Baseline Assessment - Stream Attributes

Reach S-QQ2 (Temporary Access Road) Perennial Spread G Craig County, Virginia

Data	Included
Photos	✓
SWVM Form	✓
FCI Calculator and HGM Form	N/A – Perennial stream (not shadeable, slope >4%)
RBP Physical Characteristics Form	✓
Water Quality Data	✓
RBP Habitat Form	✓
RBP Benthic Form	N/A – No suitable habitat present
Benthic Identification Sheet	N/A – No suitable habitat present
Wolman Pebble Count	✓
RiverMorph Data Sheet	✓
USM Form (Virginia Only)	√
Longitudinal Profile and Cross Sections	✓

Photo Type: DS VIEW Location, Orientation, Photographer Initials: Downstream view of LOC looking NW, SB

Photo Type: US VIEW Location, Orientation, Photographer Initials: Upstream view of LOC looking SE, SB

Photo Type: CL ACCESS 1 Location, Orientation, Photographer Initials: Standing in Access Road looking SW, SB

Photo Type: CL ACCESS 2 Location, Orientation, Photographer Initials: Standing in Access Road looking N, SB

Location, Orientation, Photographer Initials: Downstream conditions outside of LOC looking SW, TC

USACE FILE NO./ Project Name: (v2.1, Sept 2015)		Мо	untain Va	alley Pipeline		OORDINATES: aal Degrees)	Lat.	37.333152	Lon.	-80.429438	WEATHER:	M	Mostly Sunny	DATE:	August 10, 2021
IMPACT STREAM/SITE ID (watershed size {acreage},				S-C	Q2			MITIGATION STREAM CLASS (watershed size {acreae						Comments:	
STREAM IMPACT LENGTH:	40	FORM OF		RESTORATION (Levels I-III)		RDINATES: al Degrees)	Lat.		Lon.		PRECIPITATION PAST 48 HRS:		None	Mitigation Length:	
Column No. 1- Impact Existing	g Condition (Deb	it)		Column No. 2- Mitigation Existing Co	ondition - Baseline	e (Credit)		Column No. 3- Mitigation P Post Completion		Years	Column No. 4- Mitigation P Post Completio		ears	Column No. 5- Mitigation Project	ed at Maturity (Credit)
Stream Classification:	Perer	nnial	<u> </u>	Stream Classification:				Stream Classification:		0	Stream Classification:		0	Stream Classification:	0
Percent Stream Channel SI	lope	0.7		Percent Stream Channel Slo	pe			Percent Stream Channel S	Slope	0	Percent Stream Channel	Slope	0	Percent Stream Channel S	lope 0
HGM Score (attach d	lata forms):			HGM Score (attach d	ata forms):			HGM Score (attac	h data forms):		HGM Score (attach	data forms):		HGM Score (attach d	ata forms):
		Average	Edward Company			Average				Average			Average		Averag
Hydrology				Hydrology	***************************************			Hydrology			Hydrology		9999	Hydrology	
Biogeochemical Cycling		0		Biogeochemical Cycling		0		Biogeochemical Cycling		0	Biogeochemical Cycling		0	Biogeochemical Cycling	0
Habitat PART I - Physical, Chemical and	Biological Indica	ators	ŀ	Habitat PART I - Physical, Chemical and	Biological Indica	itors		Habitat PART I - Physical, Chemical a	and Biological Inc	dicators	Habitat PART I - Physical, Chemical a	nd Biological Indi	icators	PART I - Physical, Chemical and	Biological Indicators
	Points Scale Range	Site Score			Points Scale Range	Site Score			Points Scale Range	Site Score		Points Scale Range	e Site Score		Points Scale Range Site Score
PHYSICAL INDICATOR (Applies to all streams	s classifications)			PHYSICAL INDICATOR (Applies to all streams c	lassifications)			PHYSICAL INDICATOR (Applies to all stream	ns classifications)		PHYSICAL INDICATOR (Applies to all stream	ms classifications)		PHYSICAL INDICATOR (Applies to all streams	classifications)
USEPA RBP (High Gradient Data Sheet)				USEPA RBP (Low Gradient Data Sheet)				USEPA RBP (High Gradient Data Sheet)			USEPA RBP (High Gradient Data Sheet)		USEPA RBP (High Gradient Data Sheet)	
Epifaunal Substrate/Available Cover	0-20	18	<u> </u>	Epifaunal Substrate/Available Cover	0-20			Epifaunal Substrate/Available Cover	0-20		Epifaunal Substrate/Available Cover	0-20		Epifaunal Substrate/Available Cover	0-20
2. Embeddedness	0-20	19	li li	2. Pool Substrate Characterization	0-20			2. Embeddedness	0-20		2. Embeddedness	0-20		2. Embeddedness	0-20
