Baseline Assessment – Stream Attributes

Reach S-O5 (Timber Mat Crossing) Ephemeral Spread D Webster County, West Virginia

Data	Included
Photos	✓
SWVM Form	✓
FCI Calculator and HGM Form	✓
RBP Physical Characteristics Form	✓
Water Quality Data	N/A – No flow
RBP Habitat Form	✓
RBP Benthic Form	✓
Benthic Identification Sheet	N/A – No flow
Wolman Pebble Count	✓
Reference Reach Software Pebble Count Data	√
Longitudinal Profile and Cross Sections	✓

Spread D Stream S-O5 (Timber Mat Crossing) Webster County



Photo Type: DS, US View
Location, Orientation, Photographer Initials: Downstream Edge of ROW, Upstream View, RC/CC
Lat: 38.482251 Long: -80.555499

Photo Type: DS, DS View Location, Orientation, Photographer Initials: Downstream Edge of ROW, Downstream View, RC/CC Lat: 38.482251 Long: -80.555499

Spread D Stream S-O5 (Timber Mat Crossing) Webster County

Photo Type: US View at Center Location, Orientation, Photographer Initials: Center ROW, Upstream View, RC/CC Lat: 38.482251 Long: -80.555499

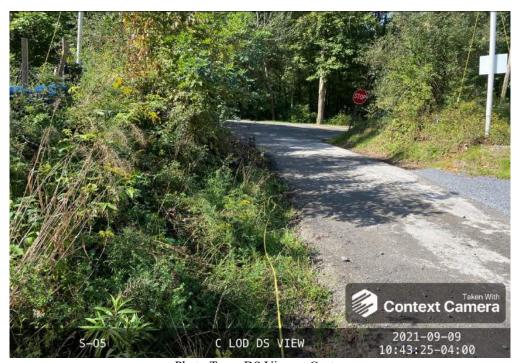


Photo Type: DS View at Center Location, Orientation, Photographer Initials: ROW Center, Downstream View, RC/CC Lat: 38.482251 Long: -80.555499

Spread D Stream S-O5 (Timber Mat Crossing) Webster County

Photo Type: US, US View
Location, Orientation, Photographer Initials: Upstream Edge of ROW, Upstream View, RC/CC
Lat: 38.482251 Long: -80.555499

Photo Type: US, DS View Location, Orientation, Photographer Initials: Upstream Edge of ROW, Downstream View, RC/CC Lat: 38.482251 Long: -80.555499

USACE FILE NO./ Project Name: (v2.1, Sept 2015)		Mountain V	alley Pipeline	IMPACT COORDINATES: (in Decimal Degrees)	Lat.	38.482251	Lon.	-80.555499	WEATHER:	50% Cloud	Cover	DATE:	09/09	9/21
IMPACT STREAM/SITE ID (watershed size {acreage}.	AND SITE DESCRI , unaltered or impairments	IPTION:	S-	05		MITIGATION STREAM CL. (watershed size {	ASS./SITE ID AND acreage), unaltered or in					Comments:		
STREAM IMPACT LENGTH:	22	FORM OF MITIGATION:	RESTORATION (Levels I-III)	MIT COORDINATES: (in Decimal Degrees)	Lat.		Lon.		PRECIPITATION PAST 48 HRS:			Mitigation Length:		
Column No. 1- Impact Existing	g Condition (Debit)		Column No. 2- Mitigation Existing Co	ondition - Baseline (Credit)	•	Column No. 3- Mitigati Post Com	ion Projected at Fiv pletion (Credit)	Years	Column No. 4- Mitigation Proj Post Completion (Column No. 5- Mitigation Projecte	ed at Maturity (C	Credit)
Stream Classification:	Ephemera	al	Stream Classification:			Stream Classification:		0	Stream Classification:	0		Stream Classification:	•	0
Percent Stream Channel SI	lope	4.7	Percent Stream Channel Sig	ppe		Percent Stream Chan	nel Slope	0	Percent Stream Channel SI	оре ()	Percent Stream Channel SI	ope	0
HGM Score (attach d	lata forms):		HGM Score (attach o	data forms):		HGM Score (a	ttach data forms):		HGM Score (attach d	ata forms):		HGM Score (attach da	ita forms):	
	А	Average		Average				Average		Ave	rage			Average
Hydrology	0.12		Hydrology			Hydrology			Hydrology			Hydrology		
Biogeochemical Cycling Habitat	0.16 0.05	0.11	Biogeochemical Cycling Habitat	0		Biogeochemical Cycling Habitat		0	Biogeochemical Cycling Habitat	- '	,	Biogeochemical Cycling Habitat		0
PART I - Physical, Chemical and	Biological Indicators	S	PART I - Physical, Chemical and	d Biological Indicators		PART I - Physical, Chemi	ical and Biological I	ndicators	PART I - Physical, Chemical and	Biological Indicators		PART I - Physical, Chemical and	Biological Indica	ators
	Points Scale Range	Site Score		Points Scale Range Site Score			Points Scale Ran	pe Site Score		Points Scale Range Site :	Boore		Points Scale Range	Site Score
PHYSICAL INDICATOR (Applies to all streams	s classifications)		PHYSICAL INDICATOR (Applies to all streams of	classifications)		PHYSICAL INDICATOR (Applies to all s	treams classifications)	•	PHYSICAL INDICATOR (Applies to all streams	s classifications)		PHYSICAL INDICATOR (Applies to all streams	classifications)	
USEPA RBP (High Gradient Data Sheet)			USEPA RBP (Low Gradient Data Sheet)			USEPA RBP (High Gradient Data Sh	eet)		USEPA RBP (High Gradient Data Sheet)			USEPA RBP (High Gradient Data Sheet)		
Epifaunal Substrate/Available Cover	0-20	0	Epifaunal Substrate/Available Cover	0-20		Epifaunal Substrate/Available Cover			Epifaunal Substrate/Available Cover	0-20		Epifaunal Substrate/Available Cover	0-20	
Embeddedness Velocity/ Depth Regime	0-20	0	Pool Substrate Characterization Pool Variability	0-20		Embeddedness Velocity/ Depth Regime	0-20		Embeddedness Velocity/ Depth Regime	0-20		Embeddedness Velocity/ Depth Regime	0-20	
Velocity Depth Regime Sediment Deposition	0-20	1	Pool Variability Sediment Deposition	0-20		Velocity Depth Regime Sediment Deposition	0-20		Velocity Depth Regime Sediment Deposition	0-20		Velocity/ Depth Regime Sediment Deposition	0-20	
5. Channel Flow Status	0-20 0.1	0	5. Channel Flow Status	0-20 0.1		5. Channel Flow Status	0-20		5. Channel Flow Status	0-20		5. Channel Flow Status	0-20	
6. Channel Alteration	0-20	2	6. Channel Alteration	0-20		6. Channel Alteration	0-20		6. Channel Alteration	0-20		6. Channel Alteration	0-20	
7. Frequency of Riffles (or bends)	0-20	0	7. Channel Sinuosity	0-20		7. Frequency of Riffles (or bends)	0-20		7. Frequency of Riffles (or bends)	0-20		7. Frequency of Riffles (or bends)	0-20	
8. Bank Stability (LB & RB)	0-20	15	8. Bank Stability (LB & RB)	0-20		8. Bank Stability (LB & RB)	0-20		8. Bank Stability (LB & RB)	0-20		8. Bank Stability (LB & RB)	0-20	
Vegetative Protection (LB & RB)	0-20	5	Vegetative Protection (LB & RB)	0-20		9. Vegetative Protection (LB & RB)	0-20		9. Vegetative Protection (LB & RB)	0-20		Vegetative Protection (LB & RB)	0-20	
Riparian Vegetative Zone Width (LB & RB) Total RBP Score	0-20 Poor	27	Riparian Vegetative Zone Width (LB & RB) Total RBP Score	0-20 0		 Riparian Vegetative Zone Width (LB & Total RBP Score 	RB) 0-20	0	Riparian Vegetative Zone Width (LB & RB) Total RBP Score	0-20 Poor	0	10. Riparian Vegetative Zone Width (LB & RB) Total RBP Score	0-20 Poor	0
Sub-Total		0.225	Sub-Total	0		Sub-Total	POOI	0	Sub-Total		n	Sub-Total	Pool	0
CHEMICAL INDICATOR (Applies to Intermitter			CHEMICAL INDICATOR (Applies to Intermittent			CHEMICAL INDICATOR (Applies to Inte	ermittent and Perennial		CHEMICAL INDICATOR (Applies to Intermitter		•	CHEMICAL INDICATOR (Applies to Intermitten	t and Perennial Str	
WVDEP Water Quality Indicators (General	n		WVDEP Water Quality Indicators (General)			WVDEP Water Quality Indicators (Ge	eneral)		WVDEP Water Quality Indicators (General	n		WVDEP Water Quality Indicators (General)		
Specific Conductivity			Specific Conductivity			Specific Conductivity			Specific Conductivity			Specific Conductivity		
100-199 - 85 points	0-90			0-90			0-90			0-90			0-90	
pH	0.1		pH	0.1		pH			pH	0.1		pH	0.1	
5.6-5.9 = 45 points	0-80			5-90			5-90			5-90			5-90	
DO			DO			DO			DO			DO		
	10-30			10-30			10-30			10-30			10-30	
Sub-Total			Sub-Total	0		Sub-Total		0	Sub-Total		0	Sub-Total		0
BIOLOGICAL INDICATOR (Applies to Intermit	ttent and Perennial Stream	ms)	BIOLOGICAL INDICATOR (Applies to Intermitte	nt and Perennial Streams)		BIOLOGICAL INDICATOR (Applies to	Intermittent and Pere	nnial Streams)	BIOLOGICAL INDICATOR (Applies to Interm	nittent and Perennial Strea	ms)	BIOLOGICAL INDICATOR (Applies to Interm	ittent and Perenni	ial Streams)
WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)		WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)		
0	0-100 0-1			0-100 0-1			0-100 0-	1		0-100 0-1			0-100 0-1	
Sub-Total	<u> </u>	0	Sub-Total	0		Sub-Total		0	Sub-Total	<u> </u>	0	Sub-Total		0
PART II - Index and U	Unit Score		PART II - Index and	Unit Score		PART II - Inde	ex and Unit Score		PART II - Index and U	Init Score		PART II - Index and U	nit Score	
Index	Linear Feet Ur	nit Score	Index	Linear Feet Unit Score		Index	Linear Fee	t Unit Score	Index	Linear Feet Unit	Score	Index	Linear Feet	Unit Score
0.311	22 (6.8475	0	0 0		0	0	0	0	0	0	0	0	0
μ	1					μ				·	—	ĮL.		1

