Baseline Assessment – Stream Attributes

Reach S-C25 (Pipeline ROW) Intermittent Spread H Montgomery County, Virginia

Data	Included
Photos	✓
SWVM Form	✓
FCI Calculator and HGM Form	✓
RBP Physical Characteristics Form	✓
Water Quality Data	N/A – No water present
RBP Habitat Form	✓
RBP Benthic Form	✓
Benthic Identification Sheet	N/A – No water present
Wolman Pebble Count	✓
RiverMorph Data Sheet	✓
USM Form (Virginia Only)	✓
Longitudinal Profile and Cross Sections	✓

Photo Type: DS VIEW
Location, Orientation, Photographer Initials: Downstream view of ROW looking SE, AW

Location, Orientation, Photographer Initials: Upstream view of ROW looking NW, AW

Location, Orientation, Photographer Initials: Standing on LB looking at RB along pipe centerline looking W, AW

Location, Orientation, Photographer Initials: Standing on RB looking at LB along pipe centerline looking E, AW

Spread H

Stream S-C25 (ROW) Montgomery County

Photo Type: DS COND

Location, Orientation, Photographer Initials: Downstream conditions outside of ROW looking SE, AW

USACE FILE NO./ Project Name: (v2.1, Sept 2015)		Mountain V	/alley Pipeline	IMPACT COORDINATES: (in Decimal Degrees)	Lat.	37.254342	Lon.	-80.267895	WEATHER:		Showers	DATE:	August 21	1, 2021	
IMPACT STREAM/SITE ID A (watershed size (acreage), un		PTION:	S-I	C25		MITIGATION STREAM CLA: (watershed size {acre	SS./SITE ID AND eage), unaltered or in					Comments:			
STREAM IMPACT LENGTH:	115	FORM OF MITIGATION:	RESTORATION (Levels I-III)	MIT COORDINATES: (in Decimal Degrees)	Lat.		Lon.		PRECIPITATION PAST 48 HRS:		0.32"	Mitigation Length:			
Column No. 1- Impact Existing C	Condition (Debit)		Column No. 2- Mitigation Existing Co	ondition - Baseline (Credit)		Column No. 3- Mitigation Post Comple	Projected at Fivetion (Credit)	e Years	Column No. 4- Mitigation Proje Post Completion (6	ected at Ten Yea Credit)	ars	Column No. 5- Mitigation Projecte	d at Maturity (Cre	edit)	
Stream Classification:	Intermittent		Stream Classification:			Stream Classification:		0	Stream Classification:		0	Stream Classification:	0		
Percent Stream Channel Slop	ppe 18	8.82	Percent Stream Channel Sic	рре		Percent Stream Channe	el Slope	0	Percent Stream Channel Si	оре	0	Percent Stream Channel Si	оре	0	
HGM Score (attach dat	ita forms):		HGM Score (attach o	data forms):		HGM Score (atta	ach data forms)	:	HGM Score (attach da	ata forms):		HGM Score (attach da	ta forms):		
		erage		Average				Average			Average			Average	
Hydrology Biogeochemical Cycling Habitat	0.7 0.48 0.26	0.48	Hydrology Biogeochemical Cycling	0		Hydrology Biogeochemical Cycling		0	Hydrology Biogeochemical Cycling Habitat		0	Hydrology Biogeochemical Cycling Habitat		0	
PART I - Physical, Chemical and B			Habitat PART I - Physical, Chemical and	d Biological Indicators		PART I - Physical, Chemical	al and Biological	Indicators	PART I - Physical, Chemical and	Biological Indic	cators	PART I - Physical, Chemical and	Biological Indicat	tors	
	Points Scale Range Site	te Score		Points Scale Range Site Score			Points Scale Ra	nge Site Score		Points Scale Range	Site Score		Points Scale Range	Site Score	
PHYSICAL INDICATOR (Applies to all streams of	classifications)		PHYSICAL INDICATOR (Applies to all streams	classifications)		PHYSICAL INDICATOR (Applies to all stre	ams classifications)		PHYSICAL INDICATOR (Applies to all streams	classifications)		PHYSICAL INDICATOR (Applies to all streams	classifications)		
USEPA RBP (High Gradient Data Sheet)			USEPA RBP (Low Gradient Data Sheet)			USEPA RBP (High Gradient Data Shee			USEPA RBP (High Gradient Data Sheet)			USEPA RBP (High Gradient Data Sheet)			
	0-20	13	Epifaunal Substrate/Available Cover Pool Substrate Characterization	0-20		Epifaunal Substrate/Available Cover Embeddedness	0-20		Epifaunal Substrate/Available Cover Embeddedness	0-20		Epifaunal Substrate/Available Cover Embeddedness	0-20		
		0	3. Pool Variability	0-20		Velocity/ Depth Regime	0-20		Velocity/ Depth Regime	0-20		Velocity/ Depth Regime	0-20		
Sediment Deposition		18	Sediment Deposition	0-20		Sediment Deposition	0-20		Sediment Deposition	0-20		Sediment Deposition	0-20		
		0	5. Channel Flow Status	0-20 0-1		5. Channel Flow Status	0-20	-1	5. Channel Flow Status	0-20 0-1		5. Channel Flow Status	0-20 0-1		
6. Channel Alteration		0	6. Channel Alteration	0-20		6. Channel Alteration	0-20		6. Channel Alteration	0-20		6. Channel Alteration	0-20		
7. Frequency of Riffles (or bends) 8. Bank Stability (LB & RB)		15	7. Channel Sinuosity 8. Bank Stability (LB & RB)	0-20		7. Frequency of Riffles (or bends) 8. Bank Stability (LB & RB)	0-20		7. Frequency of Riffles (or bends) 8. Bank Stability (LB & RB)	0-20		7. Frequency of Riffles (or bends) 8. Bank Stability (LB & RB)	0-20		
9. Vegetative Protection (LB & RB)		16	9. Vegetative Protection (LB & RB)	0-20		9. Vegetative Protection (LB & RB)	0-20		9. Vegetative Protection (LB & RB)	0-20		9. Vegetative Protection (LB & RB)	0-20		
 Riparian Vegetative Zone Width (LB & RB) 	0-20	14	 Riparian Vegetative Zone Width (LB & RB) 	0-20		10. Riparian Vegetative Zone Width (LB & RE	3) 0-20		 Riparian Vegetative Zone Width (LB & RB) 	0-20		 Riparian Vegetative Zone Width (LB & RB) 	0-20		
Total RBP Score		94	Total RBP Score	Poor 0		Total RBP Score	Poor	0	Total RBP Score	Poor	0	Total RBP Score	Poor	0	
Sub-Total CHEMICAL INDICATOR (Applies to Intermittent:).47	Sub-Total CHEMICAL INDICATOR (Applies to Intermittent	and Parannial Streams)		Sub-Total CHEMICAL INDICATOR (Applies to Intern	nittent and Derennial	O Streame)	Sub-Total CHEMICAL INDICATOR (Applies to Intermitter	nt and Derennial St	0 treame)	Sub-Total CHEMICAL INDICATOR (Applies to Intermitten)	t and Parennial Stre	0 ame)	
WVDEP Water Quality Indicators (General)			WVDEP Water Quality Indicators (General)			WVDEP Water Quality Indicators (Gen		outums)	WVDEP Water Quality Indicators (General		acums)	WVDEP Water Quality Indicators (General)		umoj	
Specific Conductivity			Specific Conductivity			Specific Conductivity	erai)		Specific Conductivity	,		Specific Conductivity			
100-199 - 85 points	0-90			0-90			0-90			0-90			0-90		
рн	0-1		рн	0-1		рн		-1	рн	0-1		pH	0-1		
5.6-5.9 = 45 points	0-80			5-90			5-90			5-90			5-90		
DO			DO			DO			DO	_		DO			
	10-30			10-30			10-30			10-30			10-30		
Sub-Total			Sub-Total	0		Sub-Total		0	Sub-Total		0	Sub-Total		0	
BIOLOGICAL INDICATOR (Applies to Intermitter	ent and Perennial Streams	s)	BIOLOGICAL INDICATOR (Applies to Intermitte	ent and Perennial Streams)		BIOLOGICAL INDICATOR (Applies to In	termittent and Pere	ennial Streams)	BIOLOGICAL INDICATOR (Applies to Interm	ittent and Perenn	nial Streams)	BIOLOGICAL INDICATOR (Applies to Intermi	ttent and Perennial	Streams)	
WV Stream Condition Index (WVSCI)	0-100 0-1		WV Stream Condition Index (WVSCI)	0-100 0-1		WV Stream Condition Index (WVSCI)	0-100 0		WV Stream Condition Index (WVSCI)	0-100 0-1		WV Stream Condition Index (WVSCI)	0-100 0-1		
0	0-100 0-1			0-100 0-1			0-100 0	-1		0-100 0-1			0-100 0-1		
Sub-Total		0	Sub-Total	0		Sub-Total		0	Sub-Total		0	Sub-Total		0	
PART II - Index and Uni	PART II - Index and Unit Score			PART II - Index and Unit Score			PART II - Index and Unit Score			nit Score		PART II - Index and Unit Score			
Index	Linear Feet Unit	t Score	Index	Linear Feet Unit Score		Index	Linear Fe	et Unit Score	Index	Linear Feet	Unit Score	Index	Linear Feet	Unit Score	
0.558	115 64.	.1125	0	0 0		0	0	0	0	0	0	0	0	0	

Ver. 10-20-17

FCI Calculator for the High-Gradient Headwater Streams in Appalachia

To ensure accurate calculations, the <u>UPPERMOST STRATUM</u> of the plant community is determined based on the calculated value for V_{CCANOPY} (≥20% cover is required for tree/sapling strata). Go to the SAR Data Entry tab and enter site characteristics and data in the yellow cells. For information on determining how to split a project into SARs, see Chapter 5 of the Operational Draft Regional Guidebook for the Functional Assessment of High-Gradient Headwater Streams and Low-Gradient Perennial Streams in Appalachia (Environmental Laboratory U.S. Army Corps of Engineers 2017).

