Reach S-IJ52 (Pipeline ROW) Perennial Spread G Montgomery County, Virginia

Data	Included
Photos	\checkmark
SWVM Form	\checkmark
FCI Calculator and HGM Form	N/A – Perennial stream (not shadeable)
RBP Physical Characteristics Form	\checkmark
Water Quality Data	\checkmark
RBP Habitat Form	\checkmark
RBP Benthic Form	\checkmark
Benthic Identification Sheet	N/A –Low flow
Wolman Pebble Count	\checkmark
RiverMorph Data Sheet	\checkmark
USM Form (Virginia Only)	\checkmark
Longitudinal Profile and Cross Sections	\checkmark

Photo Type: RB DS VIEW Location, Orientation, Photographer Initials: Standing on RB looking downstream along the ROW looking S, TC

Photo Type: LB DS VIEW Location, Orientation, Photographer Initials: Standing on LB looking downstream along the ROW looking S, TC

DEQ Permit #21-0416

Photo Type: RB US VIEW Location, Orientation, Photographer Initials: Standing on RB looking upstream along the ROW looking N, TC

Photo Type: LB US VIEW Location, Orientation, Photographer Initials: Standing on LB looking upstream along the ROW looking N, TC

DEQ Permit #21-0416

Photo Type: RB CL Location, Orientation, Photographer Initials: Standing on RB looking at LB along pipe centerline looking E, TC

Photo Type: LB CL Location, Orientation, Photographer Initials: Standing on LB looking at RB along pipe centerline looking W, TC

DEQ Permit #21-0416

Photo Type: DS COND Location, Orientation, Photographer Initials: Downstream conditions outside of ROW looking S, TC

 $L: \label{eq:linear} L: \label{eq:linear} L: \label{eq:linear} 22800 \label{eq:linear} 22865.06 \label{eq:linear} Admin \label{eq:linear} 0.5-ENVR \label{eq:linear} Field \ Data \ Spread \ G \ Field \ Forms \ S-LJ52 \ \ Option \ Dot \ Dot$

West Virginia Stream and Wetland Valuation Metric (SWVM) Version 2.1, September 2017

			/alley Pipeline	IMPACT COORDINATES: (in Decimal Degrees)	Lat.	37.296153	Lon.	-80.36751	WEATHER:	IER: Partly Sunny DATE:		August 3,	2021
IMPACT STREAM/SITE ID AN (watershed size (acreage), unal			S-1.	152		MITIGATION STREAM CLASS./S (watershed size (acreage), r					Comments:		
STREAM IMPACT LENGTH:	84	FORM OF MITIGATION:	RESTORATION (Levels I-III)	MIT COORDINATES: (in Decimal Degrees)	Lat.		Lon.		PRECIPITATION PAST 48 HRS:	0.05"	Mitigation Length:		
Column No. 1- Impact Existing Co	ondition (Debit)	Column No. 2- Mitigation Existing Co	ndition - Baseline (Credit)		Column No. 3- Mitigation Proj Post Completion (Years	Column No. 4- Mitigation Proje Post Completion (C		Column No. 5- Mitigation Project	ed at Maturity (Crec	dit)
Stream Classification:	Peren	nial	Stream Classification:			Stream Classification:		0	Stream Classification:	0	Stream Classification:	0	
Percent Stream Channel Slope	e	2.3	Percent Stream Channel Slo	pe		Percent Stream Channel Slo	pe	0	Percent Stream Channel Slo	ope 0	Percent Stream Channel S	lope	0
HGM Score (attach data	a forms):		HGM Score (attach d			HGM Score (attach d	ata forms):		HGM Score (attach da		HGM Score (attach o	lata forms):	
Hydrology		Average	Hydrology	Average		Hydrology		Average	Hydrology	Average	Hydrology		Average
Biogeochemical Cycling Habitat		0	Biogeochemical Cycling Habitat	0		Biogeochemical Cycling Habitat		0	Biogeochemical Cycling Habitat	0	Biogeochemical Cycling Habitat		0
PART I - Physical, Chemical and Bio	iological Indica	tors	PART I - Physical, Chemical and	Biological Indicators	1	PART I - Physical, Chemical and	Biological I	ndicators	PART I - Physical, Chemical and	Biological Indicators	PART I - Physical, Chemical and	I Biological Indicato	ors
n	Points Scale Range	Site Score		Points Scale Range Site Score	1		Points Scale Ran	ge Site Score		Points Scale Range Site Score		Points Scale Range	Site Score
PHYSICAL INDICATOR (Applies to all streams cla	assifications)		PHYSICAL INDICATOR (Applies to all streams d	assifications)		PHYSICAL INDICATOR (Applies to all streams of	lassifications)		PHYSICAL INDICATOR (Applies to all streams	classifications)	PHYSICAL INDICATOR (Applies to all stream	s classifications)	
USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover		40	USEPA RBP (Low Gradient Data Sheet)			USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover			USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover		USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover	1 1 1	
	0-20	12 13	1. Epifaunal Substrate/Available Cover 2. Pool Substrate Characterization	0-20		Epitaunal Substrate/Available Cover Embeddedness	0-20		Epifaunai Substrate/Available Cover Embeddedness	0-20	 Epitaunai Substrate/Available Cover Embeddedness 	0-20	
3. Velocity/ Depth Regime	0-20	3	3. Pool Variability	0-20		3. Velocity/ Depth Regime	0-20		3. Velocity/ Depth Regime	0-20	3. Velocity/ Depth Regime	0-20	
	0-20	8	4. Sediment Deposition	0-20		4. Sediment Deposition	0-20		4. Sediment Deposition	0-20	4. Sediment Deposition	0-20	
	0-20 0-1	8	5. Channel Flow Status 6. Channel Alteration	0-20 0-1		5. Channel Flow Status 6. Channel Alteration	0-20 0-	1	5. Channel Flow Status 6. Channel Alteration	0-20 0-1	5. Channel Flow Status 6. Channel Alteration	0-20 0-1	
	0-20	18	7. Channel Sinuosity	0-20		7. Frequency of Riffles (or bends)	0.20		7. Frequency of Riffles (or bends)	0-20	7. Frequency of Riffles (or bends)	0-20	(
	0-20	17	8. Bank Stability (LB & RB)	0-20		8. Bank Stability (LB & RB)	0-20		8. Bank Stability (LB & RB)	0-20	8. Bank Stability (LB & RB)	0-20	
	0-20	13	9. Vegetative Protection (LB & RB)	0-20		9. Vegetative Protection (LB & RB)	0-20		9. Vegetative Protection (LB & RB)	0-20	9. Vegetative Protection (LB & RB)	0-20	
	0-20 Suboptimal	10 118	10. Riparian Vegetative Zone Width (LB & RB) Total RBP Score	0-20 Poor 0		10. Riparian Vegetative Zone Width (LB & RB) Total RBP Score	0-20 Poor	0	10. Riparian Vegetative Zone Width (LB & RB) Total RBP Score	0-20 Poor 0	10. Riparian Vegetative Zone Width (LB & RB) Total RBP Score	0-20 Poor	_
Sub-Total	Suboptimal	0.59	Sub-Total	0		Sub-Total	POOL	ő	Sub-Total	0	Sub-Total	POOL	Ő
CHEMICAL INDICATOR (Applies to Intermittent an	and Perennial Stre	ams)	CHEMICAL INDICATOR (Applies to Intermittent :	and Perennial Streams)		CHEMICAL INDICATOR (Applies to Intermittent	and Perennial	Streams)	CHEMICAL INDICATOR (Applies to Intermitter	t and Perennial Streams)	CHEMICAL INDICATOR (Applies to Intermitte	nt and Perennial Strear	.ms)
WVDEP Water Quality Indicators (General) Specific Conductivity	_		WVDEP Water Quality Indicators (General) Specific Conductivity			WVDEP Water Quality Indicators (General) Specific Conductivity	_		WVDEP Water Quality Indicators (General Specific Conductivity)	WVDEP Water Quality Indicators (General Specific Conductivity	ŋ	
	0-90	292.4	Specific conductivity	0-90		Specific conductivity	0-90		Specific conductivity	0-90	Specific Conductivity	0-90	
200-299 - 80 points	0-30	232.4	-11	0-90			0-90		-11	0.90		0-90	
pn	0-80	8.07	pn	5-90 0-1		рп	5-90 0-	1	ph	5-90 0-1	pn	5-90 0-1	
6.0-8.0 = 80 points	0.00	0.07	20	5.0		20	0-30		20	555	20	0.00	
00	10-30	5.63	80	10.30		00	10-30		DO	10-30	80	10-30	
>5.0 = 30 points	10-30	0.95	0.1.7.1.	10-30		0.1.7.1.	10-30	0	0.1.7.1.	10:30	0.1.7.1.	10-30	
Sub-Total BIOLOGICAL INDICATOR (Applies to Intermittent	t and Perennial C		Sub-Total BIOLOGICAL INDICATOR (Applies to Intermitter	unt and Perennial Streame)	1	Sub-Total BIOLOGICAL INDICATOR (Applies to Intermit	lent and Porce		Sub-Total BIOLOGICAL INDICATOR (Applies to Interm	ittent and Rerannial Streame)	Sub-Total BIOLOGICAL INDICATOR (Applies to Intern	nittent and Perernial G	Streame)
	a ana relennial S	a country		wana i orennal oreans)			and refei	una oreans)		nuon uno Pereininai Sureanisj		intent and Perentilal 3	ou callisy
WV Stream Condition Index (WVSCI)	0-100 0-1		WV Stream Condition Index (WVSCI)	0-100 0-1		WV Stream Condition Index (WVSCI)	0-100 0-	1	WV Stream Condition Index (WVSCI)	0-100 0-1	WV Stream Condition Index (WVSCI)	0-100 0-1	
0 Sub-Total	0-100	0	Sub-Total	0		Sub-Total	0-100 0-	0	Sub-Total	0	Sub-Total	0-100 0-1	0
					-								
PART II - Index and Unit	t Score		PART II - Index and U	Init Score		PART II - Index and L	Jnit Score		PART II - Index and U	nit Score	PART II - Index and I	Jnit Score	
Index I	Linear Feet	Unit Score	Index	Linear Feet Unit Score		Index	Linear Fee	t Unit Score	Index	Linear Feet Unit Score	Index	Linear Feet	Unit Score
0.770	84	64.68	0	0 0		0	0	0	0	0 0	0	0	0

