Baseline Assessment – Stream Attributes

Reach S-RR4 (Temporary Access Road) Perennial Spread G Giles County, Virginia

Data	Included
Photos	✓
SWVM Form	✓
FCI Calculator and HGM Form	N/A – Perennial stream (not shadeable, slope >4%)
RBP Physical Characteristics Form	✓
Water Quality Data	N/A – Low flow
RBP Habitat Form	✓
RBP Benthic Form	✓
Benthic Identification Sheet	N/A – Low flow
Wolman Pebble Count	✓
RiverMorph Data Sheet	✓
USM Form (Virginia Only)	✓
Longitudinal Profile and Cross Sections	✓

Photo Type: DS VIEW
Location, Orientation, Photographer Initials: Downstream view of LOC looking S, KB

Photo Type: US VIEW Location, Orientation, Photographer Initials: Upstream view of LOC looking NE, KB

Photo Type: CL ACCESS 1 Location, Orientation, Photographer Initials: Standing in Access Road looking NE, KB

Photo Type: CL ACCESS 2
Location, Orientation, Photographer Initials: Standing in Access Road looking SW, KB

Location, Orientation, Photographer Initials: Downstream conditions outside of LOC looking SE, KB

USACE FILE NO./ Project Name: (v2.1, Sept 2015)		N	Iountain V	alley Pipeline		COORDINATES: cimal Degrees)	Lat.	37.326015	Lon.	-80.556831		WEATHER:		Sunny	DATE:		September 27, 2021		
IMPACT STREAM/SITE ID (watershed size (acreage), s				8-	-RR4			MITIGATION STREAM CLA (watershed size (ac	ASS./SITE ID AND reage), unaltered or imp		V:					Comments:			
STREAM IMPACT LENGTH:	85	FORM MITIGAT		RESTORATION (Levels I-III)		OORDINATES: cimal Degrees)	Lat.		Lon.			PRECIPITATION PAST 48 HRS:			Mitigation Length:				
Column No. 1- Impact Existing	Condition (Deb	it)		Column No. 2- Mitigation Existing C	ondition - Base	line (Credit)		Column No. 3- Mitigatio Post Compl	n Projected at Five letion (Credit)	Years		Column No. 4- Mitigation Proje Post Completion (ars		Column No. 5- Mitigation Projecte	ted at Maturity (Credit)		
Stream Classification:	Perer	nnial		Stream Classification:				Stream Classification:		0		Stream Classification:		0	s	Stream Classification:		0	
Percent Stream Channel Sic	•	13.57		Percent Stream Channel Si	•			Percent Stream Chann		0		Percent Stream Channel SI		0		Percent Stream Channel Sle	•	0	
HGM Score (attach da	ita forms):			HGM Score (attach	data forms):			HGM Score (att	ach data forms):			HGM Score (attach da	ata forms):			HGM Score (attach da	ta forms):		
Hydrology Biogeochemical Cycling Habitat		Average 0		Hydrology Biogeochemical Cycling Habitat		Average 0		Hydrology Biogeochemical Cycling Habitat		Average 0		Hydrology Biogeochemical Cycling		Average 0	В	Hydrology Biogeochemical Cycling Habitat		Average 0	
PART I - Physical, Chemical and I	Biological Indica	ators		PART I - Physical, Chemical an	nd Biological Inc	licators		PART I - Physical, Chemic	al and Biological I	ndicators		PART I - Physical, Chemical and	Biological Indi	cators		PART I - Physical, Chemical and I	Biological Inc	dicators	
	Points Scale Range	Site Score			Points Scale Range	Site Score			Points Scale Rang	ge Site Score			Points Scale Range	Site Score			Points Scale Ran	ange Site Score	
PHYSICAL INDICATOR (Applies to all streams	classifications)			PHYSICAL INDICATOR (Applies to all streams	classifications)			PHYSICAL INDICATOR (Applies to all str	reams classifications)			PHYSICAL INDICATOR (Applies to all streams	s classifications)		P	PHYSICAL INDICATOR (Applies to all streams	classifications)		
USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover	0-20	15		USEPA RBP (Low Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover	0.20			USEPA RBP (High Gradient Data She 1. Epifaunal Substrate/Available Cover				USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover	0.20			USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover	0.20	-	
2. Embeddedness	0-20	20		Pool Substrate Characterization	0-20			2. Embeddedness	0-20			2. Embeddedness	0-20			2. Embeddedness	0-20	7	
3. Velocity/ Depth Regime	0-20	5		3. Pool Variability	0-20			3. Velocity/ Depth Regime	0-20			3. Velocity/ Depth Regime	0-20			3. Velocity/ Depth Regime	0-20	1	