Project Name: Mountain Valley Pipeline **Location:** Montgomery County

Sampling Date: 8/21/21 Project Site Before Project

Subclass for this SAR:

Intermittent Stream

Uppermost stratum present at this SAR: SAR number: S-C25

Shrub/Herb Strata

Functional Results Summary: Enter Results in Section A of the Mitigation Sufficiency Calculator

Function	Functional Capacity Index
Hydrology	0.70
Biogeochemical Cycling	0.48
Habitat	0.26

Variable Measure and Subindex Summary:

Variable	Name	Average Measure	Subindex
V _{CCANOPY}	Percent canpoy over channel.	Not Used, <20%	Not Used
V _{EMBED}	Average embeddedness of channel.	2.21	0.54
V _{SUBSTRATE}	Median stream channel substrate particle size.	0.25	0.13
V _{BERO}	Total percent of eroded stream channel bank.	46.67	0.82
V_{LWD}	Number of down woody stems per 100 feet of stream.	5.33	0.67
V _{TDBH}	Average dbh of trees.	Not Used	Not Used
V _{SNAG}	Number of snags per 100 feet of stream.	0.00	0.10
V _{SSD}	Number of saplings and shrubs per 100 feet of stream.	50.67	0.78
V _{SRICH}	Riparian vegetation species richness.	3.47	1.00
V _{DETRITUS}	Average percent cover of leaves, sticks, etc.	62.50	0.76
V _{HERB}	Average percent cover of herbaceous vegetation.	58.33	0.78
V _{WLUSE}	Weighted Average of Runoff Score for Catchment.	0.96	1.00