FCI Calculator for the High-Gradient Headwater Streams in Appalachia

To ensure accurate calculations, the <u>UPPERMOST STRATUM</u> of the plant community is determined based on the calculated value for V_{CCANOPY} (≥20% cover is required for tree/sapling strata). Go to the SAR Data Entry tab and enter site characteristics and data in the yellow cells. For information on determining how to split a project into SARs, see Chapter 5 of the Operational Draft Regional Guidebook for the Functional Assessment of High-Gradient Headwater Streams and Low-Gradient Perennial Streams in Appalachia (Environmental Laboratory U.S. Army Corps of Engineers 2017).

Project Name: MVP Stream Assessment **Location:** Webster County, Spread D

Sampling Date: 9/9/21 Project Site Before Project

Subclass for this SAR:

Ephemeral Stream

Uppermost stratum present at this SAR: SAR number: S-O5

Shrub/Herb Strata

Functional Results Summary: Enter Results in Section A of the Mitigation Sufficiency Calculator

Function	Functional Capacity Index
Hydrology	0.12
Biogeochemical Cycling	0.16
Habitat	0.05

Variable Measure and Subindex Summary:

Variable	Name	Average Measure	Subindex
V _{CCANOPY}	Percent canpoy over channel.	Not Used, <20%	Not Used
V _{EMBED}	Average embeddedness of channel.	1.20	0.17
V _{SUBSTRATE}	Median stream channel substrate particle size.	0.08	0.04
V_{BERO}	Total percent of eroded stream channel bank.	29.33	0.92
V_{LWD}	Number of down woody stems per 100 feet of stream.	0.00	0.00
V _{TDBH}	Average dbh of trees.	Not Used	Not Used
V _{SNAG}	Number of snags per 100 feet of stream.	0.00	0.10
V _{SSD}	Number of saplings and shrubs per 100 feet of stream.	100.00	1.00
V _{SRICH}	Riparian vegetation species richness.	0.00	0.00
V _{DETRITUS}	Average percent cover of leaves, sticks, etc.	6.25	0.08
V _{HERB}	Average percent cover of herbaceous vegetation.	24.38	0.32
V _{WLUSE}	Weighted Average of Runoff Score for Catchment.	0.20	0.21