Velocity/ Depth Regime Sediment Deposition	0-20 0-20	10 18		Pool Variability Sediment Deposition	0-20 0-20			Velocity/ Depth Regime Sediment Deposition	0-20 0-20		Velocity/ Depth Regime Sediment Deposition	0-20 0-20		Velocity/ Depth Regime Sediment Deposition	0-20 0-20
5. Channel Flow Status	0-20	20	1	5. Channel Flow Status	0-20			Channel Flow Status	0-20		5. Channel Flow Status	0-20 0-1		5. Channel Flow Status	0-20
6. Channel Alteration	0-20 0-1	20		6. Channel Alteration	0-20 0-1			6. Channel Alteration	0-20 0-1		6. Channel Alteration	0-20 0-1		6. Channel Alteration	0-20 0-1
7. Frequency of Riffles (or bends)	0-20	6		7. Channel Sinuosity	0-20			7. Frequency of Riffles (or bends)	0-20		7. Frequency of Riffles (or bends)	0-20		7. Frequency of Riffles (or bends)	0-20
8. Bank Stability (LB & RB)	0-20	20		8. Bank Stability (LB & RB)	0-20			8. Bank Stability (LB & RB)	0-20		8. Bank Stability (LB & RB)	0-20		8. Bank Stability (LB & RB)	0-20
9. Vegetative Protection (LB & RB)	0-20	13		9. Vegetative Protection (LB & RB)	0-20			9. Vegetative Protection (LB & RB)	0-20		9. Vegetative Protection (LB & RB)	0-20		9. Vegetative Protection (LB & RB)	0-20
10. Riparian Vegetative Zone Width (LB & RB)	0-20	14		10. Riparian Vegetative Zone Width (LB & RB)	0-20			10. Riparian Vegetative Zone Width (LB & RB)	0-20		10. Riparian Vegetative Zone Width (LB & RB			10. Riparian Vegetative Zone Width (LB & RB)	0-20
Total RBP Score	Suboptimal	158		Total RBP Score	Poor	0		Total RBP Score	Poor	0	Total RBP Score	Poor	0	Total RBP Score	Poor 0
Sub-Total		0.79		Sub-Total		0		Sub-Total		0	Sub-Total		0	Sub-Total	0
CHEMICAL INDICATOR (Applies to Intermitter	nt and Perennial Stre	eams)		CHEMICAL INDICATOR (Applies to Intermittent a	and Perennial Stream	ns)		CHEMICAL INDICATOR (Applies to Intermitte	ent and Perennial St	reams)	CHEMICAL INDICATOR (Applies to Interm	ttent and Perennial S	Streams)	CHEMICAL INDICATOR (Applies to Intermitten	nt and Perennial Streams)
WVDEP Water Quality Indicators (General	l)			WVDEP Water Quality Indicators (General)				WVDEP Water Quality Indicators (General	al)		WVDEP Water Quality Indicators (Gene	ral)		WVDEP Water Quality Indicators (General)
Specific Conductivity	T		1	Specific Conductivity		U		Specific Conductivity			Specific Conductivity			Specific Conductivity	
200-299 - 80 points	0-90	237.9			0-90				0-90			0-90			0-90
рН			ļ.	pH		0		pH			рН			рН	
	0-80	7.75	ľ		5-90 0-1				5-90 0-1			5-90 0-1			5-90 0-1
6.0-8.0 = 80 points				DO				DO.			DO			DO	
DO								BO			DO			50	
>5.0 = 30 points	10-30	11.95			10-30				10-30			10-30			10-30
Sub-Total		0.95		Sub-Total		0		Sub-Total		0	Sub-Total		0	Sub-Total	0
BIOLOGICAL INDICATOR (Applies to Intermit	ttent and Perennial S	treams)	Į.	BIOLOGICAL INDICATOR (Applies to Intermitter	nt and Perennial Strea	ams)		BIOLOGICAL INDICATOR (Applies to Inter	mittent and Perenr	nial Streams)	BIOLOGICAL INDICATOR (Applies to Int	ermittent and Peren	nnial Streams)	BIOLOGICAL INDICATOR (Applies to Interm	ittent and Perennial Streams'
WV Stream Condition Index (WVSCI)			Ī	WV Stream Condition Index (WVSCI)				WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)	
	0-100 0-1				0-100 0-1				0-100 0-1			0-100 0-1			0-100 0-1
0 Sub-Total		0		Sub-Total		0		Sub-Total		0	Sub-Total		0	Sub-Total	0
			L.				,				u				
PART II - Index and U	Jnit Score			PART II - Index and U	Init Score			PART II - Index an	d Unit Score		PART II - Index and	I Unit Score		PART II - Index and U	nit Score
Index	Linear Feet	Unit Score		Index	Linear Feet	Unit Score		Index	Linear Feet	Unit Score	Index	Linear Feet	Unit Score	Index	Linear Feet Unit Sco
0.870	40	34.8		0	0	0		0	0	0	0	0	0	0	0 0

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

STREAM NAME S-QQ2	LOCATION Craig County	
STATION # RIVERMILE	STREAM CLASS Perennial	
LAT <u>37.333152</u> LONG <u>-80.429438</u>	RIVER BASIN Middle New	
STORET#	AGENCY VADEQ	
INVESTIGATORS SB, EL		
FORM COMPLETED BY SB, EL	DATE 8/10/2021 TIME 11:00 AM	REASON FOR SURVEY Baseline Assessment

