Baseline Assessment – Stream Attributes

Reach S-K94 ROW (Pipeline ROW) Perennial Spread B Lewis County, West Virginia

Data	Included
Photos	✓
SWVM Form	✓ Water quality data used from benthic sample
FCI Calculator and HGM Form	N/A – Perennial stream (not shadeable, slope
	<4%)
RBP Physical Characteristics Form	✓
Water Quality Data	✓
RBP Habitat Form	✓
RBP Benthic Form	✓
Benthic Identification Sheet	✓ Sample taken on 09/13/21
Wolman Pebble Count	✓
Reference Reach Software Pebble Count Data	✓
Longitudinal Profile and Cross Sections	✓

Photo Type: DS, US View Location, Orientation, Photographer Initials: Downstream Edge of ROW, Upstream View, DP/VM/HK Lat: 39.167575 Long: -80.578144

Photo Type: DS, DS View Location, Orientation, Photographer Initials: Downstream Edge of ROW, Downstream View, DP/VM/HK Lat: 39.167575 Long: -80.578144

Photo Type: US View at Center Location, Orientation, Photographer Initials: Center ROW, Upstream View, DP/VM/HK Lat: 39.167575 Long: -80.578144

Location, Orientation, Photographer Initials: ROW Center, Downstream View, DP/VM/HK
Lat: 39.167575 Long: -80.578144

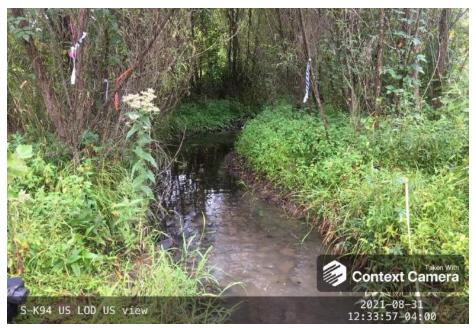


Photo Type: US, US View Location, Orientation, Photographer Initials: Upstream Edge of ROW, Upstream View, DP/VM/HK Lat: 39.167575 Long: -80.578144

Photo Type: US, DS View
Location, Orientation, Photographer Initials: Upstream Edge of ROW, Downstream View, DP/VM/HK
Lat: 39.167575 Long: -80.578144

Location, Orientation, Photographer Initials: Upstream of Riffle, Downstream View, RH/VM
Lat: 39.167575 Long: -80.578144

Location, Orientation, Photographer Initials: Downstream of Riffle, Upstream View, RH/VM
Lat: 39.167575 Long: -80.578144

Photo Type: Pool, DS View Location, Orientation, Photographer Initials: Upstream of Pool, Downstream View, RH/VM Lat: 39.167575 Long: -80.578144

Photo Type: Pool, US View Location, Orientation, Photographer Initials: Downstream of Pool, Upstream View, RH/VM Lat: 39.167575 Long: -80.578144

 $[&]quot;Q: \label{lem:conditions} \begin{subarray}{l} $$ "Q: \charleston \charge \c$

