Baseline Assessment - Stream Attributes

Reach S-B21 (Pipeline ROW) Perennial Spread H Roanoke County, Virginia

Data	Included
Photos	✓
SWVM Form	✓
FCI Calculator and HGM Form	N/A – Perennial stream (not shadeable, slope >4%)
RBP Physical Characteristics Form	✓
Water Quality Data	✓
RBP Habitat Form	✓
RBP Benthic Form	✓
Benthic Identification Sheet	N/A – Riffle habitat not present
Wolman Pebble Count	✓
RiverMorph Data Sheet	✓
USM Form (Virginia Only)	√
Longitudinal Profile and Cross Sections	✓

Location, Orientation, Photographer Initials: Downstream view of ROW looking NW, TC

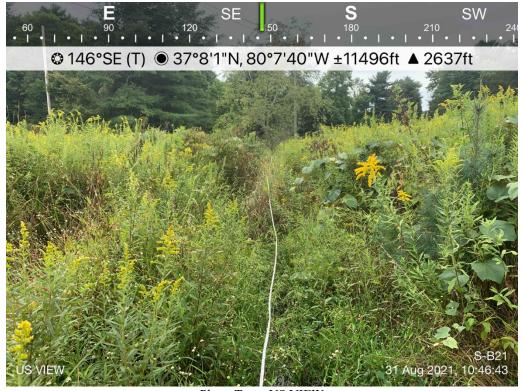


Photo Type: US VIEW
Location, Orientation, Photographer Initials: Upstream view of ROW looking SE, TC

Location, Orientation, Photographer Initials: Standing on LB looking at RB along pipe centerline looking E, TC

Location, Orientation, Photographer Initials: Standing on RB looking at LB along pipe centerline looking W, TC

Location, Orientation, Photographer Initials: Downstream conditions outside of ROW looking NW, TC

USACE FILE NO./ Project Name: (v2.1, Sept 2015)		Mount	ain Valley Pipeline		COORDINATES: cimal Degrees)	Lat.	37.128484	Lon.	-80.130943	WEATHER:		Cloudy	DATE:	А	lugust 31,	2021
IMPACT STREAM/SITE ID (watershed size {acreage}			\$	i-B21			MITIGATION STREAM CLJ (watershed size {a	ASS./SITE ID AND S creage), unaltered or impa		:			Comments:			
STREAM IMPACT LENGTH:	92	FORM OF MITIGATION:	RESTORATION (Levels I-III)		OORDINATES: cimal Degrees)	Lat.		Lon.		PRECIPITATION PAST 48 HRS:		0.1"	Mitigation Length:			
Column No. 1- Impact Existing	g Condition (De	bit)	Column No. 2- Mitigation Existing	Condition - Base	line (Credit)		Column No. 3- Mitigati Post Comp	on Projected at Five \ oletion (Credit)	'ears	Column No. 4- Mitigation Proj Post Completion (ars	Column No. 5- Mitigation	Projected at Mat	turity (Cred	lit)
Stream Classification:	Pere	nnial	Stream Classification:				Stream Classification:		0	Stream Classification:	C	0	Stream Classification:		0	
Percent Stream Channel SI	lope	1.1	Percent Stream Channel S	lope			Percent Stream Chann	nel Slope	0	Percent Stream Channel St	lope	0	Percent Stream Cha	nnel Slope		0
HGM Score (attach d	ata forms):		HGM Score (attach	data forms):			HGM Score (at	ttach data forms):		HGM Score (attach d	ata forms):		HGM Score (a	tach data form	ıs):	
		Average			Average				Average			Average				Average
Hydrology			Hydrology				Hydrology			Hydrology			Hydrology			
Biogeochemical Cycling		. 0	Biogeochemical Cycling		°		Biogeochemical Cycling		0	Biogeochemical Cycling		0	Biogeochemical Cycling			0
PART I - Physical, Chemical and	Biological Indic	ators	PART I - Physical, Chemical a	nd Biological Ind	licators		PART I - Physical, Chemi	cal and Biological Ind	icators	PART I - Physical, Chemical and	Biological Indic	cators	PART I - Physical, Chemi	cal and Biologica	al Indicator	rs
	Points Scale Range	Site Score		Points Scale Range	Site Score			Points Scale Range	Site Score		Points Scale Range	Site Score		Points Scale	e Range	Site Score
PHYSICAL INDICATOR (Applies to all streams	s classifications)		PHYSICAL INDICATOR (Applies to all streams	classifications)			PHYSICAL INDICATOR (Applies to all st	treams classifications)	•	PHYSICAL INDICATOR (Applies to all streams	s classifications)		PHYSICAL INDICATOR (Applies to a	streams classificati	tions)	
USEPA RBP (High Gradient Data Sheet)			USEPA RBP (Low Gradient Data Sheet)				USEPA RBP (High Gradient Data She	eet)		USEPA RBP (High Gradient Data Sheet)			USEPA RBP (High Gradient Data S	heet)		
Epifaunal Substrate/Available Cover	0-20	10	Epifaunal Substrate/Available Cover	0-20			Epifaunal Substrate/Available Cover			Epifaunal Substrate/Available Cover	0-20		 Epifaunal Substrate/Available Cov 		_	
2. Embeddedness	0-20	2	Pool Substrate Characterization	0-20			2. Embeddedness	0-20		2. Embeddedness	0-20		2. Embeddedness	0-20		
3. Velocity/ Depth Regime	0-20	6	3. Pool Variability	0-20			3. Velocity/ Depth Regime	0-20		3. Velocity/ Depth Regime	0-20		3. Velocity/ Depth Regime	0-20		
Sediment Deposition Channel Flow Status	0-20	18	Sediment Deposition Channel Flow Status	0-20			Sediment Deposition Channel Flow Status	0-20		Sediment Deposition Channel Flow Status	0-20		Sediment Deposition Channel Flow Status	0-20 0-20	_	
		20													0-1	
Channel Alteration Frequency of Riffles (or bends)	0-20	5	6. Channel Alteration 7. Channel Sinuosity	0-20			Channel Alteration Frequency of Riffles (or bends)	0-20 0-20		Channel Alteration Frequency of Riffles (or bends)	0-20		Channel Alteration Frequency of Riffles (or bends)	0-20 0-20	-	
8. Bank Stability (LB & RB)	0-20	18	8. Bank Stability (LB & RB)	0-20			8. Bank Stability (LB & RB)	0-20		8. Bank Stability (LB & RB)	0-20		8. Bank Stability (LB & RB)	0-20	_	
9. Vegetative Protection (LB & RB)	0-20	12	9. Vegetative Protection (LB & RB)	0-20			9. Vegetative Protection (LB & RB)	0-20		9. Vegetative Protection (LB & RB)	0-20		9. Vegetative Protection (LB & RB)	0-20		
Riparian Vegetative Zone Width (LB & RB)	0-20	14	Riparian Vegetative Zone Width (LB & RB)	0-20			Riparian Vegetative Zone Width (LB & F			Riparian Vegetative Zone Width (LB & RB)	0-20		Riparian Vegetative Zone Width (LB			
Total RBP Score	Marginal	110	Total RBP Score	Poor	0		Total RBP Score	Poor	0	Total RBP Score	Poor	0	Total RBP Score	Po	oor noo	0
Sub-Total		0.55	Sub-Total		0		Sub-Total		0	Sub-Total		0	Sub-Total			0
CHEMICAL INDICATOR (Applies to Intermitter	nt and Perennial Str	eams)	CHEMICAL INDICATOR (Applies to Intermitte	nt and Perennial Stre	eams)		CHEMICAL INDICATOR (Applies to Inte	rmittent and Perennial Str	eams)	CHEMICAL INDICATOR (Applies to Intermitter	nt and Perennial Str	reams)	CHEMICAL INDICATOR (Applies to I	termittent and Pere	ennial Streams	s)
WVDEP Water Quality Indicators (General	0		WVDEP Water Quality Indicators (Genera)			WVDEP Water Quality Indicators (Ge	neral)		WVDEP Water Quality Indicators (General	1)		WVDEP Water Quality Indicators (General)		
Specific Conductivity	_		Specific Conductivity				Specific Conductivity			Specific Conductivity	_		Specific Conductivity		-	
100-199 - 85 points	0-90	198.3		0-90				0-90			0-90			0-90		
pH			pH				pH			pH			рН			
	0-80	7.5		5-90 0-1				5-90 0-1			5-90 0-1			5-90	0-1	
6.0-8.0 = 80 points			20				20			200					_	
DO	40.20	0.25		10-30			DO	10,30		<u> </u>	10-30		DO	10-30	_	
>5.0 = 30 points	10-30	8.35		10-30				10-30			10-30			10-30		
Sub-Total BIOLOGICAL INDICATOR (Applies to Intermit	tent and Perennial	0.975 Streams)	Sub-Total BIOLOGICAL INDICATOR (Applies to Intermit	tent and Perennial S	O Streams)		Sub-Total BIOLOGICAL INDICATOR (Applies to	Intermittent and Perenn	0 ial Streams)	Sub-Total BIOLOGICAL INDICATOR (Applies to Intern	nittent and Perenn	0 nial Streams)	Sub-Total BIOLOGICAL INDICATOR (Applies	o Intermittent and	Perennial S	O Streams)
WV Stream Condition Index (WVSCI)		,	WV Stream Condition Index (WVSCI)		,		WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)		,	WV Stream Condition Index (WVS			
0	0-100 0-1	0		0-100 0-1				0-100 0-1			0-100 0-1			0-100	0-1	
Sub-Total		0	Sub-Total		0		Sub-Total		0	Sub-Total	-	0	Sub-Total	<u> </u>	_	0
PART II - Index and U	Jnit Score		PART II - Index and	d Unit Score		l	PART II - Inde	x and Unit Score		PART II - Index and U	Jnit Score		PART II - Inde	x and Unit Score	е	
Index	Linear Feet	Unit Score	Index	Linear Feet	Unit Score		Index	Linear Feet	Unit Score	Index	Linear Feet	Unit Score	Index	Linea	ar Feet I	Unit Score
0.763	92	70.15	0	0	0		0	0	0	0	0	0	0		0	0