Sediment Deposition	0-20	19		Sediment Deposition	0-20			Sediment Deposition	0-20			Sediment Deposition	0-20			Sediment Deposition	0-20		
5. Channel Flow Status	0-20 0-1	5		5. Channel Flow Status	0-20 0-1			5. Channel Flow Status	0-20 0-1			5. Channel Flow Status	0-20 0-1			5. Channel Flow Status	0-20 0-	p-1	
6. Channel Alteration	0-20	20		6. Channel Alteration	0-20			6. Channel Alteration	0-20			Channel Alteration	0-20			6. Channel Alteration	0-20		
7. Frequency of Riffles (or bends)	0-20	5 18		7. Channel Sinuosity	0-20			7. Frequency of Riffles (or bends)	0-20			7. Frequency of Riffles (or bends)	0-20			7. Frequency of Riffles (or bends)	0-20		
8. Bank Stability (LB & RB)	0-20			8. Bank Stability (LB & RB)	0-20			8. Bank Stability (LB & RB)	0-20			8. Bank Stability (LB & RB)	0-20			8. Bank Stability (LB & RB)	0-20		
9. Vegetative Protection (LB & RB)	0-20	18 16		Vegetative Protection (LB & RB) Riparian Vegetative Zone Width (LB & RB)	0-20			Vegetative Protection (LB & RB) Riparian Vegetative Zone Width (LB & R	0-20 (B) 0-20			Vegetative Protection (LB & RB) Riparian Vegetative Zone Width (LB & RB)	0-20			Vegetative Protection (LB & RB) Reparts (LB & RB) Reparts (LB & RB)	0-20		
Riparian Vegetative Zone Width (LB & RB) Total RBP Score	0-20 Suboptimal	141		Total RBP Score	0-20 Poor	0		Total RBP Score	B) 0-20 Poor	0		Total RBP Score	0-20 Poor	0		Total RBP Score	0-20 Poor	0	
Sub-Total	Gubopuillai	0.705		Sub-Total	Fooi	0		Sub-Total	FOOI	0		Sub-Total	FOOI	0		Sub-Total	1001	0	
CHEMICAL INDICATOR (Applies to Intermittent	t and Perennial Str	reams)		CHEMICAL INDICATOR (Applies to Intermitten	nt and Perennial St	reams)		CHEMICAL INDICATOR (Applies to Inter	mittent and Perennial	Streams)		CHEMICAL INDICATOR (Applies to Intermitter	nt and Perennial S	treams)	c	CHEMICAL INDICATOR (Applies to Intermittent	t and Perennial	Streams)	
WVDEP Water Quality Indicators (General))			WVDEP Water Quality Indicators (General))			WVDEP Water Quality Indicators (Ger	neral)			WVDEP Water Quality Indicators (General	I)			WVDEP Water Quality Indicators (General)	,	/ /	
Specific Conductivity				Specific Conductivity				Specific Conductivity				Specific Conductivity			S	Specific Conductivity			
100-199 - 85 points	0-90				0-90				0-90				0-90				0-90	1	
nH				nH	_			nН				nH	_		n	nH	_		
	0-80				5-90 0-1				5-90				5-90 0-1		r		5-90	e1	
5.6-5.9 = 45 points	0-00				5-50				5-50				5-30		L		550		
DO				ВО	T			00				БО			<u> </u>	30		7	
	10-30				10-30				10-30				10-30		L		10-30		
Sub-Total				Sub-Total		0		Sub-Total		0		Sub-Total		0		Sub-Total		0_	
BIOLOGICAL INDICATOR (Applies to Intermitte	ent and Perennial S	Streams)		BIOLOGICAL INDICATOR (Applies to Intermitt	lent and Perennial	Streams)		BIOLOGICAL INDICATOR (Applies to In	ntermittent and Perer	nnial Streams)		BIOLOGICAL INDICATOR (Applies to Interm	nittent and Pereni	nial Streams)		BIOLOGICAL INDICATOR (Applies to Intermi	ttent and Perer	nnial Streams)	
WV Stream Condition Index (WVSCI)				WV Stream Condition Index (WVSCI)				WV Stream Condition Index (WVSCI)				WV Stream Condition Index (WVSCI)			M	WV Stream Condition Index (WVSCI)			
0	0-100 0-1				0-100 0-1				0-100 0-1				0-100 0-1			•	0-100 0-	0-1	
Sub-Total		0	j l	Sub-Total		0		Sub-Total		0		Sub-Total		0	s	Sub-Total		0	
PART II - Index and U	***		1 1	PART II - Index and		n		DARKE L	and Unit Score			PART II - Index and U				PART II - Index and U			
PART II - Index and Ur	nit Score			PART II - Index and	Unit Score			PART II - Index	and Unit Score			PART II - Index and U	init Score			PART II - Index and Ui	nit Score		
Index	Linear Feet	Unit Score		Index	Linear Feet	Unit Score		Index	Linear Fee	t Unit Score		Index	Linear Feet	Unit Score		Index	Linear Fee	et Unit Sco	
0.753	85	63.9625		0	0	0		0	0	0		0	0	0	ŀ	0	0	0	

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

STREAM NAME	LOCATION				
STATION # RIVERMILE	STREAM CLASS				
LATLONG	RIVER BASIN				
STORET#	AGENCY				
INVESTIGATORS					
FORM COMPLETED BY	DATE	REASON FOR SURVEY			