USACE FILE NO./ Project Name: (v2.1, Sept 2015)	Mountain \	Valley Pipeline	IMPACT COORDINATES: (in Decimal Degrees)					DATE:	9/13/202	21		
IMPACT STREAM/SITE ID AND SITE D (watershed size (acreage), unaltered or imp		S-K94	4 ROW		MITIGATION STREAM CLASS (watershed size {acres					Comments:	Date of water used from date of sample	of benthic
STREAM IMPACT LENGTH: 79	FORM OF MITIGATION:	RESTORATION (Levels I-III)	MIT COORDINATES: (in Decimal Degrees)	Lat.		Lon.		PRECIPITATION PAST 48 HRS:		Mitigation Length:		
Column No. 1- Impact Existing Condition (D	Debit)	Column No. 2- Mitigation Existing Co	ondition - Baseline (Credit)	•	Column No. 3- Mitigation Post Complet		ve Years	Column No. 4- Mitigation Proje Post Completion (Column No. 5- Mitigation Project	ed at Maturity (Cred	dit)
Stream Classification: Pe	erennial	Stream Classification:			Stream Classification:		0	Stream Classification:	0	Stream Classification:	0	
Percent Stream Channel Slope	0.6	Percent Stream Channel Sic	рре		Percent Stream Channel	Slope	0	Percent Stream Channel Sle	ope 0	Percent Stream Channel St	lope	0
HGM Score (attach data forms):		HGM Score (attach o	data forms):		HGM Score (attac	h data forms):	HGM Score (attach da	ata forms):	HGM Score (attach d	ata forms):	
	Average		Average				Average		Average			Average
Hydrology Biogeochemical Cycling Habitat	0	Hydrology Biogeochemical Cycling Habitat	0		Hydrology Biogeochemical Cycling Habitat		0	Hydrology Biogeochemical Cycling	0	Hydrology Biogeochemical Cycling Habitat		0
PART I - Physical, Chemical and Biological Ind	dicators	PART I - Physical, Chemical and	d Biological Indicators		PART I - Physical, Chemical	and Biological	Indicators	PART I - Physical, Chemical and	Biological Indicators	PART I - Physical, Chemical and	Biological Indicator	rs
Point Sain Rang	nge Site Score		Points Scale Range Site Score			Points Scale F	ange Site Score		Points Scale Range Site Score		Points Scale Range	Site Score
PHYSICAL INDICATOR (Applies to all streams classifications)		PHYSICAL INDICATOR (Applies to all streams of	classifications)		PHYSICAL INDICATOR (Applies to all stream	ns classifications)	PHYSICAL INDICATOR (Applies to all streams	classifications)	PHYSICAL INDICATOR (Applies to all streams	classifications)	
USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover 0-20	16	USEPA RBP (Low Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover	0-20		USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover	0-20		USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover	0-20	USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover	0-20	
2. Embeddedness 0-20	14	2. Pool Substrate Characterization	0-20		2. Embeddedness	0-20		2. Embeddedness	0-20	2. Embeddedness	0-20	
3. Velocity/ Depth Regime 0-20	6 13	3. Pool Variability	0-20		3. Velocity/ Depth Regime	0-20		Velocity/ Depth Regime	0-20	3. Velocity/ Depth Regime	0-20	
4. Sediment Deposition 0-20 5. Channel Flow Status 0-20 0.00	13	Sediment Deposition Channel Flow Status	0-20		Sediment Deposition Channel Flow Status	0-20		Sediment Deposition Channel Flow Status	0-20	Sediment Deposition Channel Flow Status	0-20	
6. Channel Alteration 0-20 0-	-1 19	6. Channel Alteration	0-20 0-1		6. Channel Alteration	0-20	0-1	6. Channel Alteration	0-20 0-1	6. Channel Alteration	0-20 0-1	
7. Frequency of Riffles (or bends) 0-20	4	7. Channel Sinuosity	0-20		7. Frequency of Riffles (or bends)	0-20		7. Frequency of Riffles (or bends)	0-20	7. Frequency of Riffles (or bends)	0-20	
8. Bank Stability (LB & RB) 0-20	18	8. Bank Stability (LB & RB)	0-20		8. Bank Stability (LB & RB)	0-20		8. Bank Stability (LB & RB)	0-20	8. Bank Stability (LB & RB)	0-20	
9. Vegetative Protection (LB & RB) 0-20	18	Vegetative Protection (LB & RB)	0-20		9. Vegetative Protection (LB & RB)	0-20		9. Vegetative Protection (LB & RB)	0-20	9. Vegetative Protection (LB & RB)	0-20	
10. Riparian Vegetative Zone Width (LB & RB) 0-20	18	10. Riparian Vegetative Zone Width (LB & RB)	0-20		 Riparian Vegetative Zone Width (LB & RB) 	0-20		 Riparian Vegetative Zone Width (LB & RB) 	0-20	 Riparian Vegetative Zone Width (LB & RB) 	0-20	
Total RBP Score Suboptima		Total RBP Score	Poor 0		Total RBP Score	Poor	0	Total RBP Score	Poor 0	Total RBP Score	Poor	0
Sub-Total CHEMICAL INDICATOR (Applies to Intermittent and Perennial S	0.725 Streams)	Sub-Total CHEMICAL INDICATOR (Applies to Intermittent	and Perennial Streams)		Sub-Total CHEMICAL INDICATOR (Applies to Intermit	ent and Perennia	Streams)	Sub-Total CHEMICAL INDICATOR (Applies to Intermitten	t and Perennial Streams)	Sub-Total CHEMICAL INDICATOR (Applies to Intermitten	and Perennial Streams	18)
WVDEP Water Quality Indicators (General)		WVDEP Water Quality Indicators (General)			WVDEP Water Quality Indicators (Gener	al)		WVDEP Water Quality Indicators (General)		WVDEP Water Quality Indicators (General		
Specific Conductivity		Specific Conductivity			Specific Conductivity			Specific Conductivity		Specific Conductivity		
0.90	188		0-90			0-90			0-90		0-90	
100-199 - 85 points		nH			nH			nH		nН		
0-80	6.9		5-90 0-1			5-90	0-1		5-90 0-1		5-90 0-1	
6.0-8.0 = 80 points	0.3		5-30			5-50			5-50		5-50	
DO		DO			DO			DO		DO		
>5.0 = 30 points	7.6		10-30			10-30			10-30		10-30	
Sub-Total	0.975	Sub-Total	0		Sub-Total		0	Sub-Total	0	Sub-Total		0
BIOLOGICAL INDICATOR (Applies to Intermittent and Perennis	ial Streams)	BIOLOGICAL INDICATOR (Applies to Intermitte	ent and Perennial Streams)		BIOLOGICAL INDICATOR (Applies to Inte	rmittent and Per	ennial Streams)	BIOLOGICAL INDICATOR (Applies to Interm	ittent and Perennial Streams)	BIOLOGICAL INDICATOR (Applies to Interm	ittent and Perennial S	Streams)
WV Stream Condition Index (WVSCI)		WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)		WV Stream Condition Index (WVSCI)		
0-100 0-1	46.5		0-100 0-1			0-100	0-1	1	0-100 0-1		0-100 0-1	
Sub-Total	0.365	Sub-Total	0		Sub-Total		0	Sub-Total	0	Sub-Total	· · · · · ·	0
							"					
PART II - Index and Unit Score		PART II - Index and	Unit Score		PART II - Index a	nd Unit Score		PART II - Index and U	nit Score	PART II - Index and U	Init Score	
Index Linear Fee	et Unit Score	Index	Linear Feet Unit Score		Index	Linear Fe	eet Unit Score	Index	Linear Feet Unit Score	Index	Linear Feet	Unit Score
0.688 79	54.3783333	0	0 0		0	0	0	0	0 0	0	0	0
		Д			<u> </u>			<u> </u>		Щ	1	

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

STREAM NAME	LOCATION					
STATION # RIVERMILE	STREAM CLASS					
LAT LONG	RIVER BASIN					
STORET#	AGENCY					
INVESTIGATORS						
FORM COMPLETED BY	DATE	REASON FOR SURVEY				

WEATHER CONDITIONS SITE LOCATION/MAP	storm (heavy rain) rain (steady rain) Air Temperatu	re0 C
	Flow of pipeline	
	S-K94 ROW	ow of stream
STREAM CHARACTERIZATION	Stream Subsystem Perennial Intermittent Tidal Coldwater Stream Origin Glacial Spring-fed Non-glacial montane Mixture of origins Swamp and bog Other	Warmwater rakm²