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

STREAM NAME S-IJ52		LOCATION Montgomery County						
STATION # 1167+54 R	IVERMILE	STREAM CLASS Perennial						
LAT 37.296153 LO	ONG -80.367510	RIVER BASIN Upper Roanoke						
STORET #		AGENCY VA DEQ						
INVESTIGATORS KB, EL	, AO	•						
FORM COMPLETED BY	KB, EL, AO	DATE 8/3/2021 TIME 8:30 AM	REASON FOR SURVEY Baseline Assess					
WEATHER CONDITIONS	Tain of shower 70 % ✓ %c	Past 24 hours (heavy rain) (steady rain) s (intermittent) loud cover ear/sunny	Has there been a heavy rain in the last 7 days ✓Yes No Air Temperature ¹⁸ C Other					
SITE LOCATION/MAP		and indicate the areas sampled (or at Mah 20he E = 1 - 52 Mah 20he E = 1 - 52						

 STREAM CHARACTERIZATION
 Stream Subsystem Perennial
 Tidal
 Stream Type Coldwater
 Warmwater

 Stream Origin Glacial
 Spring-fed Mixture of origins Swamp and bog
 Marmwater
 Catchment Area
 1.13
 km²

Notes: Low flow observed.

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

WATERSHED FEATURES RIPARIAN VEGETATION (18 meter buffer)	Predominant Surrounding Landuse Forest Commercial Field/Pasture Industrial Agricultural Other Residential Other Indicate the dominant type and record the domin Indicate the dominant type and record the domin Dominant species present Deer-torgue grass and wingstem	Local Watershed NPS Pollution □ No evidence ☑ Some potential sources □ Obvious sources Local Watershed Erosion ☑ None ☑ Moderate ☑ Moderate ☑ Heavy
INSTREAM FEATURES	Estimated Reach Length 21.0 m Estimated Stream Width 0.75 m Sampling Reach Area 15.75 m² Area in km² (m²x1000) km² Estimated Stream Depth 0.1 m Surface Velocity (at thalweg) NA m/sec	Canopy Cover Partly shaded □Shaded I Partly open Partly shaded □Shaded High Water Mark 0.25 m Proportion of Reach Represented by Stream Morphology Types Riffle 50 % Pool 50 % Channelized Yes Dam Present Yes
LARGE WOODY DEBRIS	LWDm ² Density of LWDm ² /km ² (LWD/ read	ch area)
AQUATIC VEGETATION	Indicate the dominant type and record the domin Rooted emergent Floating Algae Dominant species present Portion of the reach with aquatic vegetation 0	□Rooted floating □Free floating
WATER QUALITY	Temperature 17.5 0 C Specific Conductance 292.4 uS/m Dissolved Oxygen 5.63 mg/L pH 8.07 Turbidity N/A WQ Instrument Used YSI #2	Water Odors Petroleum Petroleum Fishy Other Water Surface Oils Slick Sheen None Other_row Turbidity (if not measured) Clear Slightly turbid Opaque Stained
SEDIMENT/ SUBSTRATE	Odors Sewage Petroleum Chemical Anaerobic None Other Oils Pofuse	Deposits □Sludge □Sawdust □Paper fiber ☑Sand ☑Relict shells □Other □ Lpoking at stones which are not deeply embedded, are the undersides black in color? □ Yes ☑No

