir<br>fine sedime | e of the<br>ng<br>ents, use a | 1.0              |
|          |                      | Minshall 19                                               | 83)                                                         |                                                               | obble and b                                                    | oulder partit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Jies (Tescali                                                  | eu IIOIII Fiai                                         | is, wegana                                  | ii, aiiu                      |                  |
|          |                      | Rating<br>5                                               | Rating Des <5 percent                                       |                                                               | covered sur                                                    | rounded, or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | buried hv fi                                                   | ne sedimen                                             | t (or bedroo                                | k)                            |                  |
|          |                      | 4                                                         | 5 to 25 per                                                 | cent of surfa                                                 | ace covered                                                    | , surrounded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | d, or buried                                                   | by fine sedi                                           | ment                                        |                               |                  |
|          |                      | 3                                                         |                                                             |                                                               |                                                                | d, surrounde<br>d, surrounde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                |                                                        |                                             |                               |                  |
|          |                      | <u>2</u><br>1                                             |                                                             |                                                               |                                                                | a, surrounae<br>irrounded, o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                |                                                        |                                             | ial surface)                  |                  |
|          | List the rati        | ngs at each                                               |                                                             |                                                               | D. Gu, Gu                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                | 5531116                                                | . , - : = : : : : : : : : : : : : : : : : : |                               | ı                |
|          | 1                    | 1                                                         | 1                                                           | 1                                                             | 1                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                              | 1                                                      | 1                                           | 1                             |                  |
|          | 1                    | 1                                                         | 1                                                           | 1                                                             | 1                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                              | 1                                                      | 1                                           | 1                             | 1                |
|          | 1                    | 1                                                         | 1                                                           | 1                                                             | 1                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                              | 1                                                      | 1                                           | 1                             |                  |
|          |                      |                                                           |                                                             |                                                               |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                                                        |                                             |                               |                  |
| 3        |                      |                                                           |                                                             |                                                               |                                                                | . Measure a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                |                                                        |                                             |                               |                  |
|          |                      | cle size in in<br>concrete as                             |                                                             |                                                               |                                                                | n point belov<br>18 in):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | w (bedrock                                                     | should be co                                           | ounted as 9                                 | 9 in,                         |                  |
|          | 0.08                 | 0.08                                                      | 0.08                                                        | 0.08                                                          | 0.08                                                           | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.08                                                           | 0.08                                                   | 0.08                                        | 0.08                          |                  |
|          | 0.08                 | 0.08                                                      | 0.08                                                        | 0.08                                                          | 0.08                                                           | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.08                                                           | 0.08                                                   | 0.08                                        | 0.08                          |                  |
|          | 0.06                 | 0.06                                                      | 0.06                                                        | 0.06                                                          | 0.06                                                           | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.06                                                           | 0.06                                                   | 0.06                                        | 0.06                          |                  |
| 4        | $V_{BERO}$           |                                                           |                                                             |                                                               |                                                                | Enter the to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                |                                                        |                                             |                               |                  |
|          |                      | may be up                                                 | to 200%.                                                    | _                                                             |                                                                | d If both ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                |                                                        |                                             | e stream                      | 0 %              |
|          |                      |                                                           | Left Bank:                                                  | 0                                                             | ft                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Right Bank:                                                    | C                                                      | ) ft                                        |                               |                  |
| mpl<br>5 | V <sub>LWD</sub>     | Number of stream read                                     | down woody                                                  | y stems (at l                                                 | east 4 inche<br>om the entir<br>ılated.                        | es in diameter solution to the | er and 36 in<br>ouffer and w                                   | ches in lengithin the cha                              | gth) per 100                                | feet of                       | 0.0              |
| 6        | $V_{TDBH}$           | Average db                                                | h of trees (r                                               | measure on                                                    |                                                                | <sub>y</sub> tree/saplin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                                                              |                                                        |                                             | at least 4                    | NetU             |
|          |                      | List the dbh                                              | n measurem                                                  |                                                               | tree DBHs i<br>vidual trees                                    | n inches.<br>(at least 4 ir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n) within the                                                  | buffer on e                                            | ach side of                                 |                               | Not Use          |
|          | r                    | the stream                                                |                                                             |                                                               |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                | Dight O: -                                             |                                             |                               | 1                |
|          | 0                    |                                                           | Left Side                                                   |                                                               |                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                | Right Side                                             |                                             |                               | ł                |
|          | 0                    |                                                           |                                                             |                                                               |                                                                | - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                |                                                        |                                             |                               |                  |
|          |                      |                                                           |                                                             |                                                               |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                                                        |                                             |                               | 1                |
|          |                      |                                                           |                                                             |                                                               |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                                                        |                                             |                               | 1                |
|          |                      |                                                           |                                                             |                                                               |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                                                        |                                             |                               | 1                |
|          |                      |                                                           |                                                             |                                                               |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                                                        |                                             |                               |                  |
|          |                      |                                                           |                                                             |                                                               |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                                                        |                                             |                               |                  |
|          |                      |                                                           |                                                             |                                                               |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                                                        |                                             |                               |                  |
| 7        | V <sub>SNAG</sub>    |                                                           |                                                             |                                                               |                                                                | per 100 feet<br>et will be cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                | Enter numb                                             | per of snags                                | on each                       | 0.0              |
|          |                      |                                                           | Left Side:                                                  |                                                               | 0                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Right Side:                                                    |                                                        | 0                                           |                               |                  |
| 8        | $V_{SSD}$            | if tree cove                                              | r is <20%).                                                 | Enter numb                                                    | er of sapling                                                  | up to 4 inch<br>gs and shrul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                |                                                        |                                             | asure only<br>the amount      | 28.1             |
|          |                      | per 100 ft o                                              | f stream wil                                                | l be calculat                                                 | ted.                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dight Sido:                                                    |                                                        |                                             |                               |                  |