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

WATERS FEATURI		Fores Field/ Agric	Pasture Industr	ercial	No evidence Sor Obvious sources Local Watershed Erosi None Moderate	ne potential sources
RIPARIA VEGETA (18 meter	TION	Trees	e the dominant type an	Shrubs		erbaceous
INSTREA FEATURI		Estimat Samplin Area in Estimat	km² (m²x1000) ed Stream Depth Velocity	m m² km² m	Canopy Cover Partly open Part High Water Mark Proportion of Reach R Morphology Types Riffle % Pool	epresented by Stream Run% No
LARGE V DEBRIS	VOODY		of LWD	m ² /km ² (LWD/	reach area)	
AQUATIO VEGETA		Roote Floati Domin a	ed emergent Fing Algae A	Rooted submerge Attached Algae		Ü
WATER ((DS, US)	QUALITY	Specific Dissolve pH Turbidi	cature0 C Conductance ed Oxygen ty strument Used	_	Water Odors Normal/None Sewage Petroleum Fishy Water Surface Oils Slick Sheen None Other Turbidity (if not measu Clear □ Slightly tu Opaque Stained	Chemical Other Globs Flecks
SEDIMEN SUBSTRA		Odors Norm Chem Other Oils Abser	ical Anaerobic		are the undersides blac	Othereh are not deeply embedded,
INC	ORGANIC SUBS		COMPONENTS 00%)		ORGANIC SUBSTRATE C	
Substrate Type	Diamete	er	% Composition in Sampling Reach	Substrate Type	Characteristic	% Composition in Sampling Area
Bedrock	-			Detritus	sticks, wood, coarse plant materials (CPOM)	
Boulder	> 256 mm (10")				materials (CI OWI)	
Cobble	64-256 mm (2.5	"-10")		Muck-Mud	black, very fine organic (FPOM)	

Gravel

2-64 mm (0.1"-2.5")

HABITAT ASSESSMENT FIELD DATA SHEET - HG - USE ON ALL STREAMS (FRONT)

STREAM NAME	LOCATION					
STATION # RIVERMILE	STREAM CLASS					
LAT LONG	RIVER BASIN					
STORET#	AGENCY					
INVESTIGATORS						
FORM COMPLETED BY	DATE AM PM	REASON FOR SURVEY				

	Habitat		Condition	ı Category				
	Parameter	Optimal	Suboptimal	Marginal	Poor			
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.			
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
n sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0-25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.			
ted in	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/depth regime (usually slow-deep).			
ıram	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
Pa	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.			
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.			
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

	Habitat		Condition	n Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
oling reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.
samp	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.
e eva	SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
to be	SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0
Parameters	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
	SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.
	SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
ĺ	SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0