WEATHER			D + 24	Has there been a heavy rain in the last 7 days?
WEATHER CONDITIONS	Now		Past 24 hours	Yes No
		storm (heavy rain) rain (steady rain)		Air Temperature0 C
		showers (intermittent)		Other
	%	%cloud cover clear/sunny	%	
SITE LOCATION/MAP	Draw a ma	p of the site and indicate the	e areas samp	pled (or attach a photograph)
		Wood	y Veg	
		0	+ +	
	_		(15	very steep Slopes
			CFS	Slopes
		Access Streng	AR-243	
		S Z X	243.	Equipment 18
		ond	0	Equipment Bridge CAS
		CES		7
			/5/	
		/	23/	Woody reg
		//		reg /
	-	Mount	ain Lake	RY
STREAM CHARACTERIZATION	Stream Sub Perennial	osystem Intermittent Tida	ıl	Stream Type Coldwater Warmwater
	Stream Ori Glacial Non-glaci Swamp ar	Spring-feet Spring-feet Mixture o	l f origins	Catchment Areakm ²

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

WATERS FEATURI		Forest Field/I	Pasture Indust ultural Other	nercial	No evidence Som Obvious sources Local Watershed Erosio None Moderate	e potential sources
RIPARIA VEGETA (18 meter	ΓION	Trees	the dominant type an	Shrubs		baceous
INSTREA FEATURI		Estimate	ed Reach Length	m	Canopy Cover Partly open Partly	y shaded Shaded
FEATURI	2.5	Estimate	ed Stream Width	m	, 1	•
		Samplin	g Reach Area	m²	High Water Mark Proportion of Reach Re	
		Area in l	km² (m²x1000)	km ²	Morphology Types	
		Estimate	ed Stream Depth	m	Riffle % Pool%	Run%
		Surface	Velocity	m/sec	Channelized Yes	No
		(at thalw	veg)		Dam Present Yes	No
LARGE V DEBRIS	VOODY		m²	m²/km² (LWD/	reach area)	
AQUATIC VEGETA		Rooted Floatin Domina	d emergent I ng Algae I	Rooted submerge Attached Algae		C
WATER (QUALITY	Specific	ature0 C Conductance d Oxygen	_		Chemical Other
		рН			Water Surface Oils Slick Sheen None Other	Globs Flecks
			rument Used		Turbidity (if not measur Clear ☐ Slightly turb Opaque Stained	red) bid Turbid Other
SEDIMEN SUBSTRA		Odors Norma Chemi Other	cal Anaerobic	Petroleum None	Deposits Sludge Sawdust Relict shells	Paper fiber Sand Other
		Oils Absen		rate Profu	are the undersides black	n are not deeply embedded, k in color?
INC		STRATE (dd up to 10	COMPONENTS 00%)		ORGANIC SUBSTRATE CO (does not necessarily add u	
Substrate Type	Diamete	er	% Composition in Sampling Reach	Substrate Type	Characteristic	% Composition in Sampling Area
Bedrock				Detritus	sticks, wood, coarse plant	
Boulder	> 256 mm (10")				materials (CPOM)	
Cobble	64-256 mm (2.5	"-10")		Muck-Mud	black, very fine organic	
Gravel	2-64 mm (0.1"-2	2.5")			(FPOM)	

Sand

Silt

Clay

0.06-2mm (gritty)

< 0.004 mm (slick)

0.004-0.06 mm

grey, shell fragments

Marl

HABITAT ASSESSMENT FIELD DATA SHEET - HG - USE ON ALL STREAMS (FRONT)

STREAM NAME	LOCATION	
STATION # RIVERMILE	STREAM CLASS	
LAT LONG	RIVER BASIN	
STORET#	AGENCY	
INVESTIGATORS		
FORM COMPLETED BY	DATE AM PM	REASON FOR SURVEY

	Habitat		Condition	ı Category				
	Parameter	Optimal	Suboptimal	Marginal	Poor			
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.			
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
n sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0-25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.			
ted in	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast- shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/depth regime (usually slow-deep).			
ıram	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
Pa	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.			
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.			
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

	Habitat							
	Parameter	Optimal	Suboptimal	Marginal	Poor			
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.			
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
oling reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.			
samp	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.			
e eva	SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0			
to be	SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0			
Parameters	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.			
	SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0			
	SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0			
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.			
	SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0			
ĺ	SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0			

Total	Caama	
i otai	Score	

BENTHIC MACROINVERTEBRATE FIELD DATA SHEET

STREAM NAME	LOCATION			
STATION # RIVERMILE	STREAM CLASS			
LAT LONG	RIVER BASIN			
STORET#	AGENCY			
INVESTIGATORS		LOT NUMBER		
FORM COMPLETED BY	DATE TIME	REASON FOR SURVEY		
1				

HABITAT TYPES	Indicate the percentage of each habitat type present Cobble% Snags% Vegetated Banks% Sand% Submerged Macrophytes% Other ()%
SAMPLE COLLECTION	Gear used D-frame kick-net Other
	How were the samples collected? wading from bank from boat
	Indicate the number of jabs/kicks taken in each habitat type. Cobble Snags Vegetated Banks Sand Submerged Macrophytes Other ()
GENERAL COMMENTS	