WEATHER CONDITIONS	Now Past 24 hours Yes ✓ No Air Temperature 31.7 ° C Other Other
SITE LOCATION/MAP	Draw a map of the site and indicate the areas sampled (or attach a photograph) ROAD SINKING (REEK (R3)) FLOW ROAD ROAD
STREAM CHARACTERIZATION	Stream Subsystem Perennial Intermittent Tidal Stream Origin Glacial Non-glacial montane Swamp and bog Stream Type Coldwater Warmwater Catchment Area 111.04 km²

Notes:

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

WATERS FEATURI		Predom Fores Field/ Agric Resid	Pasture Indus	mercial strial	Local Watershed NPS □ No evidence □ Sor □ Obvious sources Local Watershed Erosi □ None □ Moderate	ne potential sources
RIPARIA VEGETA (18 meter	TION		e the dominant type as		ominant species present ☑ Grasses ☑ He	erbaceous
INSTREA FEATURI		Estimat Samplin Area in Estimat	km² (m²x1000) ed Stream Depth Velocity 0.814	m m² km²		ly shaded □Shaded □Shaded □Shaded represented by Stream Run □□□□ □No □No
LARGE V DEBRIS	VOODY	LWD Density	0.25 m ² of LWD	_m²/km² (LWD/	reach area)	
AQUATIO VEGETA		Roote Floati	e the dominant type and emergent ng Algae unt species present of the reach with aqu	Rooted submerge Attached Algae		□Free floating
WATER ((DS, US)	QUALITY	Specific Dissolve pH 7.75, 7			Water Odors ✓ Normal/None	Chemical Other Flecks
SEDIMEN SUBSTRA		Odors Norm Chem Other Oils Abser		Petroleum None	— Εροking at stones whic are the undersides blac	Paper fiber Sand Other None th are not deeply embedded, k in color?
INC		STRATE (COMPONENTS		ORGANIC SUBSTRATE C (does not necessarily add	
Substrate Type	Diamet	er	% Composition in Sampling Reach	Substrate Type	Characteristic	% Composition in Sampling Area
Bedrock			0	Detritus	sticks, wood, coarse plant materials (CPOM)	1
Boulder	> 256 mm (10")	ı	0		materials (Cl OW)	'
Cobble	64-256 mm (2.5	"-10")	40	Muck-Mud	black, very fine organic (FPOM)	0
Gravel	2-64 mm (0.1"-2	2.5")	50		,	,
Sand	0.06-2mm (gritt	y)	10	Marl	grey, shell fragments	1
Silt	0.004-0.06 mm	1.	0	4		
Clay	< 0.004 mm (cli)	clr)	Ο	I	I	i e

Notes: Water quality measurements were documented on 9/2/2021 during an additional field visit to collect supplemental stream photos.

HABITAT ASSESSMENT FIELD DATA SHEET - HG - USE ON ALL STREAMS (FRONT)

STREAM NAME S-QQ2	LOCATION Craig County
STATION # RIVERMILE	STREAM CLASS Perennial
LAT <u>37.333152</u> LONG <u>-80.429438</u>	RIVER BASIN Middle New
STORET#	AGENCY VADEQ
INVESTIGATORS SB, EL	
FORM COMPLETED BY SB, EL	DATE 8/10/2021 REASON FOR SURVEY TIME 11:00 AM PM Baseline Assessment

	Habitat		Condition	Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
	SCORE 18	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
n sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.
ted in	SCORE 19	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).
ıram	SCORE 10	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Pe	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
	SCORE 18	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
	SCORE 20	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0

Notes:

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

	Habitat		Condition	ı Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
	SCORE 20	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
ling reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.
ampl	SCORE 6	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing dewnstream. SCORE 10	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.
pe e	SCORE 10	Left Bank 10 9 Right Bank 10 9	8 7 6 8 7 6	5 4 3	2 1 0
Parameters (9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
	SCORE 6	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE 7	Right Bank 10 9	8 7 6	5 4 3	2 1 0
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.
	SCORE 10	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE 4	Right Bank 10 9	8 7 6	5 4 3	2 1 0

Total Score 158 Notes:

BENTHIC MACROINVERTEBRATE FIELD DATA SHEET

STREAM NAME S-C	Q2		LOCATIO	N Craig Coun	ity							
STATION#_	RIVERMILE		STREAM	CLASS Peren	nial							
LAT 37.333152	LONG -80.42943	3	RIVER BA	SIN Middle N	New							
STORET#			AGENCY	VADEQ								
INVESTIGATORS SI	3. EL					LOT 1	NUMBER					
FORM COMPLETED		L	DATE _	0/2021 :00 AM		REAS	SON FOR SURVEY Ba	ıselin	ne A	sses	ssme	ent
HABITAT TYPES	Indicate the pe ☐Cobble ☐Submerged N	% □S1	nags %	Vegetat			%Sand%	_%				
SAMPLE	Gear used	D-frame	kick-net	□Oti	her							
COLLECTION												
	How were the	samples col	llected?	wading	fro	m ban	k ☐from boat					
	Indicate the nu Cobble Submerged N	П́Sı	nags	n in each habi □Vegetat □Otl	ted Ban		Sand)	_				
GENERAL COMMENTS	Benthics (i.e. no rif		npled du	e to lack	of sa	amp	oling habitat w	ithir	n re	эас	h	
Dominant Periphyton	abundance:		2 3 4	Slim	ies		ommon, 3= Abund		1		3	4
Filamentous Algae		0 1	2 3 4	Mac	roinve	ertebr	ates	0	1	2	3	4
Macrophytes		0 1	2 3 4	Fish				0	1	2	3	4
	abundance:	0 = Abser	nt/Not Obse	ndant (>10 o	organi	sms)	rganisms), 2 = Con , 4 = Dominant (>5	60 oı	rgar	nism		
Porifera	0 1 2 3		soptera	0 1			Chironomidae			2		
Hydrozoa	0 1 2 3		optera	0 1	2 3	4	Ephemeroptera	0	1	2	3	4
Platyhelminthes	0 1 2 3		niptera	0 1	2 3	4	Trichoptera	0	1	2	3	4
Turbellaria	0 1 2 3 0 1 2 3		eoptera	0 1	2 3	4	Other	0	1	2	3	4
Hirudinea Oligochaeta		_	idoptera idae	0 1	2323	4						
Isopoda	0 1 2 3 0 1 2 3		idae ydalidae	0 1 0 1	2323	4						
Amphipoda	0 1 2 3		ılidae	0 1	2 3	4						
Decapoda	0 1 2 3	^	oididae		2 3	4						
Gastropoda	0 1 2 3	_	uliidae		2 3	4						
Bivalvia	0 1 2 3		inidae		2 3	4						
			cidae	0 1	2 3	4						

WOLMAN PEBBLE COUNT FORM

County: Craig County Stream ID: S-QQ2

County: Craig County Stream Name: Sinking Creek HUC Code: 05050002

HUC Code: 05050002 Basin: Middle New

Survey Date: 8/10/2021 Surveyors: SB, EL Type: Representative

T 1	DADTICLE		LE COUNT	D (1	TC 4 1 //	T/ 0/	0/ C
Inches	PARTICLE	Millimeters		Particle Count	Total #	Item %	% Cur
	Silt/Clay	< .062	S/C	^	2	1.94	1.94
	Very Fine	.062125		-	5	4.85	6.80
	Fine	.12525		•	0	0.00	6.80
	Medium	.255	SAND	*	0	0.00	6.80
	Coarse	.50-1.0		A	0	0.00	6.80
.0408	Very Coarse	1.0-2		•	5	4.85	11.65
.0816	Very Fine	2 -4		•	4	3.88	15.53
.1622	Fine	4 -5.7		•	4	3.88	19.42
.2231	Fine	5.7 - 8		-	4	3.88	23.30
.3144	Medium	8 -11.3]	•	12	11.65	34.95
.4463	Medium	11.3 - 16	GRAVEL	•	2	1.94	36.89
.6389	Coarse	16 -22.6	1	A	7	6.80	43.69
.89 - 1.26	Coarse	22.6 - 32	1	^	12	11.65	55.34
1.26 - 1.77	Vry Coarse	32 - 45	1	^	9	8.74	64.08
1.77 -2.5	Vry Coarse	45 - 64	1	^	15	14.56	78.64
2.5 - 3.5	Small	64 - 90		A	12	11.65	90.29
3.5 - 5.0	Small	90 - 128	1	A	6	5.83	96.12
5.0 - 7.1	Large	128 - 180	COBBLE	^	1	0.97	97.09
7.1 - 10.1	Large	180 - 256	1	^	2	1.94	99.03
10.1 - 14.3	Small	256 - 362		^	0	0.00	99.03
14.3 - 20	Small	362 - 512	1	*	0	0.00	99.03
20 - 40	Medium	512 - 1024	BOULDER	4	0	0.00	99.03
40 - 80	Large	1024 -2048	1	A	1	0.97	100.0
80 - 160	Vry Large	2048 -4096	1	A	0	0.00	100.0
	Bedrock		BDRK	^	0	0.00	100.0
				Totals:	103		

RIVERMORPH PARTICLE SUMMARY

River Name: Sinking Creek
Reach Name: S-QQ2
Sample Name: Representative
Survey Date: 08/10/2021

Size (mm)	тот #	ITEM %	CUM %
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	2 5 0 0 0 5 4 4 4 4 12 2 7 12 9 15 12 6 1 2 0 0 0	1.94 4.85 0.00 0.00 0.00 4.85 3.88 3.88 3.88 3.88 11.65 1.94 6.80 11.65 8.74 14.56 11.65 5.83 0.97 1.94 0.00 0.00 0.00	1.94 6.80 6.80 6.80 11.65 15.53 19.42 23.30 34.95 36.89 43.69 55.34 64.08 78.64 90.29 96.12 97.09 99.03 99.03 99.03 99.03 99.03
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Cobble (%) Boulder (%) Bedrock (%)	4.21 11.42 27.69 75.96 120.7 2047.89 1.94 9.71 66.99 20.39 0.97		