Field Data Sheet and Calculator Team: RPC.COC Leastone Leasto				High-G		Headwa			-	а		
Project Names. MVP Sitema Assessment Location. Webster County, Sprand D SAR Number: S-05 Reach Length (ft): 75 Stream Type: Top Strats: Shrubriterb Strata (determined from percent calculated in V _{COUNCY}) Site and Timing. Project Site Velocity Response of the stream channel 1 V _{COUNCY} Average and the stream channel by the and saying campy. Measure at no fever than 10 mughly camps to the stream channel across the stream channel str		Team:	RFC,COC		rieiu L	Jala Sile	et and C			M Northing:	38.482251	
SAR Number: Top Strats: Shrub/Herb Strata (determined from percent calculated in V _{COMPCP}) Size and Timing Project Size In Voccomp Average percent cover over channel by tree and sapting canopy. Measure at no fewer than 10 roughly equidation points along the stream. Measure only if the designing cover is at least 20%. (If less than 20%, where it least on water or when the designing cover is at least 20%. (If less than 20%, where it least on water or when the designing cover is at least 20%. (If less than 20%, where it least on the value between the 40 for lingser 10 points along.) List the percent cover measurements at each point balow: Values Average periodications of the stream channel. Measure only if the designing cover is at least 20%. (If less than 20%, which is a considerable of the stream channel and the stream channel substrate particle size. Measure at no fewer than 30 roughly equidistant points and the ball properties and the stream channel substrate particle size. Measure at no fewer than 30 roughly equidistant points or controls as 0.0 in and or in a stream channel substrate particle size. Measure at no fewer than 30 roughly equidistant points or controls as 0.0 in and or in a stream channel substrate particle size. Measure at no fewer than 30 roughly equidistant points or stream channel and the stream channel substrate particle size. Measure at no fewer than 30 roughly equidistant p	Pro	oject Name:	MVP Strea	m Assessm	ent					-)
Site and Timing: Project Site Very Refere Project Refere		Location:	Webster C	ounty, Sprea	ad D				San	npling Date:	9/9/21	
Site and Timing: Project size Image Variables 1.4 In stream channel Variables 2.4 Variables	SA		0.00		• ()			Epine				•
Sample Variables 1-4 in stream channel 1 V _{CONOPY} Average percent cover over channel by tree and saping canopy. Measure at no fewer than 10 roughly volusidating prints along the stream. Measure only if techniquing cover is at least 20%. (If less than 20%, enter at least one value between 0 and 16 to trigger 1cp Strate choice.) 1 List the percent cover measurements at each point below. 2 Vitazero Average embeddedness of the stream channel. Measure at no fewer than 30 roughly equidistant points along the stream. Select a partials from the bad. Before moving it, determine the percentage of the stream channel and the selection of 1. If the bed is composed of bedrow, use a rating score of 1. If the bed is composed of bedrow, use a rating score of 1. If the bed is composed of bedrow, use a rating score of 1. If the bed is composed of bedrow, use a rating score of 1. If the bed is composed of bedrow, use a rating score of 1. If the bed is composed of bedrow, use a rating score of 1. If the bed is composed of bedrow, use a rating score of 1. If the bed is composed of bedrow, use a rating score of 1. If the bed is composed of bedrow, use a rating score of 1. If the bed is composed of bedrow, use a rating score of 1. If the bed is composed of bedrow, use a rating score of 1. If the bed is composed of bedrow, use a rating score of 1. If the bed is composed of bedrow, use a rating score of 1. If the bed is composed of bedrow, use a rating score of 1. If the bed is composed of bedrow, use a rating score of 1. If the bed is composed of 1. If the bed is composed of 1. If the bed is considered to	0.1	·	100		ata	(determine	d from perce	100		_{PY})		
Victor V	Site	and Timing:	Project Site				•	Before Proje	ct			
equidistant points along the steam. Measure only if treofrapiling cover is at least 20%. (If less than 20%, enter at least on value between and 19 to trigger Top Strata choice.) List the percent cover measurements at each point below: 0					over chann	el by tree ar	nd capling o	anony Mea	sure at no f	ower than 1	0 roughly	
Vesser Ve			equidistant 20%, enter	points along at least one	the stream value betw	. Measure een 0 and 1	only if tree/s	apling cove	r is at least :			
along the stream. Select a particle from the bed. Before moving it, determine the percentage of the surface and area surrounding the particle that is covered by fine sediment, and enter the rating according to the following table. If the bed is an artificial surface, or composed of fine sediments, use a rating score of 1. If the bed is composed of before, use a rating score of 5. Embeddedness rating for gravel, cobble and boulder particles (rescaled from Platts, Megahan, and Minshall 1983). Rating Rating Description Septement of Surface covered, surrounded, or buried by fine sediment (or bedrock) 4 is 16 25 percent of surface covered, surrounded, or buried by fine sediment 2 is 17 percent of surface covered, surrounded, or buried by fine sediment 1 75 percent of surface covered, surrounded, or buried by fine sediment 2 1 1 1 1 1 1 1 1 1							0	0	15	0	20	1
along the stream. Select a particle from the bed. Before moving it, determine the percentage of the surface and area surrounding the particle that is covered by fine sediment, and enter the rating according to the following table. If the bed is an artificial surface, or composed of fine sediments, use a rating score of 1. If the bed is composed of before, use a rating score of 5. Embeddedness rating for gravel, cobble and boulder particles (rescaled from Platts, Megahan, and Minshall 1983). Rating Rating Description Septement of Surface covered, surrounded, or buried by fine sediment (or bedrock) 4 is 16 25 percent of surface covered, surrounded, or buried by fine sediment 2 is 17 percent of surface covered, surrounded, or buried by fine sediment 1 75 percent of surface covered, surrounded, or buried by fine sediment 2 1 1 1 1 1 1 1 1 1												
Minshall 1983 Rating Dascription 5 5 5 percent of surface covered, surrounded, or buried by fine sediment (or bedrock) 4 5 6 25 percent of surface covered, surrounded, or buried by fine sediment 3 20 10 50 percent of surface covered, surrounded, or buried by fine sediment 2 5 10 75 percent of surface covered, surrounded, or buried by fine sediment 1 75 percent of surface covered, surrounded, or buried by fine sediment (or surface) 1 75 percent of surface covered, surrounded, or buried by fine sediment (or stificial surface) 1 75 percent of surface covered, surrounded, or buried by fine sediment (or stificial surface) 1 1 1 1 1 1 1 1 1	2	V_{EMBED}	along the s surface and to the follow of 1. If the	tream. Sele d area surro wing table. I bed is comp	ect a particle unding the p f the bed is posed of bed	from the be particle that in an artificial stances arock, use a	ed. Before n is covered b surface, or c rating score	noving it, de by fine sedim composed of e of 5.	termine the ent, and en fine sedime	percentage ter the rating ents, use a r	of the g according rating score	1.2
Section Sect			Minshall 19	983)			oulus, partis			-, moganan	.,	
3 26 to 50 percent of surface covered, surrounded, or burled by the sediment 2 51 to 75 percent of surface covered, surrounded, or burled by the sediment 1 + 75 percent of surface covered, surrounded, or burled by fine sediment (or artificial surface)			5	<5 percent	of surface o						κ)	
2 51 to 75 percent of surface covered, surrounded, or burled by fine sediment 1 2 1 2 75 percent of surface covered, surrounded, or burled by fine sediment (or artificial surface)												
List the ratings at each point below: 1												
1		Line de a con e				covered, su	rrounded, o	r buried by f	ine sedimer	nt (or artificia	al surface)	J
1						1	1	1	1	1	1	1
3 V _{SUBSTRATE} Median stream channel substrate particle size. Measure at no fewer than 30 roughly equidistant points along the stream; use the same points and particles as used in V _{EMBED} . Enter particle size in inches to the nearest 0.1 inch at each point below (bedrock should be counted as 99 in, asphalt or concrete as 0.0 in, sand or finer particles as 0.08 in); 0.08 0.50 0.70 0.08 0.08 0.08 0.08 0.08 0.08 0.0												i
along the stream; use the same points and particles as used in V _{EMBED} . Enter particle size in inches to the nearest 0.1 inch at each point below (bedrock should be counted as 99 in, asphalt or concrete as 0.0 in, sand or finer particles as 0.08 in): 0.08		1	1	1	1	1	1	1	1	1	1]
along the stream; use the same points and particles as used in V _{EMBED} . Enter particle size in inches to the nearest 0.1 inch at each point below (bedrock should be counted as 99 in, asphalt or concrete as 0.0 in, sand or finer particles as 0.08 in): 0.08												
Enter particle size in inches to the nearest 0.1 inch at each point below (bedrock should be counted as 99 in, asphalt or concrete as 0.0 in, sand or finer particles as 0.08 in): 0.08	3	V _{SUBSTRATE}								hly equidista	ant points	0.00 im
0.08			cle size in in	ches to the	nearest 0.1	inch at each				unted as 99	in, asphalt	0.08 in
Total percent of eroded stream channel bank. Enter the total number of feet of eroded bank on each side and the total percentage will be calculated. If both banks are eroded, total erosion for the stream may be up to 200%. Left Bank: 22 ft Right Bank: 0 ft Sample Variables 5-9 within the entire riparian/buffer zone adjacent to the stream channel (25 feet from each bank). 5 V _{LWD} Number of down woody stems (at least 4 inches in diameter and 36 inches in length) per 100 feet of stream reach. Enter the number from the entire 50°-wide buffer and within the channel, and the amount per 100 feet of stream will be calculated. Number of downed woody stems: 0 6 V _{TDBH} Average dbh of trees (measure only if V _{CCANGPV} tree/sapling cover is at least 20%). Trees are at least 4 inches (10 cm) in diameter. Enter tree DBHs in inches. List the dbh measurements of individual trees (at least 4 in) within the buffer on each side of the stream below: Left Side Right Side 7 V _{SNAG} Number of snags (at least 4" dbh and 36" tall) per 100 feet of stream. Enter number of snags on each side of the stream, and the amount per 100 feet will be calculated. Left Side: 0 Right Side: 0.0.0							0.30	0.08	0.08	0.08	0.40	1