QUALITATIVE LISTING OF AQUATIC BIOTA

Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare, 2 = Common, 3 = Abundant, 4 = Dominant

Periphyton	0	1	2	3	4	Slimes	0	1	2	3	4
Filamentous Algae	0	1	2	3	4	Macroinvertebrates	0	1	2	3	4
Macrophytes	0	1	2	3	4	Fish	0	1	2	3	4

FIELD OBSERVATIONS OF MACROBENTHOS

Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare (1-3 organisms), 2 = Common (3-9 organisms), 3 = Abundant (>10 organisms), 4 = Dominant (>50 organisms)

Porifera	0	1	2	3	4	Anisoptera	0	1	2	3	4	Chironomidae	0	1	2	3	4
Hydrozoa	0	1	2	3	4	Zygoptera	0	1	2	3	4	Ephemeroptera	0	1	2	3	4
Platyhelminthes	0	1	2	3	4	Hemiptera	0	1	2	3	4	Trichoptera	0	1	2	3	4
Turbellaria	0	1	2	3	4	Coleoptera	0	1	2	3	4	Other	0	1	2	3	4
Hirudinea	0	1	2	3	4	Lepidoptera	0	1	2	3	4						
Oligochaeta	0	1	2	3	4	Sialidae	0	1	2	3	4						
Isopoda	0	1	2	3	4	Corydalidae	0	1	2	3	4						
Amphipoda	0	1	2	3	4	Tipulidae	0	1	2	3	4						
Decapoda	0	1	2	3	4	Empididae	0	1	2	3	4						
Gastropoda	0	1	2	3	4	Simuliidae	0	1	2	3	4						
Bivalvia	0	1	2	3	4	Tabinidae	0	1	2	3	4						
						Culcidae	0	1	2	3	4						

WOLMAN PEBBLE COUNT FORM

County: Giles County Stream ID: S-RR4

Stream Name: UNT to Sinking Creek

HUC Code: 05050002 Basin: Middle New

Survey Date: 9/27/2021 Surveyors: KB/TC Type: Representative

Inches	PARTICLE	Millimeters	LE COUNT	Particle	Total #	Item %	% Cum
menes	TARTICLE	Willimeters		Count	10tai #	item 70	76 Cun
	Silt/Clay	< .062	S/C	A	15	15.00	15.00
	Very Fine	.062125		•	1	1.00	16.00
	Fine	.12525		A	1	1.00	17.00
	Medium	.255	SAND	4	0	0.00	17.00
	Coarse	.50-1.0		4	0	0.00	17.00
.0408	Very Coarse	1.0-2		A	0	0.00	17.00
.0816	Very Fine	2 -4		A	0	0.00	17.00
.1622	Fine	4 -5.7	1	A	0	0.00	17.00
.2231	Fine	5.7 - 8	1	A	1	1.00	18.00
.3144	Medium	8 -11.3		A	3	3.00	21.00
.4463	Medium	11.3 - 16	GRAVEL	A	1	1.00	22.00
.6389	Coarse	16 -22.6	-	A	0	0.00	22.00
.89 - 1.26	Coarse	22.6 - 32		A	0	0.00	22.00
.26 - 1.77	Vry Coarse	32 - 45		A	0	0.00	22.00
1.77 -2.5	Vry Coarse	45 - 64	1	A	0	0.00	22.00
2.5 - 3.5	Small	64 - 90		A	7	7.00	29.00
3.5 - 5.0	Small	90 - 128	1	A	8	8.00	37.00
5.0 - 7.1	Large	128 - 180	COBBLE	A	0	0.00	37.00
7.1 - 10.1	Large	180 - 256		A	20	20.00	57.00
0.1 - 14.3	Small	256 - 362		A	18	18.00	75.00
14.3 - 20	Small	362 - 512	1	A	13	13.00	88.00
20 - 40	Medium	512 - 1024	BOULDER	A	8	8.00	96.00
40 - 80	Large	1024 -2048	1	A	4	4.00	100.00
80 - 160	Vry Large	2048 -4096	1	A	0	0.00	100.00
	Bedrock		BDRK	A	0	0.00	100.00
				Totals	100		

RIVERMORPH PARTICLE SUMMARY

River Name: UNT to Sinking Creek Reach Name: S-RR4 Representative Survey Date: 09/27/2021

Size (mm)	TOT #	ITEM %	CUM %
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	15 1 1 0 0 0 0 0 1 3 1 0 0 0 0 7 8 0 20 18 13 8 4 0	15.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 3.00 1.00 0.00	15.00 16.00 17.00 17.00 17.00 17.00 17.00 18.00 21.00 22.00 22.00 22.00 22.00 22.00 23.00 25.00 25.00 26.00 27
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Cobble (%) Boulder (%) Bedrock (%)	0.13 118.5 229.4 465.85 960 2047.97 15 2 5 35 43		

Total Particles = 100.