20%. either at least one value between 0 and 19 to trigger Top Strata choice.) List the percent cover measurements at each point below: 0				High-G		Headwa				а						
Project Name. Monthlank Waltery Pipeline Location. Microgrowy Country SAR Number: S-228 Reach Length (II): Top Strata: Shrubi-Nerb Strata (determined from percent calculated in V _{Country}) Sile and Timing: Project Size Top Strata: Shrubi-Nerb Strata (determined from percent calculated in V _{Country}) Sile and Timing: Project Size Top Strata Shrubi-Nerb Strata (determined from percent calculated in V _{Country}) Sile and Timing: Project Size Top Strata shrubi-Nerb Strata (determined from percent calculated in V _{Country}) Sile and Timing: Project Size Top Strata shrubi-Nerb Strata (determined by tree and aspling canding, Massaus at no fewer than 10 naughly versibles 1-4 in streem channed To V _{Country} very strate shrubing the straem. Shareware only if no legaling cover is at least 20%. (If less than 20%, enter at least 40% the streem channed). Massaus at no fewer than 30 naughly equidistant points on the straem channed was a streem channed. Massaus at no fewer than 30 naughly equidistant points of the following back of a particle from the bed. Before monograed of the sediment, use a rating according to the following back of the bed is composed of the sediment, and enter the rating according to the following back of the bed is composed of the sediment, and enter the rating according to the following back of the bed is an artiface accorded, surrounded, or buried by fine sediment. Taking Description Taking Description or grave, cobbie and boulder particles treatment for buried by fine sediment (or bedrook). We shall be a stream channed by the sediment (or bedrook) at at least 3 and 8 to 80 percent of surface covered, surrounded, or buried by fine sediment (or bedrook). The sediment of surface buried is surface, or covered surrounded, or buried by fine sediment (or bedrook). The surface accorded surrounded or buried by fine sediment (or bedrook). The surface accorded surrounded or buried by fine sediment (or bedrook). The surface accorded surface accorded surrounded or buried by fine sediment (or bedroo		T	EC 414/		Field I	Data She	et and C			M Narthina	27 254242					
SAR Number: SAR Number: S-228 Reach Length (P): 75 Stream Type: Intermitteet Stream Top Stratas: Stratubletes 1-4 in stream channel Vocasopy: A perspace proced cover over channel by tree and spating cancey. Measure at no fewer than 10 roughly cancer than 10 roughly can	Pr			/allev Pinelir	ne					_		<u> </u>				
Size and Truing: Project Size Top Strata: ShrubiHerb Strata (determined from percent calculated in V _{COMMOT}) Size and Truing: Project Size ### Before Project ### Before Project ### Description of the Strata (determined from percent calculated in V _{COMMOT}) **Project Size ### Before Project ### Description of the Strata (determined from percent calculated in V _{COMMOT}) **Project Size ### Before Project ### Description of the Strata (determined from percent calculated in V _{COMMOT}) **Project Size ### Description of the Strata (determined from percent calculated in V _{COMMOT}) **Project Size ### Description of the Strata (determined from percent calculated in V _{COMMOT}) **Project Size ### Description of the Strata (determined from percent calculated in V _{COMMOT}) **Project Size ### Description of the Strata (determined from percent part of the Strata (determined from percen		-			10			-	•	-		<u>, </u>				
Site and Timing: Project Site well build be 1-4 in stream channel Vocassary Average percent cover over channel by tree and septing canopy. Measure at no fewer than 10 roughly equidistant points along the stream. Measure only if tree/septing cover is at least 20%. (If less than 20%, entire at least 20% (If less than 20%, entire at least 20% (If less than 20%, entire at least 20%. (If less than 20%, entire at least 20% (If less than 20%, entire at least 20%. (If less than 20%, entire at least 20%.) List the precord over measurements at each point believe: Vocassary Average embeddedness of the stream channel. Measure at no fewer than 30 roughly equidistant points along the steam. Select a particle from the bod. Before moving it, determine the percentage of the 10 feb following table. If the bed is composed of bendow, each and it is an artificial surface, or composed of fine sediments, use a rating score of 1. If the bed is composed of bendow, ear a rating score of 1. If the bed is composed of bendow, ear a rating score of 1. If the bed is composed of bendow, ear a rating score of 1. If the bed is composed of bendow, ear a rating score of 1. If the bed is composed of bendow, ear a rating score of 1. If the bed is composed of bendow, ear a rating score of 1. If the bed is composed of bendow is a rating at least 3. If the bed is composed of bendow is a rating score of 1. If the bed is composed of bendow is a rating at least 3. If the bed is one of 1. If the bed is composed of bendow is a rating score of 1. If the bed is composed of bendow is a rating at least 3. If the bed is one of 1. If the bed is composed of bendow is a rating at least 3. If the bed is one of 1. If the bed is not a rating at least 3. If the bed is one of 1. If the bed is not a rating at least 3. If the bed is not a rating at least 4. If the bed is not a rating at least 4. If the bed is not a rating at least 4. If the bed is not a rating at least 4. If the bed is not a rating at least 4. If the a rating at least 4. If the rating at least 4. I	SA				Length (ft):	75	Stream Ty	/pe: Inter		-		▼				
ample Variables 1-4 in stream channel 1 VCLNORY Average percent cover over channel by tree and sapting encopy. Measure at no fewer than 10 roughly average covered at least 20%. (If less than 20%, enter at least one value between 1 and 16 by finger 1-p Strate choice.) List the percent cover measurements at each port below. 2 Valueria 2 Valueria Average endeddenses of the stream channel. Measure at no fewer than 30 roughly equidistant points and particles are surrounded, or buried by fine sediment and enter this indicates of the stream channel and enter the strategy according to the following table. If the bed is an artificial surface, or composed of fine sediment, and enter this raing according to the following table. If the bed is an artificial surface, or composed of fine sediment, and enter this raing according to the following table. If the bed is an artificial surface, or composed of fine sediment and enter this raing according to the following table. If the bed is an artificial surface, or composed of fine sediment and enter this raing according to the following table. If the bed is an artificial surface, or composed of fine sediment and enter this raing according to the following table. If the bed is an artificial surface, or composed of fine sediment and the sedimen		Top Strata:	Sh	rub/Herb Sti	rata	(determined	d from perce	ent calculate	d in V _{CCANO}	_{>Y})						
Not Used 20%, enter at least one value between 0 and 19 to trigger Top Strata choice.) List the percent cover measurements at each point below: Visited	Site	and Timing:	Project Site	•			•	Before Proje	ct			•				
equidistant points along the stream. Measure only if treefsapling cover is at least 20%. (If leas than 20%, enter at least one value between and and 19 to trigger Top Strata choice.) List the percent cover measurements at each point below: 2	Sample	Variables	1-4 in strea	ım channel												
Venezo Average embeddedness of the stream channel. Measure at no fewer than 30 roughly equidistant points along the stream. Select a particle from the bed. Before moving it, determine the percentage of the stream channel surface and area surrounding the particle that is covered by fine sediment, and enter the rating according to the following table. If the bed is an artificial surface, or composed of fine sediments, use a rating score of 1. Embeddedness rating for gravel, cobble and boulder particles (rescaled from Platts, Megahan, and almost all 1983). Rating Rating Description 30 points Rating Rating Description 4	1		equidistant 20%, enter	points along at least one	g the stream value betw	. Measure een 0 and 1	only if tree/s	apling cove	r is at least			Not Used, <20%				
along the stream. Select a particle from the bed. Before moving it, determine the percentage of the surface and area surrounding the particle that is covered by fine sediment, and enter the rating according to the following table. If the bed is an artificial surface, or composed of fine sediments, use a rating score of 1. If the bed is composed of before, use a rating score of 5. Imbeddendness rating for gravel, cobble and boulder particles (rescaled from Plats, Megahan, and at least 3. Imbeddendness rating for gravel, cobble and boulder particles (rescaled from Plats, Megahan, and at least 3. Imbeddendness rating for gravel, cobble and boulder particles (rescaled from Plats, Megahan, and at least 3. Imbeddendness rating for gravel, cobble and boulder particles (rescaled from Plats, Megahan, and at least 3. Imbeddendness rating for gravel, cobble and boulder particles (rescaled from Plats, Megahan, and at least 3. Imbeddendness rating for gravel, cobble and boulder particles (rescaled from Plats, Megahan, and at least 3. Imbeddendness rating for gravel, cobble and boulder particles from the particles of the particles at unique to the particles at used in V _{place} . List the ratings at each point below: 1		0										1				
along the stream. Select a particle from the bed. Before moving it, determine the percentage of the surface and area surrounding the particle that is covered by fine sediment, and enter the rating according to the following table. If the bed is an artificial surface, or composed of fine sediments, use a rating score of 1. If the bed is composed of before, use a rating score of 5. Imbeddendness rating for gravel, cobble and boulder particles (rescaled from Plats, Megahan, and at least 3. Imbeddendness rating for gravel, cobble and boulder particles (rescaled from Plats, Megahan, and at least 3. Imbeddendness rating for gravel, cobble and boulder particles (rescaled from Plats, Megahan, and at least 3. Imbeddendness rating for gravel, cobble and boulder particles (rescaled from Plats, Megahan, and at least 3. Imbeddendness rating for gravel, cobble and boulder particles (rescaled from Plats, Megahan, and at least 3. Imbeddendness rating for gravel, cobble and boulder particles (rescaled from Plats, Megahan, and at least 3. Imbeddendness rating for gravel, cobble and boulder particles from the particles of the particles at unique to the particles at used in V _{place} . List the ratings at each point below: 1																
A least Rating Rating Description 5	2	V _{EMBED}	along the stream. Select a particle from the bed. Before moving it, determine the percentage of the surface and area surrounding the particle that is covered by fine sediment, and enter the rating according to the following table. If the bed is an artificial surface, or composed of fine sediments, use a rating score of 1. If the bed is composed of bedrock, use a rating score of 5.													
Septement of surface covered, surrounded, or buried by fine sediment		Minshall 1983)														
4 St to 25 percent of surface covered, surrounded, or buried by fine sediment 2 St to 75 percent of surface covered, surrounded, or buried by fine sediment 2 St to 75 percent of surface covered, surrounded, or buried by fine sediment 1 75 percent of surface covered, surrounded, or buried by fine sediment 1 75 percent of surface covered, surrounded, or buried by fine sediment 1 75 percent of surface covered, surrounded, or buried by fine sediment 1 1 1 1 1 1 1 1 1			_			overed sur	rounded or	huried by fir	ne sediment	(or hedrock	1	30 points				
3 26 to 50 percent of surface covered, surrounded, or burled by fine sediment 1 75 percent of surface covered, surrounded, or burled by fine sediment 1 75 percent of surface covered, surrounded, or burled by fine sediment (or artificial surface)											·)	1				
1 75 percent of surface covered, surrounded, or buried by fine sediment (or artificial surface)			3	26 to 50 pe	rcent of sur	face covered	d, surrounde	ed, or buried	by fine sed	iment						
List the ratings at each point below: 1											al surface)	-				
3 V _{SUBSTRATE} Median stream channel substrate particle size. Measure at no fewer than 30 roughly equidistant points along the stream; use the same points and particles as used in V _{EMED} . Enter particle size in inches to the nearest 0.1 inch at each point below (bedrock should be counted as 99 in, asphalt or concrete as 0.0 in, sand or finer particles as 0.08 in): 0.08		List the rati				oovereu, su	Juniucu, U	. Dunieu by I	ino souimei	it (or artificia	ai suriace)	J				
2 1 5 3				•		1	1	1	1	1	1	Ī				
3 V _{SUBSTRATE} Median stream channel substrate particle size. Measure at no fewer than 30 roughly equidistant points along the stream; use the same points and particles as used in V _{EMBED} . Enter particle size in inches to the nearest 0.1 inch at each point below (bedrock should be counted as 99 in, asphalt or concrete as 0.0 in, sand or finer particles as 0.0 in; and or finer particles as 0.0 in (and or finer). 0.08		1	4	5	1	5	5	1	4	3	3					
along the stream; use the same points and particles as used in V _{EMBED} . Enter particles zize in inches to the nearest 0.1 inch at each point below (bedrock should be counted as 99 in, asphalt or concrete as 0.0 in, sand or finer particles as 0.08 in): 0.08		2	1	5	3											
along the stream; use the same points and particles as used in V _{EMBED} . Enter particles zize in inches to the nearest 0.1 inch at each point below (bedrock should be counted as 99 in, asphalt or concrete as 0.0 in, sand or finer particles as 0.08 in): 0.08																
along the stream; use the same points and particles as used in V _{EMBED} . Enter particles zize in inches to the nearest 0.1 inch at each point below (bedrock should be counted as 99 in, asphalt or concrete as 0.0 in, sand or finer particles as 0.08 in): 0.08	2	\/	Modion etre	oom channo	Loubetrate	ortiolo nizo	Magaura	t no fower t	20 roug	bly oquidiote	ant points					
1.00 0.08			cle size in in	ches to the	nearest 0.1	inch at each				unted as 99	in, asphalt	0.25 in				
4 V _{BERO} Total percent of eroded stream channel bank. Enter the total number of feet of eroded bank on each side and the total percentage will be calculated. If both banks are eroded, total erosion for the stream may be up to 200%. Left Bank: 20 ft Right Bank: 15 ft Aurilla Percent of eroded stream channel bank. Enter the total number of feet of eroded bank on each side and the total percentage will be calculated. If both banks are eroded, total erosion for the stream may be up to 200%. Left Bank: 20 ft Right Bank: 15 ft Aurilla Percent of eroded stream seach bank. Number of down woody stems (at least 4 inches in diameter and 36 inches in length) per 100 feet of stream reach. Enter the number from the entire 50'-wide buffer and within the channel, and the amount per 100 feet of stream will be calculated. Number of downed woody stems: 4 Variables Average dbh of trees (measure only if Vocanory tree/sapling cover is at least 20%). Trees are at least 4 inches (10 cm) in diameter. Enter tree DBHs in inches. Lieft bide Right Side 1 Left Side Right Side 3 Vand Number of snags (at least 4" dbh and 36" tall) per 100 feet of stream. Enter number of snags on each side of the stream, and the amount per 100 feet will be calculated. Left Side: 3 Right Side: 3 Right Side: 4 Vandber of saplings and shrubs (woody stems up to 4 inches dbh) per 100 feet of stream, and the amount per 100 for stream will be calculated.							0.08	0.08	0.08	0.08	0.08	1				
Total percent of eroded stream channel bank. Enter the total number of feet of eroded bank on each side and the total percentage will be calculated. If both banks are eroded, total erosion for the stream may be up to 200%. Left Bank: 20 ft Right Bank: 15 ft Archive Polymon Poly		0.30	3.30	1.10	0.08	0.85	99.00	0.20	2.50	4.00	1.90]				
side and the total percentage will be calculated. If both banks are eroded, total erosion for the stream may be up to 200%. Left Bank: 20 ft Right Bank: 15 ft Ample Variables 5-9 within the entire riparian/buffer zone adjacent to the stream channel (25 feet from each bank). Number of down woody stems (at least 4 inches in diameter and 36 inches in length) per 100 feet of stream reach. Enter the number from the entire 50'-wide buffer and within the channel, and the amount per 100 feet of stream will be calculated. Number of downed woody stems: 4 6 V _{TDBH} Average dbh of trees (measure only if V _{CCANOPY} tree/sapling cover is at least 20%). Trees are at least 4 inches (10 cm) in diameter. Enter tree DBHs in inches. List the dbh measurements of individual trees (at least 4 in) within the buffer on each side of the stream below: Left Side Right Side Right Side V _{SNAG} Number of snags (at least 4" dbh and 36" tall) per 100 feet of stream. Enter number of snags on each side of the stream, and the amount per 100 feet will be calculated. Left Side: 0 Right Side: 0 Number of saplings and shrubs (woody stems up to 4 inches dbh) per 100 feet of stream (measure only if tree cover is <20%). Enter number of saplings and shrubs on each side of the stream, and the amount per 100 ft of stream will be calculated.		0.80	0.40	0.60	1.00											
side and the total percentage will be calculated. If both banks are eroded, total erosion for the stream may be up to 200%. Left Bank: 20 ft Right Bank: 15 ft Ample Variables 5-9 within the entire riparian/buffer zone adjacent to the stream channel (25 feet from each bank). Number of down woody stems (at least 4 inches in diameter and 36 inches in length) per 100 feet of stream reach. Enter the number from the entire 50'-wide buffer and within the channel, and the amount per 100 feet of stream will be calculated. Number of downed woody stems: 4 6 V _{TDBH} Average dbh of trees (measure only if V _{CCANOPY} tree/sapling cover is at least 20%). Trees are at least 4 inches (10 cm) in diameter. Enter tree DBHs in inches. List the dbh measurements of individual trees (at least 4 in) within the buffer on each side of the stream below: Left Side Right Side Right Side V _{SNAG} Number of snags (at least 4" dbh and 36" tall) per 100 feet of stream. Enter number of snags on each side of the stream, and the amount per 100 feet will be calculated. Left Side: 0 Right Side: 0 Number of saplings and shrubs (woody stems up to 4 inches dbh) per 100 feet of stream (measure only if tree cover is <20%). Enter number of saplings and shrubs on each side of the stream, and the amount per 100 ft of stream will be calculated.																
Left Bank: 20 ft Right Bank: 15 ft Aumple Variables 5-9 within the entire riparian/buffer zone adjacent to the stream channel (25 feet from each bank).	4	V_{BERO}	side and th	e total perce								47 %				
ample Variables 5-9 within the entire riparian/buffer zone adjacent to the stream channel (25 feet from each bank). 5 V _{LWD} Number of down woody stems (at least 4 inches in diameter and 36 inches in length) per 100 feet of stream reach. Enter the number from the entire 50'-wide buffer and within the channel, and the amount per 100 feet of stream will be calculated. Number of downed woody stems: 4 6 V _{TDBH} Average dbh of trees (measure only if V _{CCANOPY} tree/sapling cover is at least 20%). Trees are at least 4 inches (10 cm) in diameter. Enter tree DBHs in inches. List the dbh measurements of individual trees (at least 4 in) within the buffer on each side of the stream below: Left Side Right Side Right Side 7 V _{SNAG} Number of snags (at least 4" dbh and 36" tall) per 100 feet of stream. Enter number of snags on each side of the stream, and the amount per 100 feet will be calculated. 0.00 8 V _{SSD} Number of saplings and shrubs (woody stems up to 4 inches dbh) per 100 feet of stream, and the amount per 100 ft of stream will be calculated.			may be up		20) fi		Right Bank	1!	5 ft						
Number of down woody stems (at least 4 inches in diameter and 36 inches in length) per 100 feet of stream reach. Enter the number from the entire 50'-wide buffer and within the channel, and the amount per 100 feet of stream will be calculated. Number of downed woody stems: A verage dbh of trees (measure only if V _{CCANOPY} tree/sapling cover is at least 20%). Trees are at least 4 inches (10 cm) in diameter. Enter tree DBHs in inches. List the dbh measurements of individual trees (at least 4 in) within the buffer on each side of the stream below: Left Side Right Side Right Side Not Used 7 V _{SNAG} Number of snags (at least 4" dbh and 36" tall) per 100 feet of stream. Enter number of snags on each side of the stream, and the amount per 100 feet will be calculated. Left Side: 0 Right Side: 0 Number of snags on each side of the stream (measure only if tree cover is <20%). Enter number of saplings and shrubs on each side of the stream, and the amount per 100 ft of stream will be calculated.				LCIT Darik.	20) it		rtigrit barik.	1) It						
Number of downed woody stems: A Varage dbh of trees (measure only if Vacanopry tree/sapling cover is at least 20%). Trees are at least 4 inches (10 cm) in diameter. Enter tree DBHs in inches. List the dbh measurements of individual trees (at least 4 in) within the buffer on each side of the stream below: Left Side Right Side Right Side 7 V _{SNAG} Number of snags (at least 4" dbh and 36" tall) per 100 feet of stream. Enter number of snags on each side of the stream, and the amount per 100 feet will be calculated. 8 V _{SSD} Number of saplings and shrubs (woody stems up to 4 inches dbh) per 100 feet of stream, and the amount per 100 ft of stream will be calculated.			Number of stream read	down wood ch. Enter th	y stems (at l e number fr	east 4 inche	s in diamete	er and 36 in	ches in leng	th) per 100	feet of	5.3				
inches (10 cm) in diameter. Enter tree DBHs in inches. List the dbh measurements of individual trees (at least 4 in) within the buffer on each side of the stream below:						Number of				4						
the stream below: Left Side	6	V_{TDBH}	inches (10	cm) in diam	eter. Enter	tree DBHs ir	n inches.				at least 4	Not Used				
7 V _{SNAG} Number of snags (at least 4" dbh and 36" tall) per 100 feet of stream. Enter number of snags on each side of the stream, and the amount per 100 feet will be calculated. 8 V _{SSD} Number of saplings and shrubs (woody stems up to 4 inches dbh) per 100 feet of stream (measure only if tree cover is <20%). Enter number of saplings and shrubs on each side of the stream, and the amount per 100 ft of stream will be calculated. 50.7				below:	one or mult	(1665	,ωι ιοασί 4 III	,		on side UI						
side of the stream, and the amount per 100 feet will be calculated. Left Side: 0 Right Side: 0 Number of saplings and shrubs (woody stems up to 4 inches dbh) per 100 feet of stream (measure only if tree cover is <20%). Enter number of saplings and shrubs on each side of the stream, and the amount per 100 ft of stream will be calculated.				Left Side					Right Side			I				
side of the stream, and the amount per 100 feet will be calculated. Left Side: 0 Right Side: 0 Number of saplings and shrubs (woody stems up to 4 inches dbh) per 100 feet of stream (measure only if tree cover is <20%). Enter number of saplings and shrubs on each side of the stream, and the amount per 100 ft of stream will be calculated.												l				
side of the stream, and the amount per 100 feet will be calculated. Left Side: 0 Right Side: 0 Number of saplings and shrubs (woody stems up to 4 inches dbh) per 100 feet of stream (measure only if tree cover is <20%). Enter number of saplings and shrubs on each side of the stream, and the amount per 100 ft of stream will be calculated.												ł				
side of the stream, and the amount per 100 feet will be calculated. Left Side: 0 Right Side: 0 Number of saplings and shrubs (woody stems up to 4 inches dbh) per 100 feet of stream (measure only if tree cover is <20%). Enter number of saplings and shrubs on each side of the stream, and the amount per 100 ft of stream will be calculated.												i				
side of the stream, and the amount per 100 feet will be calculated. Left Side: 0 Right Side: 0 Number of saplings and shrubs (woody stems up to 4 inches dbh) per 100 feet of stream (measure only if tree cover is <20%). Enter number of saplings and shrubs on each side of the stream, and the amount per 100 ft of stream will be calculated.												[
side of the stream, and the amount per 100 feet will be calculated. Left Side: 0 Right Side: 0 Number of saplings and shrubs (woody stems up to 4 inches dbh) per 100 feet of stream (measure only if tree cover is <20%). Enter number of saplings and shrubs on each side of the stream, and the amount per 100 ft of stream will be calculated.]				
side of the stream, and the amount per 100 feet will be calculated. Left Side: 0 Right Side: 0 Number of saplings and shrubs (woody stems up to 4 inches dbh) per 100 feet of stream (measure only if tree cover is <20%). Enter number of saplings and shrubs on each side of the stream, and the amount per 100 ft of stream will be calculated.																
side of the stream, and the amount per 100 feet will be calculated. Left Side: 0 Right Side: 0 Number of saplings and shrubs (woody stems up to 4 inches dbh) per 100 feet of stream (measure only if tree cover is <20%). Enter number of saplings and shrubs on each side of the stream, and the amount per 100 ft of stream will be calculated.												l				
side of the stream, and the amount per 100 feet will be calculated. Left Side: 0 Right Side: 0 Number of saplings and shrubs (woody stems up to 4 inches dbh) per 100 feet of stream (measure only if tree cover is <20%). Enter number of saplings and shrubs on each side of the stream, and the amount per 100 ft of stream will be calculated.	7	V	Number of	enage (at la	act 4" dbb a	nd 36" toll)	per 100 foot	of etreem	Enter numb	er of spage	on each					
Left Side: 0 Right Side: 0 8 V _{SSD} Number of saplings and shrubs (woody stems up to 4 inches dbh) per 100 feet of stream (measure only if tree cover is <20%). Enter number of saplings and shrubs on each side of the stream, and the amount per 100 ft of stream will be calculated.	′	VSNAG							⊏nter numb	ei oi snags	on each	0.0				
Number of saplings and shrubs (woody stems up to 4 inches dbh) per 100 feet of stream (measure only if tree cover is <20%). Enter number of saplings and shrubs on each side of the stream, and the amount per 100 ft of stream will be calculated.			_			•										
tree cover is <20%). Enter number of saplings and shrubs on each side of the stream, and the amount per 100 ft of stream will be calculated.	n	W	Number				up to 4 :1	_			noure activit					
	ď	V _{SSD}	tree cover i	is <20%). E of stream wil	nter number I be calculat	r of saplings ed.		on each sid	le of the stre	eam, and the						