INC	DRGANIC SUBSTRATE (should add up to			ORGANIC SUBSTRATE COMPONENTS (does not necessarily add up to 100%)						
Substrate Type	Diameter	% Composition in Sampling Reach	Substrate Type							
Bedrock		0	Detritus	sticks, wood, coarse plant	Г					
Boulder	> 256 mm (10")	10		materials (CPOM)	5					
Cobble	64-256 mm (2.5"-10")	15	Muck-Mud	black, very fine organic	20					
Gravel	2-64 mm (0.1"-2.5")	30		(FPOM)	20					
Sand	0.06-2mm (gritty)	20	Marl	grey, shell fragments	10					
Silt	0.004-0.06 mm	15]		10					
Clay	< 0.004 mm (slick)	10								

Notes: Low flow observed. Water quality parameters only taken at upstream edge. Downstream edge with too low flow.

HABITAT ASSESSMENT FIELD DATA SHEET - HG - USE ON ALL STREAMS (FRONT)

STREAM NAME S-IJ52	LOCATION Montgomery County					
STATION #_1167+54 RIVERMILE	STREAM CLASS Perennial					
LAT <u>37.2964104</u> LONG <u>-80.3611114</u>	RIVER BASIN Upper Roanoke					
STORET #	AGENCY VADEQ					
INVESTIGATORS KB, EL, AO						
FORM COMPLETED BY KB, EL, AO	DATE 8/3/2021 TIME 10:00 AM PM Baseline Assessment					

	Habitat		Condition	Category					
	Parameter	Optimal	Suboptimal	Marginal	Poor				
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are <u>not</u> new fall and <u>not</u> transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.				
	_{SCORE} 12	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0				
n sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.				
ted in	_{score} 13	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0				
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow- deep, slow-shallow, fast- deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast- shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).				
uram	_{SCORE} 3	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0				
Pa	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.				
	_{SCORE} 8	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0				
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.				
	score ⁸	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0				

Notes: Low flow observed.

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

	Habitat		Conditio	n Category					
	Parameter	Optimal	Suboptimal	Marginal	Poor				
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.				
	_{score} 16	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0				
ling reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.				
amp	_{SCORE} 18	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0				
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30- 60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.				
e ev	SCORE 8	Left Bank 10 9	8 7 6	5 4 3	2 1 0				
s to b	SCORE 9	Right Bank 10 9	8 7 6	5 4 3	2 1 0				
Parameter	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well- represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.				
	SCORE 7	Left Bank 10 9	8 7 6	5 4 3	2 1 0				
	SCORE 6	Right Bank 10 9	8 7 6	5 4 3	2 1 0				
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.				
	SCORE 8	Left Bank 10 9	8 7 6	5 4 3	2 1 0				
	SCORE 2	Right Bank 10 9	8 7 6	5 4 3	2 1 0				

Total Score 118

BENTHIC MACROINVERTEBRATE FIELD DATA SHEET

STREAM NAME S-IJ	52	LOCATION Montgomery Co	unty					
STATION # 1167+54	_ RIVERMILE	STREAM CLASS Perennial						
LAT37.296153	LONG80.367510	RIVER BASIN Upper Roanol	ke					
STORET #		AGENCY VADEQ						
INVESTIGATORS KE			LOT NUMBER					
FORM COMPLETED	^{BY} KB, EL, AO	DATE 8/3/2021 TIME 9:00 AM	REASON FOR SURVEY Baseline Assessment					
HABITAT TYPES	✓Cobble_40 ✓Sn	Indicate the percentage of each habitat type present ✓ Cobble 40 % ✓ Snags 10 % ✓ Submerged Macrophytes % ✓ Other (✓ Other ()						
SAMPLE COLLECTION	Gear used D-frame kick-net Other							
	How were the samples coll	lected? wading fr	rom bank from boat					
	Indicate the number of jabs/kicks taken in each habitat type. CobbleSnags Vegetated Banks Sand Submerged Macrophytes Other ()							
GENERAL COMMENTS			eam flow conditions and and stonefly larvae visually					

QUALITATIVE LISTING OF AQUATIC BIOTA

Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare, 2 = Common, 3= Abundant, 4 = Dominant

Periphyton	0	1	2	3	4	Slimes	0	1	2	3	4
Filamentous Algae	0	1	2	3	4	Macroinvertebrates	0	1	2	3	4
Macrophytes	0	1	2	3	4	Fish	0	1	2	3	4

FIELD OBSERVATIONS OF MACROBENTHOS

Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare (1-3 organisms), 2 = Common (3-9 organisms), 3= Abundant (>10 organisms), 4 = Dominant (>50 organisms)

Porifera	0	1	2	3	4	Anisoptera	0	1	2	3	4	Chironomidae	0	1	2	3	4
Hydrozoa	0	1	2	3	4	Zygoptera	0	1	2	3	4	Ephemeroptera	0	1	2	3	4
Platyhelminthes	0	1	2	3	4	Hemiptera	0	1	2	3	4	Trichoptera	0	1	2	3	4
Turbellaria	0	1	2	3	4	Coleoptera	0	1	2	3	4	Other	0	1	2	3	4
Hirudinea	0	1	2	3	4	Lepidoptera	0	1	2	3	4						
Oligochaeta	0	1	2	3	4	Sialidae	0	1	2	3	4						
Isopoda	0	1	2	3	4	Corydalidae	0	1	2	3	4						
Amphipoda	0	1	2	3	4	Tipulidae	0	1	2	3	4						
Decapoda	0	1	2	3	4	Empididae	0	1	2	3	4						
Gastropoda	0	1	2	3	4	Simuliidae	0	1	2	3	4						
Bivalvia	0	1	2	3	4	Tabinidae	0	1	2	3	4						
						Culcidae	0	1	2	3	4						

WOLMAN PEBBLE COUNT FORM

Basin:

County:	Montgomery County
Stream Name:	UNT to Mill Creek
HUC Code:	05050002
Survey Date:	8/3/2021
Surveyors:	KB, AO, EL
Type:	Representative

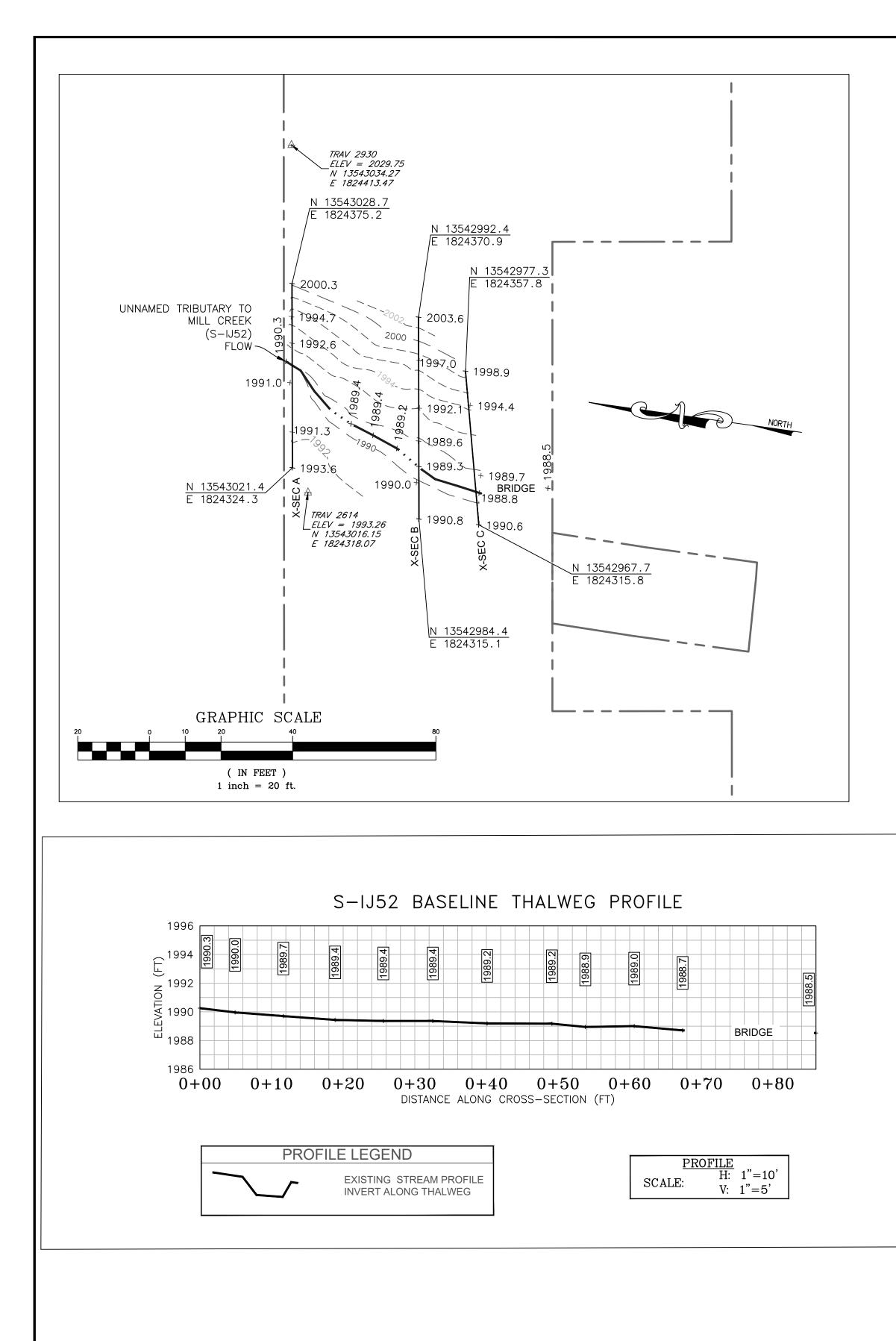
Stream ID: S-IJ52

Upper Roanoke

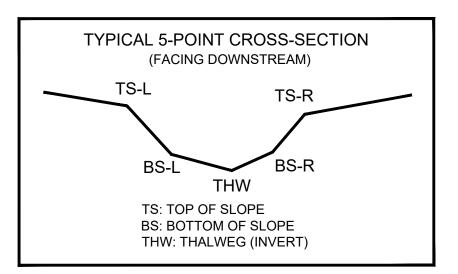
	D + D 77	3 61111		n		.	a
Inches	PARTICLE	Millimeters		Particle Count	Total #	Item %	% Cum
	Silt/Clay	< .062	S/C	▲ ▼	0	0.00	0.00
	Very Fine	.062125		▲ ▼	0	0.00	0.00
	Fine	.12525	S A N D	▲ ▼	1	1.00	1.00
	Medium	.255		▲ ▼	0	0.00	1.00
	Coarse	.50-1.0		▲ ▼	4	4.00	5.00
.0408	Very Coarse	1.0-2		▲ ▼	4	4.00	9.00
.0816	Very Fine	2 -4		▲ ▼	11	11.00	20.00
.1622	Fine	4 -5.7		▲ ▼	5	5.00	25.00
.2231	Fine	5.7 - 8		▲ ▼	19	19.00	44.00
.3144	Medium	8 -11.3		▲ ▼	12	12.00	56.00
.4463	Medium	11.3 - 16	G R A V E L	▲ ▼	7	7.00	63.00
.6389	Coarse	16 -22.6	•	▲ ▼	5	5.00	68.00
.89 - 1.26	Coarse	22.6 - 32		▲ ▼	9	9.00	77.00
1.26 - 1.77	Vry Coarse	32 - 45		▲ ▼	4	4.00	81.00
1.77 -2.5	Vry Coarse	45 - 64		▲ ▼	7	7.00	88.00
2.5 - 3.5	Small	64 - 90		▲ ▼	6	6.00	94.00
3.5 - 5.0	Small	90 - 128	COBBLE	▲ ▼	4	4.00	98.00
5.0 - 7.1	Large	128 - 180	COBBLE	▲ ▼	1	1.00	99.00
7.1 - 10.1	Large	180 - 256		▲ ▼	1	1.00	100.00
10.1 - 14.3	Small	256 - 362		▲ ▼	0	0.00	100.00
14.3 - 20	Small	362 - 512	1	▲ ▼	0	0.00	100.00
20 - 40	Medium	512 - 1024	BOULDER	▲ ▼	0	0.00	100.00
40 - 80	Large	1024 -2048	1	▲ ▼	0	0.00	100.00
80 - 160	Vry Large	2048 -4096		▲ ▼	0	0.00	100.00
	Bedrock		BDRK	▲ ▼	0	0.00	100.00
				Totals:	100		1

River Name: U Reach Name: S Sample Name: R Survey Date: 0	epresentative		
Size (mm)	TOT #	ITEM %	CUM %
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock		0.00 0.00 1.00 0.00 4.00 4.00 11.00 5.00 19.00 12.00 7.00 5.00 9.00 4.00 7.00 6.00 4.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 1.00 1.00 5.00 9.00 20.00 25.00 44.00 56.00 63.00 68.00 77.00 81.00 88.00 94.00 98.00 99.00 100.00 100.00 100.00
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Gravel (%) Boulder (%) Bedrock (%)	3.27 6.91 9.65 53.14 99.5 255.99 0 9 79 12 0 0		

Total Particles = 100.