Stream Assessment Form (Form 1) Unified Stream Methodology for use in Virginia For use in wadeable channels classified as intermittent or perennial SAR #/ **Impact Impact** Cowardin **Project # Project Name (Applicant)** HUC Locality **Date Data Point** Class. Length **Factor Mountain Valley Pipeline (Mountain Giles** 22865.06 R3 05050002 9/27/21 S-RR4 85 **Valley Pipeline, LLC)** County Name(s) of Evaluator(s) Stream Name and Information SAR Length **KBTC** 85 UNT to Sinking Creek 1. Channel Condition: Assess the cross-section of the stream and prevailing condition (erosion, aggradation) **Conditional Category Optimal Suboptimal** Marginal **Poor** Severe Very little incision or active erosion; 80-Slightly incised, few areas of active Often incised, but less than Severe or Overwidened/incised. Vertically / Deeply incised (or excavated). Poor. Banks more stable than Severe 100% stable banks. Vegetative erosion or unprotected banks. Majority laterally unstable. Likely to widen vertical/lateral instability. Severe further. Majority of both banks are Channel surface protection or natural rock, of banks are stable (60-80%). or Poor due to lower bank slopes. incision, flow contained within the prominent (80-100%). AND/OR Stable Vegetative protection or natural rock Erosion may be present on 40-60% of near vertical. Erosion present on 60banks. Streambed below average Condition bankfull benches are present. Access prominent (60-80%) AND/OR both banks. Vegetative protection on banks. Vegetative protection present majority of banks vertical/undercut. to their original floodplain or fully Depositional features contribute to 40-60% of banks. Streambanks may on 20-40% of banks, and is Vegetative protection present on less developed wide bankfull benches. Mid stability. The bankfull and low flow be vertical or undercut. AND/OR insufficient to prevent erosion. than 20% of banks, is not preventing the stream is covered by sediment. channel bars and transverse bars few. channels are well defined. Stream 40-60% Sediment may be temporary erosion. Obvious bank sloughing Transient sediment deposition covers likely has access to bankfull transient, contribute instability. Sediment is temporary / transient in present. Erosion/raw banks on 80less than 10% of bottom. Deposition that contribute to stability nature, and contributing to instability. 100%. AND/OR Aggrading channel. benches, or newly developed may be forming/present. AND/OR V-AND/OR V-shaped channels have portions of the reach. Transient than 80% of stream bed is covered by sediment covers 10-40% of the shaped channels have vegetative vegetative protection is present on > deposition, contributing to instability. protection on > 40% of the banks and 40% of the banks and stable sediment Multiple thread channels and/or stream bottom. depositional features which contribute deposition is absent. subterranean flow. CI to stability. 2.4 2 1.6 3.00 3 Scores NOTES>> 2. RIPARIAN BUFFERS: Assess both bank's 100 foot riparian areas along the entire SAR. (rough measurements of length & width may be acceptable) NOTES>> **Conditional Category Optimal Suboptimal** Marginal Poor Low Marginal: **High Poor:** Low Suboptimal: Non-maintained, High Suboptimal: Lawns, mowed, Riparian areas **High Marginal:** dense herbaceous Riparian areas and maintained Low Poor: with tree stratum Non-maintained, vegetation, with tree stratum Impervious areas, nurseries; (dbh > 3 inches) dense herbaceous riparian areas (dbh > 3 inches) no-till cropland; surfaces, mine present, with 30% vegetation with acking shrub and Tree stratum (dbh > 3 inches) present present, with 30% actively grazed spoil lands, Riparian tree stratum, hay to 60% tree either a shrub with > 60% tree canopy cover. to 60% tree denuded surfaces pasture, sparsely production, ponds layer or a tree canopy cover and **Buffers** Wetlands located within the riparian vegetated noncanopy cover and row crops, active layer (dbh > 3 open water. If a maintained areas. containing both maintained area, feed lots, trails, or inches) present, present, tree understory. herbaceous and recently seeded other comparable with <30% tree Recent cutover stratum (dbh >3 and stabilized, or conditions. shrub layers or a inches) present, (dense canopy cover. other comparable non-maintained with <30% tree vegetation). condition. understory. canopy cover with maintained understory. High High High Low Low Low 1.5 1.2 1.1 0.85 0.75 0.6 0.5 **Scores** 1. Delineate riparian areas along each stream bank into Condition Categories and Condition Scores using the descriptors. Ensure the sums 2. Determine square footage for each by measuring or estimating length and width. Calculators are provided for you of % Riparian below. 3. Enter the % Riparian Area and Score for each riparian category in the blocks below. Blocks equal 100 20% **70%** 10% 100% % Riparian Area> **Right Bank** 1.2 0.5 0.85 Score > CI= (Sum % RA * Scores*0.01)/2 20% **70%** 10% 100% CI Rt Bank CI > 0.82 % Riparian Area> **Left Bank** 0.5 0.85 1.2 0.82 0.82 Score > Lt Bank CI > 3. INSTREAM HABITAT: Varied substrate sizes, water velocity and depths; woody and leafy debris; stable substrate; low embeddeness; shade; undercut banks; root mats; SAV; riffle/pool complexes, stable features. NOTES>> **Conditional Category Suboptimal** Marginal **Optimal** Poor **Instream** Habitat/ Habitat elements listed above are Stable habitat elements are typically Stable habitat elements are typically **Available** Habitat elements are typically present present in 30-50% of the reach and present in 10-30% of the reach and lacking or are unstable. Habitat elements are typically present in less Cover in greater than 50% of the reach. are adequate for maintenance of are adequate for maintenance of than 10% of the reach. populations. populations. **Stream Gradient** CI High 1.5 1.2 0.9 0.5 **Scores** 0.90