Total Particles = 103.

					ream Method	dology for use	in Virginia		1)		
Project #	Projec	t Name (App		Locality	Cowardin Class.	HUC	Date	SAR#	Impact Length	Impact Factor	
22865.06		alley Pipeline ey Pipeline, L		Craig County	R3	05050002	8/10/21	S-QQ2	40	1	
Name	e(s) of Evalua		Stream Name		ation				SAR Length		
	SB/EL/ES	· ,	Sinking Cree	ek					4	0	
. Channel C	Condition: Asse	ess the cross-sec	tion of the stream								
	Opti	imal	Subo	ptimal	Conditional Catego Mar	ginal	Po	or	Sev	ere	
Channel	Very little incision o 100% stable bar surface protectio	nks. Vegetative	erosion or unproted	ew areas of active cted banks. Majority table (60-80%).	Poor. Banks more	less than Severe or stable than Severe ower bank slopes.	Overwidened/inc laterally unstable further. Majority	e. Likely to widen	Deeply incised vertical/lateral in incision, flow con	stability. Severe	
Channel Condition		%). AND/OR Stable re present. Access loodplain or fully akfull benches. Mid ansverse bars few. I deposition covers	Vegetative protect prominent (60- Depositional feat stability. The bar channels are wel likely has accu benches,or ne portions of the r sediment covers	table (b0-80%). Itom or natural rock-80%) AND/OR ures contribute to kfull and low flow II defined. Stream ess to bankfull will yield developed each. Transient s 10-40% of the bottom.	Erosion may be pr both banks. Vege 40-60% of banks. be vertical or un 40-60% Sediment transient, cont Deposition that co may be forming/p shaped channel protection on > 40 depositional featur	ower bank slopes: essent on 40-60% of tative protection on Streambanks may idercut. AND/OR may be temporary / ribute instability. resent. AND/OR V- s have vegetative % of the banks and res which contribute ability.	near vertical. Eros banks. Vegetative on 20-40% of insufficient to p the stream is cove Sediment is temp nature, and contril AND/OR V-shap vegetative protect	ion present on 60- protection present banks, and is revent erosion. ered by sediment. orary / transient in puting to instability. ed channels have ion is present on > and stable sediment	banks. Streambe majority of banks Vegetative protecti than 20% of banks erosion. Obvious present. Erosion/ 100%. AND/OR A	ed below average vertical/undercut. on present on less s, is not preventing s bank sloughing fraw banks on 80-ggrading channel. h bed is covered by juting to instability. channels and/or	CI
Scores	3	3	2	.4		2	1.	.6	1	l	3.00
. RIPARIAI	N BUFFERS: A	Assess both bank				gh measurements	of length & width	may be acceptab	le)		
. RIPARIAI	N BUFFERS: A		Con	n areas along the ditional Cate ptimal	gory	gh measurements	of length & width				
Riparian Buffers		imal 3 inches) present, canopy cover. within the riparian	Con Subop High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory.	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation).	High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover.	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory.	High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition.	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions.			
Riparian	Opti Tree stratum (dbh > with > 60% tree Wetlands located	mal 3 inches) present, canopy cover. within the riparian as.	Con Subol High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory, Recent cutover (dense	Mar High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained	High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non- maintained area, recently seeded and stabilized, or other comparable	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable			
Riparian Buffers Scores Delineate ripa Determine squelow. Enter the % F	Opti Tree stratum (dbh > with > 60% tree Wetlands located are	imal 3 inches) present, canopy cover. within the riparian as. 5 ach stream bank ach by measuring	Con Subop High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Ca	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Cong	High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dhb > 3 inches) present, with <30% tree canopy cover. High 0.85	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh > 3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75	High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition. High 0.6	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5			
Riparian Buffers Scores Delineate ripa Determine squelow. Enter the % F	Tree stratum (dbh > with > 60% tree Wetlands located are 1. arian areas along e quare footage for ea	imal 3 inches) present, canopy cover. within the riparian as. 5 ach stream bank ach by measuring Score for each rig.	High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Ca	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Congth and width. Cat the blocks below.	High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh > 3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75	High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure t of % F	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 he sums Riparian qual 100			
Riparian Buffers Scores Delineate ripa Determine squelow.	Tree stratum (dbh> with > 60% tree Wetlands located are 1. Arian areas along e uuare footage for ex Riparian Area and 1 % Riparian Area> Score >	imal 3 inches) present, canopy cover. within the riparian as. 5 ach stream bank ach by measuring Score for each rip 45% 0.5	Riparian raeas with tree stratum (dbh > 3 inches) present, with 30% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Ca or estimating lenguarian category in 35% 0.75	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Congth and width. Cat the blocks below. 15%	High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh > 3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75	High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure t of % F	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 he sums Riparian qual 100 100%	NOTES>> CI= (Sum % RA * Sc		
Riparian Buffers Scores Delineate ripa Determine squelow. Enter the % F	Tree stratum (dbh > with > 60% tree Wetlands located are 1. Arian areas along e guare footage for expure footage for expurient Area and the Riparian Area and the Riparian Area and the Riparian Area areas	imal 3 inches) present, canopy cover. within the riparian as. 5 ach stream bank ach by measuring Score for each rig.	High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Ca or estimating leng parian category in 35%	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Congth and width. Cat the blocks below. 15%	High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh > 3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75	High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure t of % F	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 he sums Riparian qual 100	NOTES>>	0.68	CI 0.80
Riparian Buffers Scores Delineate ripa Determine squelow. Enter the % F Right Bank Left Bank	Tree stratum (dbh > with > 60% tree Wetlands located are 1. Arian areas along e guare footage for expure footage foota	imal 3 inches) present, canopy cover. within the riparian as. 5 ach stream bank ach by measuring 45% 0.5 60% 1.2 aried substrate six	Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Ca or estimating lenguarian category in 35% 0.75	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Con- gth and width. Ca the blocks below. 15% 0.85	High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85 dition Scores usin alculators are provi	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75 g the descriptors. vided for you	High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure t of % F Blocks e	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 he sums Riparian qual 100 100% 100%	CI= (Sum % RA * So Rt Bank CI > Lt Bank CI > cut banks; root ma	0.68 0.92	CI 0.80
Riparian Buffers Scores Delineate ripa Determine squelow. Enter the % F Right Bank Left Bank INSTREAL	Tree stratum (dbh > with > 60% tree Wetlands located are 1. Arian areas along e quare footage for ex Riparian Area and S Score > M Riparian Area> Score > M HABITAT: Viexes, stable feature	5 ach stream bank ach by measuring 45% 0.5 60% 1.2 aried substrate sies.	Con Subop High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Ca	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Con- gth and width. Ca the blocks below. 15% 0.85	High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85 dition Scores usin alculators are provi	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75 gg the descriptors. vided for you	High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure to Slocks e	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 he sums Riparian qual 100 100% 100%	NOTES>> CI= (Sum % RA * Sc Rt Bank CI > Lt Bank CI >	0.68 0.92	
Riparian Buffers Scores Delineate ripa Determine squelow. Enter the % F Right Bank Left Bank	Tree stratum (dbh > with > 60% tree Wetlands located are 1. Arian areas along e quare footage for ea Riparian Area and : % Riparian Area > Score > M HABITAT: V exes, stable feature	imal 3 inches) present, canopy cover. within the riparian as. 5 ach stream bank ach by measuring Score for each rip 45% 0.5 60% 1.2 aried substrate sizes.	Con Subop High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Ca or estimating lenguarian category in 35% 0.75 40% 0.5 zes, water velocity Stable habitat eler present in 30-50% are adequate for	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Con- gth and width. Ca the blocks below. 15% 0.85	High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85 dition Scores usin alculators are prove 5% 1.2 ddy and leafy debraded and category Mar Stable habitat ele present in 10-309 are adequate for	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75 g the descriptors. vided for you	High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure t of % F Blocks e Habitat elements lacking or are ulements are typic	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 he sums Riparian qual 100 100% 100%	CI= (Sum % RA * So Rt Bank CI > Lt Bank Ci > cut banks; root ma	0.68 0.92	