|    |                                                                                                  |                                                                                       |                                                     | tratum. Check all on the subindex w                       |                                                     |                                                  |                                        |                                            | .00.00                         | 0.00                                                   |
|----|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------|----------------------------------------|--------------------------------------------|--------------------------------|--------------------------------------------------------|
|    |                                                                                                  |                                                                                       | p 1 = 1.0                                           | illa tile subilidex w                                     | ili be calculated                                   | i iioiii tilese u                                |                                        | 2 (-1.0)                                   |                                |                                                        |
| ]  | Acer rubru                                                                                       |                                                                                       |                                                     | Magnolia tripetala                                        |                                                     | Ailanthus a                                      |                                        |                                            | Lonicera ja                    | nonica                                                 |
| ]  | Acer sacch                                                                                       |                                                                                       |                                                     | Nyssa sylvatica                                           |                                                     | Albizia julib                                    |                                        |                                            | Lonicera ta                    |                                                        |
|    | Aesculus fl                                                                                      |                                                                                       |                                                     | Oxydendrum arbon                                          |                                                     | •                                                |                                        | _                                          | Lotus corni                    |                                                        |
| l  |                                                                                                  |                                                                                       | _                                                   | -                                                         | reum                                                | Alliaria petiolata                               |                                        |                                            |                                |                                                        |
| ]  | Asimina tril                                                                                     |                                                                                       |                                                     | Prunus serotina                                           |                                                     | Alternanthe                                      |                                        |                                            | Lythrum sa                     |                                                        |
| ]  | Betula alleg                                                                                     | ghaniensis                                                                            |                                                     | Quercus alba                                              |                                                     | philoxeroid                                      | 28                                     | Ø                                          | Microstegiun                   | n vimineu                                              |
|    | Betula lent                                                                                      | а                                                                                     |                                                     | Quercus coccinea                                          | <b>a</b> 🗆                                          | Aster tatari                                     | cus                                    |                                            | Paulownia i                    | tomento                                                |
| 1  | Carya alba                                                                                       |                                                                                       |                                                     | Quercus imbricari                                         | ia 🗆                                                | Cerastium                                        | fontanum                               |                                            | Polygonum o                    | cuspidatu                                              |
| ]  | Carya glab                                                                                       | ra                                                                                    |                                                     | Quercus prinus                                            |                                                     | Coronilla va                                     | aria                                   |                                            | Pueraria m                     | ontana                                                 |
| ]  | Carya oval                                                                                       | is                                                                                    |                                                     | Quercus rubra                                             |                                                     | Elaeagnus u                                      | mbellata                               | V                                          | Rosa multif                    | lora                                                   |
| ]  | Carya ovat                                                                                       | 'a                                                                                    |                                                     | Quercus velutina                                          |                                                     | Lespedeza                                        | bicolor                                |                                            | Sorghum h                      | alepense                                               |
| ]  | Cornus floi                                                                                      |                                                                                       |                                                     | Sassafras albidun                                         | n 🗆                                                 | Lespedeza                                        |                                        |                                            | Verbena br                     |                                                        |
| 1  | Fagus gran                                                                                       |                                                                                       |                                                     | Tilia americana                                           | _                                                   | Ligustrum ol                                     |                                        |                                            |                                | uoo                                                    |
|    |                                                                                                  |                                                                                       |                                                     |                                                           |                                                     | -                                                |                                        |                                            |                                |                                                        |
| ]  | Fraxinus ai                                                                                      |                                                                                       |                                                     | Tsuga canadensis                                          |                                                     | Ligustrum s                                      | sinense                                |                                            |                                |                                                        |
| l  | Liriodendror                                                                                     | tulipifera                                                                            |                                                     | Ulmus americana                                           | '                                                   |                                                  |                                        |                                            |                                |                                                        |
| l  | Magnolia a                                                                                       | cuminata                                                                              |                                                     |                                                           |                                                     |                                                  |                                        |                                            |                                |                                                        |
|    |                                                                                                  | 0                                                                                     | Cassies in                                          | Croup 1                                                   |                                                     |                                                  | 2                                      | Cunning in                                 | Craum 2                        |                                                        |
|    |                                                                                                  | U                                                                                     | Species in                                          | Group i                                                   |                                                     |                                                  | 2                                      | Species in                                 | Group 2                        |                                                        |
| mp | le Variables                                                                                     | 10-11 withi                                                                           | n at least 8                                        | subplots (40" x 4                                         | 10". or 1m x 1n                                     | n) in the rinar                                  | ian/buffer                             | zone withir                                | 25 feet from                   | n each                                                 |
|    |                                                                                                  |                                                                                       |                                                     | ed roughly equidi                                         |                                                     |                                                  |                                        |                                            | 1 25 1661 1101                 | ii eacii                                               |
| 10 | V <sub>DETRITUS</sub>                                                                            |                                                                                       |                                                     | of leaves, sticks, o                                      |                                                     |                                                  |                                        | <4" diamet                                 | er and <36"                    | 7.50.0                                                 |
|    |                                                                                                  | long are in                                                                           | clude. Ente                                         | r the percent cover                                       | r of the detrital                                   | ayer at each                                     | subplot.                               |                                            | _                              | 7.50 %                                                 |
|    |                                                                                                  |                                                                                       | Left                                                | Side                                                      |                                                     | Right                                            | Side                                   |                                            |                                |                                                        |
|    |                                                                                                  | 20                                                                                    | 10                                                  | 10 10                                                     | 0 10                                                | 0                                                | 0                                      | 0                                          |                                |                                                        |
|    |                                                                                                  |                                                                                       |                                                     |                                                           |                                                     |                                                  |                                        |                                            |                                |                                                        |
| 11 | $V_{HERB}$                                                                                       |                                                                                       |                                                     | over of herbaceous<br>t least 4" dbh and                  |                                                     |                                                  |                                        |                                            |                                |                                                        |
|    |                                                                                                  |                                                                                       |                                                     | s up through 200%                                         |                                                     |                                                  |                                        |                                            |                                | 87 %                                                   |
|    |                                                                                                  | each subpl                                                                            |                                                     | . 0                                                       | •                                                   | •                                                |                                        | Ŭ                                          |                                |                                                        |
|    |                                                                                                  |                                                                                       | Left                                                | Side                                                      |                                                     | Right                                            | Side                                   |                                            | <u> </u>                       |                                                        |