9	V _{SRICH}	Riparian ve Group 1 in richness pe	r 100 feet a		index will be	calculated f	from these da	ala.			
			p 1 = 1.0						2 (-1.0)		
	Acer rubru	m		Magnolia	tripetala		Ailanthus a	ltissima		Lonicera jaj	ponica
	Acer sacch	narum		Nyssa syli			Albizia julib	rissin		Lonicera ta	
_	Aesculus fi				m arboreum		-			Lotus corni	
_							Alliaria petiola				
_	Asimina tri	loba	Ш	Prunus se	rotina		Alternanthera			Lythrum salicaria	
	Betula alleg	haniensis	7	Quercus a	alba		philoxeroid	es		Microstegium	n vimineu
	Betula lent	а		Quercus d	coccinea		Aster tatari	cus		Paulownia i	tomento
	Carya alba			Quercus ii	mbricaria		Cerastium	fontanum		uspidatu	
7	-		=	Quercus p			Coronilla va		$\overline{}$	ontana	
_	Carya glab										
	Carya oval	is	7	Quercus r	ubra		Elaeagnus u	mbellata		Rosa multif	lora
	Carya ovat	a		Quercus v	relutina		Lespedeza	bicolor		Sorghum ha	alepens
	Cornus flor	rida	1	Sassafras	albidum		Lespedeza	cuneata		Verbena br	asiliens
	Fagus grar	ndifolia		Tilia amer	icana		Ligustrum ob	tusifolium			
_											
	Fraxinus a	mericana		Tsuga car	nadensis		Ligustrum s	sinense			
	Liriodendron	tulipifera		Ulmus am	ericana						
	Magnolia a	cuminata									
		4	Species in	Group 1				1	Species in	Group 2	
		bplots shou Average pe	ild be place rcent cover	of leaves,	equidistant sticks, or oth	ly along ea er organic r	in the ripar ach side of t material. Wo yer at each s	he stream. ody debris			62.50
			Left	Side			Right	Side] '	
		90	50	20		15	100	100			
		each subple	ot. Left	s up throug Side	h 200% are a	accepted. E	Enter the per		of ground ve	egetation at	58 %
		80		-		400		Side			
imple	e Variable 1	2 within the			the stream.	100 ned:	15	35 35			0.06
		2 within the	e entire cate	chment of Runoff Scor		ned:			Runoff	% in Catchment	0.96 Runnii Perce
		2 within the	e entire cate	chment of Runoff Scor	e for watersh	ned:			Runoff	% in Catch- ment	Runni Perce
	Vwluse	2 within the	e entire cate overage of R	chment of Runoff Scor	e for watersh	ned:				_	Runni
	V _{WLUSE} Forest and r	2 within the Weighted A	e entire cate verage of R Land	Chment of Runoff Scor Use (Choo	e for watersh	ned:			Score 0.5	ment 8	Runni Perce (not >1
	V _{WLUSE} Forest and r	2 within the Weighted A	e entire cate verage of R Land	Chment of Runoff Scor Use (Choo	e for watersh	ned:			Score	ment	Runni Perce (not >1
	V _{WLUSE} Forest and r	2 within the Weighted A	e entire cate verage of R Land	Chment of Runoff Scor Use (Choo	e for watersh	ned:			Score 0.5	ment 8	Runni Perce (not >1
	V _{WLUSE} Forest and r	2 within the Weighted A	e entire cate verage of R Land	Chment of Runoff Scor Use (Choo	e for watersh	ned:			Score 0.5	ment 8	Runni Perce (not >1
	V _{WLUSE} Forest and r	2 within the Weighted A	e entire cate verage of R Land	Chment of Runoff Scor Use (Choo	e for watersh	ned:		35	Score 0.5	ment 8	Runni Perce (not >1
	V _{WLUSE} Forest and r	2 within the Weighted A	e entire cate verage of R Land	Chment of Runoff Scor Use (Choo	e for watersh	ned:		35	Score 0.5	ment 8	Runni Perce (not >1
	V _{WLUSE} Forest and r	2 within the Weighted A	e entire cate verage of R Land	Chment of Runoff Scor Use (Choo	e for watersh	ned:		35	Score 0.5	ment 8	Runni Perce (not >1
	V _{WLUSE} Forest and r	2 within the Weighted A	e entire cate verage of R Land	Chment of Runoff Scor Use (Choo	e for watersh	ned:		35	Score 0.5	ment 8	Runni Perce (not >1
	V _{WLUSE} Forest and r	2 within the Weighted A	e entire cate verage of R Land	Chment of Runoff Scor Use (Choo	e for watersh	ned:		35 •	Score 0.5	ment 8	Runni Perce (not >1
	V _{WLUSE} Forest and r	2 within the Weighted A	e entire cate verage of R Land	Chment of Runoff Scor Use (Choo	e for watersh	ned:		35 •	Score 0.5	ment 8	Runni Perce (not >1
	Forest and r	2 within the Weighted A	e entire cate verage of R Land	Chment of Runoff Scor Use (Choo	e for watersh	ned:	15	35 •	Score 0.5	ment 8	Runni Perce (not >1
112	Forest and r	2 within the Weighted A native range (- native range (-	e entire cate werage of R Land <50% ground >75% ground	chment of tunoff Scor Use (Choo cover)	e for watersh	p List)	15 No	35	0.5 1	8 92	Runni Perce (not >1 8 100
112	Forest and r	2 within the Weighted A mative range (- mative	e entire cate verage of R Land	Chment of Runoff Scor Use (Choo Cover) Cover)	e for watersh	p List)	No pleted using	35	Score 0.5 1 National L	ment 8 92 and Cover	Runni Perce (not >1 8 100
V:	Forest and r	2 within the Weighted A mative range (- mative range (e entire cate everage of R Land <50% ground >75% ground	Chment of tunoff Scor Use (Choo cover) cover)	e for watersh	p List) p was compat satellite	No pleted using imagery an	35	Score 0.5 1 National L pplementa	ment 8 92 and Cover	Runni Perce (not >1 8 100
Vi V _C	Forest and r Forest and r Forest and r	2 within the Weighted A mative range (- mative range (- value Not Used, <20%	e entire cato everage of R Land <50% ground >75% ground	Land Coy, (NLCD), Watershe	ver Analysis from Lands	ed: p List) was compat satellite es are bas	No pleted using imagery an sed off of fie	35	Score 0.5 1 National L pplementated stream	ment 8 92 and Cover rry datasets impacts.	Runnn Percc (not >1 8 100
Vi V _C	Forest and r	2 within the Weighted A mative range (- mative range (e entire cato everage of R Land <50% ground >75% ground	Land Coy, (NLCD), Watershe	ver Analysis from Lands	ed: p List) was compat satellite es are bas	No pleted using imagery an	35	Score 0.5 1 National L pplementated stream	ment 8 92 and Cover rry datasets impacts.	Runni Perce (not >1 8 100
Vi V _C	Forest and r Forest and r Forest and r	2 within the Weighted A mative range (- mative range (- value Not Used, <20%	e entire cato everage of R Land <50% ground >75% ground	Land Coy, (NLCD), Watershe	ver Analysis from Lands	ed: p List) was compat satellite es are bas	No pleted using imagery an sed off of fie	35	Score 0.5 1 National L pplementated stream	ment 8 92 and Cover rry datasets impacts.	Runni Perce (not >1 8 100
V: Vc Vs	Forest and r Forest and r Forest and r Forest and r Example SECANOPY SUBSTRATE	2 within the Weighted A mative range (- mative range (- mative range (- value Not Used,	verage of R Land 50% ground 75% ground 75% ground 0.54 0.13	Land Coy, (NLCD), Watershe	ver Analysis from Lands	ed: p List) was compat satellite es are bas	No pleted using imagery an sed off of fie	35	Score 0.5 1 National L pplementated stream	ment 8 92 and Cover rry datasets impacts.	Runni Perce (not >1 8 100
V: Vc Vs	Forest and r Forest and r Forest and r	2 within the Weighted A mative range (verage of R Land <50% ground 75% ground VSI Not Used 0.54	Land Coy, (NLCD), Watershe	ver Analysis from Lands	ed: p List) was compat satellite es are bas	No pleted using imagery an sed off of fie	35	Score 0.5 1 National L pplementated stream	ment 8 92 and Cover rry datasets impacts.	Runni Perce (not >1 8 100
V3 V _C V _E V _S	Forest and r Forest and r Forest and r Cariable CANOPY CHARGE CUBSTRATE CERO	2 within the Weighted A mative range (- mative range (- mative range (- value Not Used,	verage of R Land 50% ground 75% ground 75% ground 0.54 0.13	Land Coy, (NLCD), Watershe	ver Analysis from Lands	ed: p List) was compat satellite es are bas	No pleted using imagery an sed off of fie	35	Score 0.5 1 National L pplementated stream	ment 8 92 and Cover rry datasets impacts.	Runni Perce (not >1 8 100
V: Vc Vsi Vsi Vsi Vsi Vsi Vsi Vsi Vsi Vsi	Forest and r Forest and r Forest and r Cariable CANOPY CHIBBED CUBSTRATE CHIBBERO WD	2 within the Weighted A mative range (verage of R Land Solverage of R Land VSI Not Used 0.54 0.13 0.82 0.67	Land Coy, (NLCD), Watershe	ver Analysis from Lands	ed: p List) was compat satellite es are bas	No pleted using imagery an sed off of fie	35	Score 0.5 1 National L pplementated stream	ment 8 92 and Cover rry datasets impacts.	Runni Perce (not >1 8 100
V: Vc Vsi Vsi Vsi Vsi Vsi Vsi Vsi Vsi Vsi	Forest and r Forest and r Forest and r Cariable CANOPY CHARGE CUBSTRATE CERO	2 within the Weighted A mative range (- mative	verage of R Land 50% ground 75% ground VSI Not Used 0.54 0.13 0.82	Land Coy, (NLCD), Watershe	ver Analysis from Lands	ed: p List) was compat satellite es are bas	No pleted using imagery an sed off of fie	35	Score 0.5 1 National L pplementated stream	ment 8 92 and Cover rry datasets impacts.	Runnn Percc (not >1 8 100
V: Vol Vol Vsi Vsi VLI VTI	Forest and r Forest and r Forest and r Forest and r Earnable CANOPY CHERO WD DBH	2 within the Weighted A mative range (verage of R Land Solverage of R Land VSI Not Used 0.54 0.13 0.82 0.67	Land Coy, (NLCD), Watershe	ver Analysis from Lands	ed: p List) was compat satellite es are bas	No pleted using imagery an sed off of fie	35	Score 0.5 1 National L pplementated stream	ment 8 92 and Cover rry datasets impacts.	Runnn Percc (not >1 8 100
Vi V _C , V _B , V _L , V _T , V _S ,	Forest and r Forest and r Forest and r Forest and r Earliable CANOPY MBED GUBSTRATE BERO WD DBH MAG	2 within the Weighted A mative range (- mativ	VSI Not Used 0.67 Not Used 0.10	Land Coy, (NLCD), Watershe	ver Analysis from Lands	ed: p List) was compat satellite es are bas	No pleted using imagery an sed off of fie	35	Score 0.5 1 National L pplementated stream	ment 8 92 and Cover rry datasets impacts.	Runni Perce (not >1 8 100
V: Vol Vol Vsi Vsi VLI VTI	Forest and r Forest and r Forest and r Forest and r Earliable CANOPY MBED GUBSTRATE BERO WD DBH MAG	2 within the Weighted A mative range (- mativ	VSI Not Used 0.67 Not Used	Land Coy, (NLCD), Watershe	ver Analysis from Lands	ed: p List) was compat satellite es are bas	No pleted using imagery an sed off of fie	35	Score 0.5 1 National L pplementated stream	ment 8 92 and Cover rry datasets impacts.	Runni Perce (not >1 8 100
V: VCV VSI VSI VSI VSI VSI	Forest and r	2 within the Weighted A mative range (- mativ	VSI Not Used 0.67 Not Used 0.10	Land Coy, (NLCD), Watershe	ver Analysis from Lands	ed: p List) was compat satellite es are bas	No pleted using imagery an sed off of fie	35	Score 0.5 1 National L pplementated stream	ment 8 92 and Cover rry datasets impacts.	Runni Perce (not >1 8 100
V: V _C V _S V _S V _S V _S V _S	Forest and r	2 within the Weighted A mative range (see a section of the section	VSI Not Used 0.10 0.78 1.00	Land Coy, (NLCD), Watershe	ver Analysis from Lands	ed: p List) was compat satellite es are bas	No pleted using imagery an sed off of fie	35	Score 0.5 1 National L pplementated stream	ment 8 92 and Cover rry datasets impacts.	Runni Perce (not >1 8 100
Via Volume Visit V	Forest and r	2 within the Weighted A mative range (- mativ	VSI Not Used 0.10 0.78 1.00 0.76	Land Coy, (NLCD), Watershe	ver Analysis from Lands	ed: p List) was compat satellite es are bas	No pleted using imagery an sed off of fie	35	Score 0.5 1 National L pplementated stream	ment 8 92 and Cover rry datasets impacts.	Runni Perce (not >1 8 100
Via Volume Visit V	Forest and r	2 within the Weighted A mative range (see a section of the section	VSI Not Used 0.10 0.78 1.00	Land Coy, (NLCD), Watershe	ver Analysis from Lands	ed: p List) was compat satellite es are bas	No pleted using imagery an sed off of fie	35	Score 0.5 1 National L pplementated stream	ment 8 92 and Cover rry datasets impacts.	Runni Perce (not >1 8 100