Stream Impact Assessment Form Page 2								
Project #	Project Name (Applicant)	Locality	Cowardin Class.	HUC	Date	SAR # / Data Point	Impact / SAR length	Impact Factor
22865.06	Mountain Valley Pipeline (Mountain Valley Pipeline, LLC)	Giles County	R3	05050002	9/27/21	S-RR4	85	1

4. CHANNEL ALTERATION: Stream crossings, riprap, concrete, gabions, or concrete blocks, straightening of channel, channelization, embankments, spoil piles, constrictions, livestock

		NOTES>>						
	Negligible	Minor		Moderate		Severe		
Channel Alteration	Channelization, dredging, alteration, or hardening absent. Stream has an unaltered pattern or has naturalized.	of the channel	stream reach is	is disrupted by any of the channel alterations listed in the parameter guidelines. If	of the channel alterations listed in the parameter guidelines. If			
Scores	1.5	1.3	1.1	0.9	0.7	0.5		

REACH CONDITION INDEX and STREAM CONDITION UNITS FOR THIS REACH

NOTE: The CIs and RCI should be rounded to 2 decimal places. The CR should be rounded to a whole number.

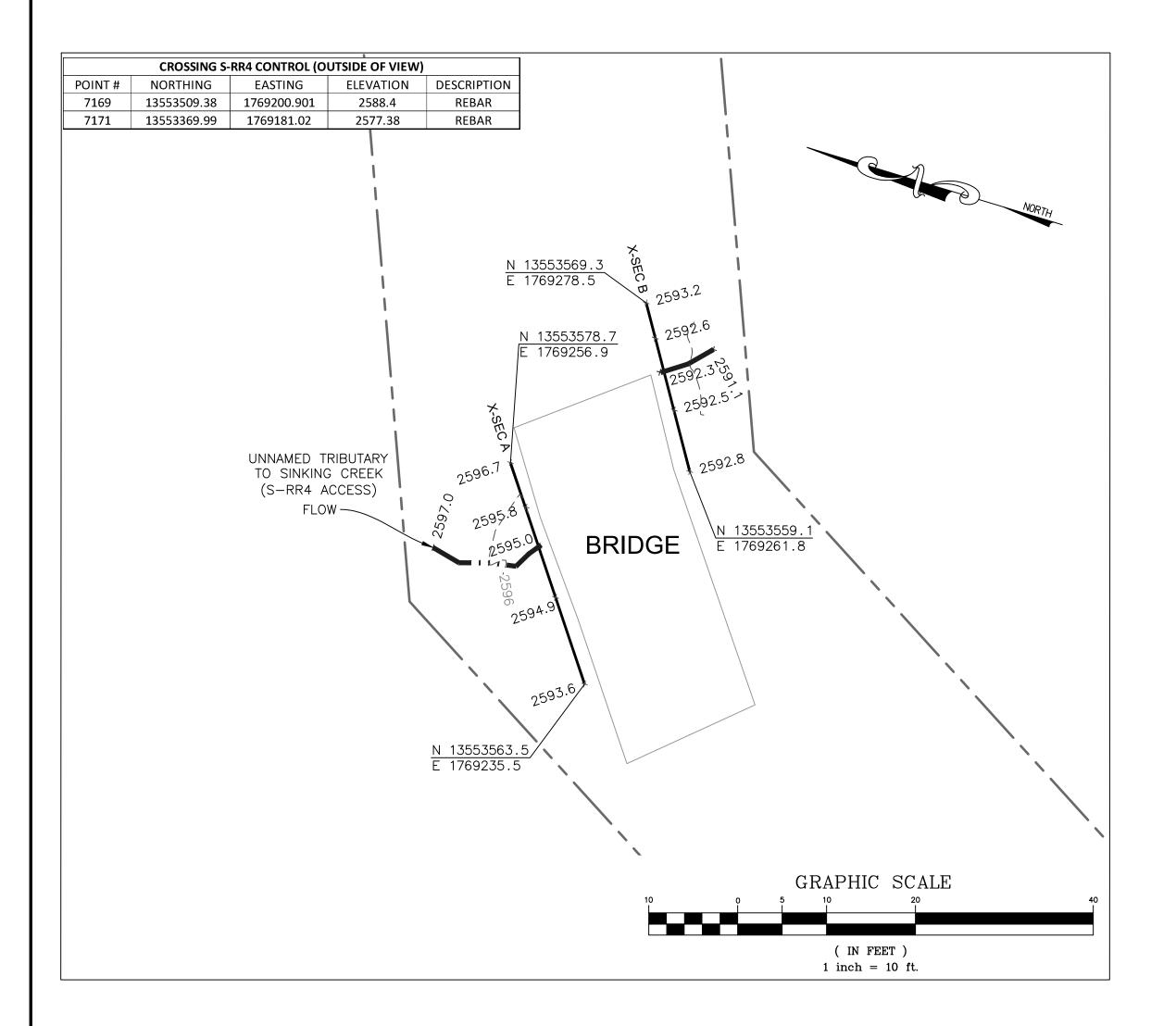
THE REACH CONDITION INDEX (RCI) >> 1.20

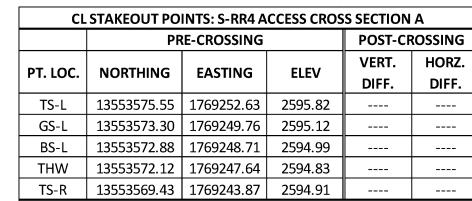
RCI= (Sum of all Cl's)/5, except if stream is ephemeral RCI = (Riparian Cl/2)

COMPENSATION REQUIREMENT (CR) >> 102

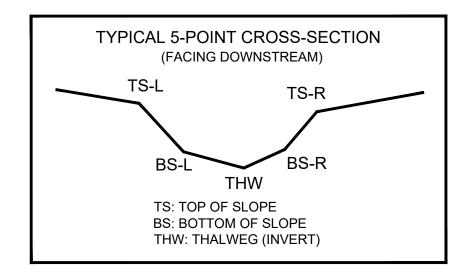
CR = RCI X L_I X IF

INSERT PHOTOS:


(WSSI Photo Location "L:\22000s\22800\22865.06\Admin\05-ENVR\Field Data\Spread G\Field Forms\S-RR4\Photos\DS VIEW.jpg")