Total	Caama	
i otai	Score	

BENTHIC MACROINVERTEBRATE FIELD DATA SHEET

LOCATION Lewis County

STREAM CLASS Perennial

STREAM NAME S-K94 ROW

STATION#_

RIVERMILE_

LAT <u>38.167575</u>	LONG	-80.5	78144			R	IVI	ER E	BASIN	1											
STORET#							AGE	ENC'	ÝWV	DEP											
INVESTIGATORS AE I	AE KY												I	TO	NUMBER						
FORM COMPLETED B	^{BY} K	Y					OAT 'IM		09-13-2 1345	1			F	REAS	SON FOR SURVEY Baseline As					sme	ent
l l	Indica ☑Cob □Subi	ble_90) _ 0	%	□Sr	ags	s			ÌŪν	ege			KS	%	1d %	<u>%</u>				
SAMPLE	Gear used □D-frame ☑kick-net □Other																				
COLLECTION	How w									vadin	~	_	fron	a har	ılı 🗆 🗆 fron	m boat					
	110W W	vere i	the S	ашр	es coi	iec	icu:	•	٠ ك	vaum	g	_	HOL	ii bai		III boat					
	Indica ✓ Cob ☐ Subi	ble 4			$\prod S_1$	nags	S	s tal	cen in	\square	ege	bitat tated Other	Banl	• cs	Sar	1d	-				
															mg/L, pH mg/L, pH						
QUALITATIVE LIS											1	D		_	2. 4	l	4				
Indicate estimated a Dominant	iounda	ance	: U						serve	ea, 1				= C	ommon, 3= A	.bunda				2	4
Dominant Periphyton	iound:	ance	:: U	0	1	2	3	4	serve	ea, 1	Sli	mes				.bunda	0	1	2	3	4
Periphyton Filamentous Algae	iound:	ance	: U	0	1	2 2	3	4 4		ea, 1	Sli Ma	mes acroi				Dunga	0 0	1 1	2 2	3	4
Dominant Periphyton	iounda	ance	: U	0	1	2	3	4 4	serve	ea, 1	Sli	mes acroi				Dunga	0	1	2		
Periphyton Filamentous Algae	ΓIONS	5 ОБ	Γ Μ Α	0 0 0 ACR	1 1 1 OBE	2 2 2 EN:	3 3 3 FH	4 4 4 OS	serv	ed,	Sli Ma Fis	mes icroi h	nvei	rtebi	ates	= Comi	0 0 0	1 1 1	2 2 2	3 3	4
Periphyton Filamentous Algae Macrophytes FIELD OBSERVAT Indicate estimated a	ΓΙΟΝS abund:	3 OF ance	3	0 0 0 ACR 0 = A	1 1 1 OBF Absernism	2 2 2 2 nt/[s),	3 3 3 TH Not 3=	4 4 4 OS • Ob Ab	serv	ed, ant (2	Sli Ma Fis 1 = >10	mes acroi h Rar org	nvere (1-anis	-3 o ms)	rganisms), 2 = , 4 = Dominar	= Comi nt (>50	0 0 0	1 1 1 1 (3-	2 2 2 2-9 iism	3 3	4
Periphyton Filamentous Algae Macrophytes FIELD OBSERVAT Indicate estimated a Porifera Hydrozoa	ΓΙΟΝS abunda 0 1 0 1	2 2	3 3	0 0 0 0 ACR 0 = A porga	1 1 1 OBE Absernism	2 2 2 2 2 1t/I s),	3 3 3 TH Not 3=	4 4 4 OS Ob Ab	serv	ed, ant (3	Sli Ma Fis 1 = >10	mes acroi h Rar org	ree (11 anis	-3 o ms)	rganisms), 2 = , 4 = Dominar Chironomidae Ephemeropte	= Comi nt (>50 e ra	0 0 0 mor	1 1 1 1 (3-regan	2 2 2 2-9 1ism 2 2	3 3 3 3	4 4 4 4
Periphyton Filamentous Algae Macrophytes FIELD OBSERVAT Indicate estimated a Porifera Hydrozoa Platyhelminthes	ΓΙΟΝS abund: 0 1 0 1 0 1	2 2 2	3 3 3	0 0 0 0 ACR 0 = A 4 4 4 4	1 1 1 OBE Absernism Anis Zygg Henr	2 2 2 2 2 mt/f s),	3 3 3 TH Not 3= tera era	4 4 4 OS • Ob Ab	serv	ed, ant (3	Sli Ma Fis 1 = 10 1 1 1 1	mes acroi	anis	-3 o ms)	rganisms), 2 = , 4 = Dominar Chironomidae Ephemeropte Trichoptera	= Comi nt (>50 e ra	0 0 0	1 1 1 1 1 1 1	2 2 2 2 2 2 2 2	3 3 3 3 3	4 4 4 4
Periphyton Filamentous Algae Macrophytes FIELD OBSERVAT Indicate estimated a Porifera Hydrozoa Platyhelminthes Turbellaria	O 1 0 1 0 1 0 1 0 1	2 2 2 2 2	3 3 3 3	0 0 0 0 ACR 0) = A 4 4 4 4 4	1 1 1 COBFAbsernism Anis Zygg Hem Cold	2 2 2 2 2 ENT nt/f s), sop	3 3 3 TH Not 3= tera era tera tera	4 4 4 OS Ob Ab	serv	ed, ant (2	Sli Ma Fis 1 = >10	mes neroi h Rar org	re (1 anis	-3 o ms)	rganisms), 2 = , 4 = Dominar Chironomidae Ephemeropte	= Comi nt (>50 e ra	0 0 0 mor	1 1 1 1 (3-regan	2 2 2 2-9 1ism 2 2	3 3 3 3	4 4 4 4
Periphyton Filamentous Algae Macrophytes FIELD OBSERVAT Indicate estimated a Porifera Hydrozoa Platyhelminthes Turbellaria Hirudinea	0 1 0 1 0 1 0 1 0 1	2 2 2 2 2 2	3 3 3 3 3	0 0 0 0 ACR 4 4 4 4 4 4 4	1 1 1 COBE Absernism Anis Zygg Hem Cole	2 2 2 2 ENT sop	3 3 3 TH Not 3= tera era tera tera	4 4 4 OS Ob Ab	serv	ed, ant (3	Sli Ma Fis 1 = >10	mes acroichh Rar org 2 2 2 2 2	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	-3 o ms) 4 4 4 4	rganisms), 2 = , 4 = Dominar Chironomidae Ephemeropte Trichoptera	= Comi nt (>50 e ra	0 0 0	1 1 1 1 1 1 1	2 2 2 2 2 2 2 2	3 3 3 3 3	4 4 4 4
Periphyton Filamentous Algae Macrophytes FIELD OBSERVAT Indicate estimated a Porifera Hydrozoa Platyhelminthes Turbellaria Hirudinea Oligochaeta	0 1 0 1 0 1 0 1 0 1 0 1 0 1	2 2 2 2 2 2 2	3 3 3 3 3 3	0 0 0 0 ACR 0 = A 4 4 4 4 4 4 4 4 4 4	1 1 1 OBE Absernism Anism Cole Lepi Siali	2 2 2 2 2 2 1t/I s), sop opt opt do	3 3 3 TH Not 3= tera tera tera ptera	4 4 4 OS Ob Ab	serv	ed, ant (2)	Sli Ma Fis 1 = 10 1	Rar org	3 3 3 3 3 3 3	-3 o ms) 4 4 4 4 4 4	rganisms), 2 = , 4 = Dominar Chironomidae Ephemeropte Trichoptera	= Comi nt (>50 e ra	0 0 0	1 1 1 1 1 1 1	2 2 2 2 2 2 2 2	3 3 3 3 3	4 4 4 4
Periphyton Filamentous Algae Macrophytes FIELD OBSERVAT Indicate estimated a Porifera Hydrozoa Platyhelminthes Turbellaria Hirudinea Oligochaeta Isopoda	O 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	2 2 2 2 2 2 2 2	3 3 3 3 3 3 3	0 0 0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1 1 1 OBF Absernism Aniss Zygg Hem Cole Lepi Siali Cory	2 2 2 2 ENT sop opt nipt ecop ida yda	3 3 3 TH Not 3= tera era tera tera ptera	4 4 4 OS Ob Ab	serv	ed, ant (3	Slii Ma Fis 1 = >10 1	Rar org	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	-3 o ms) 4 4 4 4 4 4	rganisms), 2 = , 4 = Dominar Chironomidae Ephemeropte Trichoptera	= Comi nt (>50 e ra	0 0 0	1 1 1 1 1 1 1	2 2 2 2 2 2 2 2	3 3 3 3 3	4 4 4 4
Periphyton Filamentous Algae Macrophytes FIELD OBSERVAT Indicate estimated a Porifera Hydrozoa Platyhelminthes Turbellaria Hirudinea Oligochaeta Isopoda Amphipoda	0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	2 2 2 2 2 2 2 2 2	3 3 3 3 3 3 3 3	0 0 0 0 ACR 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1 1 1 1 1 COBE Absernism Aniss Zygg Hem Cole Lepi Siali Cory Tipu	2 2 2 2 2 2 2 2 2 3 3 5 5 5 6 7 6 7 7 8 7 9 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9	3 3 3 TH Not 3= tera tera tera ptera	4 4 4 OS Ob Ab	serv	ed, o o o o o o o o o o o o o o o o o o o	Sli Ma Fis 1 = 10 1	mes acroi h Rar org 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	-3 o ms) 4 4 4 4 4 4 4	rganisms), 2 = , 4 = Dominar Chironomidae Ephemeropte Trichoptera	= Comi nt (>50 e ra	0 0 0	1 1 1 1 1 1 1	2 2 2 2 2 2 2 2	3 3 3 3 3	4 4 4 4
Periphyton Filamentous Algae Macrophytes FIELD OBSERVAT Indicate estimated a Porifera Hydrozoa Platyhelminthes Turbellaria Hirudinea Oligochaeta Isopoda Amphipoda Decapoda	0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	2 2 2 2 2 2 2 2 2 2 2 2	3 3 3 3 3 3 3 3 3	0 0 0 0 ACR 0 = A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1 1 1 OBBAbser nism Aniss Zygg Hem Cole Lepi Siali Cory Tipu Emp	2 2 2 2 2 2 2 1t/I s), sop opt eop ido ida vda ulid	3 3 3 TH Not 3= tera tera tera tera tera tera tera tera	4 4 4 4 OS Ob Ab	serv	ed, ant (3	Sli Ma Fis 1 = >10	Rar org	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	-3 o ms) 4 4 4 4 4 4 4 4	rganisms), 2 = , 4 = Dominar Chironomidae Ephemeropte Trichoptera	= Comi nt (>50 e ra	0 0 0	1 1 1 1 1 1 1	2 2 2 2 2 2 2 2	3 3 3 3 3	4 4 4 4
Periphyton Filamentous Algae Macrophytes FIELD OBSERVAT Indicate estimated a Porifera Hydrozoa Platyhelminthes Turbellaria Hirudinea Oligochaeta Isopoda Amphipoda Decapoda Gastropoda	0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	2 2 2 2 2 2 2 2 2	3 3 3 3 3 3 3 3	0 0 0 0 ACR 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1 1 1 1 1 COBE Absernism Aniss Zygg Hem Cole Lepi Siali Cory Tipu	2 2 2 2 2 2 2 2 3 3 5 5 5 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 3 3 TH Not 3= tera era tera tera elidae idae idae	4 4 4 4 OS Ob Ab	serv	ed, o o o o o o o o o o o o o o o o o o o	Sli Ma Fis 1 = 10 1	mes acroi h Rar org 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	-3 o ms) 4 4 4 4 4 4 4	rganisms), 2 = , 4 = Dominar Chironomidae Ephemeropte Trichoptera	= Comi nt (>50 e ra	0 0 0	1 1 1 1 1 1 1	2 2 2 2 2 2 2 2	3 3 3 3 3	4 4 4 4