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

STREAM NAME S-C25		LOCATION Montgomer	y County
STATION # 12163+09 R	IVERMILE	STREAM CLASS Interm	ittent
LAT 37.254342 LO	ONG80.267895	RIVER BASIN Upper R	coanoke
STORET#		AGENCY VADEQ	
INVESTIGATORS ES, AV	V		
FORM COMPLETED BY	ES, AW	DATE 8/21/21 TIME 10:30 AM	REASON FOR SURVEY Baseline Assessment
WEATHER CONDITIONS	rain (shower 30 %	Past 24 hours ((heavy rain) ((steady rain)) s (intermittent) cloud cover ear/sunny	Has there been a heavy rain in the last 7 days? ✓ Yes No Air Temperature 26 0 C Other
SITE LOCATION/MAP	Draw a map of the sit	te and indicate the areas sa	mpled (or attach a photograph)
	orr ste		LOD XESIH funce XESIH funce XX Ope X Avery XX Valorg XX I Obje LOD
STREAM CHARACTERIZATION	Stream Subsystem ☐Perennial ☐Int	ermittent Tidal	Stream Type ☑Coldwater ☐Warmwater
	Stream Origin Glacial Non-glacial montand Swamp and bog	Spring-fed Mixture of origins Other	Catchment Area 0.01 km ²

Notes: No water present.