		S	Strean			alage fam.	-				
					ream Method	••	-	ial			
					Cowardin		•		Impact	Impact	
Project #		t Name (App	,	Locality	Class.	HUC	Date	SAR #	Length	Factor	
22865.06	Valle	ey Pipeline, I	•	Montgomery County	R3	03010101	8/3/2021	S-IJ52	84	1	
Name	e(s) of Evaluat	tor(s)		e and Inform	ation				SAR Length		
	KB, EL, AO		UNT to Mill C	Creek					84		
Channel C	Condition: Asse	ess the cross-sec	tion of the stream								
	Opti	mal	Subo	ptimal	Conditional Catego	ginal	Po	or	Sev	ere	
Channel Condition	Very little incision or 100% stable ban surface protection prominent (80-100% bankfull benches ar to their original fil developed wide ban channel bars and tr Transient sediment less than 10%	hks. Vegetative n or natural rock, 6). AND/OR Stable re present. Access oodplain or fully ikfull benches. Mid ansverse bars few.	erosion or unprotect of banks are si Vegetative protect prominent (60 Depositional feat stability. The bar channels are well likely has acc benches, or ne portions of the r sediment covers	ew areas of active cted banks. Majority table (60-80%). table (60-80%). 80%) AND/OR tures contribute to nkfull and low flow II defined. Stream ess to bankfull wwy developed reach. Transient s 10-40% of the bottom.	Poor. Banks more or Poor due to lo Erosion may be pr both banks. Vegel 40-60% of banks. be vertical or un 40-60% Sediment transient, contr Deposition that co may be forming/pr shaped channels protection on > 40°	esent on 40-60% of tative protection on Streambanks may dercut. AND/OR may be temporary / ibute instability. ntribute to stability,	laterally unstable further. Majority near vertical. Eros banks. Vegetative on 20-40% of insufficient to p the stream is cow Sediment is temp nature, and contri AND/OR V-shag vegetative protect 40% of the banks a	sised. Vertically / e. Likely to widen of both banks are sion present on 60- protection present banks, and is prevent erosion. ered by sediment. buting to instability. wed channels have ion is present on > and stable sediment is absent.	Deeply incised vertical/lateral im incision, flow con banks. Streambe majority of banks vegetative protecti than 20% of banks erosion. Obvious present. Erosion/ 100%. AND/OR A than 80% of stream deposition, contrib Multiple thread of subterran	stability. Severe tained within the d below average vertical/undercut. on present on less is not preventing b bank sloughing raw banks on 80- ggrading channel. b ed is covered by uting to instability. channels and/or	
					to sta		deposition	r is absent.	subterran	ean now.	CI
Scores	3	6	2	.4		2	1	.6	1	l	2.40
NOTES>>	N BUFFERS: A	Assess both bank				gh measurements	of length & width	may be acceptab	le) NOTES>>		
	N BUFFERS: A		Con Subo	ditional Cate ptimal	gory	<mark>ginal</mark> Low Marginal:	Pc High Poor:	may be acceptab			
		mal 3 inches) present, canopy cover. within the riparian	Con	ditional Cate	gory	ginal	Pc	· ·			
. RIPARIAN	Opti Tree stratum (dbh > with > 60% tree Wetlands located ' area	mal ³ inches) present, canopy cover. within the riparian as.	Con Subop High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory.	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation).	gory High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained	Pc High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non- maintained area, recently seeded and stabilized, or other comparable	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable			
RIPARIAN	Opti	mal ³ inches) present, canopy cover. within the riparian as.	Con Subop High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory.	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation).	Gory High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover.	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, ripanan areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory.	Pc High Poor: Lawns, mowed, and maintained areas, nurseries; no-tili cropland; actively grazed pasture, sparsely vegetated non- maintained area, recently seeded and stabilized, or other comparable condition.	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions.			
Riparian Buffers Scores Delineate ripa Determine sq	Opti Tree stratum (dbh > with > 60% tree Wetlands located area area area uare footage for eau	mal 3 inches) present, canopy cover. within the riparian as. 5 ach stream bank ach by measuring	Con Suboy High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Ca	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 ttegories and Congth and width. Cate	gory High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85 dition Scores usin	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75 g the descriptors.	Pec High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non- maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure 1 of % F	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian			
RIPARIAN Riparian Buffers Scores Delineate ripa Determine sq	Opti	mal 3 inches) present, canopy cover. within the riparian as. 5 ach stream bank ach by measuring Score for each rip	Con Suboy High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Ca or estimating lenger	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Con gth and width. Cat the blocks below.	gory High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85 dition Scores usin	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75 g the descriptors.	Pec High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non- maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure 1 of % F	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100			
Riparian Buffers Scores Delineate ripa Determine sq alow. Enter the % F	Opti Tree stratum (dbh > with > 60% tree Wetlands located area area area uare footage for eau	mal 3 inches) present, canopy cover. within the riparian as. 5 ach stream bank ach by measuring	Con Suboy High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Ca	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 ttegories and Congth and width. Cate	gory High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85 dition Scores usin	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75 g the descriptors.	Pec High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non- maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure 1 of % F	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian			
Riparian Buffers Scores Delineate ripa Determine sq alow. Enter the % F	Opti Tree stratum (dbh > with > 60% tree Wetlands located area Wetlands located area International Strategy area Area and S % Riparian Area Score >	mal 3 inches) present, canopy cover. within the riparian as. 5 ach stream bank ach by measuring Score for each rip 50% 0.5	Con Suboy High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Ca or estimating leng arian category in 40% 0.75	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Con gth and width. Ca the blocks below. 10% 1.2	gory High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85 dition Scores usin	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75 g the descriptors.	Pec High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non- maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure 1 of % F	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100	NOTES>>		
Riparian Buffers Scores Delineate ripa Determine sq alow. Enter the % F	Opti Tree stratum (dbh > with > 60% tree Wetlands located area Wetlands located area International Strategy Arian areas along er ware footage for ea Strategy for each Riparian Area Score > % Riparian Area>	mal 3 inches) present, canopy cover. within the riparian as. 5 ach stream bank ach by measuring Score for each rip 50% 0.5 60%	Con Suboy High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Ca or estimating leng arian category in 40% 0.75	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Con gth and width. Ca the blocks below. 10% 1.2	gory High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85 dition Scores usin	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75 g the descriptors.	Pec High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non- maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure 1 of % F	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100	NOTES>> CI= (Sum % RA * Sc Rt Bank CI >	0.67	