Total percent of eroded stream channel bank. Enter the total number of feet of eroded bank on each side and the total percentage will be calculated. If both banks are eroded, total erosion for the stream may be up to 200%. Left Bank: 22 ft Right Bank: 0 ft Sample Variables 5-9 within the entire riparian/buffer zone adjacent to the stream channel (25 feet from each bank). Number of down woody stems (at least 4 inches in diameter and 36 inches in length) per 100 feet of stream reach. Enter the number from the entire 50'-wide buffer and within the channel, and the amount per 100 feet of stream will be calculated. Number of downed woody stems: Average dbh of trees (measure only if V _{CCANGPV} tree/sapling cover is at least 20%). Trees are at least 4 inches (10 cm) in diameter. Enter tree DBHs in inches. List the dbh measurements of individual trees (at least 4 in) within the buffer on each side of the stream below: Left Side Right Side 7 V _{SNAG} Number of snags (at least 4" dbh and 36" tall) per 100 feet of stream. Enter number of snags on each side of the stream, and the amount per 100 feet will be calculated. Left Side: Right Side: 0.0 Left Side: O Right Side: Number of saplings and shrubs (woody stems up to 4 inches dbh) per 100 feet of stream (measure only if tree cover is <20%). Enter number of saplings and shrubs on each side of the stream, and the amount per 100 for of stream will be calculated.			0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.80]
and the total percentage will be calculated. If both banks are eroded, total erosion for the stream may be up to 200%. Left Bank: 22 ft Right Bank: 0 ft Sample Variables 5-9 within the entire riparian/buffer zone adjacent to the stream channel (25 feet from each bank). 5 V _{LWD} Number of down woody stems (at least 4 inches in diameter and 36 inches in length) per 100 feet of stream reach. Enter the number from the entire 50'-wide buffer and within the channel, and the amount per 100 feet of stream will be calculated. Number of downed woody stems: 0 6 V _{TDBH} Average dbh of trees (measure only if V _{CCANDPV} tree/sapling cover is at least 20%). Trees are at least 4 inches (10 cm) in diameter. Enter tree DBHs in inches. List the dbh measurements of individual trees (at least 4 in) within the buffer on each side of the stream below: Left Side Right Side Right Side 7 V _{SNAG} Number of snags (at least 4" dbh and 36" tall) per 100 feet of stream. Enter number of snags on each side of the stream, and the amount per 100 feet will be calculated. 0.0 Left Side: 0 Right Side: 0 0.0 100.0		0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	
and the total percentage will be calculated. If both banks are eroded, total erosion for the stream may be up to 200%. Left Bank: 22 ft Right Bank: 0 ft Sample Variables 5-9 within the entire riparian/buffer zone adjacent to the stream channel (25 feet from each bank). 5 V _{LWD} Number of down woody stems (at least 4 inches in diameter and 36 inches in length) per 100 feet of stream reach. Enter the number from the entire 50'-wide buffer and within the channel, and the amount per 100 feet of stream will be calculated. Number of downed woody stems: 0 6 V _{TDBH} Average dbh of trees (measure only if V _{CCANDPV} tree/sapling cover is at least 20%). Trees are at least 4 inches (10 cm) in diameter. Enter tree DBHs in inches. List the dbh measurements of individual trees (at least 4 in) within the buffer on each side of the stream below: Left Side Right Side Right Side 7 V _{SNAG} Number of snags (at least 4" dbh and 36" tall) per 100 feet of stream. Enter number of snags on each side of the stream, and the amount per 100 feet will be calculated. 0.0 Left Side: 0 Right Side: 0 0.0 100.0												
Number of down woody stems (at least 4 inches in diameter and 36 inches in length) per 100 feet of stream reach. Enter the number from the entire 50'-wide buffer and within the channel, and the amount per 100 feet of stream will be calculated. Number of downed woody stems: O Average dbh of trees (measure only if V _{CCANOPY} tree/sapling cover is at least 20%). Trees are at least 4 inches (10 cm) in diameter. Enter tree DBHs in inches. List the dbh measurements of individual trees (at least 4 in) within the buffer on each side of the stream below: Left Side Right Side Right Side V _{SNAG} Number of snags (at least 4" dbh and 36" tall) per 100 feet of stream. Enter number of snags on each side of the stream, and the amount per 100 feet will be calculated. Left Side: O Right Side: O Number of saplings and shrubs (woody stems up to 4 inches dbh) per 100 feet of stream, and the amount per 100 fo for stream will be calculated.	4	V_{BERO}	and the total	al percentag	e will be cal	culated If b	oth banks a	re eroded, t	otal erosion	for the stream		29 %
stream reach. Enter the number from the entire 50'-wide buffer and within the channel, and the amount per 100 feet of stream will be calculated. Number of downed woody stems: O Average dbh of trees (measure only if V _{CCANOPY} tree/sapling cover is at least 20%). Trees are at least 4 inches (10 cm) in diameter. Enter tree DBHs in inches. List the dbh measurements of individual trees (at least 4 in) within the buffer on each side of the stream below: Left Side Right Side Right Side 7 V _{SNAG} Number of snags (at least 4" dbh and 36" tall) per 100 feet of stream. Enter number of snags on each side of the stream, and the amount per 100 feet will be calculated. 8 V _{SSD} Number of saplings and shrubs (woody stems up to 4 inches dbh) per 100 feet of stream (measure only if tree cover is <20%). Enter number of saplings and shrubs on each side of the stream, and the amount per 100 ft of stream will be calculated.	Sample	Variables	5-9 within t	he entire ri	oarian/buffe	er zone adja	acent to the	stream ch	annel (25 fe	et from eac	ch bank).	
inches (10 cm) in diameter. Enter tree DBHs in inches. List the dbh measurements of individual trees (at least 4 in) within the buffer on each side of the stream below: Right Side Right Side 7 V _{SNAG} Number of snags (at least 4" dbh and 36" tall) per 100 feet of stream. Enter number of snags on each side of the stream, and the amount per 100 feet will be calculated. 8 V _{SSD} Number of saplings and shrubs (woody stems up to 4 inches dbh) per 100 feet of stream (measure only if tree cover is <20%). Enter number of saplings and shrubs on each side of the stream, and the amount per 100 ft of stream will be calculated.	5	V_{LWD}	stream rea	ch. Enter th	e number fr	om the entir llated.	e 50'-wide b	ouffer and wi	thin the cha	nnel, and th		0.0
List the dbh measurements of individual trees (at least 4 in) within the buffer on each side of the stream below: Left Side	6	V _{TDBH}	-	,				g cover is a	t least 20%)	. Trees are	at least 4	Not Used
7 V _{SNAG} Number of snags (at least 4" dbh and 36" tall) per 100 feet of stream. Enter number of snags on each side of the stream, and the amount per 100 feet will be calculated. 8 V _{SSD} Number of saplings and shrubs (woody stems up to 4 inches dbh) per 100 feet of stream (measure only if tree cover is <20%). Enter number of saplings and shrubs on each side of the stream, and the amount per 100 ft of stream will be calculated.			List the dbh	n measurem) within the	buffer on ea	ch side of		
side of the stream, and the amount per 100 feet will be calculated. Left Side: 0 Right Side: 0 Number of saplings and shrubs (woody stems up to 4 inches dbh) per 100 feet of stream (measure only if tree cover is <20%). Enter number of saplings and shrubs on each side of the stream, and the amount per 100 ft of stream will be calculated.				Left Side					Right Side			l
side of the stream, and the amount per 100 feet will be calculated. Left Side: 0 Right Side: 0 Number of saplings and shrubs (woody stems up to 4 inches dbh) per 100 feet of stream (measure only if tree cover is <20%). Enter number of saplings and shrubs on each side of the stream, and the amount per 100 ft of stream will be calculated.												l
side of the stream, and the amount per 100 feet will be calculated. Left Side: 0 Right Side: 0 Number of saplings and shrubs (woody stems up to 4 inches dbh) per 100 feet of stream (measure only if tree cover is <20%). Enter number of saplings and shrubs on each side of the stream, and the amount per 100 ft of stream will be calculated.												İ
side of the stream, and the amount per 100 feet will be calculated. Left Side: 0 Right Side: 0 Number of saplings and shrubs (woody stems up to 4 inches dbh) per 100 feet of stream (measure only if tree cover is <20%). Enter number of saplings and shrubs on each side of the stream, and the amount per 100 ft of stream will be calculated.												1
side of the stream, and the amount per 100 feet will be calculated. Left Side: 0 Right Side: 0 Number of saplings and shrubs (woody stems up to 4 inches dbh) per 100 feet of stream (measure only if tree cover is <20%). Enter number of saplings and shrubs on each side of the stream, and the amount per 100 ft of stream will be calculated.												
side of the stream, and the amount per 100 feet will be calculated. Left Side: 0 Right Side: 0 Number of saplings and shrubs (woody stems up to 4 inches dbh) per 100 feet of stream (measure only if tree cover is <20%). Enter number of saplings and shrubs on each side of the stream, and the amount per 100 ft of stream will be calculated.												l
side of the stream, and the amount per 100 feet will be calculated. Left Side: 0 Right Side: 0 Number of saplings and shrubs (woody stems up to 4 inches dbh) per 100 feet of stream (measure only if tree cover is <20%). Enter number of saplings and shrubs on each side of the stream, and the amount per 100 ft of stream will be calculated.												İ
side of the stream, and the amount per 100 feet will be calculated. Left Side: 0 Right Side: 0 Number of saplings and shrubs (woody stems up to 4 inches dbh) per 100 feet of stream (measure only if tree cover is <20%). Enter number of saplings and shrubs on each side of the stream, and the amount per 100 ft of stream will be calculated.												
8 V _{SSD} Number of saplings and shrubs (woody stems up to 4 inches dbh) per 100 feet of stream (measure only if tree cover is <20%). Enter number of saplings and shrubs on each side of the stream, and the amount per 100 ft of stream will be calculated.	7	V _{SNAG}							Enter numb	er of snags	on each	0.0
8 V _{SSD} Number of saplings and shrubs (woody stems up to 4 inches dbh) per 100 feet of stream (measure only if tree cover is <20%). Enter number of saplings and shrubs on each side of the stream, and the amount per 100 ft of stream will be calculated.				Left Side:		0		Right Side:		0		
per 100 ft of stream will be calculated.	8	V _{SSD}		saplings an	d shrubs (w	oody stems		es dbh) per	100 feet of	stream (mea		
LOR OLDO, 10 NIGHT OLDO				of stream wil	l be calculat	ed.	gs and shrul				the amount	100.0