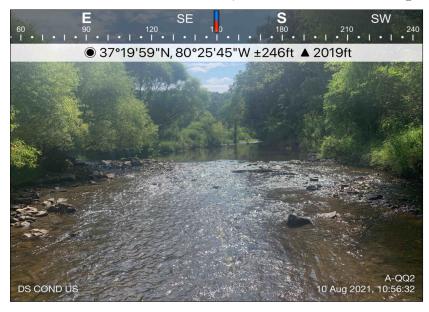
	St	ream In	npact A	ssessn	nent Fo	rm Pag	e 2		
Project #	Project Name (App	licant)	Locality	Cowardin Class.	нис	Date	SAR#	Impact Length	Impact Factor
22865.06	Mountain Valley Pipeline (Mountain Valley Pipeline, LLC)		Craig County	R3	05050002	8/10/21	S-QQ2	40	1
. CHANNE	L ALTERATION: Stream cross	ings, riprap, concr		concrete blocks, s	traightening of cha	annel, channelizat		s, spoil piles, const	rictions, livestoc
	Negligible Mi								
	Negligible	Mir	nor		erate	Sev		NOTES	
Channel Alteration	Negligible Channelization, dredging, alteration, or hardening absent. Stream has an unaltered pattern or has naturalized.	Less than 20% of the stream reach is disrupted by any of the channel	20-40% of the stream reach is	Mod 40 - 60% of reach is disrupted by any of the channel alterations listed in the parameter guidelines. If	60 - 80% of reach is disrupted by any of the channel alterations listed in the parameter	Greater than 80% o	ere f reach is disrupted the latterations listed uidelines AND/OR ored with gabion,		

REACH CONDITION INDEX and STREAM CONDITION UNITS FOR THIS REACH

NOTE: The CIs and RCI should be rounded to 2 decimal places. The CR should be rounded to a whole number.