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

STREAM NAME S-B21		LOCATION R	oanoke Count	ty	
STATION #_12992+60 R	IVERMILE	STREAM CLAS	SS Perennial		
LAT <u>37.128484</u> LO	ONG80.130943	RIVER BASIN	Upper Roan	oke	
STORET#		AGENCY VADI	EQ		
INVESTIGATORS KB TC		-			
FORM COMPLETED BY	KB	DATE 8/31/21 TIME 10:45 AM		REASON FOR SURVEY Ba	seline Assessment
WEATHER CONDITIONS	Now			Has there been a heavy rain in Yes No	the last 7 days?
	rain (showers	(heavy rain) (steady rain) (s (intermittent) loud cover ear/sunny	 	Air Temperature 24.4 Other	
SITE LOCATION/MAP	Draw a map of the sit	e and indicate the	areas sample	ed (or attach a photograph)	
STDE AM	Going away			LOD Flow LOD	Coming in
STREAM CHARACTERIZATION	Stream Subsystem Perennial Into Stream Origin Glacial Non-glacial montane Swamn and boo	☐Spring-fed		Stream Type ✓Coldwater	n^2

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

WATERS FEATURI		Predom Fores Field/ Agric Resid	Pasture Industria	rcial al	Local Watershed NPS ☑ No evidence ☐ Son ☐ Obvious sources ☐ Local Watershed Erosi ☑ None ☐ Moderate	ne potential sources
RIPARIA VEGETA (18 meter	TION	_	e the dominant type and S		minant species present ☐ Grasses	rbaceous
INSTREA FEATURI		Estimat Samplin Area in Estimat	red Stream Depth 02 Velocitym	m m² km² m	Canopy Cover Partly open □Part High Water Mark ○ Proportion of Reach Re Morphology Types Riffle ○ % Pool 50	m epresented by Stream Run 50 %
LARGE V DEBRIS	VOODY	LWD Density	of LWDm	n ² /km ² (LWD/	reach area)	
AQUATION VEGETA		Domina			<u> </u>	Free floating
WATER (DS, US	QUALITY	Specific Dissolve pH _7.5,7.	cature 19.1, 19.3 0 C conductance 198.3 198.5 uS/c ed Oxygen 8.35, 8.70 mg/L 2 city N/A ctrument Used			Chemical Other
SEDIMEN SUBSTRA		Odors Norm Chem Other Oils	nical Anaerobic	Petroleum None	Lρoking at stones whic are the undersides blac	□Paper fiber □Sand Other □Sand h are not deeply embedded, k in color?
INC		STRATE (COMPONENTS		ORGANIC SUBSTRATE C	
Substrate Type	Diamet		% Composition in Sampling Reach	Substrate Type	Characteristic	% Composition in Sampling Area
Bedrock			0	Detritus	sticks, wood, coarse plant materials (CPOM)	0
Boulder	> 256 mm (10")		0		· · · · · ·	
Cobble	64-256 mm (2.5		0	Muck-Mud	black, very fine organic (FPOM)	0
Gravel	2-64 mm (0.1"-2		0			
Sand	0.06-2mm (gritt	y)	0	Marl	grey, shell fragments	0
Silt	0.004-0.06 mm		95			
Clay	< 0.004 mm (sli	ck)	5			