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

WATERS FEATURI		✓ Fores	Pasture Industri	ercial ial	Local Watershed NPS ☑ No evidence ☐ Son ☐ Obvious sources Local Watershed Erosi ☑ None ☐ Moderate	ne potential sources				
RIPARIA VEGETA (18 meter	TION		e the dominant type and S		ominant species present ☐ Grasses ☐ He	rbaceous				
INSTREA FEATURI		Estimat Samplin Area in Estimat	red Stream Depth o	m m² km²	Canopy Cover					
LARGE V DEBRIS	VOODY	LWD Density	<u>2.2</u> m ² of LWD <u>0.1</u> n	n²/km² (LWD/	reach area)					
AQUATIO VEGETA		Roote Floati	ed emergent ing Algae	ooted submerge ttached Algae		□Free floating				
WATER (QUALITY	Specific Dissolve pH N/A Turbidi		-		Other				
SEDIMEN SUBSTRA		Odors Norm Chem Other Oils Absen		Petroleum None	— Lρoking at stones whic are the undersides blace	Other				
INC		STRATE of	COMPONENTS		ORGANIC SUBSTRATE C (does not necessarily add					
Substrate Type	Diamet	er	% Composition in Sampling Reach	Substrate Type	Characteristic	% Composition in Sampling Area				
Bedrock			10	Detritus	sticks, wood, coarse plant	90				
Boulder	> 256 mm (10")		0		materials (CPOM)	80				
Cobble	64-256 mm (2.5	"-10")	10	Muck-Mud	black, very fine organic (FPOM)	0				
Gravel	2-64 mm (0.1"-2	2.5")	45		(FPOM)					
Sand	0.06-2mm (gritt	y)	0	Marl	grey, shell fragments					
Silt	0.004-0.06 mm		15			0				
Clay	< 0.004 mm (sli	ok)	20	1						

Notes: No water present. No water quality parameters were measured due to the absence of water.

HABITAT ASSESSMENT FIELD DATA SHEET - HG - USE ON ALL STREAMS (FRONT)

STREAM NAME S-C25	LOCATION Montgomery County						
STATION # 12163+09 RIVERMILE	STREAM CLASS Intermittent						
LAT <u>37.254342</u> LONG <u>-80.267895</u>	RIVER BASIN Upper Roanoke						
STORET#	AGENCY VADEQ						
INVESTIGATORS ES, AW							
FORM COMPLETED BY ES, AW	DATE 8/21/21 REASON FOR SURVEY Baseline Assessment						

	Habitat		Condition	Category				
	Parameter	Optimal	Suboptimal	Marginal	Poor			
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.			
	SCORE 0	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
n sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.			
ted in	SCORE 13	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/depth regime (usually slow-deep).			
ıram	SCORE 0	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
P ₂	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.			
	SCORE 18	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.			
	score 0	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			

Notes: No water present.

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

	Habitat		Condition	ı Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
	SCORE 18	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
ling reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.
samp	score 0	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing development.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.
e eva	SCORE 7	Left Bank 10 9	8 7 6	5 4 3	2 1 0
to b	SCORE 8	Right Bank 10 9	8 7 6	5 4 3	2 1 0
Parameters	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
	SCORE 8	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE 8	Right Bank 10 9	8 7 6	5 4 3	2 1 0
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.
	SCORE 6	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE 8	Right Bank 10 9	8 7 6	5 4 3	2 1 0

Notes: No water present.

BENTHIC MACROINVERTEBRATE FIELD DATA SHEET

STREAM NAME S-0	STREAM NAME S-C25						CATIO	N Mont	gom	ery C	Coun	ty						
STATION # 12163+09	R	IVE	RMI	LE_		ST	STREAM CLASS Intermittent											
LAT 37.254342	_ L	ONO	ந் - 80.	26789	5	RIV	ER BA	SIN U	per	Roa	noke	;						
STORET#						AG	ENCY '	VADEQ										
INVESTIGATORS E	S, A	W									I	LOT	NUMBER					
FORM COMPLETE	O BY	Ε	S,	Δ	W	DA TIN	TE <u>8/2</u> /IE <u>10</u>	:30 AM			I	REAS	SON FOR SURVEY B	aselir	ne A	sse	ssm	ent
HABITAT TYPES		Col	ble_		%	tage of each Snags_ phytes	habita %		eget/	it ated Other	Ban	ks	%	%				
SAMPLE	G	ear	used		D-fr	ame kic	k-net			Other								
COLLECTION																		
	oles collected	1?	wadin	g	L	fror	n bar	ık 🔲 from boa	t									
		Col	ble			r of jabs/kic Snags_ phytes			eget	bitat ated Other	Ban	ks	Sand)					
GENERAL COMMENTS	Ν	0 V	vat	er	pre	sent.												
QUALITATIVE Indicate estimated Dominant Periphyton					0 = 2		t Obse	rved, 1		Rare		= C	ommon, 3= Abuno		1	2	3	4
Filamentous Algae	;				0	1 2 3	4		Ma	croi	nve	rtebr	rates	0	1	2	3	4
Macrophytes					0	1 2 3	4		Fis	h				0	1	2	3	4
	d ab	und	anc	e:	0 = org	Absent/No anisms), 3=	t Obse = Abui	ndant (>10	org	anis	sms)	rganisms), 2 = Coi , 4 = Dominant (>:	50 oı	rgar	nism		
Porifera		1				Anisopte			1				Chironomidae		1			4
Hydrozoa	0	1	2	3	4	Zygopter		0	1	2	3	4	Ephemeroptera	0	1	2	3	4
Platyhelminthes	0	1	2	3	4	Hemipter		0	1	2	3	4	Trichoptera	0	1	2	3	4
Turbellaria	0	1	2	3	4	Coleopte		0	1	2	3	4	Other	0	1	2	3	4
Hirudinea	0	1	2	3	4	Lepidopt	era	0	1	2	3	4						
Oligochaeta	0	1	2	3	4	Sialidae	1	0	1	2	3	4						
Isopoda	0	1	2	3	4	Corydalio		0	1	2	3	4						
Amphipoda	0	1	2	3	4	Tipulidae		0	1	2	3	4						
Decapoda	0	1	2	3	4	Empidida Simuliida		0	1	2	3	4						
Gastropoda Bivalvia	0	1	2	3	4	Tabinida		0	1	2	3	4						
Divalvia	U	1	_	5	т	Culcidae		0	1	2	3	4						

WOLMAN PEBBLE COUNT FORM

County: Montgomery County Stream Name: UNT to Bradshaw Creek Stream ID: S-C25

HUC Code: 03010101 Basin: Upper Roanoke

Survey Date: 8/21/2021 Surveyors: ES, AW Type: Representa Representative

			LE COUNT				
Inches	PARTICLE	Millimeters		Particle Count	Total #	Item %	% Cum
	Silt/Clay	< .062	S/C	A	36	36.00	36.00
	Very Fine	.062125		^	0	0.00	36.00
	Fine	.12525	1	4	0	0.00	36.00
	Medium	.255	SAND	A	0	0.00	36.00
	Coarse	.50-1.0	1	^	0	0.00	36.00
.0408	Very Coarse	1.0-2	1	4	0	0.00	36.00
.0816	Very Fine	2 -4		4	0	0.00	36.00
.1622	Fine	4 -5.7	1	4	6	6.00	42.00
.2231	Fine	5.7 - 8	1	4	4	4.00	46.00
.3144	Medium	8 -11.3	1	A	10	10.00	56.00
.4463	Medium	11.3 - 16	GRAVEL	4	8	8.00	64.00
.6389	Coarse	16 -22.6	1	4	6	6.00	70.00
.89 - 1.26	Coarse	22.6 - 32	1	4	6	6.00	76.00
1.26 - 1.77	Vry Coarse	32 - 45	1	4	4	4.00	80.00
1.77 -2.5	Vry Coarse	45 - 64	1	4	2	2.00	82.00
2.5 - 3.5	Small	64 - 90		4	4	4.00	86.00
3.5 - 5.0	Small	90 - 128	1	4	2	2.00	88.00
5.0 - 7.1	Large	128 - 180	COBBLE	4	3	3.00	91.00
7.1 - 10.1	Large	180 - 256	1	4	0	0.00	91.00
10.1 - 14.3	Small	256 - 362		4	0	0.00	91.00
14.3 - 20	Small	362 - 512	1	4	0	0.00	91.00
20 - 40	Medium	512 - 1024	BOULDER	A	0	0.00	91.00
40 - 80	Large	1024 -2048	1	4	0	0.00	91.00
80 - 160	Vry Large	2048 -4096	7	4	0	0.00	91.00
	Bedrock		BDRK	^	9	9.00	100.00
				Totals	100		

RIVERMORPH PARTICLE SUMMARY

River Name: UNT to Bradshaw Creek Reach Name: S-C25 Sample Name: Representative 08/21/2021

Size (mm)	TOT #	ITEM %	CUM %
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	36 0 0 0 0 0 0 0 6 4 10 8 6 6 4 2 4 2 3 0 0 0 0	36.00 0.00 0.00 0.00 0.00 0.00 0.00 6.00 4.00 10.00 8.00 6.00 4.00 2.00 4.00 2.00 3.00 0.00 0.00 0.00 0.00	36.00 36.00 36.00 36.00 36.00 42.00 46.00 56.00 64.00 70.00 76.00 80.00 82.00 88.00 91.00 91.00 91.00 91.00 91.00 91.00
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Cobble (%) Boulder (%) Bedrock (%)	0.03 0.06 9.32 77 Bedrock Bedrock 36 0 46 9		

Total Particles = 100.