RIPARIAN Riparian Buffers Scores Delineate ripa Jow. Enter the % F Right Bank	Opti Tree stratum (dbh > with > 60% tree Wetlands located area Wetlands located area 1. Arian areas along e- uare footage for ea Riparian Area and S % Riparian Area Score > % Riparian Area> Score >	mal 3 inches) present, canopy cover. within the riparian as. 5 5 ach stream bank ach by measuring 5 5 5 5 60% 0.75	Con Suboy High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Ca or estimating leng parian category in 40% 0.75	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Con gth and width. Ca the blocks below. 10% 1.2	gory Marg High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85 dition Scores usin alculators are prov	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <a 0%="" 0.75="" canopy="" cover="" descriptors.="" for="" g="" ided="" low="" maintained="" td="" the="" tree="" understory.="" with="" you<=""><td>Pro High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non- maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure I Blocks e</td><td>Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100 100%</td><td>NOTES>> CI= (Sum % RA * Sc Rt Bank CI > Lt Bank CI ></td><td>0.67 0.68</td><td><u>CI</u> 0.68</td>	Pro High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non- maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure I Blocks e	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100 100%	NOTES>> CI= (Sum % RA * Sc Rt Bank CI > Lt Bank CI >	0.67 0.68	<u>CI</u> 0.68
RIPARIAN Riparian Buffers Scores Delineate ripa Determine sq jow. Enter the % F Right Bank Left Bank	Opti Tree stratum (dbh > with > 60% tree Wetlands located area Wetlands located area International areas International areas Internationareas International areas Inte	mal 3 inches) present, canopy cover. within the riparian as. 5 ach stream bank ach by measuring Score for each rip 50% 0.5 60% 0.75 aried substrate si	Con Suboy High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Ca or estimating leng parian category in 40% 0.75	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Con gth and width. Ca the blocks below. 10% 1.2	gory Marg High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85 dition Scores usin alculators are prov	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <a 0%="" 0.75="" canopy="" cover="" descriptors.="" for="" g="" ided="" low="" maintained="" td="" the="" tree="" understory.="" with="" you<=""><td>Pro High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non- maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure I Blocks e</td><td>Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100 100%</td><td>NOTES>> CI= (Sum % RA * Sc Rt Bank CI > Lt Bank CI ></td><td>0.67 0.68</td><td></td>	Pro High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non- maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure I Blocks e	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100 100%	NOTES>> CI= (Sum % RA * Sc Rt Bank CI > Lt Bank CI >	0.67 0.68	
Riparian Buffers Scores Delineate ripa Determine sq Jow. Enter the % F Right Bank Left Bank	Opti Tree stratum (dbh > with > 60% tree Wetlands located area Wetlands located area 1. Arian areas along e- uare footage for ea Riparian Area and S % Riparian Area Score > % Riparian Area> Score >	mal 3 inches) present, canopy cover. within the riparian as. 5 ach stream bank ach by measuring Score for each rip 50% 0.5 60% 0.75 aried substrate si	Con Suboy High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Ca or estimating leng parian category in 40% 0.75	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Con gth and width. Ca the blocks below. 10% 1.2	gory Marg High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85 dition Scores usin alculators are prov	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <a 0%="" 0.75="" canopy="" cover="" descriptors.="" for="" g="" ided="" low="" maintained="" td="" the="" tree="" understory.="" with="" you<=""><td>Pro High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non- maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure I Blocks e</td><td>Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100 100%</td><td>NOTES>> CI= (Sum % RA * Sc Rt Bank CI > Lt Bank CI ></td><td>0.67 0.68</td><td></td>	Pro High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non- maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure I Blocks e	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100 100%	NOTES>> CI= (Sum % RA * Sc Rt Bank CI > Lt Bank CI >	0.67 0.68	
Riparian Buffers Scores Delineate ripa Determine sq Jow. Enter the % F Right Bank Left Bank INSTREAN	Opti Tree stratum (dbh > with > 60% tree Wetlands located area Wetlands located area International areas International areas Internationareas International areas Inte	mal 3 inches) present, canopy cover. within the riparian as. 5 ach stream bank ach by measuring 5core for each rip 50% 0.5 60% 0.75 aried substrate si as.	Con Suboy High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Ca or estimating leng or estimating leng arian category in 40% 0.75	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Con gth and width. Ca the blocks below. 10% 1.2	gory Mary High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer (dh>3 inches) present, with <30% tree canopy cover. High 0.85 dition Scores usin alculators are prov	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <a 0%="" 0.75="" canopy="" cover="" descriptors.="" for="" g="" ided="" low="" maintained="" td="" the="" tree="" understory.="" with="" you<=""><td>Pc High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non- maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure of % F Blocks e</td><td>Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100 100%</td><td>NOTES>> CI= (Sum % RA * So Rt Bank CI > Lt Bank CI > cut banks; root ma</td><td>0.67 0.68</td><td></td>	Pc High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non- maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure of % F Blocks e	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100 100%	NOTES>> CI= (Sum % RA * So Rt Bank CI > Lt Bank CI > cut banks; root ma	0.67 0.68	
Riparian Buffers Scores Delineate ripa Determine sq elow. Enter the % F Right Bank Left Bank . INSTREAN	Opti Tree stratum (dbh > with > 60% tree Wetlands located area Wetlands located area International areas uare footage for ea varea footage footage for ea varea footage for ea varea footage footage for ea varea footage footage for ea varea footage footage footage footage footage footage footage footage varea footage f	mal 3 inches) present, canopy cover. within the riparian as. 5 ach stream bank ach by measuring 5 5 5 60% 0.5 60% 0.75 aried substrate si ss. mal re typically present	Con Suboy High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Ca or estimating leng arian category in 40% 0.75 30% 0.6 zes, water velocity Stable habitat ele present in 30-509 are adequate fo	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Con- gth and width. Cather the blocks below. 10% 1.2 10% 0.5 y and depths; wood ptimal ments are typically % of the reach and	gory Marg High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85 dition Scores usin acculators are prov dition Scores usin acculators are prov acculators are prov Stable habitat ele present in 10-30% are adequate for	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree trave, canopy cover with maintained understory. Low 0.75 g the descriptors. ided for you ginal ments are typically is of the reach and reach and reach and	Pcc High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non- maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure of % F Blocks e	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 Low 0.5 the sums Riparian equal 100 100% 100% support conditions	NOTES>> CI= (Sum % RA * So Rt Bank CI > Lt Bank CI > cut banks; root ma	0.67 0.68	
Riparian Buffers Scores Delineate ripa Delemine sq elow. Enter the % F Right Bank Left Bank Left Bank Instream Habitat/ Available	Opti Tree stratum (dbh > with > 60% tree Wetlands located u area wetlands located u area 1. Arian areas along er uare footage for ea Riparian Area and S % Riparian Area Score > % Riparian Area Riparian Area Score > % Riparian Area Scor	mal 3 inches) present, canopy cover. within the riparian as. 5 ach stream bank ach by measuring 50% 0.5 60% 0.75 aried substrate si ss. mal re typically present 0% of the reach.	Con Subop High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Ca or estimating lene or estimating lene carian category in 40% 0.75 30% 0.6 zes, water velocity Stable habitat ele present in 30-50% are adequate fo popula	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and understory. Recent cutover (dense vegetation). Low 1.1 tegories and Con gth and width. Ca the blocks below. 10% 1.2 10% 0.5 y and depths; woo Conditiona ptimal ments are typically % of the reach and	gory High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer (dh> 3 inches) present, with <30% tree canopy cover. High 0.85 dition Scores usin alculators are prov alculators are prov Stable habitat elep present in 10.309 are adequate for popula	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree trave, canopy cover with maintained understory. Low 0.75 g the descriptors. ided for you ginal ments are typically is of the reach and reach and reach and	Pcc High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non- maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure of % F Blocks e	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100 100% 100% subsection stable. Habitat	NOTES>> CI= (Sum % RA * So Rt Bank CI > Lt Bank CI > cut banks; root ma	0.67 0.68 ts; SAV; Gradient	