HABITAT ASSESSMENT FIELD DATA SHEET - HG - USE ON ALL STREAMS (FRONT)

STREAM NAME S-B21	LOCATION Roanoke County
STATION #_12992+60 RIVERMILE	STREAM CLASS Perennial
LAT <u>37.128484</u> LONG <u>-80.130943</u>	RIVER BASIN Upper Roanoke
STORET#	AGENCY VADEQ
INVESTIGATORS KB TC	
FORM COMPLETED BY KB	DATE 8/31/21 REASON FOR SURVEY Baseline Assessment

	Habitat		Condition	Category			
	Parameter	Optimal	Suboptimal	Marginal	Poor		
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.		
	SCORE 10	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
n sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.		
ted i	score 2	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).		
ıram	_{SCORE} 6	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
Pa	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.		
	SCORE 5	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	channel and mostly		
	SCORE 18	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		

Notes: Low flow. Riffle habitat not present.

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

	Habitat		Condition	n Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
	SCORE 20	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
oling reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.
amp	score 5	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing development.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.
e eva	SCORE 9	Left Bank 10 9	8 7 6	5 4 3	2 1 0
to be	SCORE 9	Right Bank 10 9	8 7 6	5 4 3	2 1 0
Parameters	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
	SCORE 6	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE 6	Right Bank 10 9	8 7 6	5 4 3	2 1 0
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.
	SCORE 7	Left Bank 10 9	8 7 6	5 4 3	2 1 0
L	SCORE 7	Right Bank 10 9	8 7 6	5 4 3	2 1 0