THE REACH CONDITION INDEX (RCI) >> 1.36

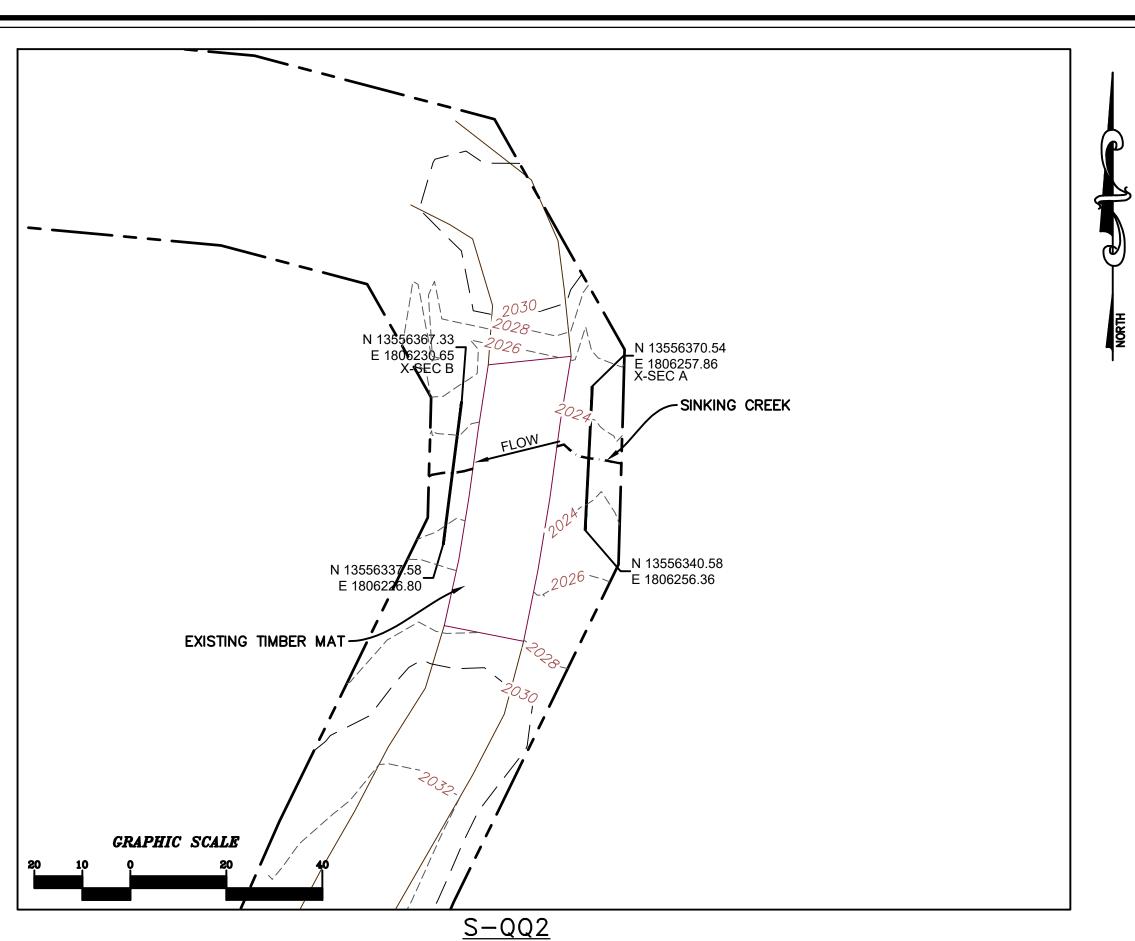
1.36 = (Riparian CI/2)

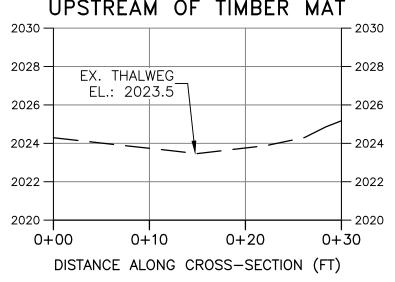

RCI= (Sum of all Cl's)/5, except if stream is ephemeral RCI = (Riparian Cl/2)

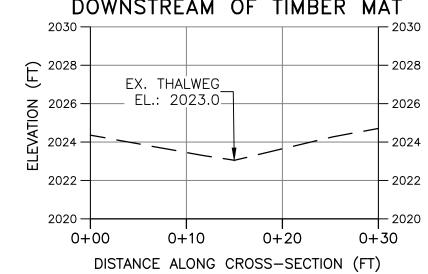
COMPENSATION REQUIREMENT (CR) >> 54

CR = RCI X L_I X IF

INSERT PHOTOS:


(WSSI Photo Location "L:\22000s\22800\22865.06\Admin\05-ENVR\Field Data\Spread G\Field Forms\S-QQ2\Photos\S-QQ2_US COND DS.JPG")


Looking upstream within the ROW. Assessment is limited to areas within the temporary ROW.