Ephemeroptera	•	•	41 Odonata			•	2	Crustacea			0
Ameletidae		2	0	Aeshnidae		3	0	Asellidae		7	0
Baetidae	38	4	152	Calopterygidae		6	0	Cambaridae		5	0
Beatiscidae		4	0	Coenagrionidae		7	0	Gammaridae		5	0
Caenidae		5	0	Cordulegastridae		3	0	Palaemonidae		5	0
Ephemerellidae	1	3	3	Gomphidae	2	5	10	Annelida			0
Ephemeridae		5	0	Lestidae		7	0	Hirudinea		10	0
Heptageniidae	2	3	6	Libellulidae		7	0	Nematoda		10	0
Isonychiidae		3	0	Coleoptera			21	Nematomorpha		10	0
Leptophlebiidae		4	0	Chrysomelidae		7	0	Oligochaeta		10	0
Potamanthidae		5	0	Dryopidae		5	0	Turbellaria			0
Siphlonuridae		3	0	Dytiscidae		6	0	Turbellaria		7	0
Tricorythidae		5	0	Elmidae	18	4	72	Bivalvia			0
Plecoptera			2	Gyrinidae		5	0	Corbiculidae		6	0
Capniidae		2	0	Haliplidae		7	0	Sphaeriidae		5	0
Chloroperlidae		2	0	Hydrophilidae	1	7	7	Unionidae		4	0
Leuctridae		2	0	Psephenidae	2	3	6	Gastropoda			0
Nemouridae		2	0	Ptilodactylidae		5	0	Ancylidae		7	0
Peltoperlidae		1	0	Hemiptera			0	Hydrobiidae		4	0
Perlidae		1	0	Belostomatidae		8	0	Physidae		7	0
Perlodidae	2	1	2	Corixidae		8	0	Planorbidae		5	0
Pteronarcyidae		1	0	Gerridae		10	0	Pleuroceridae		5	0
Taeniopterygidae		2	0	Hydrometridae		8	0	Viviparidae		5	0
Trichoptera			15	Nepidae		8	0	Miscellaneous			0
Brachycentridae		2	0	Notonectidae		8	0	Collembola		6	0