110 Notes: Low flow. Riffle habitat not present.

Total Score

A-8

BENTHIC MACROINVERTEBRATE FIELD DATA SHEET

STREAM NAME S-B	12																
STATION # 12992+60	R	IVE	RMI	STATION #_12992+60 RIVERMILE					STREAM CLASS Perennial								
LAT 37.128484	L	ONG	-80.	130943		RIVER BA	SIN Up	per	Roar	noke							
STORET#						AGENCY	VADEQ										
INVESTIGATORS KE	в тс					•				Ι	.OT	NUMBER					
FORM COMPLETED	BY	KI	В			DAIL	:45 AM			F	REAS	SON FOR SURVEY B	aselii	ne A	sse	ssm	ent
HABITAT TYPES		Cob	ble	-	%	tage of each habitat	ΥΩ	esen eget	ated !			%	%				
SAMPLE	G	ear ı	used		D-fr	ame kick-net		П о	ther								
COLLECTION	ш	NXX/ XX	uono.	tho e	amn	les collected?	wadin	~	П	from	a bon	k 🛮 from box	- \				
					_			_					11				
		Cob	ble			r of jabs/kicks taker Snags phytes	\square V	hab egeta O	ated :	Banl	cs	Sand					
GENERAL COMMENTS			flo		Rif	fle habitat no	ot pre	se	nt;	the	ere	fore, benthics	we	re	not	•	
QUALITATIVE I							rved, 1	_ = F	Rare	, 2	= C	ommon, 3= Abun	dant,	4 =	=		
Indicate estimated Dominant Periphyton Filamentous Algae	l abu				0 = A	1 2 3 4 1 2 3 4	rved, 1	Slir Ma	nes croi			ommon, 3= Abun	0	1 1	2 2	3	4 4
Indicate estimated Dominant Periphyton	l abu				0 = A	1 2 3 4	rved, 1	Slir	nes croi				0	1	2 2		4
Periphyton Filamentous Algae Macrophytes FIELD OBSERVA Indicate estimated	ATIC	ONS	S OI	e: (0 0 0 0 ACH $0 = 1$	1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 ROBENTHOS	erved, i	Slin Ma Fisl 1 = 1	mes croin 11 Rare	nver	-3 or	rganisms), 2 = Co , 4 = Dominant (>	0 0 0	1 1 1	2 2 2	3 3	4
Periphyton Filamentous Algae Macrophytes FIELD OBSERVA Indicate estimated	ATIC I abu	ONS unda	ance 2	F M 3	0 0 0 0 ACI 0 0 0 4	1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 ROBENTHOS Absent/Not Observations), 3= Abur	erved, and and (a	Slim Ma Fisl 1 = 1	nes eroin	ne (1 anis	-3 or ms)	rganisms), 2 = Co , 4 = Dominant (>	0 0 0 0 mmo 50 o	1 1 1 nn (3 rgan	2 2 2 2	3 3	4
Periphyton Filamentous Algae Macrophytes FIELD OBSERVA Indicate estimated Porifera Hydrozoa	ATIC I abu	ONS unda	S OI ance	3 3	0 0 0 0 ACI 0 0 4 4	1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 ROBENTHOS Absent/Not Observinisms), 3= Aburr Anisoptera Zygoptera	erved, and ant (a	Slin Ma Fisl 1 = 1 >10	Rarcorgs	anis	-3 or ms)	rganisms), 2 = Co , 4 = Dominant (> Chironomidae Ephemeroptera	0 0 0 0 mmo 50 o	1 1 1 1 m (3 rgan	2 2 2 2 -9 nism	3 3 3 3	4 4 4
Periphyton Filamentous Algae Macrophytes FIELD OBSERVA Indicate estimated Porifera Hydrozoa Platyhelminthes	ATIC I abu	DNS 1 1 1	S OI ance	3 3 3 3	0 0 0 0 0 ACI 0 = 4 4 4 4	1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 ROBENTHOS Absent/Not Obse anisms), 3= Abur Anisoptera Zygoptera Hemiptera	erved, and ant (and ant (and ant (and ant (and ant (and and and and and and and and and and	Slin Ma Fisl 1 = 1 1 1 1	Rarcorga	3 3 3	-3 or ms)	rganisms), 2 = Co , 4 = Dominant (> Chironomidae Ephemeroptera Trichoptera	0 0 0 0 0 50 0	1 1 1 n (3 rgai	2 2 2 2 -9 nism	3 3 3 3 3	4 4 4 4
Periphyton Filamentous Algae Macrophytes FIELD OBSERVA Indicate estimated Porifera Hydrozoa Platyhelminthes Turbellaria	0 0 0	DNS ind: 1 1 1 1	2 2 2 2	3 3 3 3	0 0 0 0 0 0 0 0 0 4 4 4 4 4	1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 ROBENTHOS Absent/Not Observations, 3= Abura	erved, and ant (and ant (and ant (and ant (and ant (and and (and and and and and and and and and and	Slir Ma Fisl 1 = 1 1 1 1 1 1	Rare orga	3 3 3 3	-3 on ms)	rganisms), 2 = Co , 4 = Dominant (> Chironomidae Ephemeroptera	0 0 0 0 mmo 50 o	1 1 1 1 m (3 rgan	2 2 2 2 -9 nism	3 3 3 3	4 4 4
Periphyton Filamentous Algae Macrophytes FIELD OBSERVA Indicate estimated Porifera Hydrozoa Platyhelminthes Turbellaria Hirudinea	0 0 0 0	DNS inda 1 1 1 1 1	2 2 2 2 2 2	3 3 3 3 3	0 0 0 0 0 ACH 00 = 4 4 4 4 4 4 4	1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 ROBENTHOS Absent/Not Observations, 3= Abura Anisoptera Zygoptera Hemiptera Coleoptera Lepidoptera	0 0 0 0 0	Slin Ma Fisl 1 = 1 1 1 1 1 1	Rarcorgs 2 2 2 2 2	3 3 3 3 3	-3 or ms)	rganisms), 2 = Co , 4 = Dominant (> Chironomidae Ephemeroptera Trichoptera	0 0 0 0 0 50 0	1 1 1 n (3 rgai	2 2 2 2 -9 nism	3 3 3 3 3	4 4 4 4
Periphyton Filamentous Algae Macrophytes FIELD OBSERVA Indicate estimated Porifera Hydrozoa Platyhelminthes Turbellaria Hirudinea Oligochaeta	0 0 0 0 0	DNS ind: 1 1 1 1 1 1	2 2 2 2 2 2 2	3 3 3 3 3 3	0 0 0 0 0 ACI 4 4 4 4 4 4 4 4	1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 3 4 3 4 3 4 3 4 3 4 3 6 3 6 3 7 3 7 4 7 4 8 4 8 5 8 5 9 5 9 6 9 6 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7	0 0 0 0 0	Slin Ma Fisl 1 = 1 1 1 1 1 1 1	Rare 2 2 2 2 2 2 2 2	3 3 3 3 3 3	-3 on ms) 4 4 4 4 4 4	rganisms), 2 = Co , 4 = Dominant (> Chironomidae Ephemeroptera Trichoptera	0 0 0 0 0 50 0	1 1 1 n (3 rgai	2 2 2 2 -9 nism	3 3 3 3 3	4 4 4 4
Periphyton Filamentous Algae Macrophytes FIELD OBSERVA Indicate estimated Porifera Hydrozoa Platyhelminthes Turbellaria Hirudinea Oligochaeta Isopoda	0 0 0 0 0 0	DNS 1 1 1 1 1 1 1	2 2 2 2 2 2 2 2	3 3 3 3 3 3 3	0 0 0 0 0 ACI 0 0 4 4 4 4 4 4 4 4 4 4	1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 ROBENTHOS Absent/Not Observinisms), 3= Aburr Anisoptera Zygoptera Hemiptera Coleoptera Lepidoptera Sialidae Corydalidae	0 0 0 0 0 0	Slim Ma Fish 1 = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Rarcorga 2 2 2 2 2 2 2 2	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	-3 on ms) 4 4 4 4 4 4 4	rganisms), 2 = Co , 4 = Dominant (> Chironomidae Ephemeroptera Trichoptera	0 0 0 0 0 50 0	1 1 1 n (3 rgai	2 2 2 2 -9 nism	3 3 3 3 3	4 4 4 4
Periphyton Filamentous Algae Macrophytes FIELD OBSERVA Indicate estimated Porifera Hydrozoa Platyhelminthes Turbellaria Hirudinea Oligochaeta Isopoda Amphipoda	0 0 0 0 0 0	DNS 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 2 2	3 3 3 3 3 3 3 3	0 0 0 0 0 ACH 4 4 4 4 4 4 4 4 4 4 4	1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 ROBENTHOS Absent/Not Observations, 3= Aburrant Anisoptera Zygoptera Hemiptera Coleoptera Lepidoptera Sialidae Corydalidae Tipulidae	0 0 0 0 0 0	Slim Ma Fisl 1 = 1 1 1 1 1 1 1 1 1 1 1	Rarcorga 2 2 2 2 2 2 2 2 2 2	3 3 3 3 3 3 3	-3 or ms) 4 4 4 4 4 4 4 4	rganisms), 2 = Co , 4 = Dominant (> Chironomidae Ephemeroptera Trichoptera	0 0 0 0 0 50 0	1 1 1 n (3 rgai	2 2 2 2 -9 nism	3 3 3 3 3	4 4 4 4
Periphyton Filamentous Algae Macrophytes FIELD OBSERVA Indicate estimated Porifera Hydrozoa Platyhelminthes Turbellaria Hirudinea Oligochaeta Isopoda Amphipoda Decapoda	0 0 0 0 0 0 0	DNS 1 1 1 1 1 1 1	2 2 2 2 2 2 2 2 2 2 2	3 3 3 3 3 3 3 3 3	0 0 0 0 ACH 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 ROBENTHOS Absent/Not Observations, 3= Aburrations Anisoptera Zygoptera Hemiptera Coleoptera Lepidoptera Sialidae Corydalidae Tipulidae Empididae	0 0 0 0 0 0 0	Slim Ma Fish 1 = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Rarcorg: 2 2 2 2 2 2 2 2 2 2 2	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	-3 or ms) 4 4 4 4 4 4 4 4 4	rganisms), 2 = Co , 4 = Dominant (> Chironomidae Ephemeroptera Trichoptera	0 0 0 0 0 50 0	1 1 1 n (3 rgai	2 2 2 2 -9 nism	3 3 3 3 3	4 4 4 4
Periphyton Filamentous Algae Macrophytes FIELD OBSERVA Indicate estimated Porifera Hydrozoa Platyhelminthes Turbellaria Hirudinea Oligochaeta Isopoda Amphipoda	0 0 0 0 0 0	DNS 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 2 2	3 3 3 3 3 3 3 3	0 0 0 0 0 ACH 4 4 4 4 4 4 4 4 4 4 4	1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 ROBENTHOS Absent/Not Observations, 3= Aburrant Anisoptera Zygoptera Hemiptera Coleoptera Lepidoptera Sialidae Corydalidae Tipulidae	0 0 0 0 0 0	Slin Ma Fisl 1 = 1 1 1 1 1 1 1 1 1 1 1	Rarcorga 2 2 2 2 2 2 2 2 2 2	3 3 3 3 3 3 3	-3 or ms) 4 4 4 4 4 4 4 4	rganisms), 2 = Co , 4 = Dominant (> Chironomidae Ephemeroptera Trichoptera	0 0 0 0 0 50 0	1 1 1 n (3 rgai	2 2 2 2 -9 nism	3 3 3 3 3	4 4 4 4