				Unified St	tream Method	dology for use	•		1)		
Project #	Project	Name (App		For use in wadea	Cowardin Class.	HUC	Date	SAR #	Impact Length	Impact Factor	
22865.06	Mountain Val	lley Pipeline / Pipeline, I		Montgomery County	R4	03010101	8/21/21	S-C25	115	1	
Name	e(s) of Evaluato			e and Informa	ation				SAR Length		
	ES, AW		Unnamed Tr	ibutary to Bra	adshaw Cree	k			115		
. Channel C	Condition: Assess	s the cross-sec	tion of the stream								
	Optim	nal	Subo	ptimal	Conditional Catego Mar	ginal	Po	oor	Sev	ere	
Channel Condition	Very little incision or a 100% stable banks surface protection or prominent (80-100%), bankfull benches are to their original flood developed wide bankfichannel bars and tran	s. Vegetative or natural rock, . AND/OR Stable present. Access odplain or fully full benches. Mid	erosion or unproted of banks are st Vegetative protect prominent (60- Depositional feat stability. The bar		Poor. Banks more or Poor due to lo Erosion may be pr both banks. Vege 40-60% of banks. be vertical or un	less than Severe or stable than Severe wer bank slopes. esent on 40-60% of tative protection on Streambanks may dercut. AND/OR may be temporary /	laterally unstable further. Majority near vertical. Eros banks. Vegetative on 20-40% of insufficient to p	cised. Vertically / e. Likely to widen of both banks are sion present on 60-be protection present banks, and is prevent erosion.	Deeply incised vertical/lateral in incision, flow cor banks. Streambe majority of banks Vegetative protect than 20% of banks erosion. Obvious	stability. Severe stained within the ed below average vertical/undercut. on present on less is, is not preventing	
	Transient sediment de less than 10% d	eposition covers	likely has acco benches,or ne portions of the r sediment covers stream	ess to bankfull ewly developed reach. Transient s 10-40% of the bottom.	transient, contr Deposition that co may be forming/pi shaped channel: protection on > 40 depositional featur to sta	ribute instability. contribute to stability, resent. AND/OR V- s have vegetative of the banks and res which contribute ability.	Sediment is temp nature, and contri AND/OR V-shap vegetative protect 40% of the banks a deposition	orary / transient in buting to instability. sed channels have ion is present on > and stable sediment is absent.	present. Erosion/ 100%. AND/OR A than 80% of stream deposition, contrib Multiple thread of subterran	raw banks on 80- ggrading channel. h bed is covered by uting to instability. channels and/or ean flow.	CI
Scores	3		2	.4	:	2	1	.6	1	l	2.40
			•		,	gh measurements	of length & width	may be acceptab			
Riparian Buffers	Optim Tree stratum (dbh > 3 with > 60% tree cc Wetlands located wit areas	inches) present, anopy cover. thin the riparian	Con	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory, Recent cutover (dense vegetation).	Gory High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub	ginal Low Marginal: Non-maintained, dense herbaceous vegetation,	High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non- maintained area, recently seeded and stabilized, or other comparable	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions.	NOTES>>		
Buffers	Tree stratum (dbh > 3 with > 60% tree cc Wetlands located wit areas	inches) present, anopy cover. thin the riparian	Con Subop High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation).	High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low	High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non- maintained area, recently seeded and stabilized, or other comparable condition.	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions.			
•	Tree stratum (dbh > 3 with > 60% tree cc	inches) present, anopy cover. thin the riparian	Con Subop High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory.	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation).	High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover.	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory.	High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non- maintained area, recently seeded and stabilized, or other comparable condition.	Low Poor: Impervious surfaces, mine spoil lands, during the surfaces, row crops, active feed lots, trails, or other comparable conditions.			
Scores Delineate ripa Determine squelow.	Tree stratum (dbh > 3 with > 60% tree ca Wetlands located wit areas 1.5 arian areas along eacuare footage for eacu	inches) present, anopy cover. thin the riparian	Con Subop High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Ca	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Congth and width. Ca	High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75	High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non- maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure of % F	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5			
Scores Delineate ripa Determine squalow. Enter the % F	Tree stratum (dbh > 3 with > 60% tree cc Wetlands located wit areas 1.5	inches) present, anopy cover. thin the riparian	Con Subop High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Ca	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Congth and width. Ca	High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75	High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non- maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure of % F	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5			
Scores Delineate ripa Determine squelow. Enter the % F	Tree stratum (dbh > 3 with > 60% tree or Wetlands located wit areas 1.5 arian areas along each quare footage for each	inches) present, anopy cover. thin the riparian	High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Ca	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Congth and width. Ca	High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75	High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non- maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure of % F	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5	NOTES>>		
Scores Delineate ripa Determine squelow. Enter the % F	Tree stratum (dbh > 3 with > 60% tree ca Wetlands located wit areas 1.5 Tarian areas along each quare footage for each Riparian Area and Sc % Riparian Area> Score >	ch stream bank h by measuring core for each rig 85% 0.85	High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Ca or estimating leng parian category in 15% 0.5	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Congth and width. Ca	High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75	High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non- maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure of % F	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5	NOTES>>		
Scores Delineate ripa Determine squalow. Enter the % F	Tree stratum (dbh > 3 with > 60% tree ca Wetlands located wit areas 1.5 Tarian areas along each quare footage for each Riparian Area and Sc % Riparian Area> Score >	ch stream bank h by measuring core for each rig 85% 0.85	Con Subop High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Ca or estimating lenguarian category in 15% 0.5	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Congth and width. Ca	High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75	High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non- maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure of % F	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5	CI= (Sum % RA * Sc Rt Bank CI >	0.80	CI 0.75
Scores Delineate ripa Determine squelow. Enter the % F Right Bank Left Bank INSTREAM	Tree stratum (dbh > 3 with > 60% tree ca Wetlands located wit areas 1.5 1.5 Arian areas along each quare footage for each Riparian Area and Sc % Riparian Area> Score > M HABITAT: Vari	ch stream bank h by measuring core for each rig 85% 0.85	Con Subop High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Ca g or estimating leng parian category in 15% 0.5	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Congth and width. Catthe blocks below.	High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh > 3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75	High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non- maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure of % F Blocks 6	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100 100%	CI= (Sum % RA * So Rt Bank CI > Lt Bank CI >	0.80 0.71	CI 0.75
Scores Delineate ripa Determine squelow. Enter the % F Right Bank Left Bank B. INSTREAN	Tree stratum (dbh > 3 with > 60% tree ca Wetlands located wit areas 1.5 1.5 Arian areas along each quare footage for each Riparian Area and Sc % Riparian Area Score > % Riparian Area> Score >	ch stream bank h by measuring core for each rig 85% 0.85	Con Subop High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Ca g or estimating leng parian category in 15% 0.5	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Congth and width. Cathe blocks below.	High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh > 3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75	High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non- maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure of % F Blocks 6	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100 100%	CI= (Sum % RA * So Rt Bank CI > Lt Bank CI >	0.80 0.71	
Scores Delineate ripa Determine squelow. Enter the % F Right Bank Left Bank INSTREAM Iffle/pool completions	Tree stratum (dbh > 3 with > 60% tree ca Wetlands located wit areas 1.5 1.5 Arian areas along each quare footage for each Riparian Area and Sc % Riparian Area> Score > M HABITAT: Vari	ch stream bank h by measuring core for each rig 85% 0.85 60% 0.85	Con Subop High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Ca or estimating lenguarian category in 15% 0.5 40% 0.5	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Congth and width. Cathe blocks below.	High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85 dition Scores usin alculators are provi	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh > 3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75	High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non- maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure of % F Blocks 6	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100 100%	CI= (Sum % RA * So Rt Bank CI > Lt Bank CI >	0.80 0.71	
Scores Delineate ripa Determine squelow. Enter the % F Right Bank Left Bank I NSTREAN	Tree stratum (dbh > 3 with > 60% tree ca Wetlands located wit areas 1.5 Tree stratum (dbh > 3 with > 60% tree ca Wetlands located wit areas 1.5 Arian areas along each quare footage for each Riparian Area and Sc % Riparian Area > Score > M Riparian Area> Score > M HABITAT: Variexes, stable features.	ch stream bank h by measuring sore for each rig 85% 0.85 60% 0.85 ied substrate si	Con Subop High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Ca or estimating lenguarian category in 15% 0.5 40% 0.5 zes, water velocity Subop Stable habitat eler present in 30-50%	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Congth and width. Cathe blocks below. y and depths; woc Conditional ptimal ments are typically 6 of the reach and rmaintenance of	High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85 ditton Scores usin alculators are provential control by the control of the control of the control alculators are provential control of the	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh > 3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75 g the descriptors.	High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure of % F Blocks e	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100 100%	CI= (Sum % RA * So Rt Bank CI > Lt Bank CI >	0.80 0.71 tts; SAV;	

	St	ream In	npact A	ssessn	nent Fo	rm Pag	e 2		
Project #	Project Name (App	licant)	Locality	Cowardin Class.	нис	Date	SAR#	Impact Length	Impact Factor
22865.06	Mountain Valley Pipeline (Mountain Valley Pipeline, LLC)		Montgomery County	R4	03010101	8/21/21	S-C25	115	1
. CHANNEI	L ALTERATION: Stream cross	sings, riprap, conci	rete, gabions, or o	concrete blocks, st	traightening of cha	annel, channelizat	tion, embankment	s, spoil piles, cons	trictions, livestoo
I. CHANNEI			Conditiona	al Category				s, spoil piles, const	trictions, livestoc
1. CHANNEL	ALTERATION: Stream cross Negligible			al Category	erate				trictions, livestoc
Channel		Less than 20% of the stream reach	Conditiona nor 20-40% of the stream reach is	Model 40 - 60% of reach is disrupted by any of the channel alterations listed in the parameter	erate 60 - 80% of reach is disrupted by any of the channel alterations listed in	Sex	vere	NOTES>>	trictions, livestoc

normal stable

stream meande

pattern has not

0.7

0.9 REACH CONDITION INDEX and STREAM CONDITION UNITS FOR THIS REACH

normal stable

stream meande

pattern has not

NOTE: The CIs and RCI should be rounded to 2 decimal places. The CR should be rounded to a whole number.

1.5

the parameter

guidelines.

1.3

the parameter

guidelines.