Reach R3 File: L:\22000s\22800\22865.06\Admin\05-ENVR\Field Data\Spread G\Field Forms\S-IJ52\0_Potesta Submission\Files\S-IJ52_USM_MVP.xlsx

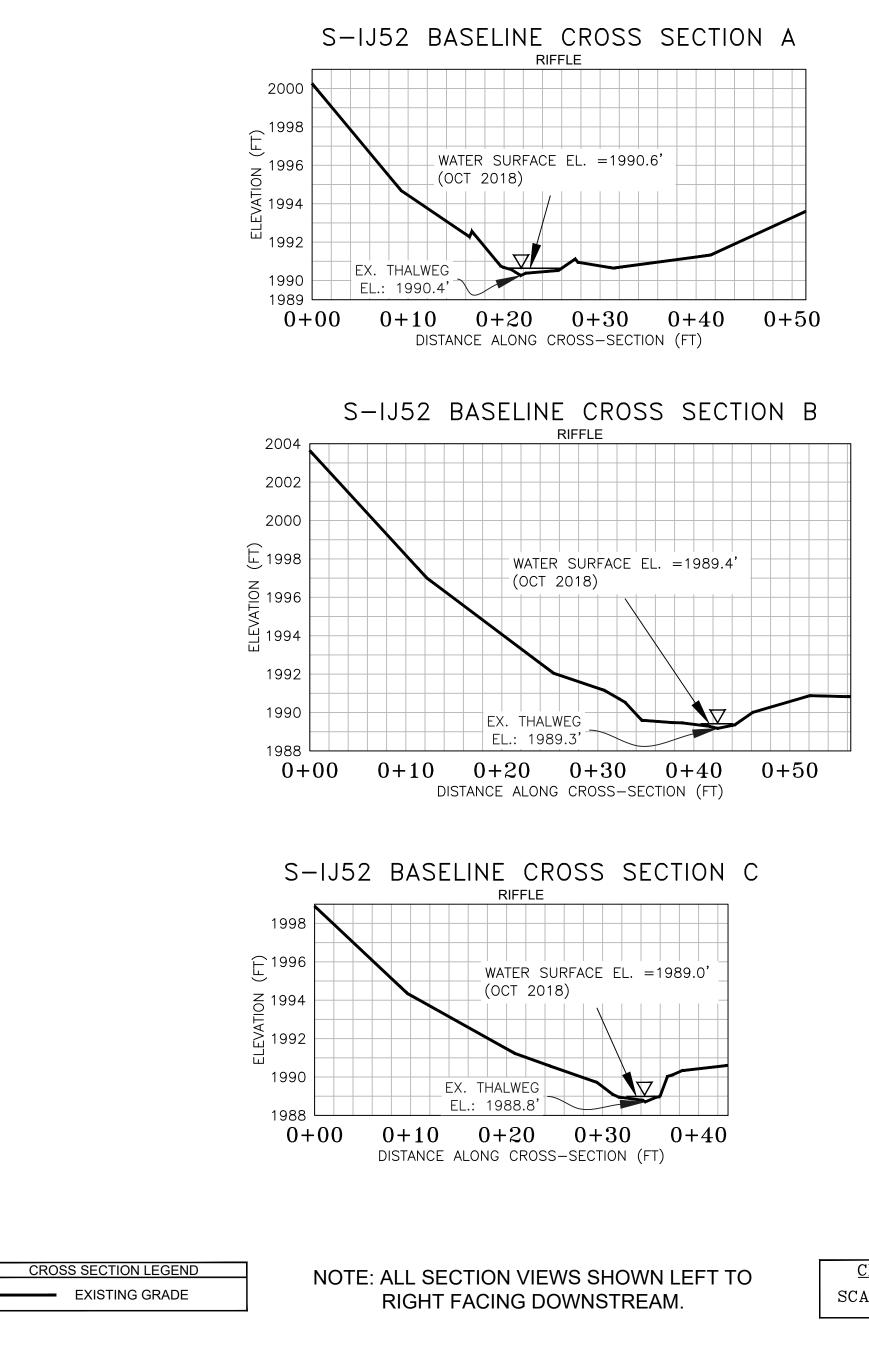

Project #	Project Name (App		Locality	Cowardin	nent Fo нис	rm Pag	e Z SAR #	Impact	Impact	
22865.06	Mountain Valley Pipeline (Mountain Valley Pipeline, LLC)		Montgomery County	Class. R3	03010101	8/3/2021	S-IJ52	Length 84	Factor 1	
. CHANNE	L ALTERATION: Stream cross	<u> </u>		oncrete blocks, s	traightening of cha	annel, channelizat	ion, embankment	s, spoil piles, const	rictions, livestock	
			Conditiona	al Category				NOTES>>		
	Negligible	Mi	nor		erate 60 - 80% of reach	Sev	/ere			
Channel Alteration	Channelization, dredging, alteration, or hardening absent. Stream has an unaltered pattern or has naturalized.	of the channel alterations listed in the parameter guidelines.	the channel alterations listed in the parameter guidelines.	of the channel alterations listed in the parameter guidelines. If stream has been channelized, normal stable stream meander pattern has not recovered.	the parameter guidelines. If stream has been channelized, normal stable stream meander pattern has not recovered.	by any of the chan in the parameter of 80% of banks sh riprap, o	of reach is disrupted nel alterations listed juidelines AND/OR lored with gabion, r cement.			СІ
Scores	1.5	1.3	1.1	0.9	0.7	0	.5			1.50
	REACH	ONDITION I	NDEX and S	STREAM CO	NDITION UN	IITS FOR TH	IIS REACH			
OTE: The Cls a	and RCI should be rounded to 2 dec	imal places. The	CR should be rou	nded to a whole r	umber.		THE REACH	CONDITION INI	DEX (RCI) >>	1.16
						RCI= (Sum of	all CI's)/5, exce	pt if stream is ep	hemeral RCI = (Riparian
							COMPENSAT	ION REQUIREM	1ENT (CR) >>	97
							CD = DC			