WOLMAN PEBBLE COUNT FORM

County: Roanoke County Stream ID: S-B21

Stream Name: UNT to Mill Creek

HUC Code: 03010101 Basin: Upper Roanoke

Survey Date: 8/31/2021 Surveyors: TC, KB Type: Representative

T1.	DADTICLE		LE COUNT	D. 7.1	7D 4 3 "	T. 0.	0/ 0
Inches	PARTICLE	Millimeters		Particle Count	Total #	Item %	% Cur
	Silt/Clay	< .062	S/C	^	70	70.00	70.00
	Very Fine	.062125		•	0	0.00	70.00
	Fine	.12525		•	20	20.00	90.00
	Medium	.255	SAND	•	5	5.00	95.00
	Coarse	.50-1.0		•	5	5.00	100.0
.0408	Very Coarse	1.0-2		•	0	0.00	100.00
.0816	Very Fine	2 -4		4	0	0.00	100.00
.1622	Fine	4 -5.7		4	0	0.00	100.0
.2231	Fine	5.7 - 8		4	0	0.00	100.0
.3144	Medium	8 -11.3	1	4	0	0.00	100.0
.4463	Medium	11.3 - 16	GRAVEL	4	0	0.00	100.0
.6389	Coarse	16 -22.6	1	•	0	0.00	100.0
.89 - 1.26	Coarse	22.6 - 32	1	•	0	0.00	100.0
1.26 - 1.77	Vry Coarse	32 - 45	1	4	0	0.00	100.0
1.77 -2.5	Vry Coarse	45 - 64	1	4	0	0.00	100.0
2.5 - 3.5	Small	64 - 90		4	0	0.00	100.0
3.5 - 5.0	Small	90 - 128]	4	0	0.00	100.0
5.0 - 7.1	Large	128 - 180	COBBLE	A	0	0.00	100.0
7.1 - 10.1	Large	180 - 256	1	A	0	0.00	100.0
10.1 - 14.3	Small	256 - 362		4	0	0.00	100.0
14.3 - 20	Small	362 - 512	1	4	0	0.00	100.0
20 - 40	Medium	512 - 1024	BOULDER	4	0	0.00	100.0
40 - 80	Large	1024 -2048	1	^	0	0.00	100.0
80 - 160	Vry Large	2048 -4096	1	4	0	0.00	100.0
	Bedrock		BDRK	4	0	0.00	100.0
				Totals	100		

RIVERMORPH PARTICLE SUMMARY

River Name: UNT to Mill Creek Reach Name: S-B21 Representative Survey Date: 08/31/2021

Size (mm)	TOT #	ITEM %	CUM %
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	70 0 20 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0	70.00 0.00 20.00 5.00 5.00 0.00 0.00 0.00	70.00 70.00 90.00 95.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Cobble (%) Boulder (%) Bedrock (%)	0.01 0.03 0.04 0.21 0.5 1 70 30 0		

Total Particles = 100.