9	V _{SRICH}	Group 1 in	the tallest st	tratum. Che	ess per 100 f eck all exotion ndex will be	and invasiv	ve species p	resent in all			0.00
			p 1 = 1.0	nd the subh	ildex will be	Calculated I	ioni nese de		2 (-1.0)		
П	Acer rubrui		<u>Г</u>	Magnolia ti	ripetala		Ailanthus a			Lonicera ja	ponica
	Acer sacch			Nyssa sylv	•		Albizia julib			Lonicera ta	
	Aesculus fl				n arboreum	_	Alliaria petio			Lotus corni	
				-							
	Asimina tril			Prunus sei			Alternanthe philoxeroide			Lythrum sa	
	Betula alleg			Quercus a			•			Microstegiun	
	Betula lenta			Quercus co			Aster tatari			Paulownia	
	Carya alba			Quercus in	nbricaria		Cerastium	fontanum		Polygonum (cuspidatum
	Carya glab	ra		Quercus p	rinus		Coronilla va	aria		Pueraria m	ontana
	Carya oval	is		Quercus ru	ubra		Elaeagnus u	mbellata		Rosa multir	flora
	Carya ovat	а		Quercus ve	elutina	na Lespedeza bicolor			Sorghum h	alepense	
	Cornus flor	ida		Sassafras	albidum		Lespedeza	cuneata		Verbena br	asiliensis
	Fagus gran	ndifolia		Tilia americ	cana		Ligustrum ob	otusifolium			
	Fraxinus ar	mericana		Tsuga can	adensis		Ligustrum s	sinense			
	Liriodendron	tulipifera		Ulmus ame	ericana						
	Magnolia a	cuminata									
		0	Species in	Group 1				0	Species in	Group 2	
					40" x 40", o equidistant				one within	25 feet fron	n each
10	V _{DETRITUS}	•			equidistanti sticks, or oth	, , , , , , , , , , , , , , , , , , , 			<4" diamete	r and <36"	
10	* DETRITUS				t cover of th				didinote	r unu -oo	6.25 %
			Left	Side		Ī	Right	Side		1	
		0	10	10	30	0	0	0	0		
11	V_{HERB}				aceous vege						
					oh and 36" ta n 200% are a						24 %
		each subple		ap unoug.	. 200 /0 4.0 0	accopica. L	or tilo poi		. g. ouu vo		
			Left	Side			Right	Side			
		5	80	75	25	•	0		0		
				70	35	0	U	0	0		
				70	35	U	U	0	U		
Sampl	e Variable 1					0	U	0	0		
Sampl		2 within the	entire cato	chment of t			U	0	U		2.22
	e Variable 1	2 within the	entire cato	chment of t	the stream.		0	0	U		0.20
		2 within the	e entire cato	chment of t	the stream.	ned:		0		% in	Running
		2 within the	e entire cato	chment of t	the stream.	ned:	<u> </u>	0	Runoff	Catch-	Running Percent
	V _{WLUSE}	2 within the Weighted A	e entire cato everage of R	chment of t	the stream. e for watersh	ned:	0	0	Runoff Score	Catch- ment	Running Percent (not >100)
	V _{WLUSE}	2 within the Weighted A	e entire cato everage of R Land	Chment of t Runoff Score Use (Choose tation or pay	the stream. e for watersh	ned:		0	Runoff Score	Catch-	Running Percent
	V _{WLUSE}	2 within the Weighted A	e entire cato everage of R Land	Chment of t Runoff Score Use (Choose tation or pay	the stream. e for watersh	ned:		0	Runoff Score	Catch- ment	Running Percent (not >100)
	V _{WLUSE}	2 within the Weighted A	e entire cato everage of R Land	Chment of t Runoff Score Use (Choose tation or pay	the stream. e for watersh	ned:		•	Runoff Score	Catch- ment 59.1	Running Percent (not >100) 59.1
	V _{WLUSE}	2 within the Weighted A	e entire cato everage of R Land	Chment of t Runoff Score Use (Choose tation or pay	the stream. e for watersh	ned:		• • • • • • • • • • • • • • • • • • •	Runoff Score	Catch- ment 59.1	Running Percent (not >100) 59.1
	V _{WLUSE}	2 within the Weighted A	e entire cato everage of R Land	Chment of t Runoff Score Use (Choose tation or pay	the stream. e for watersh	ned:		* * * * * * * * * * * * * * * * * * *	Runoff Score	Catch- ment 59.1	Running Percent (not >100) 59.1
	V _{WLUSE}	2 within the Weighted A	e entire cato everage of R Land	Chment of t Runoff Score Use (Choose tation or pay	the stream. e for watersh	ned:		• • • • • • • • • • • • • • • • • • •	Runoff Score	Catch- ment 59.1	Running Percent (not >100) 59.1
	V _{WLUSE}	2 within the Weighted A	e entire cato everage of R Land	Chment of t Runoff Score Use (Choose tation or pay	the stream. e for watersh	ned:		* * * * * * * * * * * * * * * * * * *	Runoff Score	Catch- ment 59.1	Running Percent (not >100) 59.1
	V _{WLUSE}	2 within the Weighted A	e entire cato everage of R Land	Chment of t Runoff Score Use (Choose tation or pay	the stream. e for watersh	ned:		* * * * * * * * * * * * * * * * * * *	Runoff Score	Catch- ment 59.1	Running Percent (not >100) 59.1
	V _{WLUSE}	2 within the Weighted A	e entire cato everage of R Land	Chment of t Runoff Score Use (Choose tation or pay	the stream. e for watersh	ned:		* * * * * * * * * * * * * * * * * * *	Runoff Score	Catch- ment 59.1	Running Percent (not >100) 59.1
	Newly grade Forest and n	2 within the Weighted A	e entire cato everage of R Land	Chment of t Runoff Score Use (Choose tation or pay	the stream. e for watersh	ned:		* * * * * * * * * * * * * * * * * * *	Runoff Score	Catch- ment 59.1	Running Percent (not >100) 59.1
	Newly grade Forest and n	2 within the Weighted A	e entire cato everage of R Land	Chment of t Runoff Score Use (Choose tation or pay	the stream. e for watersh	ned:		* * * * * * * * * * * * * * * * * * *	Runoff Score	Catch- ment 59.1	Running Percent (not >100) 59.1
12	Newly grade Forest and n	2 within the Weighted A	e entire cato everage of R Land	Chment of t Runoff Score Use (Choose tation or pay	the stream. e for watersh	ned:		* * * * * * * * * * * * * * * * * * *	Runoff Score	Catch- ment 59.1	Running Percent (not >100) 59.1
12	Newly grade Forest and n	2 within the Weighted A areas (bare ative range (-	e entire cato everage of R Land soil, no vege 50% ground	Chment of t Runoff Score Use (Choose tation or pay	the stream. e for watersh	ned:		* * * * * * * * * * * * * * * * * * *	Runoff Score	Catch- ment 59.1	Running Percent (not >100) 59.1
12 V	Newly grade Forest and n	2 within the Weighted A areas (bare ative range (S-O5 Value Not Used, <20%	verage of F Land soil, no vege 50% ground VSI Not Used	Chment of t Runoff Score Use (Choose tation or pay	the stream. e for watersh	ned:		* * * * * * * * * * * * * * * * * * *	Runoff Score	Catch- ment 59.1	Running Percent (not >100) 59.1
12 V	Newly grade Forest and n	2 within the Weighted A areas (bare ative range (-	e entire cato everage of R Land soil, no vege 50% ground	Chment of t	the stream. e for watersh	ned:		* * * * * * * * * * * * * * * * * * *	Runoff Score	Catch- ment 59.1	Running Percent (not >100) 59.1
V	Newly grade Forest and n	2 within the Weighted A areas (bare ative range (S-O5 Value Not Used, <20%	verage of F Land soil, no vege 50% ground VSI Not Used	Chment of t	the stream. e for watersh	ned:		* * * * * * * * * * * * * * * * * * *	Runoff Score	Catch- ment 59.1	Running Percent (not >100) 59.1
V V	Newly grade Forest and n ariable /ccanopy /substrate	2 within the Weighted A areas (bare ative range (- Value Not Used, <20% 1.2 0.08 in	VSI Not Used 0.04	Chment of t	the stream. e for watersh	ned:		* * * * * * * * * * * * * * * * * * *	Runoff Score	Catch- ment 59.1	Running Percent (not >100) 59.1
V V	Newly grade Forest and n ariable /ccanopy /embed /substrate	2 within the Weighted A and areas (bare ative range (S-O5 Value Not Used, <20% 1.2 0.08 in 29 %	VSI Not Used 0.17 0.04 0.92	Chment of t	the stream. e for watersh	ned:		* * * * * * * * * * * * * * * * * * *	Runoff Score	Catch- ment 59.1	Running Percent (not >100) 59.1
V V	Newly grade Forest and n ariable /ccanopy /substrate	2 within the Weighted A areas (bare ative range (- Value Not Used, <20% 1.2 0.08 in	VSI Not Used 0.04	Chment of t	the stream. e for watersh	ned:		* * * * * * * * * * * * * * * * * * *	Runoff Score	Catch- ment 59.1	Running Percent (not >100) 59.1
V V	Newly grade Forest and n ariable /ccanopy /embed /substrate	2 within the Weighted A and areas (bare ative range (S-O5 Value Not Used, <20% 1.2 0.08 in 29 %	VSI Not Used 0.17 0.04 0.92	Chment of t	the stream. e for watersh	ned:		* * * * * * * * * * * * * * * * * * *	Runoff Score	Catch- ment 59.1	Running Percent (not >100) 59.1
V V	Newly grade Forest and n Sariable CCANOPY MEMBED SUBSTRATE BERO LWD	2 within the Weighted A areas (bare ative range (- Value Not Used, <20% 1.2 0.08 in 29 % 0.0 Not Used	VSI Not Used 0.00 Not Used	Chment of t	the stream. e for watersh	ned:		* * * * * * * * * * * * * * * * * * *	Runoff Score	Catch- ment 59.1	Running Percent (not >100) 59.1
V V	Newly grade Forest and n Graniable CCANOPY /EMBED /SUBSTRATE /BERO /LWD /TDBH /SNAG	2 within the Weighted A areas (bare ative range (- S-O5 Value Not Used, <20% 1.2 0.08 in 29 % 0.0 Not Used 0.0	VSI Not Used 0.10 Not Used 0.10	Chment of t	the stream. e for watersh	ned:		* * * * * * * * * * * * * * * * * * *	Runoff Score	Catch- ment 59.1	Running Percent (not >100) 59.1
V V	Newly grade Forest and n Sariable CCANOPY MEMBED SUBSTRATE BERO LWD	2 within the Weighted A areas (bare ative range (- Value Not Used, <20% 1.2 0.08 in 29 % 0.0 Not Used	VSI Not Used 0.00 Not Used	Chment of t	the stream. e for watersh	ned:		* * * * * * * * * * * * * * * * * * *	Runoff Score	Catch- ment 59.1	Running Percent (not >100) 59.1
V V	Newly grade Forest and n Forest and n Graniable CCANOPY EMBED SUBSTRATE BERO LWD TDBH SNAG	2 within the Weighted A areas (bare ative range (- S-O5 Value Not Used, <20% 1.2 0.08 in 29 % 0.0 Not Used 0.0	VSI Not Used 0.10 Not Used 0.10	Chment of t	the stream. e for watersh	ned:		* * * * * * * * * * * * * * * * * * *	Runoff Score	Catch- ment 59.1	Running Percent (not >100) 59.1
V V	Newly grade Forest and n Forest and n Graniable CCANOPY EMBED SUBSTRATE BERO LWD TDBH SNAG SSD SRICH	2 within the Weighted A and areas (bare ative range (- S-O5 Value Not Used, <20% 1.2 0.08 in 29 % 0.0 Not Used 0.0 100.0 0.00	VSI Not Used 0.17 0.04 0.92 0.00 Not Used 0.10 1.00 0.00	Chment of t	the stream. e for watersh	ned:		* * * * * * * * * * * * * * * * * * *	Runoff Score	Catch- ment 59.1	Running Percent (not >100) 59.1
V V V V V V V V V V V V V V V V V V V	Newly grade Forest and n Sariable CCANOPY MEMBED M	2 within the Weighted A and areas (bare ative range (VSI Not Used 0.10 1.00 0.00 0.08	Chment of t	the stream. e for watersh	ned:		* * * * * * * * * * * * * * * * * * *	Runoff Score	Catch- ment 59.1	Running Percent (not >100) 59.1
V V V V V V V V V V V V V V V V V V V	Newly grade Forest and n Forest and n Graniable CCANOPY EMBED SUBSTRATE BERO LWD TDBH SNAG SSD SRICH	2 within the Weighted A and areas (bare ative range (- S-O5 Value Not Used, <20% 1.2 0.08 in 29 % 0.0 Not Used 0.0 100.0 0.00	VSI Not Used 0.17 0.04 0.92 0.00 Not Used 0.10 1.00 0.00	Chment of t	the stream. e for watersh	ned:		* * * * * * * * * * * * * * * * * * *	Runoff Score	Catch- ment 59.1	Running Percent (not >100) 59.1