Count Tolerance

TV

Non-Insects

Count Tolerance

5

0

TV

SITE ID:	S-K94 ROW
	9/13/2021

Helicopsychidae		3	U	Corydalidae		3	U	Neuroptera		5	0	1	
Hydropsychidae		5	0	Sialidae	1	6	6	Hydrachnidae		6	0		
Hydroptilidae		3	0	Diptera			98	Total number 180					
Lepidostomatidae		3	0	Athericidae		3	0	Totals Total families 14			14	1	
Leptoceridae		3	0	Blephariceridae		2	0	Metric calculations					
Limnephilidae		4	0	Ceratopogonidae		8	0	Additional metrics			l metrics		
Molannidae		3	0	Chironomidae	91	9	819	WVSCI Metric Scores Ephemeroptera Taxa 3				3	
Philopotamidae		4	0	Culicidae	3	10	30	Total Taxa 14		14	63.6	Plecoptera Taxa	1
Phryganeidae	15	4	60	Dixidae		6	0	EPT Taxa		5	38.5	Trichoptera Taxa	1
Polycentropodidae		5	0	Empididae		7	0	% EPT Abunda	ance	32.2	36.1	Long-lived Taxa	8
Psychomiidae		4	0	Psychodidae		8	0	% Chironomi	dae	50.6	50.3	Odonata Taxa	1
Rhyacophilidae		3	0	Ptychopteridae		8	0	Hilsenhoff Biotic In	dex (HBI)	6.65	45.3	Diptera Taxa	4
Uenoidae		2	0	Simuliidae		7	0	% 2 Dominant	Taxa	71.7	45.2	COET Taxa	8
Total Tolerance Value 1197		Stratiomyidae		10	0	% Sensitive		% Sensitive	3.9				
West Virginia Stream Condition Index (WVSCI)		Syrphidae		10	0	WV Stream Condition Index ### Stream Condition Index WV Stream Condition Index		% Tolerant	53.9				
Gerritson, J., J. Burton, and M.T. Barbour. 2000. A stream		Tabanidae	2	7	14			13.9					
condition index for West Virginia wadeable streams. Tetra Tech, Inc. Owing Mills, MD.		Tipulidae	2	5	10			0.0					

1

Lepidoptera

Neuroptera

Spreadsheet uses updated Best Standard Values [BSV] for each metric per WVSCI Addenda dated March 23, 2010

Insects

Glossosomatidae

Helicopsychidae

Count Tolerance

TV

Insects

Megaloptera

Corydalidae

2

3

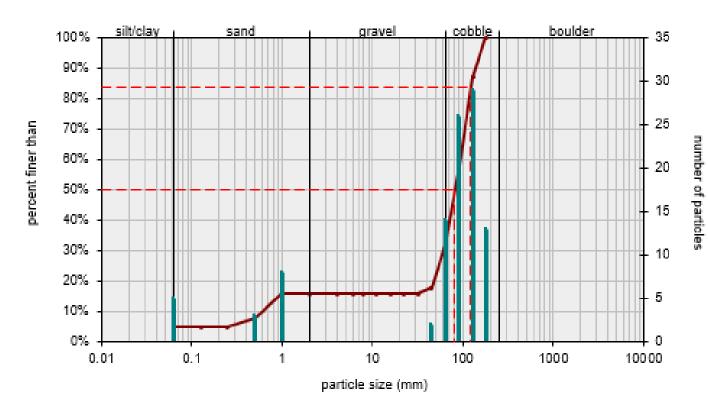
0

WOLMAN PEBBLE COUNT FORM

Basin:

County: Lewis Stream ID: S-K94 ROW

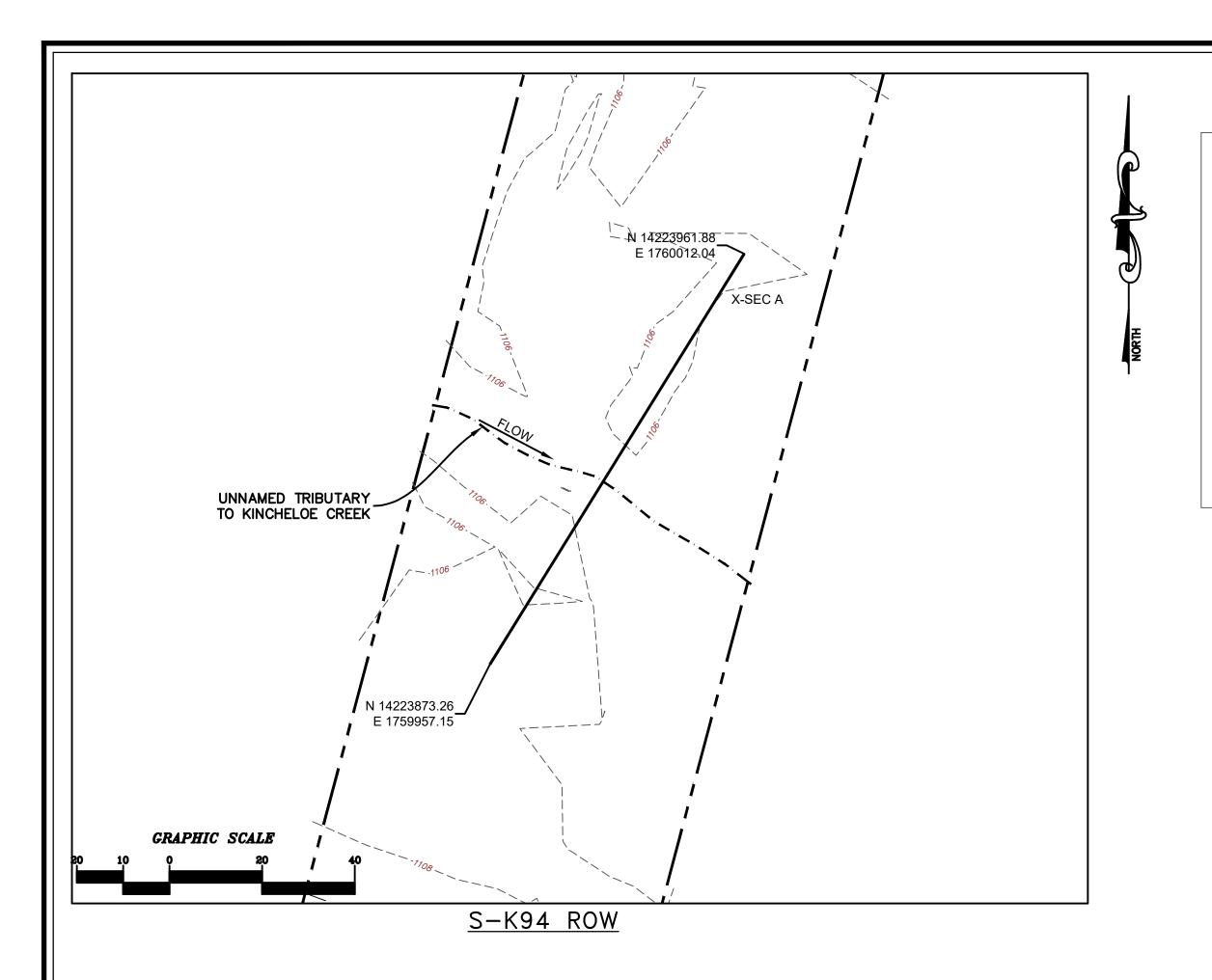
Stream Name: Kincheloe Creek ROW

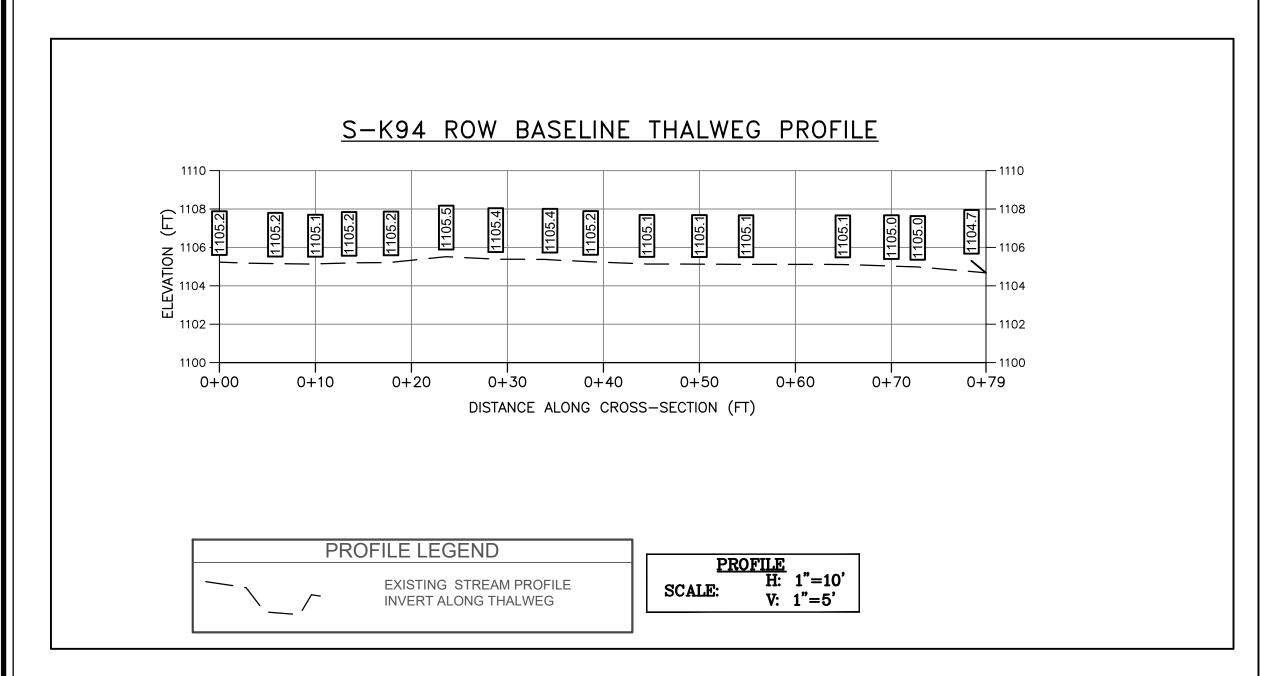

HUC Code:

Survey Date: 8/31/2021

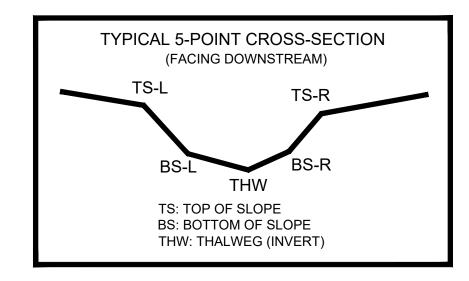
Surveyors: DP VM HK Impact Reach: 23 m

Type: Bankfull Channel


			LE COUNT			1	
Inches	PARTICLE	Millimeters		Particle Count	Total #	Item %	% Cun
	Silt/Clay	< .062	S/C	A	5	5.00	5.00
	Very Fine	.062125		A	0	0.00	5.00
	Fine	.12525	1	•	0	0.00	5.00
	Medium	.255	SAND	^	3	3.00	8.00
	Coarse	.50-1.0	1	•	8	8.00	16.00
.0408	Very Coarse	1.0-2		•	0	0.00	16.00
.0816	Very Fine	2 -4		•	0	0.00	16.00
.1622	Fine	4 -5.7	1	A	0	0.00	16.00
.2231	Fine	5.7 - 8	1	^	0	0.00	16.00
.3144	Medium	8 -11.3	GRAVEL	^	0	0.00	16.00
.4463	Medium	11.3 - 16		^	0	0.00	16.00
.6389	Coarse	16 -22.6		^	0	0.00	16.00
.89 - 1.26	Coarse	22.6 - 32		A	0	0.00	16.00
1.26 - 1.77	Vry Coarse	32 - 45		*	2	2.00	18.00
1.77 -2.5	Vry Coarse	45 - 64	1	*	14	14.00	32.00
2.5 - 3.5	Small	64 - 90		*	26	26.00	58.00
3.5 - 5.0	Small	90 - 128	1	^	29	29.00	87.00
5.0 - 7.1	Large	128 - 180	COBBLE	*	13	13.00	100.00
7.1 - 10.1	Large	180 - 256	1	^	0	0.00	100.00
10.1 - 14.3	Small	256 - 362		*	0	0.00	100.00
14.3 - 20	Small	362 - 512		^	0	0.00	100.00
20 - 40	Medium	512 - 1024	BOULDER	A	0	0.00	100.00
40 - 80	Large	1024 -2048		A	0	0.00	100.00
80 - 160	Vry Large	2048 -4096	1	A	0	0.00	100.00
	Bedrock		BDRK	A	0	0.00	100.00
				Totals:	100		



Size (mm)					
D16	1				
□35	67				
□50	81				
□65	98				
□84	120				
□95	160				


Size Distribution				
mean	11.0			
dispersion	41.2			
skewness	-0.60			

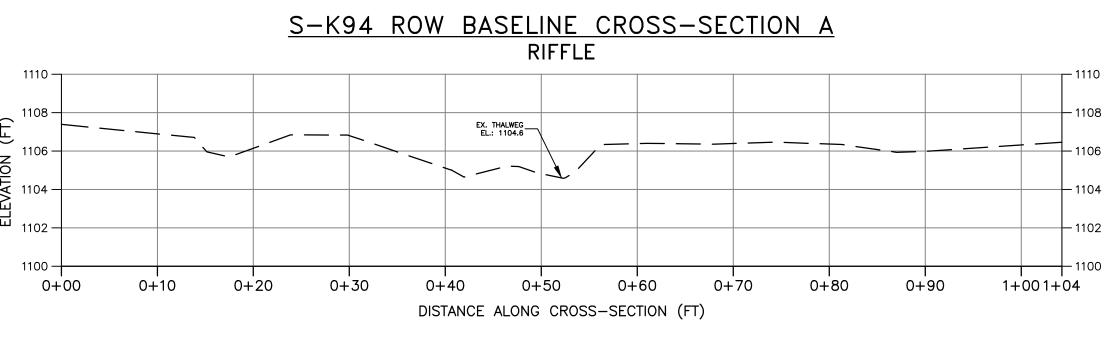
Туре						
silt/clay	5%					
sand	11%					
gravel	16%					
cobble	68%					
boulder	0%					

AS-BUILT TABLE: S-K94 ROW CROSS SECTION A						
	PI	AS-BUILT				
PT. LOC.	NORTHING	EASTING	ELEV	VERT. DIFF.	HORZ. DIFF.	
TS-L	14223910.7900	1759973.90001	1106.209'			
BS-L	14223911.5900	1759974.54901	1105.627'			
THW	14223915.1200	1759975.5980'	1105.357'			
BS-R	14223920.3700	1759981.8770	1104.566'			
TS-R	14223921.7500	1759982.23601	1104.941'			

SURVEY NOTES:

LEGEND


STUDY AREA (EASEMENT)


1176.87 十

EXISTING SURVEY-LOCATED THALWEG

EXISTING SURVEYED GROUND SHOT ELEVATION

- 1. THIS MAP HAS BEEN ORIENTED TO NAD 1983 UTM ZONE 17N, AND VERTICALLY TO THE NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD 88), USING REAL TIME DGPS. FIELD LOCATIONS WERE COMPLETED ON AUGUST 31, 2021.
- 2. EASEMENT LINES SHOWN ON PLAN VIEW WERE PROVIDED BY MOUNTAIN VALLEY PIPELINE.
- 3. SURVEY POINTS FOR CROSS SECTIONS AND THALWEG PROFILES COLLECTED IN 2021 HAVE BEEN USED IN COMBINATION WITH SURVEY POINTS COLLECTED PREVIOUSLY IN 2020 IN ORDER TO GENERATE THE PRE-CROSSING SURFACE SHOWN IN PLAN. DUE TO NATURAL EROSIONAL STREAM PROCESSES THAT CAN OCCUR OVER TIME, MINOR ADJUSTMENTS TO THE PROFILE ALIGNMENTS MAY HAVE BEEN REQUIRED IN ORDER TO GENERATE A CLEAN PRE-CROSSING SURFACE.
- 4. ALL SECTION VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.
- 5. POST-CROSSING SURVEY INFORMATION SHOWN IN RED. DATA PENDING.
- 6. POST-CROSSING SURVEY POINTS FOR CROSS SECTIONS AND THALWEG ARE PROJECTED ONTO PRE-CROSSING SECTION AND PROFILE VIEWS FOR COMPARISON.

CROSS SECTION LEGEND — EXISTING GRADE CROSS SECTION

H: 1"=10'
V: 1"=5'

NOTE: ALL SECTIONS VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.

PRE-CROSSING PHOTOS

PHOTO TAKEN LOOKING DOWNSTREAM FROM UPSTREAM IMPACT LIMITS

PHOTO TAKEN LOOKING UPSTREAM FROM DOWNSTREAM IMPACT LIMITS

POST-CROSSING PHOTOS

PENDING CROSSING

PHOTO TAKEN LOOKING DOWNSTREAM FROM UPSTREAM IMPACT LIMITS

PENDING CROSSING

PHOTO TAKEN LOOKING UPSTREAM FROM DOWNSTREAM IMPACT LIMITS

PRE-CROSSING

CAD File No.

Drawing No