		Strear	n Ass Unified S		ent Fo	-	orm 1	l)		
			For use in wadea	able channels cla	ssified as interm	ittent or perenni	al			
Project #	Project Name (App	· '	Locality	Cowardin Class.	HUC	Date	SAR#	Impact Length	Impact Factor	
22865.06	Mountain Valley Pipelir Valley Pipeline,		Roanoke County	R3	03010101	8/31/21	S-B21	92	1	
Name	e(s) of Evaluator(s)	Stream Name	e and Informa	tion				SAR Length		
Kl	ball and Tcullop	Unnamed Tri	ibutary to Mill	Creek				92		
. Channel C	Condition: Assess the cross-sec	tion of the stream a								
	Optimal	Subo	ptimal	Conditional Catego	ginal	Po	oor	Sev	/ere	
Channel	Very little incision or active erosion; 80 100% stable banks. Vegetative surfac protection or natural rock, prominent (80-100%), AND/OR Stable point bars	ce erosion or unprotect of banks are s	few areas of active cted banks. Majority itable (60-80%).	Poor. Banks more or Poor due to lo	less than Severe or stable than Severe wer bank slopes. sesent on 40-60% of	laterally unstable further. Majority of	cised. Vertically / e. Likely to widen both banks are near esent on 60-80% of	vertical/lateral in incision, flow contain	(or excavated), istability. Severe ned within the banks. verage rooting depth,	
Condition	bankfull benches are present. Access to their original floodplain or fully developed wide bankfull benches. Mic channel bars and transverse bars few Transient sediment deposition covers less than 10% of bottom.	prominent (60 pepositional feat distability. The bar channels are well dis has access to be newly developed portions of the resediment covers 1 bot	0-80%) AND/OR tures contribute to nkfull and low flow lefined. Stream likely ankfull benches, or if floodplains along reach. Transient 10-40% of the stream tom.	both banks. Vege 40-60% of banks. S vertical or und 40-60% Sediment transient, control Deposition that co may be forming/p shaped channels protection on > 40 depositional featur to sta	tative protection on britreambanks may be errout. AND/OR may be temporary / ibute instability. Intribute to stability, resent. AND/OR V-s have vegetative % of the banks and es which contribute bability.	banks. Vegetative on 20-40% of bank to prevent erosion. the stream is cov Sediment is temp nature, and contri AND/OR V-shap vegetative protect 40% of the banks a deposition	e protection present s, and is insufficient AND/OR 60-80% of ered by sediment. orary / transient in buting to instability. bed channels have ion is present on > and stable sediment is absent.	majority of banks Vegetative protect than 20% of banks erosion. Obviou present. Erosion/rav AND/OR Aggradir than 80% of strean deposition, contrit Multiple thread subterrar	vertical/undercut. tion present on less s, is not preventing to bank sloughing w banks on 80-100%. ng channel. Greater n bed is covered by puting to instability. channels and/or nean flow.	CI
Scores	3	2	2.4		2	1	.6	·	1	2.40
	Optimal		ptimal	Mar	ginal Low Marginal:		oor			
Riparian Buffers	Tree stratum (dbh > 3 inches) present with > 60% tree canopy cover. Wetlands located within the riparian areas.	High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory.	tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover	High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover.	Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree		Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions.			
•	with > 60% tree canopy cover. Wetlands located within the riparian	Riparian areas with tree stratum (db. 7 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory.	Riparian areas with tree stratum (db. 7 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation).	Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover.	Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory.	mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition.	Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions.			
•	with > 60% tree canopy cover. Wetlands located within the riparian	Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained	Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense	Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30%	Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained	mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable	Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable			
Scores 1. Delineate ripar 2. Determine squ 3. Enter the % Ri	with > 60% tree canopy cover. Wetlands located within the riparian areas. 1.5 Taian areas along each stream bank uare footage for each by measuring Riparian Area and Score for each right % Riparian Area> 100%	Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 K into Condition Cat	Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Condotth and width. Cale	Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85	Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75 the descriptors.	mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure of % F	Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions.			
Scores Delineate ripar	with > 60% tree canopy cover. Wetlands located within the riparian areas. 1.5 Take a located within the riparian areas along each stream bank uare footage for each by measuring sparian Area and Score for each riparian Area and Score for each riparian Area and Score for each riparian areas along each stream bank uare footage for each Score for each riparian Area and Score for each riparian areas areas area	Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 K into Condition Cat	Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Condotth and width. Cale	Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85	Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75 the descriptors.	mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure of % F	Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5			
Scores Delineate ripar Determine squ	with > 60% tree canopy cover. Wetlands located within the riparian areas. 1.5 Tarian areas along each stream bank uare footage for each by measuring Riparian Area and Score for each right % Riparian Area> 100% Score > 1.5	Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 Kinto Condition Cating or estimating leng parian category in the categ	Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Condotth and width. Cale	Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85	Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75 the descriptors.	mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure of % F	Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100 100%	CI= (Sum % RA * Sc		
Scores Delineate ripar Determine squ Enter the % Ri	with > 60% tree canopy cover. Wetlands located within the riparian areas. 1.5 Tarian areas along each stream bank uare footage for each by measuring Riparian Area and Score for each right with the street of the	Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 Kinto Condition Cate g or estimating leng parian category in the straight of the strai	Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Condotth and width. Cale	Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85	Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75 the descriptors.	mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure of % F	Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5	Rt Bank CI >	1.50	<u>CI</u>
Scores Delineate ripar Determine squ Enter the % Ri Right Bank Left Bank B. INSTREAM	with > 60% tree canopy cover. Wetlands located within the riparian areas. 1.5 Tian areas along each stream bank uare footage for each by measuring Riparian Area and Score for each right Riparian Area and Score 5 1.5 Riparian Area> 50% Score > 0.75 HABITAT: Varied substrate size	Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 K into Condition Cate g or estimating leng parian category in the strategory in	Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 Legories and Condight and width. Calc the blocks below.	Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85	Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75 the descriptors. led for you below.	mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure of % F Blocks 6	Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100 100%	Rt Bank CI >	1.50 1.13	CI 1.31
Scores Delineate ripar Determine squ B. Enter the % Ri Right Bank Left Bank	with > 60% tree canopy cover. Wetlands located within the riparian areas. 1.5 Tarian areas along each stream bank user footage for each by measuring Riparian Area and Score for each right with the street of the score in the street of the score in the street of the score in th	Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 Kinto Condition Cat g or estimating leng parian category in the strategory in th	Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Condition and width. Calculate the blocks below.	Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85 ition Scores using culators are provice and leafy debris; and leafy debris; all Category	Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75 the descriptors. led for you below.	mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure of % F Blocks 6	Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100 100%	Rt Bank CI >	1.50 1.13	
Scores Delineate ripar Determine squ Enter the % Ri Right Bank Left Bank INSTREAM	with > 60% tree canopy cover. Wetlands located within the riparian areas. 1.5 Tian areas along each stream bank uare footage for each by measuring Riparian Area and Score for each right Riparian Area and Score 5 1.5 Riparian Area> 50% Score > 0.75 HABITAT: Varied substrate size	Riparian areas with tree stratum (dbh > 3 inches) present, the with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 K into Condition Cate g or estimating leng parian category in the strategy of the	Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Cond gth and width. Calc the blocks below.	Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85 ition Scores using culators are provided and leafy debris; al Category Stable habitat ele present in 10-30% adequate for r	Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75 the descriptors. led for you below.	mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure of % F Blocks 6 Habitat element lacking or areu elements are typic	Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100 100%	Rt Bank CI > Lt Bank CI > banks; root mats; NOTES>>	1.50 1.13	

	Stream Ir	npact A	ssessn	ent For	m Page	2		
Project #	Project Name (Applicant)	Locality	Cowardin Class.	нис	Date	SAR#	Impact Length	Impact Factor
22865.06	Mountain Valley Pipeline (Mountain Valley Pipeline, LLC)	Roanoke County	R3	03010101	8/31/21	S-B21	92	1
4. CHANNEL	. ALTERATION: Stream crossings, riprap, concre	te, gabions, or cor	ncrete blocks, strai	ghtening of chann	el, channelization	, embankments, s	poil piles, constriction	ons, livestock

Channel Alteration Channelization, dredging, alteration, or hardening absent. Stream has an unaltered pattern or has naturalized. Channelization or hardening absent. Stream has an unaltered pattern or has naturalized. Channelized in the parameter guidelines. Channelized in the parameter guidelines. Channelized in the parameter guidelines. If stream has been channelized, normal stable stream meander stre		Conditional Category				
Channel Alteration Channelization, dredging, alteration, or hardening absent. Stream has an unaltered pattern or has naturalized. Less than 20% of the channel alterations listed in the stream reach is disrupted by any of the channel alterations listed in the parameter guidelines. Channelization, dredging, alteration, or hardening absent. Stream has an unaltered pattern or has naturalized. Channelization, dredging, alteration, or hardening absent. Stream has an unaltered pattern or has naturalized. Less than 20% of the channel alterations listed in the parameter guidelines. If stream has been channelized, normal stable stream meander stream streach is disrupted by any of the channel alterations listed in the parameter guidelines. If stream has been channelized, normal stable stream meander stream meander stream meander stream meander stream streach is disrupted by any of the channel alterations listed in the parameter guidelines. If stream has been channelized, normal stable stream meander stream streach is disrupted by any of the channel alterations listed in the parameter guidelines. If stream has been channelized, normal stable stream meander stream m		Negligible	Minor	Moderate	Severe	
pattern has not pattern has not recovered.	-	hardening absent. Stream has an	the stream reach is disrupted by any of the channel alterations listed in the parameter stream reach is stream reach is disrupted by any of the channel alterations listed in the parameter	is disrupted by any of the channel alterations listed in the parameter guidelines. If stream has been channelized, normal stable stream meander pattern has not	by any of the channel alterations listed in the parameter guidelines AND/OR 80% of banks shored with gabion,	

REACH CONDITION INDEX and STREAM CONDITION UNITS FOR THIS REACH

NOTE: The CIs and RCI should be rounded to 2 decimal places. The CR should be rounded to a whole number.