Downstream view facing S within the LOD. Assessmentis limited to areas within the temporary ROW.


DESCRIBE PROPOSED IMPACT:

PROVIDED UNDER SEPARATE COVER

CL STAKEOUT POINTS: S-RR4 ACCESS CROSS SECTION B								
	PR	RE-CROSSING		POST-CF	ROSSING			
PT. LOC.	NORTHING	EASTING	C1 C\/	VERT.	HORZ.			
PI. LOC.	NORTHING	EASTING	ELEV	DIFF.	DIFF.			
TS-L	13553567.15	1769275.03	2592.64					
BS-L	13553565.56	1769272.58	2592.51					
THW	13553565.53	1769271.51	2592.31					
BS-R	13553564.42	1769270.70	2592.34					
TS-R	13553562.76	1769267.90	2592.47					

SURVEY NOTES:

- 1. This map has been oriented to NAD 1983 UTM ZONE 17N, and vertically to The North American Vertical Datum of 1988 (NAVD 88), using a Real Time Network (RTN) GPS. Field locations were completed on October 13, 2021.
- 2. Monumentation, including traverse stations and fly points, shown on this drawing should be used to orient any future boundary, topographic, or location survey.
- 3. Easement lines shown on plan view were provided by Mountain Valley Pipeline (MVP).
- 4. WSSI Contour Interval = 2.0'. Contours within the channel were interpolated using stream channel breaklines (i.e. top of slopes, toe of slopes, thalweg) and cross-sectional points. Contours outside the channel were interpolated using cross-sectional spot shots.
- 5. All section views shown are left to right facing downstream.

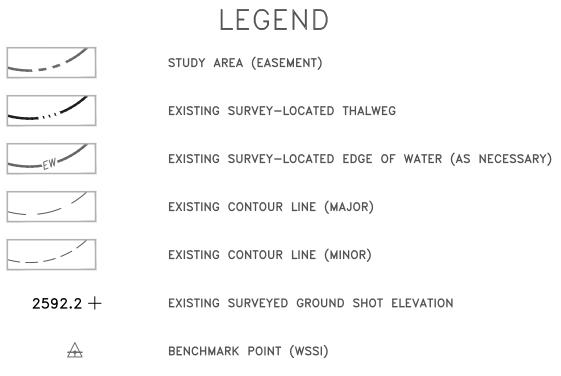
S-RR4 BASELINE CROSS-SECTION A

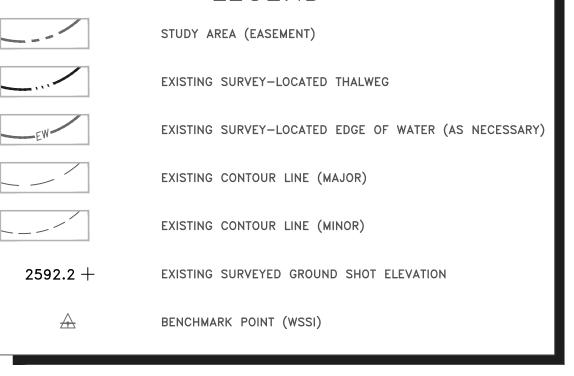
EX. THALWEG EL.: 2594.8

0+00 0+10 0+20 0+30

DISTANCE ALONG CROSS-SECTION (FT)