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

STREAM NAME	LOCATION			
STATION # RIVERMILE	STREAM CLASS			
LAT LONG	RIVER BASIN			
STORET#	AGENCY			
INVESTIGATORS				
FORM COMPLETED BY	DATE TIME	REASON FOR SURVEY		

WE A THED	NT.		D 424	Has there bee	n a heavy	rain in the last 7 days?
WEATHER CONDITIONS	Now		Past 24 hours		No	•
	rain (sì	heavy rain) teady rain)		Air Temperat	tureº	C
		(intermittent) oud cover	%	Other		
		ır/sunny				
SITE LOCATION/MAP	Draw a map of the site	and indicate the	areas samp	oled (or attach	a photogra	ph)
	K	1				
	N				5	Waddle
			Ro	oad	↓	Temporary work area
	Temporary w	ork area			S-O4	8 inch culvert pipe
	Pipe	CL				_
	Coming in	, OL		1	1	Coing out
	Conning in				\	Going out
STREAM CHARACTERIZATION	Stream Subsystem Perennial Inter	mittent Tidal		Stream Type Coldwater	Warm	nwater
	Stream Origin Glacial Non-glacial montane Swamp and bog	Spring-fed Mixture of Other	origins	Catchment A	rea	km²

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

WATERS FEATURI		Fores Field Agric	Pasture Industria	rcial	No evidence Sor Obvious sources Local Watershed Erosi None Moderate	ne potential sources
RIPARIA VEGETA (18 meter	ΓION	Trees	e the dominant type and Sl ant species present	hrubs	Grasses He	brbaceous
INSTREA FEATURI		Estimat Samplin Area in Estimat	red Stream Depthm	m m² km² m	Canopy Cover Partly open Part High Water Mark Proportion of Reach R Morphology Types Riffle Pool 9 Channelized Yes Dam Present Yes	epresented by Stream Run% No
LARGE V DEBRIS	VOODY		m² of LWDm	1 ² /km ² (LWD / 1	reach area)	
AQUATIO VEGETA		Domina			minant species present nt Rooted floating	Ü
WATER ((DS, US)	QUALITY	Specific Dissolve pH Turbidi	rature0 C Conductance ed Oxygen ty trument Used		Water Odors Normal/None Sewage Petroleum Fishy Water Surface Oils Slick Sheen None Other Turbidity (if not measu Clear ☐ Slightly tu Opaque Stained	Chemical Other Globs Flecks
SEDIMEN SUBSTRA		Odors Norm Chem Other Oils Abser	al Sewage nical Anaerobic 		are the undersides blac	th are not deeply embedded,
INC	ORGANIC SUBS (should a		COMPONENTS 00%)		ORGANIC SUBSTRATE C (does not necessarily add	
Substrate Type	Diamet	er	% Composition in Sampling Reach	Substrate Type	Characteristic	% Composition in Sampling Area
Bedrock				Detritus	sticks, wood, coarse plant materials (CPOM)	
Boulder Cobble	> 256 mm (10")			Muck-Mud	black very fine ergenie	
Gravel	`	256 mm (2.5"-10") 4 mm (0.1"-2.5")			black, very fine organic (FPOM)	

Sand

Silt

Clay

0.06-2mm (gritty)

< 0.004 mm (slick)

0.004-0.06 mm

grey, shell fragments

Marl

HABITAT ASSESSMENT FIELD DATA SHEET - HG - USE ON ALL STREAMS (FRONT)

STREAM NAME	LOCATION	
STATION # RIVERMILE	STREAM CLASS	
LAT LONG	RIVER BASIN	
STORET#	AGENCY	
INVESTIGATORS		
FORM COMPLETED BY	DATE AM PM	REASON FOR SURVEY

	Habitat		Condition	ı Category		
	Parameter	Optimal	Suboptimal	Marginal	Poor	
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.	
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
n sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0-25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.	
ted in	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/depth regime (usually slow-deep).	
ıram	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
Pa	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.	
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.	
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

	Habitat	Condition Category									
	Parameter	Optimal	Suboptimal	Marginal	Poor						
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.						
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0						
oling reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.						
samp	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0						
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.						
e eva	SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0						
to be	SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0						
Parameters	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.						
	SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0						
	SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0						
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.						
	SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0						
ĺ	SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0						

Total	Caare	
i otai	Score	

BENTHIC MACROINVERTEBRATE FIELD DATA SHEET

STREAM NAME		LOCATION				
STATION #	_ RIVERMILE	STREAM CLASS				
LAT	LONG	RIVER BASIN				
STORET#		AGENCY				
INVESTIGATORS			LOT NUMBER			
FORM COMPLETED	FORM COMPLETED BY		REASON FOR SURVEY			
HABITAT TYPES	Indicate the percentage of	each habitat type present	onks % Sand %			