|    |                                                                                                  | 80                                                                                    | 90                                                  | 65 90                                                     | 0 80                                                | 98                                               | 95                                     | 98                                         |                                |                                                        |
|    |                                                                                                  |                                                                                       |                                                     |                                                           |                                                     |                                                  |                                        |                                            |                                |                                                        |
|    |                                                                                                  |                                                                                       |                                                     |                                                           |                                                     |                                                  |                                        |                                            |                                | 0.97                                                   |
|    |                                                                                                  |                                                                                       | Land                                                | Use (Choose Fron                                          | m Drop List)                                        |                                                  |                                        | Runoff<br>Score                            | % in Catch-<br>ment            | Runnir<br>Percer                                       |
|    | Forest and n                                                                                     | ative range (                                                                         |                                                     |                                                           | m Drop List)                                        |                                                  | _                                      | Score                                      | ment                           | Runnir<br>Percei<br>(not >10                           |
|    |                                                                                                  | ative range (                                                                         | 75% ground                                          | cover)                                                    |                                                     |                                                  | ~                                      | Score<br>1                                 | ment 96.61                     | Runnir<br>Percei<br>(not >10                           |
|    |                                                                                                  |                                                                                       | 75% ground                                          |                                                           |                                                     |                                                  | <b>~</b>                               | Score                                      | ment                           | Runnir<br>Percei<br>(not >10                           |
|    |                                                                                                  |                                                                                       | 75% ground                                          | cover)                                                    |                                                     |                                                  | •<br>•                                 | Score<br>1                                 | ment 96.61                     | Runnir<br>Percei<br>(not >10                           |
|    |                                                                                                  |                                                                                       | 75% ground                                          | cover)                                                    |                                                     |                                                  | •<br>•                                 | Score<br>1                                 | ment 96.61                     | Runnir<br>Percei<br>(not >10                           |
|    |                                                                                                  |                                                                                       | 75% ground                                          | cover)                                                    |                                                     |                                                  | •<br>•                                 | Score<br>1                                 | ment 96.61                     | Runnir<br>Percei<br>(not >10                           |
|    |                                                                                                  |                                                                                       | 75% ground                                          | cover)                                                    |                                                     |                                                  | •<br>•                                 | Score<br>1                                 | ment 96.61                     | Runnir<br>Percei<br>(not >10                           |
|    |                                                                                                  |                                                                                       | 75% ground                                          | cover)                                                    |                                                     |                                                  | •<br>•<br>•                            | Score<br>1                                 | ment 96.61                     | Runnir<br>Percei<br>(not >10                           |
|    |                                                                                                  |                                                                                       | 75% ground                                          | cover)                                                    |                                                     |                                                  | * * * * * * * * * * * * * * * * * * *  | Score<br>1                                 | ment 96.61                     | Runnir<br>Percei<br>(not >10                           |
|    |                                                                                                  |                                                                                       | 75% ground                                          | cover)                                                    |                                                     |                                                  | * * * * * * * * * * * * * * * * * * *  | Score<br>1                                 | ment 96.61                     | Runnir<br>Percei<br>(not >10                           |
|    |                                                                                                  |                                                                                       | 75% ground                                          | cover)                                                    |                                                     |                                                  | * * * * * * * * * * * * * * * * * * *  | Score<br>1                                 | ment 96.61                     | Runnir<br>Percer<br>(not >10                           |
|    | Newly grade                                                                                      |                                                                                       | 75% ground                                          | cover)                                                    |                                                     | No                                               | ▼                                      | Score<br>1                                 | ment 96.61                     | Runnir<br>Percei<br>(not >10                           |
|    | Newly grade                                                                                      | ed areas (bare                                                                        | -75% ground                                         | cover) tation or pavement)                                |                                                     |                                                  | • • • • • • • • • • • • • • • • • • •  | Score 1 0                                  | ment 96.61 3.39                | Runnin<br>Percei<br>(not >10<br>96.6 <sup>-1</sup>     |
| \  | Newly grade                                                                                      | areas (bare                                                                           | -75% ground<br>soil, no vege<br>VSI                 | cover)                                                    | alysis was con                                      | npleted using                                    | ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼  | Score 1 0                                  | ment 96.61 3.39 and Cover      | Runnin<br>Percei<br>(not >10<br>96.61                  |
|    | Newly grade                                                                                      | ed areas (bare                                                                        | -75% ground                                         | Land Cover Ana (NLCD), from Law                           | alysis was con<br>andsat satellit<br>ndaries are ba | npleted using<br>e imagery ar<br>ased off of fie | tes:  g the 2019 d other sield delinea | Score  1 0 National I upplementated stream | and Coverary datasets impacts. | Runnii<br>Perce<br>(not >10<br>96.6<br>100<br>Databa   |
| ,  | Newly grade                                                                                      | S-K75  Value  Not Used,                                                               | -75% ground<br>soil, no vege<br>VSI                 | cover) tation or pavement) Land Cover Ana (NLCD), from La | alysis was con<br>andsat satellit<br>ndaries are ba | npleted using<br>e imagery ar<br>ased off of fie | tes:  g the 2019 d other sield delinea | Score  1 0 National I upplementated stream | and Coverary datasets impacts. | Runnii<br>Perce<br>(not >10<br>96.6<br>100<br>Databa   |
|    | Newly grade  Newly grade  S  Variable  Vccanopy  Vembed                                          | G-K75  Value  Not Used,  <20%  1.0                                                    | VSI Not Used 0.10                                   | Land Cover Ana (NLCD), from Law                           | alysis was con<br>andsat satellit<br>ndaries are ba | npleted using<br>e imagery ar<br>ased off of fie | tes:  g the 2019 d other sield delinea | Score  1 0 National I upplementated stream | and Coverary datasets impacts. | Runnii<br>Perce<br>(not >10<br>96.6<br>100<br>Databa   |
|    | Newly grade                                                                                      | S-K75  Value  Not Used, <20%                                                          | vSI  Not Used                                       | Land Cover Ana (NLCD), from Law                           | alysis was con<br>andsat satellit<br>ndaries are ba | npleted using<br>e imagery ar<br>ased off of fie | tes:  g the 2019 d other sield delinea | Score  1 0 National I upplementated stream | and Coverary datasets impacts. | Runnii<br>Perce<br>(not >10<br>96.6<br>100<br>Databa   |
|    | Newly grade  Newly grade  S  Variable  Vccanopy  Vembed                                          | G-K75  Value  Not Used,  <20%  1.0                                                    | VSI Not Used 0.10                                   | Land Cover Ana (NLCD), from Law                           | alysis was con<br>andsat satellit<br>ndaries are ba | npleted using<br>e imagery ar<br>ased off of fie | tes:  g the 2019 d other sield delinea | Score  1 0 National I upplementated stream | and Coverary datasets impacts. | Runnin<br>Percei<br>(not >10<br>96.6°<br>100<br>Databa |
|    | Newly grade  Variable  VCCANOPY  VEMBED  VSUBSTRATE  VBERO                                       | S-K75  Value  Not Used, <20%  1.0  0.08 in  0 %                                       | VSI Not Used 0.10 0.04                              | Land Cover Ana (NLCD), from Law                           | alysis was con<br>andsat satellit<br>ndaries are ba | npleted using<br>e imagery ar<br>ased off of fie | tes:  g the 2019 d other sield delinea | Score  1 0 National I upplementated stream | and Coverary datasets impacts. | Runnii<br>Perce<br>(not >10<br>96.6<br>100<br>Databa   |
|    | Newly grade  Variable  Vccanopy  Vembed  Vsubstrate  Vbero  VLWD                                 | S-K75  Value  Not Used, <20%  1.0  0.08 in  0 %  0.0                                  | VSI Not Used 0.10 0.04 1.00                         | Land Cover Ana (NLCD), from Law                           | alysis was con<br>andsat satellit<br>ndaries are ba | npleted using<br>e imagery ar<br>ased off of fie | tes:  g the 2019 d other sield delinea | Score  1 0 National I upplementated stream | and Coverary datasets impacts. | Runnii<br>Perce<br>(not >10<br>96.6<br>100<br>Databa   |
|    | Newly grade  Variable  VCCANOPY  VEMBED  VSUBSTRATE  VBERO                                       | S-K75  Value  Not Used, <20%  1.0  0.08 in  0 %                                       | VSI Not Used 0.10 0.04                              | Land Cover Ana (NLCD), from Law                           | alysis was con<br>andsat satellit<br>ndaries are ba | npleted using<br>e imagery ar<br>ased off of fie | v v v v tes:                           | Score  1 0 National I upplementated stream | and Coverary datasets impacts. | Runnii<br>Perce<br>(not >10<br>96.6<br>100<br>Databa   |
|    | Newly grade  Variable  Vccanopy  Vembed  Vsubstrate  Vbero  VLWD                                 | S-K75  Value  Not Used, <20%  1.0  0.08 in  0 %  0.0                                  | VSI Not Used 0.10 0.04 1.00                         | Land Cover Ana (NLCD), from Law                           | alysis was con<br>andsat satellit<br>ndaries are ba | npleted using<br>e imagery ar<br>ased off of fie | v v v v tes:                           | Score  1 0 National I upplementated stream | and Coverary datasets impacts. | Runnii<br>Perce<br>(not >10<br>96.6<br>100<br>Databa   |
|    | Newly grade  Variable  VCCANOPY  VEMBED  VSUBSTRATE  VBERO  VLWD  VTDBH  VSNAG                   | S-K75  Value  Not Used, <20%  1.0  0.08 in  0 %  0.0  Not Used  0.0                   | VSI Not Used 0.10 0.00 Not Used 0.10                | Land Cover Ana (NLCD), from Law                           | alysis was con<br>andsat satellit<br>ndaries are ba | npleted using<br>e imagery ar<br>ased off of fie | v v v v tes:                           | Score  1 0 National I upplementated stream | and Coverary datasets impacts. | Runnin<br>Percei<br>(not >10<br>96.6°<br>100<br>Databa |
|    | Newly grade Variable VCCANOPY VEMBED VSUBSTRATE VBERO VLWD VTDBH                                 | Not Used  O Not Used  Not Used,  O Not Used  Not Used  Not Used                       | VSI Not Used 0.10 0.04 1.00 0.00 Not Used           | Land Cover Ana (NLCD), from Law                           | alysis was con<br>andsat satellit<br>ndaries are ba | npleted using<br>e imagery ar<br>ased off of fie | v v v v tes:                           | Score  1 0 National I upplementated stream | and Coverary datasets impacts. | Runnin<br>Percei<br>(not >10<br>96.6°<br>100<br>Databa |
|    | Newly grade  Variable  VCCANOPY  VEMBED  VSUBSTRATE  VBERO  VLWD  VTDBH  VSNAG                   | S-K75  Value  Not Used, <20%  1.0  0.08 in  0 %  0.0  Not Used  0.0                   | VSI Not Used 0.10 0.00 Not Used 0.10                | Land Cover Ana (NLCD), from Law                           | alysis was con<br>andsat satellit<br>ndaries are ba | npleted using<br>e imagery ar<br>ased off of fie | v v v v tes:                           | Score  1 0 National I upplementated stream | and Coverary datasets impacts. | Runnin<br>Percei<br>(not >10<br>96.6°<br>100<br>Databa |
|    | Newly grade Variable Vccanopy Vembed Vsubstrate Vbero VLWD Vtobh Vsnag Vssd Vsrich               | S-K75  Value  Not Used, <20%  1.0  0.08 in  0 %  0.0  Not Used  0.0  28.1             | VSI Not Used 0.10 0.00 Not Used 0.10 0.43           | Land Cover Ana (NLCD), from Law                           | alysis was con<br>andsat satellit<br>ndaries are ba | npleted using<br>e imagery ar<br>ased off of fie | v v v v tes:                           | Score  1 0 National I upplementated stream | and Coverary datasets impacts. | Runnin<br>Percei<br>(not >10<br>96.6°<br>100<br>Databa |
|    | Newly grade Variable Vccanopy Vembed Vsubstrate Vbero Vtub Vtub Vsnag Vssd Vssd Vsrich Vdetritus | Not Used<br>0.00<br>Not Used<br>0.00<br>Not Used<br>0.00<br>Not Used<br>0.00<br>7.5 % | VSI Not Used 0.10 0.00 Not Used 0.10 0.43 0.00 0.09 | Land Cover Ana (NLCD), from Law                           | alysis was con<br>andsat satellit<br>ndaries are ba | npleted using<br>e imagery ar<br>ased off of fie | v v v v tes:                           | Score  1 0 National I upplementated stream | and Coverary datasets impacts. | Runnin<br>Percei<br>(not >10<br>96.6°<br>100<br>Databa |
|    | Newly grade Variable Vccanopy Vembed Vsubstrate Vbero VLWD Vtobh Vsnag Vssd Vsrich               | S-K75  Value  Not Used, <20%  1.0  0.08 in  0 %  0.0  Not Used  0.0  28.1  0.00       | VSI Not Used 0.10 0.00 Not Used 0.10 0.43 0.00      | Land Cover Ana (NLCD), from La                            | alysis was con<br>andsat satellit<br>ndaries are ba | npleted using<br>e imagery ar<br>ased off of fie | v v v v tes:                           | Score  1 0 National I upplementated stream | and Coverary datasets impacts. | Runnin<br>Percer<br>(not >10<br>96.61<br>100<br>Databa |

# PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

| STREAM NAME         | LOCATION     |                   |  |
|---------------------|--------------|-------------------|--|
| STATION # RIVERMILE | STREAM CLASS |                   |  |
| LAT LONG            | RIVER BASIN  |                   |  |
| STORET#             | AGENCY       |                   |  |
| INVESTIGATORS       |              |                   |  |
| FORM COMPLETED BY   | DATETIME     | REASON FOR SURVEY |  |

| WEATHER<br>CONDITIONS      | Now  storm (heavy rain) rain (steady rain) showers (intermittent) % %cloud cover clear/sunny                                     | Past 24 hours  Has there been a heavy rain in the last 7 days?  Yes No  Air Temperature0 C  Other |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| SITE LOCATION/MAP          | S-K75                                                                                                                            | Pipeline  Pipeline  North  Wooden tunnel                                                          |
| STREAM<br>CHARACTERIZATION | Stream Subsystem Perennial Intermittent Tida  Stream Origin Glacial Spring-fec Non-glacial montane Mixture o Swamp and bog Other | Catchment Areakm² forigins                                                                        |

# PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

|                                | WATERSHED FEATURES Predominant Surrounding Lar Forest Field/Pasture Agricultural Residential Other Residential |                                                 |                                                  | ercial                                | No evidence Sor Obvious sources Local Watershed Erosi None Moderate                                                                                   | ne potential sources             |
|--------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| RIPARIA<br>VEGETA<br>(18 meter | TION                                                                                                           | Trees                                           | e the dominant type an                           | Shrubs                                |                                                                                                                                                       | erbaceous                        |
| INSTREA<br>FEATURI             |                                                                                                                | Estimat<br>Samplin<br>Area in<br>Estimat        | km² (m²x1000)  ed Stream Depth  Velocity         | m<br>m²<br>km²<br>m                   | Canopy Cover Partly open Part  High Water Mark  Proportion of Reach R Morphology Types Riffle % Pool                                                  | epresented by Stream Run% No     |
| LARGE V<br>DEBRIS              | VOODY                                                                                                          |                                                 | of LWD                                           | m <sup>2</sup> /km <sup>2</sup> (LWD/ | reach area)                                                                                                                                           |                                  |
| AQUATIO<br>VEGETA              |                                                                                                                | Roote<br>Floati<br><b>Domin</b> a               | ed emergent Fing Algae A                         | Rooted submerge<br>Attached Algae     |                                                                                                                                                       | Ü                                |
| WATER ((DS, US)                | QUALITY                                                                                                        | Specific<br>Dissolve<br>pH<br>Turbidi           | rature0 C Conductance ed Oxygen ty strument Used | _                                     | Water Odors Normal/None Sewage Petroleum Fishy  Water Surface Oils Slick Sheen None Other  Turbidity (if not measu Clear □ Slightly tu Opaque Stained | Chemical Other  Globs Flecks     |
| SEDIMEN<br>SUBSTRA             |                                                                                                                | Odors<br>Norm<br>Chem<br>Other<br>Oils<br>Abser | ical Anaerobic                                   |                                       | are the undersides blac                                                                                                                               | Othereh are not deeply embedded, |
| INC                            | ORGANIC SUBS                                                                                                   |                                                 | COMPONENTS<br>00%)                               |                                       | ORGANIC SUBSTRATE C                                                                                                                                   |                                  |
| Substrate<br>Type              | Diamete                                                                                                        | er                                              | % Composition in Sampling Reach                  | Substrate<br>Type                     | Characteristic                                                                                                                                        | % Composition in Sampling Area   |
| Bedrock                        | -                                                                                                              |                                                 |                                                  | Detritus                              | sticks, wood, coarse plant<br>materials (CPOM)                                                                                                        |                                  |
| Boulder                        | > 256 mm (10")                                                                                                 |                                                 |                                                  |                                       | materials (CI OWI)                                                                                                                                    |                                  |
| Cobble                         | 64-256 mm (2.5                                                                                                 | "-10")                                          |                                                  | Muck-Mud                              | black, very fine organic (FPOM)                                                                                                                       |                                  |