DESCRIBE PROPOSED IMPACT:

PROVIDED UNDER SEPARATE COVER

LEGEND STUDY AREA (EASEMENT) EXISTING SURVEY-LOCATED THALWEG - - \cdot 1904 \cdot - EXISTING MINOR CONTOUR

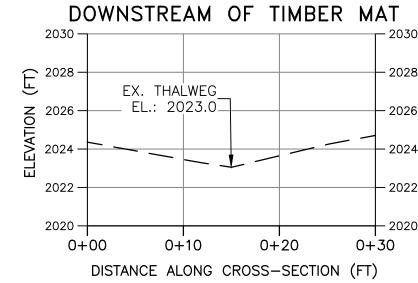
PRE-CROSSING PHOTOS

PHOTO TAKEN AUGUST 10, 2021 LOOKING

POST-CROSSING PHOTOS PENDING CROSSING

FROM UPSTREAM IMPACT LIMITS

DOWNSTREAM IMPACT LIMITS


CROSS SECTION LEGEND — — EXISTING GRADE CROSS SECTION H: 1"=10' V: 1"=5'

NOTE: ALL SECTIONS VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.

S-QQ2 BASELINE CROSS-SECTION A

UPSTREA	M OF TIN	BER MA	ΛT
2030			2030
2028 EX. THAL EL.: 202	_		2028
2026			2026
2024			2024
2022			2022
2020			2020
0+00 0-	+10 0+	-20 0	+30
DISTANCE AL	ONG CROSS-	-SECTION (F	Γ)

S-QQ2 BASELINE CROSS-SECTION B

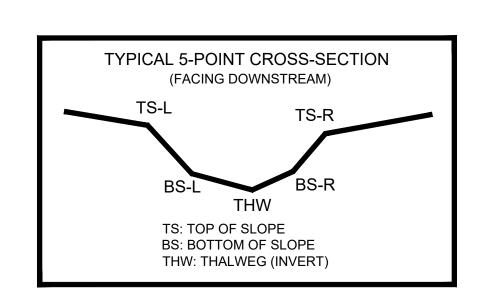
EXISTING TIMBER MAT_ BRIDGE 2023.1 2023.1 2023.2 2023.2 2024 2026 — 5 2022 -2020 0+20 DISTANCE ALONG CROSS-SECTION (FT)

PROFILE LEGEND

EXISTING STREAM PROFILE INVERT ALONG THALWEG

PROFILE
H: 1"=10'
V: 1"=5'

S-QQ2 BASELINE THALWEG PROFILE


– 2028

- 2022

- 2020

0 + 40

	CL STAKEOUT POINTS: S-QQ2 CROSS SECTION B (DOWNSTREAM)								
		PR	POST-CROSSING						
	DT LOC	NODTHING	FACTING	ELEV	VERT.	HORZ.			
PI	Γ. LOC.	NORTHING	EASTING	ELEV	DIFF.	DIFF.			
	TS-L	13556334.4100'	1806222.2110'	2026.004'					
	BS-L	13556335.7000'	1806223.0440'	2024.416'					
•	THW	13556352.5000'	1806227.1190'	2022.924'					
	BS-R	13556367.6700'	1806229.5530'	2024.866'					
-	TS-R	13556370.6000'	1806229.1540	2026,226'					

1. THIS MAP HAS BEEN ORIENTED TO NAD 1983 UTM ZONE 17N, AND VERTICALLY TO THE NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD 88), USING REAL TIME DGPS. FIELD LOCATIONS WERE COMPLETED ON AUGUST 10, 2021.

2. EASEMENT LINES SHOWN ON PLAN VIEW WERE PROVIDED BY MOUNTAIN VALLEY

SURVEY NOTES:

3. SURVEY POINTS FOR CROSS SECTIONS AND THALWEG PROFILES COLLECTED IN 2021 HAVE BEEN USED IN COMBINATION WITH SURVEY POINTS COLLECTED PREVIOUSLY IN 2020 IN ORDER TO GENERATE THE PRE-CROSSING SURFACE SHOWN IN PLAN. DUE TO NATURAL EROSIONAL STREAM PROCESSES THAT CAN OCCUR OVER TIME, MINOR ADJUSTMENTS TO THE PROFILE ALIGNMENTS MAY HAVE BEEN REQUIRED IN ORDER TO GENERATE A CLEAN PRE-CROSSING SURFACE.

4. ALL SECTION VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.

Date

Eng.

Revision

PHOTO TAKEN AUGUST 10, 2021 LOOKING UPSTREAM FROM DOWNSTREAM IMPACT LIMITS

PHOTO TAKEN LOOKING DOWNSTREAM

PHOTO TAKEN LOOKING UPSTREAM FROM

Drawing No

CAD File No.

Checked