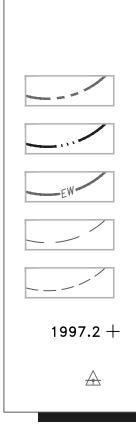
PROVIDED UNDER SEPARATE COVER

CL STAKEOUT POINTS: S-IJ52 CROSS SECTION B (PIPE CL)						
	PRE-CROSSING POST-CROSS					
PT. LOC.	NORTHING	EASTING	ELEV	VERT.	HORZ.	
11.200.	Nonning	LASTING		DIFF.	DIFF.	
TS-L	13542987.93	1824338.95	1990.70			
BS-L	13542987.61	1824336.65	1989.60			
THW	13542986.52	1824329.62	1989.28			
BS-R	13542986.46	1824327.05	1989.35			
TS-R	13542986.54	1824325.09	1990.02			

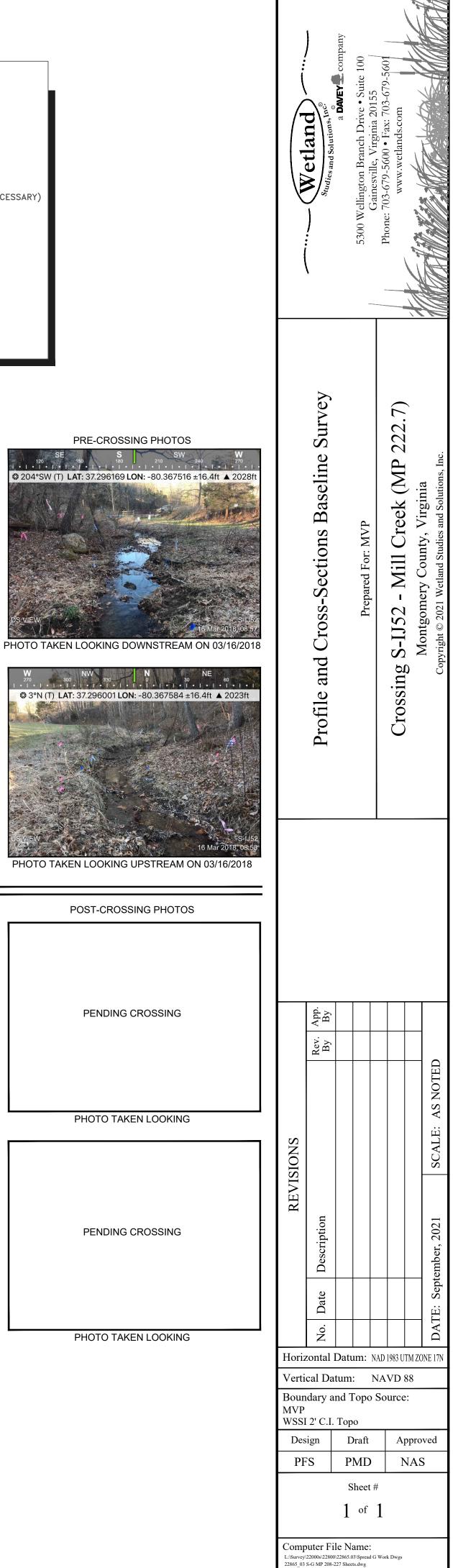
SURVEY NOTES:

1. This map has been oriented to NAD 1983 UTM ZONE 17N, and vertically to The North American Vertical Datum of 1988 (NAVD 88), using a Real Time Network (RTN) GPS. Field locations were completed on October 18, 2018.


2. Monumentation, including traverse stations and fly points, shown on this drawing should be used to orient any future boundary, topographic, or location survey.


3. Easement lines shown on plan view were provided by Mountain Valley Pipeline (MVP).

4. WSSI Contour Interval = 2.0'. Contours within the channel were interpolated using stream channel breaklines (i.e. top of slopes, toe of slopes, thalweg) and cross-sectional points. Contours outside the channel were interpolated using cross-sectional spot shots.


5. All section views shown are left to right facing downstream.

6. Cross-section B shot at location of pipe centerline (based on best professional judgement).

LEGEND
STUDY AREA (EASEMENT)
EXISTING SURVEY-LOCATED THALWEG
EXISTING SURVEY-LOCATED EDGE OF WATER (AS NECESS
EXISTING CONTOUR LINE (MAJOR)
EXISTING CONTOUR LINE (MINOR)
EXISTING SURVEYED GROUND SHOT ELEVATION
BENCHMARK POINT (WSSI)

 $\begin{array}{c} \underline{\text{CROSS SECTION}}\\ \text{SCALE:} & \begin{array}{c} \text{H: } 1"=10'\\ \text{V: } 1"=5' \end{array}$