Gravel

2-64 mm (0.1"-2.5")

## HABITAT ASSESSMENT FIELD DATA SHEET - HG - USE ON ALL STREAMS (FRONT)

| STREAM NAME         | LOCATION     |                   |
|---------------------|--------------|-------------------|
| STATION # RIVERMILE | STREAM CLASS |                   |
| LAT LONG            | RIVER BASIN  |                   |
| STORET#             | AGENCY       |                   |
| INVESTIGATORS       |              |                   |
| FORM COMPLETED BY   | DATE AM PM   | REASON FOR SURVEY |

|                                              | Habitat                                       |                                                                                                                                                                                                                                                                               | Condition                                                                                                                                                                                                                                                   | ı Category                                                                                                                                                                                                                                |                                                                                                                                                                                               |
|----------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                              | Parameter                                     | Optimal                                                                                                                                                                                                                                                                       | Suboptimal                                                                                                                                                                                                                                                  | Marginal                                                                                                                                                                                                                                  | Poor                                                                                                                                                                                          |
|                                              | 1. Epifaunal<br>Substrate/<br>Available Cover | Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient). | 40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale). | 20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.                                                                                                                        | Less than 20% stable<br>habitat; lack of habitat is<br>obvious; substrate<br>unstable or lacking.                                                                                             |
|                                              | SCORE                                         | 20 19 18 17 16                                                                                                                                                                                                                                                                | 15 14 13 12 11                                                                                                                                                                                                                                              | 10 9 8 7 6                                                                                                                                                                                                                                | 5 4 3 2 1 0                                                                                                                                                                                   |
| n sampling reach                             | 2. Embeddedness                               | Gravel, cobble, and boulder particles are 0-25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.                                                                                                                                            | Gravel, cobble, and<br>boulder particles are 25-<br>50% surrounded by fine<br>sediment.                                                                                                                                                                     | Gravel, cobble, and<br>boulder particles are 50-<br>75% surrounded by fine<br>sediment.                                                                                                                                                   | Gravel, cobble, and<br>boulder particles are more<br>than 75% surrounded by<br>fine sediment.                                                                                                 |
| ted in                                       | SCORE                                         | 20 19 18 17 16                                                                                                                                                                                                                                                                | 15 14 13 12 11                                                                                                                                                                                                                                              | 10 9 8 7 6                                                                                                                                                                                                                                | 5 4 3 2 1 0                                                                                                                                                                                   |
| Parameters to be evaluated in sampling reach | 3. Velocity/Depth<br>Regime                   | All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)                                                                                                                                             | Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).                                                                                                                                                    | Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low).                                                                                                                                         | Dominated by 1 velocity/depth regime (usually slow-deep).                                                                                                                                     |
| ıram                                         | SCORE                                         | 20 19 18 17 16                                                                                                                                                                                                                                                                | 15 14 13 12 11                                                                                                                                                                                                                                              | 10 9 8 7 6                                                                                                                                                                                                                                | 5 4 3 2 1 0                                                                                                                                                                                   |
| Pa                                           | 4. Sediment<br>Deposition                     | Little or no enlargement<br>of islands or point bars<br>and less than 5% of the<br>bottom affected by<br>sediment deposition.                                                                                                                                                 | Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.                                                                                                                    | Moderate deposition of<br>new gravel, sand or fine<br>sediment on old and new<br>bars; 30-50% of the<br>bottom affected; sediment<br>deposits at obstructions,<br>constrictions, and bends;<br>moderate deposition of<br>pools prevalent. | Heavy deposits of fine<br>material, increased bar<br>development; more than<br>50% of the bottom<br>changing frequently;<br>pools almost absent due to<br>substantial sediment<br>deposition. |
|                                              | SCORE                                         | 20 19 18 17 16                                                                                                                                                                                                                                                                | 15 14 13 12 11                                                                                                                                                                                                                                              | 10 9 8 7 6                                                                                                                                                                                                                                | 5 4 3 2 1 0                                                                                                                                                                                   |
|                                              | 5. Channel Flow<br>Status                     | Water reaches base of<br>both lower banks, and<br>minimal amount of<br>channel substrate is<br>exposed.                                                                                                                                                                       | Water fills >75% of the available channel; or <25% of channel substrate is exposed.                                                                                                                                                                         | Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.                                                                                                                                                 | Very little water in<br>channel and mostly<br>present as standing pools.                                                                                                                      |
|                                              | SCORE                                         | 20 19 18 17 16                                                                                                                                                                                                                                                                | 15 14 13 12 11                                                                                                                                                                                                                                              | 10 9 8 7 6                                                                                                                                                                                                                                | 5 4 3 2 1 0                                                                                                                                                                                   |

## HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

|                                                        | Habitat                                                                                                |                                                                                                                                                                                                                                                                                      | Condition                                                                                                                                                                                                                                                                  | n Category                                                                                                                                                                                                                           |                                                                                                                                                                                                   |  |  |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                        | Parameter                                                                                              | Optimal                                                                                                                                                                                                                                                                              | Suboptimal                                                                                                                                                                                                                                                                 | Marginal                                                                                                                                                                                                                             | Poor                                                                                                                                                                                              |  |  |
|                                                        | 6. Channel<br>Alteration                                                                               | Channelization or<br>dredging absent or<br>minimal; stream with<br>normal pattern.                                                                                                                                                                                                   | Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.                                                                    | Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.                                                                                   | Banks shored with gabion<br>or cement; over 80% of<br>the stream reach<br>channelized and<br>disrupted. Instream<br>habitat greatly altered or<br>removed entirely.                               |  |  |
|                                                        | SCORE                                                                                                  | 20 19 18 17 16                                                                                                                                                                                                                                                                       | 15 14 13 12 11                                                                                                                                                                                                                                                             | 10 9 8 7 6                                                                                                                                                                                                                           | 5 4 3 2 1 0                                                                                                                                                                                       |  |  |
| oling reach                                            | 7. Frequency of<br>Riffles (or bends)                                                                  | Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.     | Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.                                                                                                                                                          | Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.                                                                                    | Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.                                                         |  |  |
| samp                                                   | SCORE                                                                                                  | 20 19 18 17 16                                                                                                                                                                                                                                                                       | 15 14 13 12 11                                                                                                                                                                                                                                                             | 10 9 8 7 6                                                                                                                                                                                                                           | 5 4 3 2 1 0                                                                                                                                                                                       |  |  |
| Parameters to be evaluated broader than sampling reach | 8. Bank Stability<br>(score each bank)  Note: determine left<br>or right side by<br>facing downstream. | Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.                                                                                                                                                     | Moderately stable;<br>infrequent, small areas of<br>erosion mostly healed<br>over. 5-30% of bank in<br>reach has areas of erosion                                                                                                                                          | Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.                                                                                                                             | Unstable; many eroded<br>areas; "raw" areas<br>frequent along straight<br>sections and bends;<br>obvious bank sloughing;<br>60-100% of bank has<br>erosional scars.                               |  |  |
| e eva                                                  | SCORE (LB)                                                                                             | Left Bank 10 9                                                                                                                                                                                                                                                                       | 8 7 6                                                                                                                                                                                                                                                                      | 5 4 3                                                                                                                                                                                                                                | 2 1 0                                                                                                                                                                                             |  |  |
| to be                                                  | SCORE (RB)                                                                                             | Right Bank 10 9                                                                                                                                                                                                                                                                      | 8 7 6                                                                                                                                                                                                                                                                      | 5 4 3                                                                                                                                                                                                                                | 2 1 0                                                                                                                                                                                             |  |  |
| Parameters                                             | 9. Vegetative<br>Protection (score<br>each bank)                                                       | More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally. | 70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining. | 50-70% of the<br>streambank surfaces<br>covered by vegetation;<br>disruption obvious;<br>patches of bare soil or<br>closely cropped vegetation<br>common; less than one-<br>half of the potential plant<br>stubble height remaining. | Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height. |  |  |
|                                                        | SCORE (LB)                                                                                             | Left Bank 10 9                                                                                                                                                                                                                                                                       | 8 7 6                                                                                                                                                                                                                                                                      | 5 4 3                                                                                                                                                                                                                                | 2 1 0                                                                                                                                                                                             |  |  |
|                                                        | SCORE (RB)                                                                                             | Right Bank 10 9                                                                                                                                                                                                                                                                      | 8 7 6                                                                                                                                                                                                                                                                      | 5 4 3                                                                                                                                                                                                                                | 2 1 0                                                                                                                                                                                             |  |  |
|                                                        | 10. Riparian Vegetative Zone Width (score each bank riparian zone)                                     | Width of riparian zone<br>>18 meters; human<br>activities (i.e., parking<br>lots, roadbeds, clear-cuts,<br>lawns, or crops) have not<br>impacted zone.                                                                                                                               | Width of riparian zone<br>12-18 meters; human<br>activities have impacted<br>zone only minimally.                                                                                                                                                                          | Width of riparian zone 6-<br>12 meters; human<br>activities have impacted<br>zone a great deal.                                                                                                                                      | Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.                                                                                                       |  |  |
|                                                        | SCORE (LB)                                                                                             | Left Bank 10 9                                                                                                                                                                                                                                                                       | 8 7 6                                                                                                                                                                                                                                                                      | 5 4 3                                                                                                                                                                                                                                | 2 1 0                                                                                                                                                                                             |  |  |
| ĺ                                                      | SCORE (RB)                                                                                             | Right Bank 10 9                                                                                                                                                                                                                                                                      | 8 7 6                                                                                                                                                                                                                                                                      | 5 4 3                                                                                                                                                                                                                                | 2 1 0                                                                                                                                                                                             |  |  |

| Total  | Caare |  |
|--------|-------|--|
| i otai | Score |  |

## BENTHIC MACROINVERTEBRATE FIELD DATA SHEET

| STREAM NAME    |                            | LOCATION                  |                   |
|----------------|----------------------------|---------------------------|-------------------|
| STATION #      | _ RIVERMILE                | STREAM CLASS              |                   |
| LAT            | LONG                       | RIVER BASIN               |                   |
| STORET#        |                            | AGENCY                    |                   |
| INVESTIGATORS  |                            |                           | LOT NUMBER        |
| FORM COMPLETED | ВҮ                         | DATE<br>TIME              | REASON FOR SURVEY |
| HABITAT TYPES  | Indicate the percentage of | each habitat type present | onks % Sand %     |

| HABITAT TYPES        | Indicate the percentage of each habitat type present  Cobble% Snags% Vegetated Banks% Sand%  Submerged Macrophytes% Other ( )%   |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------|
| SAMPLE<br>COLLECTION | Gear used D-frame kick-net Other                                                                                                 |
|                      | How were the samples collected? wading from bank from boat                                                                       |
|                      | Indicate the number of jabs/kicks taken in each habitat type.  Cobble Snags Vegetated Banks Sand Submerged Macrophytes Other ( ) |
| GENERAL<br>COMMENTS  |                                                                                                                                  |

## QUALITATIVE LISTING OF AQUATIC BIOTA

Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare, 2 = Common, 3= Abundant, 4 = Dominant

| Periphyton        | 0 | 1 | 2 | 3 | 4 | Slimes             | 0 | 1 | 2 | 3 | 4 |
|-------------------|---|---|---|---|---|--------------------|---|---|---|---|---|
| Filamentous Algae | 0 | 1 | 2 | 3 | 4 | Macroinvertebrates | 0 | 1 | 2 | 3 | 4 |
| Macrophytes       | 0 | 1 | 2 | 3 | 4 | Fish               | 0 | 1 | 2 | 3 | 4 |

#### FIELD OBSERVATIONS OF MACROBENTHOS

Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare (1-3 organisms), 2 = Common (3-9 organisms), 3 = Abundant (>10 organisms), 4 = Dominant (>50 organisms)