HABITAT TYPES	Indicate the percentage of each habitat type present Cobble% Snags% Vegetated Banks% Sand% Submerged Macrophytes% Other ()%
SAMPLE COLLECTION	Gear used D-frame kick-net Other
	How were the samples collected? wading from bank from boat
	Indicate the number of jabs/kicks taken in each habitat type. Cobble Snags Vegetated Banks Sand Submerged Macrophytes Other ()
GENERAL COMMENTS	

QUALITATIVE LISTING OF AQUATIC BIOTA

Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare, 2 = Common, 3= Abundant, 4 = Dominant

Periphyton	0	1	2	3	4	Slimes	0	1	2	3	4
Filamentous Algae	0	1	2	3	4	Macroinvertebrates	0	1	2	3	4
Macrophytes	0	1	2	3	4	Fish	0	1	2	3	4

FIELD OBSERVATIONS OF MACROBENTHOS

Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare (1-3 organisms), 2 = Common (3-9 organisms), 3 = Abundant (>10 organisms), 4 = Dominant (>50 organisms)

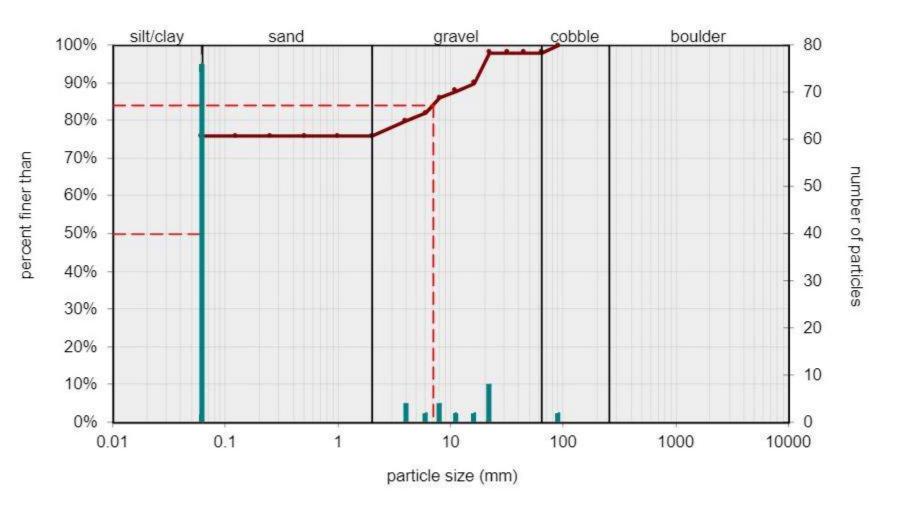
Porifera	0	1	2	3	4	Anisoptera	0	1	2	3	4	Chironomidae	0	1	2	3	4
Hydrozoa	0	1	2	3	4	Zygoptera	0	1	2	3	4	Ephemeroptera	0	1	2	3	4
Platyhelminthes	0	1	2	3	4	Hemiptera	0	1	2	3	4	Trichoptera	0	1	2	3	4
Turbellaria	0	1	2	3	4	Coleoptera	0	1	2	3	4	Other	0	1	2	3	4
Hirudinea	0	1	2	3	4	Lepidoptera	0	1	2	3	4						
Oligochaeta	0	1	2	3	4	Sialidae	0	1	2	3	4						
Isopoda	0	1	2	3	4	Corydalidae	0	1	2	3	4						
Amphipoda	0	1	2	3	4	Tipulidae	0	1	2	3	4						
Decapoda	0	1	2	3	4	Empididae	0	1	2	3	4						
Gastropoda	0	1	2	3	4	Simuliidae	0	1	2	3	4						
Bivalvia	0	1	2	3	4	Tabinidae	0	1	2	3	4						
						Culcidae	0	1	2	3	4						

WOLMAN PEBBLE COUNT FORM

County: Webster Stream ID: S-O5

Stream Name: UNT to Laurel Creek

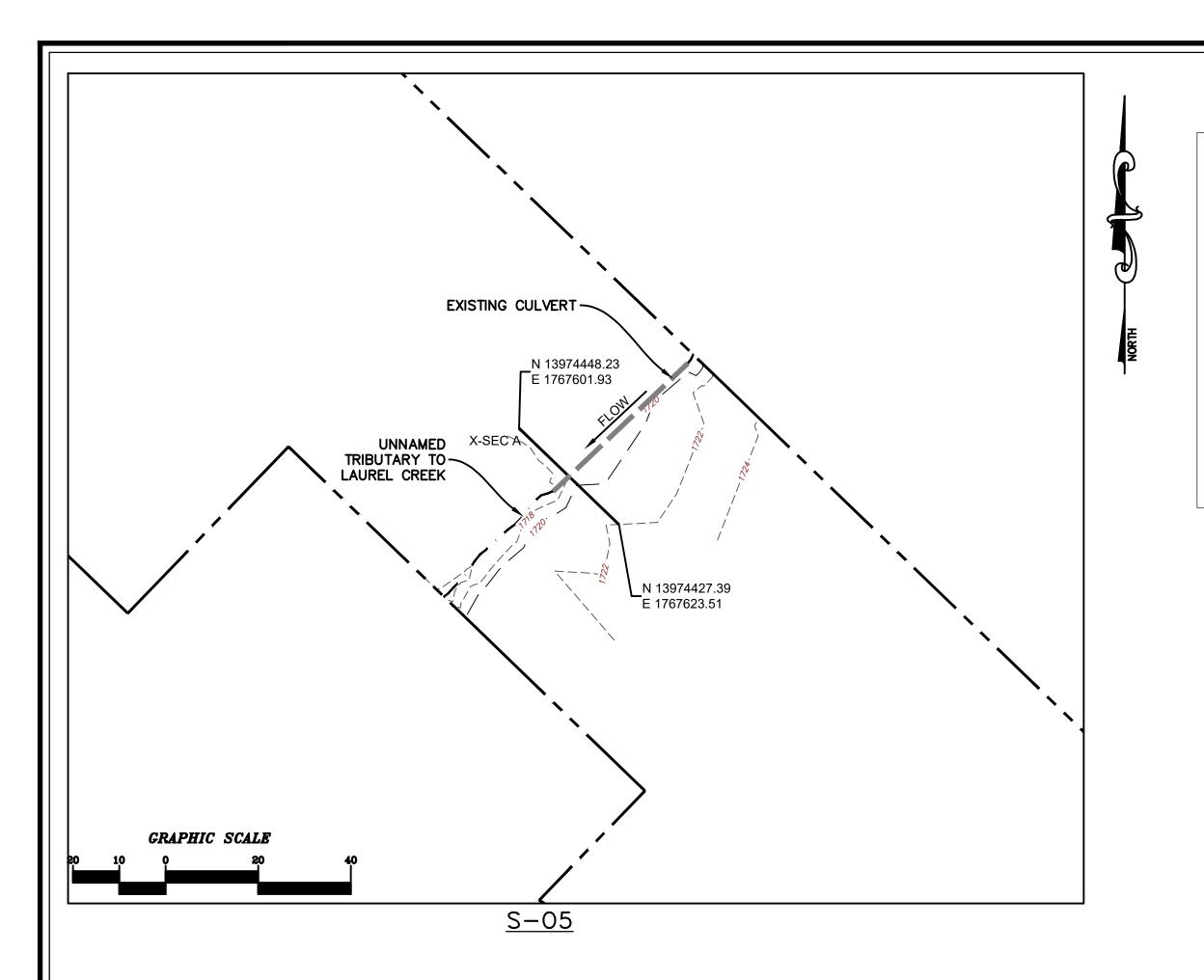
HUC Code: Basin:

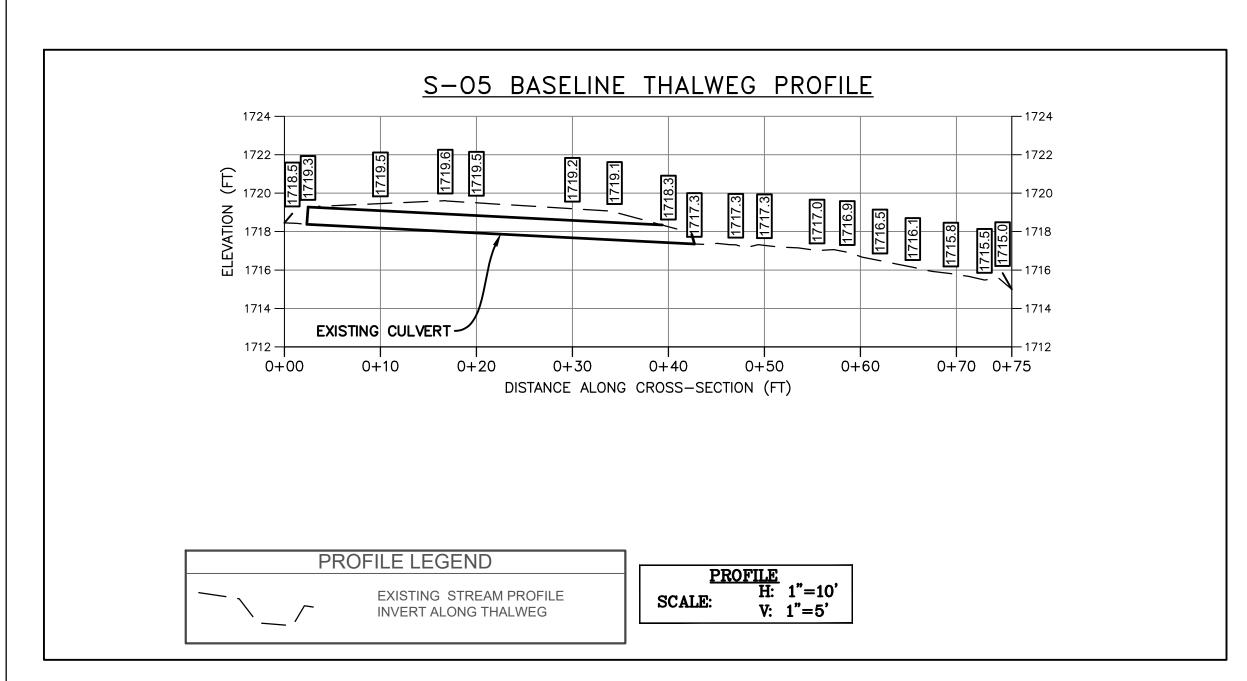

Survey Date: 9/9/2021

RFC COC Bankfull Channel Surveyors: Impact Reach: 22.9 m

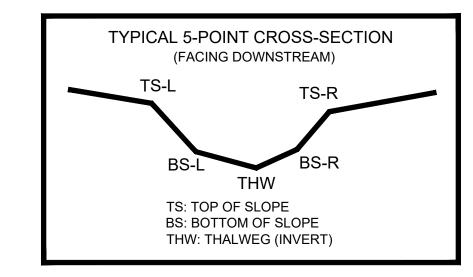
Type:

	D I DETICAL E		LE COUNT		TT + 1 //	T. 0/	0/ 0
Inches	PARTICLE	Millimeters		Particle Count	Total #	Item %	% Cun
	Silt/Clay	< .062	S/C	▲	76	76.00	76.00
	Very Fine	.062125		A	0	0.00	76.00
	Fine	.12525		—	0	0.00	76.00
	Medium	.255	SAND	•	0	0.00	76.00
	Coarse	.50-1.0		•	0	0.00	76.00
.0408	Very Coarse	1.0-2		•	0	0.00	76.00
.0816	Very Fine	2 -4		→	4	4.00	80.00
.1622	Fine	4 -5.7	1	*	2	2.00	82.00
.2231	Fine	5.7 - 8	1	A	4	4.00	86.00
.3144	Medium	8 -11.3	1	-	2	2.00	88.00
.4463	Medium	11.3 - 16	GRAVEL	-	2	2.00	90.00
.6389	Coarse	16 -22.6		_	8	8.00	98.00
.89 - 1.26	Coarse	22.6 - 32		—	0	0.00	98.00
1.26 - 1.77	Vry Coarse	32 - 45		—	0	0.00	98.00
1.77 -2.5	Vry Coarse	45 - 64	1	A	0	0.00	98.00
2.5 - 3.5	Small	64 - 90		A	2	2.00	100.0
3.5 - 5.0	Small	90 - 128	T	A	0	0.00	100.0
5.0 - 7.1	Large	128 - 180	COBBLE	A	0	0.00	100.0
7.1 - 10.1	Large	180 - 256	1	A	0	0.00	100.0
10.1 - 14.3	Small	256 - 362		A	0	0.00	100.0
14.3 - 20	Small	362 - 512	1		0	0.00	100.0
20 - 40	Medium	512 - 1024	BOULDER		0	0.00	100.0
40 - 80	Large	1024 -2048	-	A	0	0.00	100.0
80 - 160	Vry Large	2048 -4096	1	A	0	0.00	100.0
	Bedrock		BDRK	▲	0	0.00	100.0
				Totals:	100		





	Size (Size (mm)					
104	D16	0.062	- 698				
	D35	0.062					
	D50	0.062					
	D65	0.062					
	D84	6.9					
	D95	20					


Size Distr	ibution
mean	0.7
dispersion	56.1
skewness	0.72

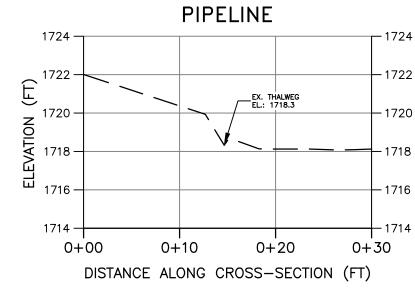
silt/clay	76%
sand	0%
gravel	22%
cobble	2%
boulder	0%

AS-BUILT TABLE: S-O5 CROSS SECTION A								
	PI	PRE-CROSSING						
PT. LOC.	NORTHING	EASTING	ELEV	VERT. DIFF.	HORZ. DIFF.			
TS-L	13974429.8300	1767613.1740	1721.342'					
BS-L	13974433.5800	1767609.65801	1717.210'					
THW	13974434.1600	1767608.1970	1717.339'					
BS-R	13974434.9100	1767608.3600	1717.374'					
TS-R	13974435.8400	1767607.22501	1717.789'					

SURVEY NOTES:

LEGEND

STUDY AREA (EASEMENT)


1176.87 十

EXISTING SURVEY-LOCATED THALWEG

EXISTING SURVEYED GROUND SHOT ELEVATION

- 1. THIS MAP HAS BEEN ORIENTED TO NAD 1983 UTM ZONE 17N, AND VERTICALLY TO THE NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD 88), USING REAL TIME DGPS. FIELD LOCATIONS WERE COMPLETED ON SEPTEMBER 9, 2021.
- 2. EASEMENT LINES SHOWN ON PLAN VIEW WERE PROVIDED BY MOUNTAIN VALLEY PIPELINE.
- 3. SURVEY POINTS FOR CROSS SECTIONS AND THALWEG PROFILES COLLECTED IN 2021 HAVE BEEN USED IN COMBINATION WITH SURVEY POINTS COLLECTED PREVIOUSLY IN 2020 IN ORDER TO GENERATE THE PRE-CROSSING SURFACE SHOWN IN PLAN. DUE TO NATURAL EROSIONAL STREAM PROCESSES THAT CAN OCCUR OVER TIME, MINOR ADJUSTMENTS TO THE PROFILE ALIGNMENTS MAY HAVE BEEN REQUIRED IN ORDER TO GENERATE A CLEAN PRE-CROSSING SURFACE.
- 4. ALL SECTION VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.
- 5. POST-CROSSING SURVEY INFORMATION SHOWN IN RED. DATA PENDING.
- 6. POST-CROSSING SURVEY POINTS FOR CROSS SECTIONS AND THALWEG ARE PROJECTED ONTO PRE-CROSSING SECTION AND PROFILE VIEWS FOR COMPARISON.

S-05 BASELINE CROSS-SECTION A

CROSS SECTION LEGEND — EXISTING GRADE

CROSS SECTION

H: 1"=10'

V: 1"=5'

NOTE: ALL SECTIONS VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.

PRE-CROSSING PHOTOS

PHOTO TAKEN LOOKING DOWNSTREAM FROM UPSTREAM IMPACT LIMITS

PHOTO TAKEN LOOKING UPSTREAM FROM DOWNSTREAM IMPACT LIMITS

POST-CROSSING PHOTOS

PENDING CROSSING

PHOTO TAKEN LOOKING DOWNSTREAM FROM UPSTREAM IMPACT LIMITS

PENDING CROSSING

PHOTO TAKEN LOOKING UPSTREAM FROM DOWNSTREAM IMPACT LIMITS

PRE-CROSSING

Drawing No.

CAD File No.