THE REACH CONDITION INDEX (RCI) >>

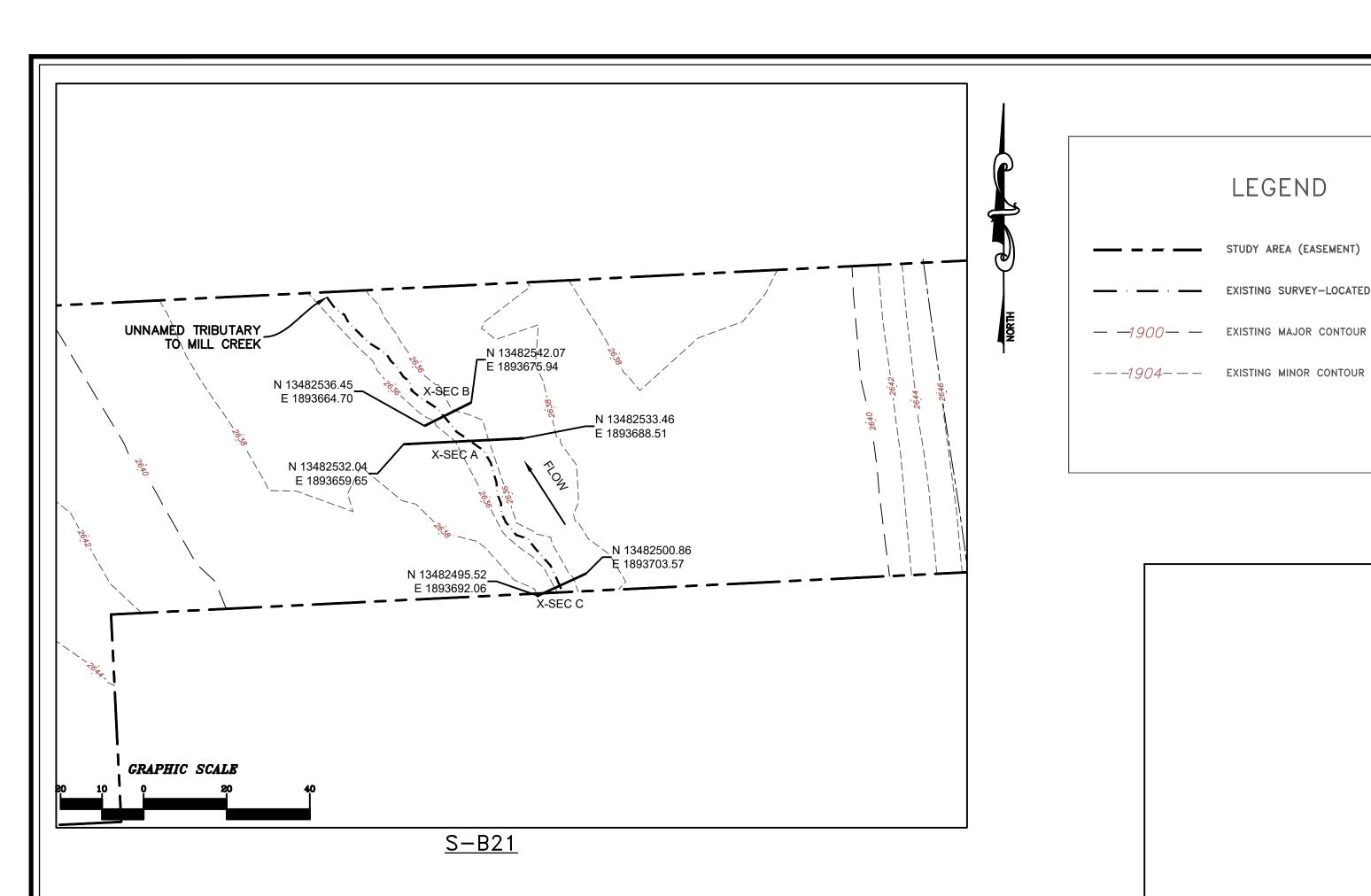
1.28

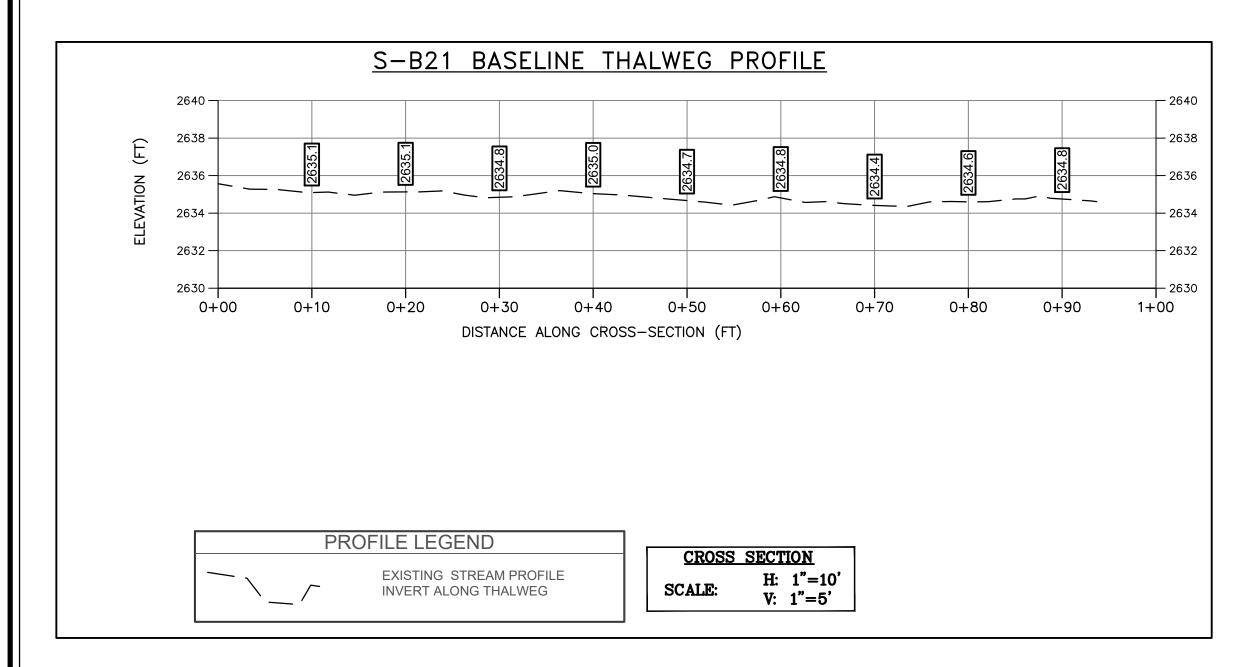
CI 1.50

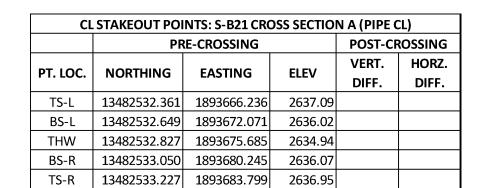
RCI= (Sum of all Cl's)/5, except if stream is ephemeral RCI = (Riparian Cl/2) COMPENSATION REQUIREMENT (CR) >> 118

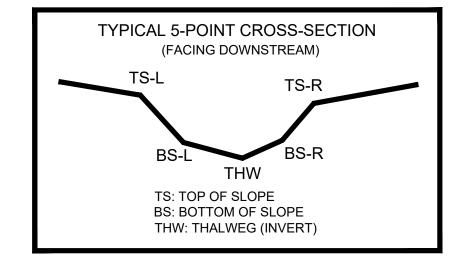
CR = RCI X L_I X IF

INSERT PHOTOS:


(WSSI Photo Location L:\22000s\22800\22865.06\Admin\05-ENVR\Field Data\Spread H\Field Forms\S-B21\Photos\DS COND.JPG")

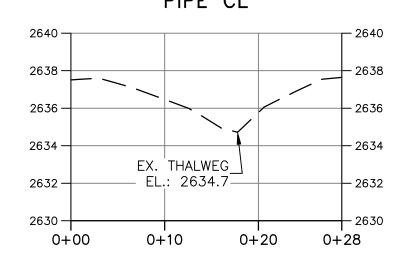



Downstream view within the ROW. Assessment is limited to areas within temporary ROW.

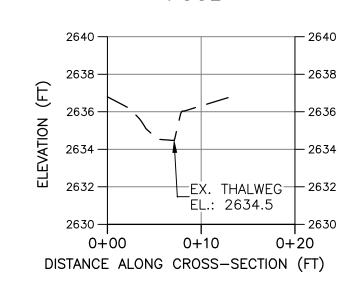

DESCRIBE PROPOSED IMPAC	T:
-------------------------	----

PROVIDED UNDER SEPARATE COVER

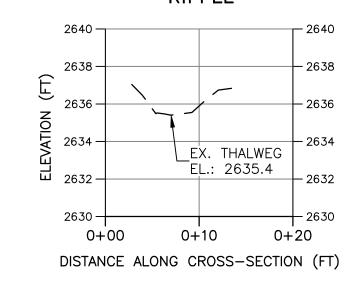
SURVEY NOTES:


LEGEND

STUDY AREA (EASEMENT)


EXISTING SURVEY-LOCATED THALWEG

- 1. THIS MAP HAS BEEN ORIENTED TO NAD 1983 UTM ZONE 17N, AND VERTICALLY TO THE NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD 88), USING REAL TIME DGPS. FIELD LOCATIONS WERE COMPLETED ON AUGUST 31, 2021.
- 2. EASEMENT LINES SHOWN ON PLAN VIEW WERE PROVIDED BY MOUNTAIN VALLEY PIPELINE.