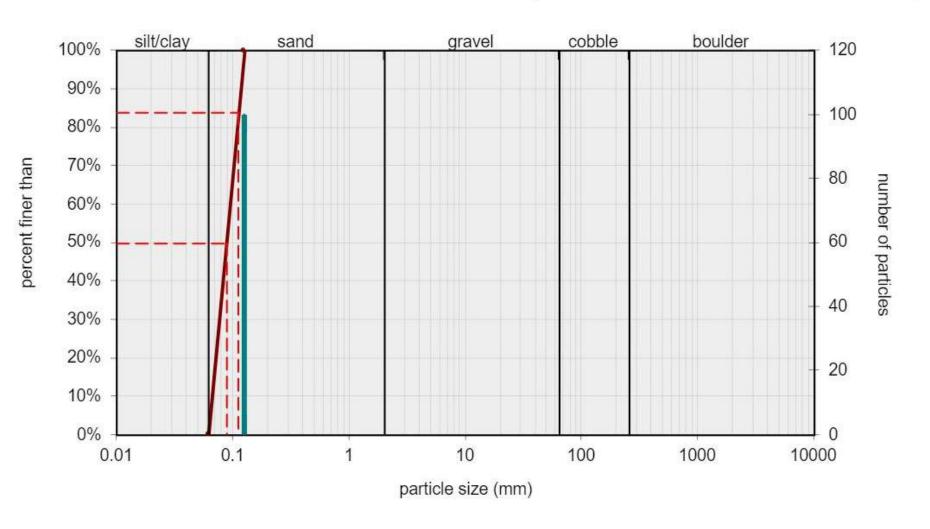
| Porifera        | 0 | 1 | 2 | 3 | 4 | Anisoptera  | 0 | 1 | 2 | 3 | 4 | Chironomidae  | 0 | 1 | 2 | 3 | 4 |
|-----------------|---|---|---|---|---|-------------|---|---|---|---|---|---------------|---|---|---|---|---|
| Hydrozoa        | 0 | 1 | 2 | 3 | 4 | Zygoptera   | 0 | 1 | 2 | 3 | 4 | Ephemeroptera | 0 | 1 | 2 | 3 | 4 |
| Platyhelminthes | 0 | 1 | 2 | 3 | 4 | Hemiptera   | 0 | 1 | 2 | 3 | 4 | Trichoptera   | 0 | 1 | 2 | 3 | 4 |
| Turbellaria     | 0 | 1 | 2 | 3 | 4 | Coleoptera  | 0 | 1 | 2 | 3 | 4 | Other         | 0 | 1 | 2 | 3 | 4 |
| Hirudinea       | 0 | 1 | 2 | 3 | 4 | Lepidoptera | 0 | 1 | 2 | 3 | 4 |               |   |   |   |   |   |
| Oligochaeta     | 0 | 1 | 2 | 3 | 4 | Sialidae    | 0 | 1 | 2 | 3 | 4 |               |   |   |   |   |   |
| Isopoda         | 0 | 1 | 2 | 3 | 4 | Corydalidae | 0 | 1 | 2 | 3 | 4 |               |   |   |   |   |   |
| Amphipoda       | 0 | 1 | 2 | 3 | 4 | Tipulidae   | 0 | 1 | 2 | 3 | 4 |               |   |   |   |   |   |
| Decapoda        | 0 | 1 | 2 | 3 | 4 | Empididae   | 0 | 1 | 2 | 3 | 4 |               |   |   |   |   |   |
| Gastropoda      | 0 | 1 | 2 | 3 | 4 | Simuliidae  | 0 | 1 | 2 | 3 | 4 |               |   |   |   |   |   |
| Bivalvia        | 0 | 1 | 2 | 3 | 4 | Tabinidae   | 0 | 1 | 2 | 3 | 4 |               |   |   |   |   |   |
|                 |   |   |   |   |   | Culcidae    | 0 | 1 | 2 | 3 | 4 |               |   |   |   |   |   |

## WOLMAN PEBBLE COUNT FORM

County: Harrison Stream ID: S-K75

Stream Name: UNT to Coburn Fork

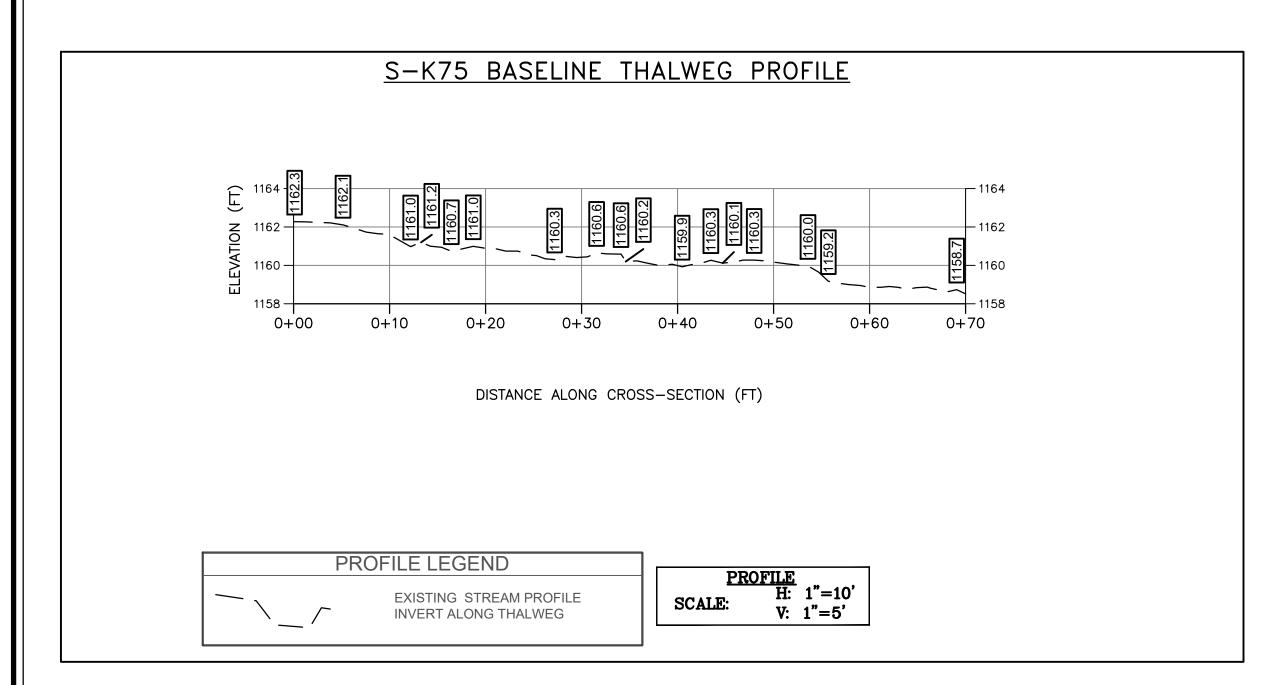
HUC Code: 05020002 Basin:

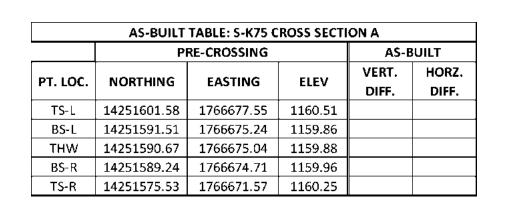

Survey Date: 8/26/2021

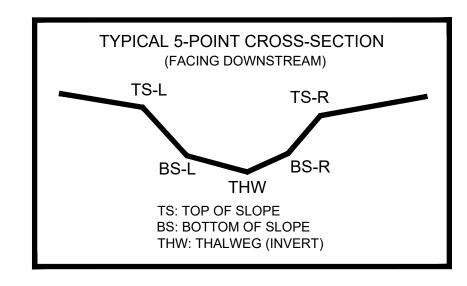
Surveyors: SM, JM, CC Impact Reach: 13.1 m