S-RR4 BASELINE CROSS-SECTION B


0+00 0+10 0+20 DISTANCE ALONG CROSS-SECTION (FT)


EX. THALWEG ↓EL.: 2592.3'

≤ 2594

≤ 2592

6. Crossing S-RR4 is on a temporary access road and does not cross a pipe.

Wetland

PHOTO TAKEN LOOKING DOWNSTREAM ON 10/13/2021

CROSS SECTION

EXISTING GRADE

CROSS SECTION LEGEND

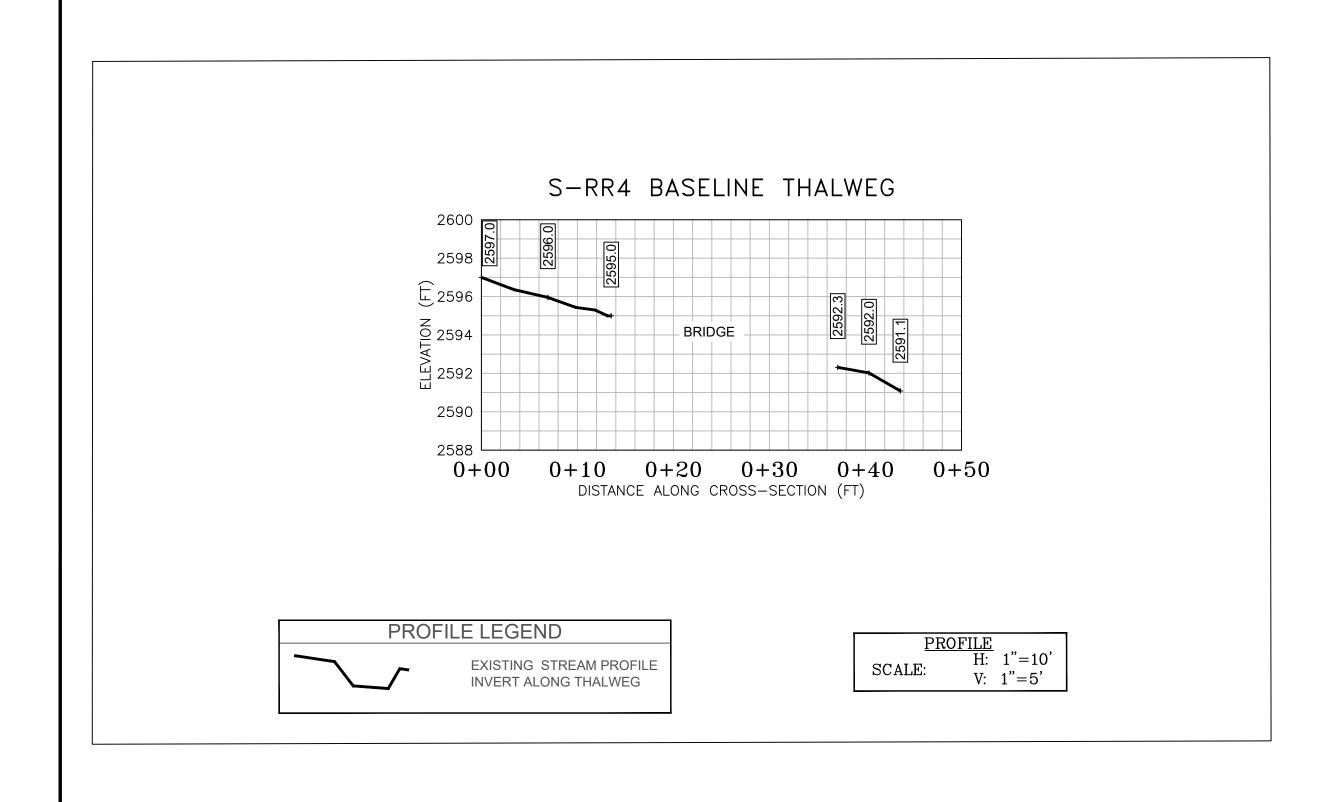
NOTE: ALL SECTION VIEWS SHOWN LEFT TO RIGHT FACING

DOWNSTREAM.

H: 1"=10'

PENDING CROSSING

PHOTO TAKEN LOOKING


PHOTO TAKEN LOOKING UPSTREAM ON 10/13/2021 PENDING CROSSING PHOTO TAKEN LOOKING

Horizontal Datum: NAD 1983 UTM ZONE 17N

ertical Datum: NAVD 88						
oundary and Topo Source: VP SSI 2' C.I. Topo						
Design	Draft	Approved				
PFS	TLK	PFS				
Sheet #						
1 of 1						

Computer File Name:

Survey\22000s\22800\22865.03\Spread G Work Dwgs 865_03 S-G MP 208-227 Sheets.dwg