- 3. SURVEY POINTS FOR CROSS SECTIONS AND THALWEG PROFILES COLLECTED IN 2021 HAVE BEEN USED IN COMBINATION WITH SURVEY POINTS COLLECTED PREVIOUSLY IN 2020 IN ORDER TO GENERATE THE PRE-CROSSING SURFACE SHOWN IN PLAN. DUE TO NATURAL EROSIONAL STREAM PROCESSES THAT CAN OCCUR OVER TIME, MINOR ADJUSTMENTS TO THE PROFILE ALIGNMENTS MAY HAVE BEEN REQUIRED IN ORDER TO GENERATE A CLEAN PRE-CROSSING SURFACE.
- 4. ALL SECTION VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.
- 5. CROSS SECTION A (PIPE CL) WAS GENERATED FROM A SURFACE (NOT SURVEYED). ALL OTHER CROSS SECTIONS WERE SURVEYED.


S-B21 BASELINE CROSS-SECTION A PIPE CL

S-B21 BASELINE CROSS-SECTION B

S-B21 BASELINE CROSS-SECTION C RIFFLE

CROSS SECTION LEGEND — EXISTING GRADE

CROSS SECTION H: 1"=10' V: 1"=5'

NOTE: ALL SECTIONS VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.

PRE-CROSSING PHOTOS

PHOTO TAKEN LOOKING DOWNSTREAM FROM UPSTREAM IMPACT LIMITS ON 08/31/21

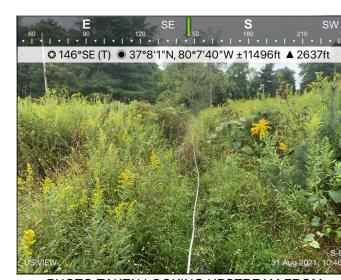


PHOTO TAKEN LOOKING UPSTREAM FROM DOWNSTREAM IMPACT LIMITS ON 08/31/21

POST-CROSSING PHOTOS

PENDING CROSSING

PHOTO TAKEN LOOKING DOWNSTREAM FROM UPSTREAM IMPACT LIMITS

PENDING CROSSING

PHOTO TAKEN LOOKING UPSTREAM FROM

DOWNSTREAM IMPACT LIMITS

CAD File No Drawn

112IC07157 Project No.

10

DRAWING