Type: Bankfull Channel

| · ·         | D. DETGLE   |             | LE COUNT |                   |         |        |       |
|-------------|-------------|-------------|----------|-------------------|---------|--------|-------|
| Inches      | PARTICLE    | Millimeters |          | Particle<br>Count | Total # | Item % | % Cui |
|             | Silt/Clay   | < .062      | S/C      | •                 | 0       | 0.00   | 0.00  |
|             | Very Fine   | .062125     |          | <b>4</b>          | 100     | 100.00 | 100.0 |
|             | Fine        | .12525      | ]        | <b>4</b>          | 0       | 0.00   | 100.0 |
|             | Medium      | .255        | SAND     | <b>4</b>          | 0       | 0.00   | 100.0 |
|             | Coarse      | .50-1.0     | 1        | <b>4</b>          | 0       | 0.00   | 100.0 |
| .0408       | Very Coarse | 1.0-2       | 1        | <b>*</b>          | 0       | 0.00   | 100.0 |
| .0816       | Very Fine   | 2 -4        |          | <b>^</b>          | 0       | 0.00   | 100.0 |
| .1622       | Fine        | 4 -5.7      | 1        | <b>^</b>          | 0       | 0.00   | 100.0 |
| .2231       | Fine        | 5.7 - 8     | 1        | <b>^</b>          | 0       | 0.00   | 100.0 |
| .3144       | Medium      | 8 -11.3     | 1        | <b>4</b>          | 0       | 0.00   | 100.0 |
| .4463       | Medium      | 11.3 - 16   | GRAVEL   | <b>4</b>          | 0       | 0.00   | 100.0 |
| .6389       | Coarse      | 16 -22.6    | 1        | <b>^</b>          | 0       | 0.00   | 100.0 |
| .89 - 1.26  | Coarse      | 22.6 - 32   | 1        | <b>^</b>          | 0       | 0.00   | 100.0 |
| 1.26 - 1.77 | Vry Coarse  | 32 - 45     | 1        | <b>4</b>          | 0       | 0.00   | 100.0 |
| 1.77 -2.5   | Vry Coarse  | 45 - 64     | 1        | <b>4</b>          | 0       | 0.00   | 100.0 |
| 2.5 - 3.5   | Small       | 64 - 90     |          | <b>4</b>          | 0       | 0.00   | 100.0 |
| 3.5 - 5.0   | Small       | 90 - 128    | 1        | <b>*</b>          | 0       | 0.00   | 100.0 |
| 5.0 - 7.1   | Large       | 128 - 180   | COBBLE   | <b>4</b>          | 0       | 0.00   | 100.0 |
| 7.1 - 10.1  | Large       | 180 - 256   | 1        | <b>4</b>          | 0       | 0.00   | 100.0 |
| 10.1 - 14.3 | Small       | 256 - 362   |          | <b>4</b>          | 0       | 0.00   | 100.0 |
| 14.3 - 20   | Small       | 362 - 512   | 1        | <b>^</b>          | 0       | 0.00   | 100.0 |
| 20 - 40     | Medium      | 512 - 1024  | BOULDER  | <b>4</b>          | 0       | 0.00   | 100.0 |
| 40 - 80     | Large       | 1024 -2048  | 1        | <b>^</b>          | 0       | 0.00   | 100.0 |
| 80 - 160    | Vry Large   | 2048 -4096  | 1        | <b>^</b>          | 0       | 0.00   | 100.0 |
|             | Bedrock     |             | BDRK     | <b>^</b>          | 0       | 0.00   | 100.0 |
|             |             |             |          | Totals:           | 100     |        |       |


cumulative % ——# of particles





| Size ( | (mm)  |  |
|--------|-------|--|
| D16    | 0.069 |  |
| D35    | 0.079 |  |
| D50    | 0.088 |  |
| D65    | 0.098 |  |
| D84    | 0.11  |  |
| D95    | 0.12  |  |

| Size Distr | ibution |
|------------|---------|
| mean       | 0.1     |
| dispersion | 1.3     |
| skewness   | -0.01   |

| silt/clay | 0%   |  |
|-----------|------|--|
| sand      | 100% |  |
| gravel    | 0%   |  |
| cobble    | 0%   |  |
| boulder   | 0%   |  |



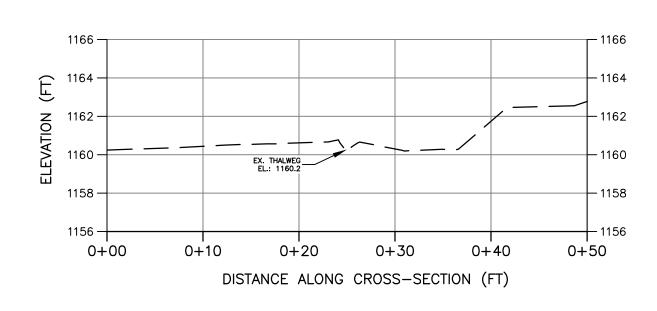




## SURVEY NOTES:

LEGEND

STUDY AREA (EASEMENT)


1176.87 十

EXISTING SURVEY-LOCATED THALWEG

EXISTING SURVEYED GROUND SHOT ELEVATION

- 1. THIS MAP HAS BEEN ORIENTED TO NAD 1983 UTM ZONE 17N, AND VERTICALLY TO THE NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD 88), USING REAL TIME DGPS. FIELD LOCATIONS WERE COMPLETED ON SEPTEMBER 29, 2021.
- 2. EASEMENT LINES SHOWN ON PLAN VIEW WERE PROVIDED BY MOUNTAIN VALLEY PIPELINE.
- 3. SURVEY POINTS FOR CROSS SECTIONS AND THALWEG PROFILES COLLECTED IN 2021 HAVE BEEN USED IN COMBINATION WITH SURVEY POINTS COLLECTED PREVIOUSLY IN 2020 IN ORDER TO GENERATE THE PRE-CROSSING SURFACE SHOWN IN PLAN. DUE TO NATURAL EROSIONAL STREAM PROCESSES THAT CAN OCCUR OVER TIME, MINOR ADJUSTMENTS TO THE PROFILE ALIGNMENTS MAY HAVE BEEN REQUIRED IN ORDER TO GENERATE A CLEAN PRE-CROSSING SURFACE.
- 4. ALL SECTION VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.
- 5. POST-CROSSING SURVEY INFORMATION SHOWN IN RED. DATA PENDING.
- 6. POST-CROSSING SURVEY POINTS FOR CROSS SECTIONS AND THALWEG ARE PROJECTED ONTO PRE-CROSSING SECTION AND PROFILE VIEWS FOR COMPARISON.

# S-K75 BASELINE CROSS-SECTION A PIPELINE



CROSS SECTION LEGEND

CROSS SECTION

H: 1"=10'
V: 1"=5'

— EXISTING GRADE

NOTE: ALL SECTIONS VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.

PRE-CROSSING PHOTOS



PHOTO TAKEN LOOKING DOWNSTREAM FROM UPSTREAM IMPACT LIMITS

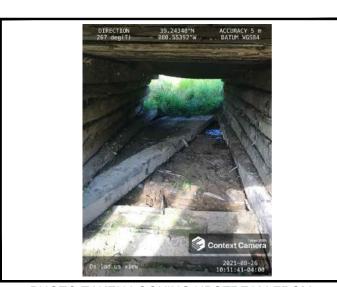



PHOTO TAKEN LOOKING UPSTREAM FROM DOWNSTREAM IMPACT LIMITS

POST-CROSSING PHOTOS

PENDING CROSSING

PHOTO TAKEN LOOKING DOWNSTREAM FROM UPSTREAM IMPACT LIMITS

PENDING CROSSING

PHOTO TAKEN LOOKING UPSTREAM FROM DOWNSTREAM IMPACT LIMITS

PRE-CROSSING

Checked

CAD File No.

Drawing No