THE REACH CONDITION INDEX (RCI) >> 1.11

CI

1.50

RCI= (Sum of all CI's)/5, except if stream is ephemeral RCI = (Riparian CI/2) COMPENSATION REQUIREMENT (CR) >> 128

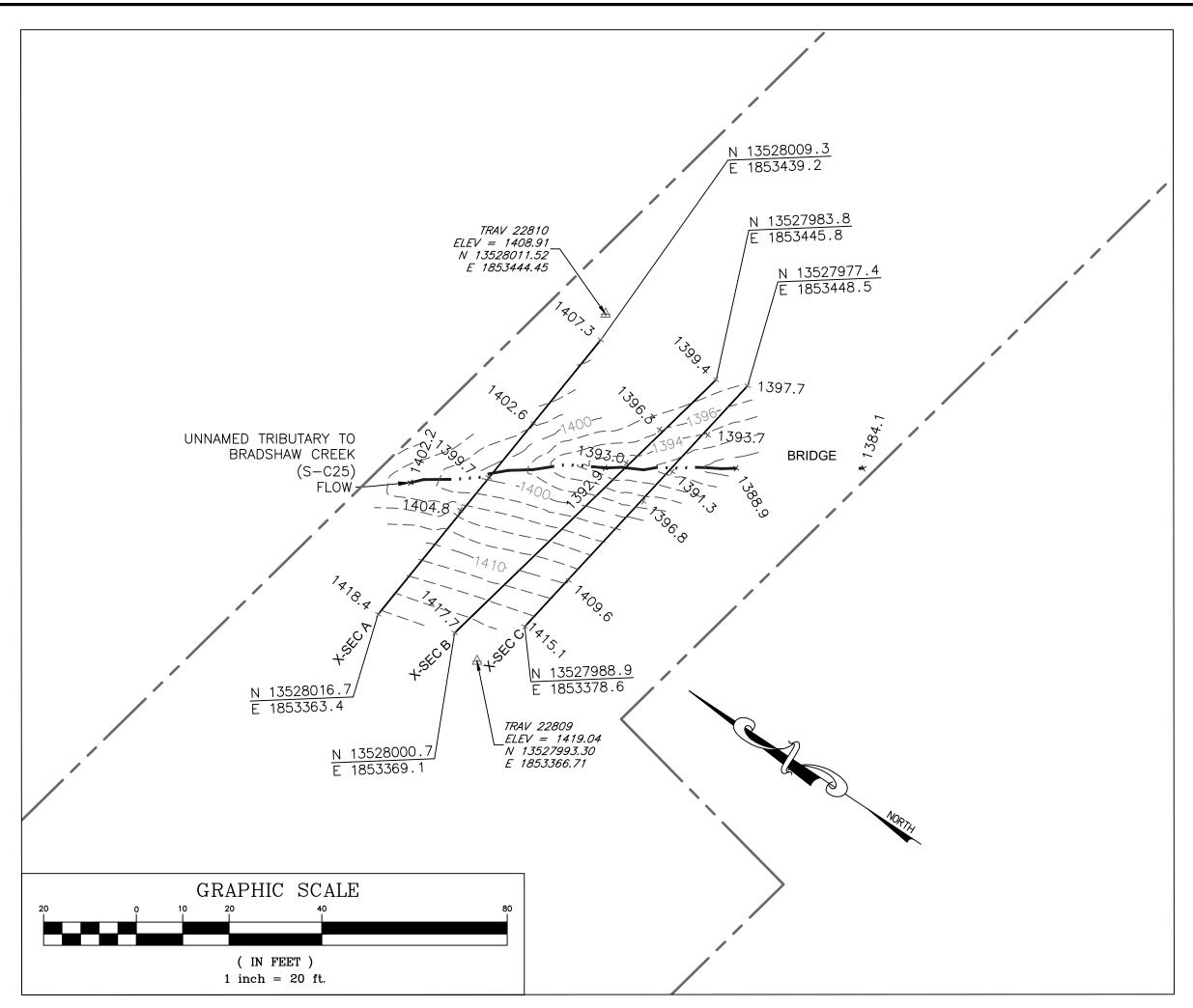
CR = RCI X L_I X IF

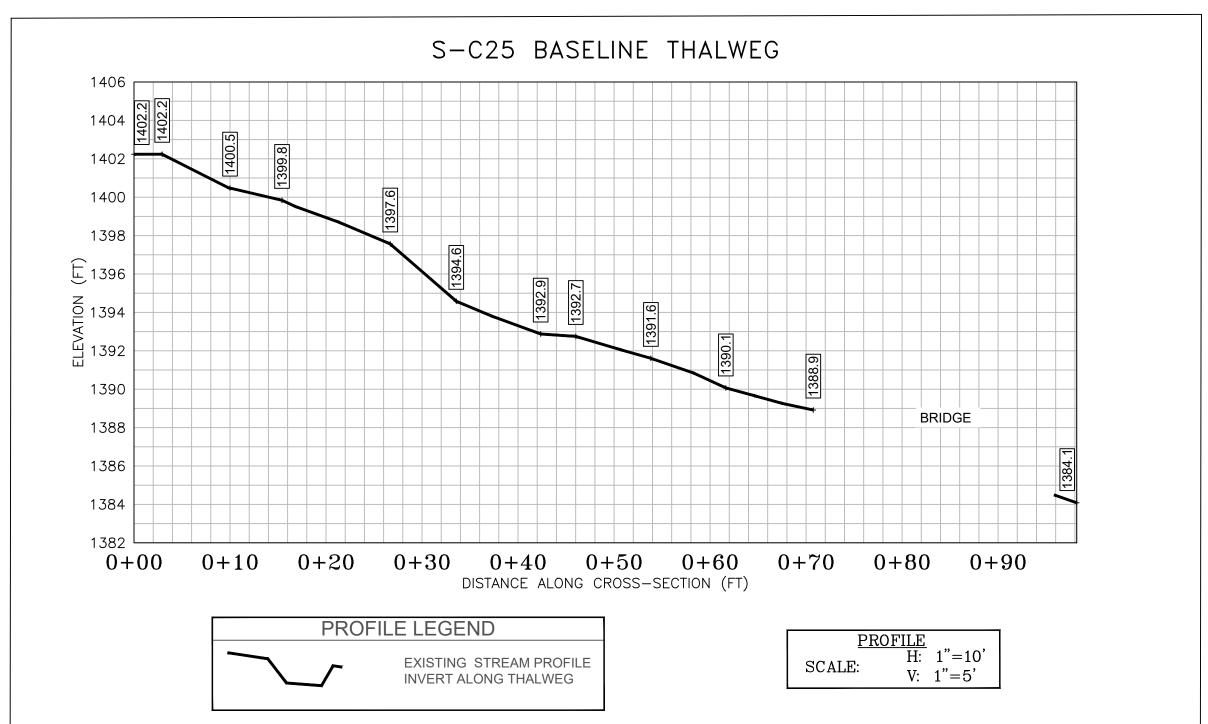
riprap, or cement.

0.5

INSERT PHOTOS:

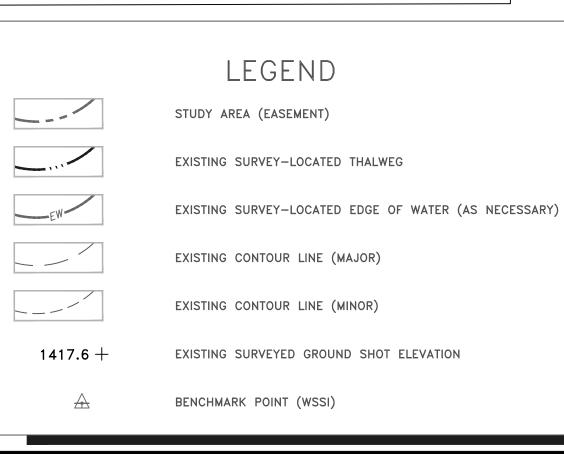
Scores

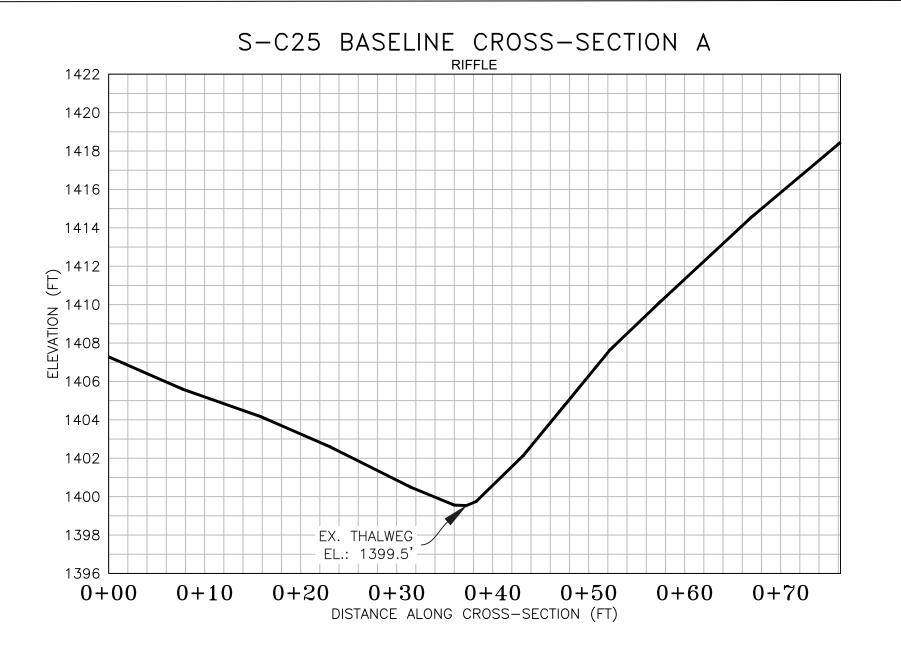

(WSSI Photo Location "L:\22000s\22800\22865.06\Admin\05-ENVR\Field Data\Spread H\Field Forms\S-C25\Photos\DS VIEW.jpg")

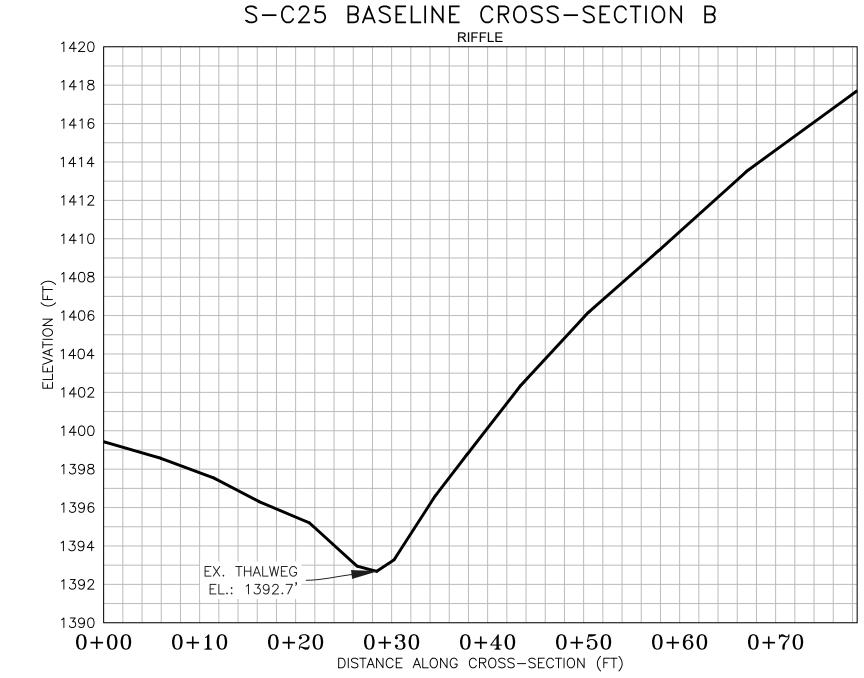


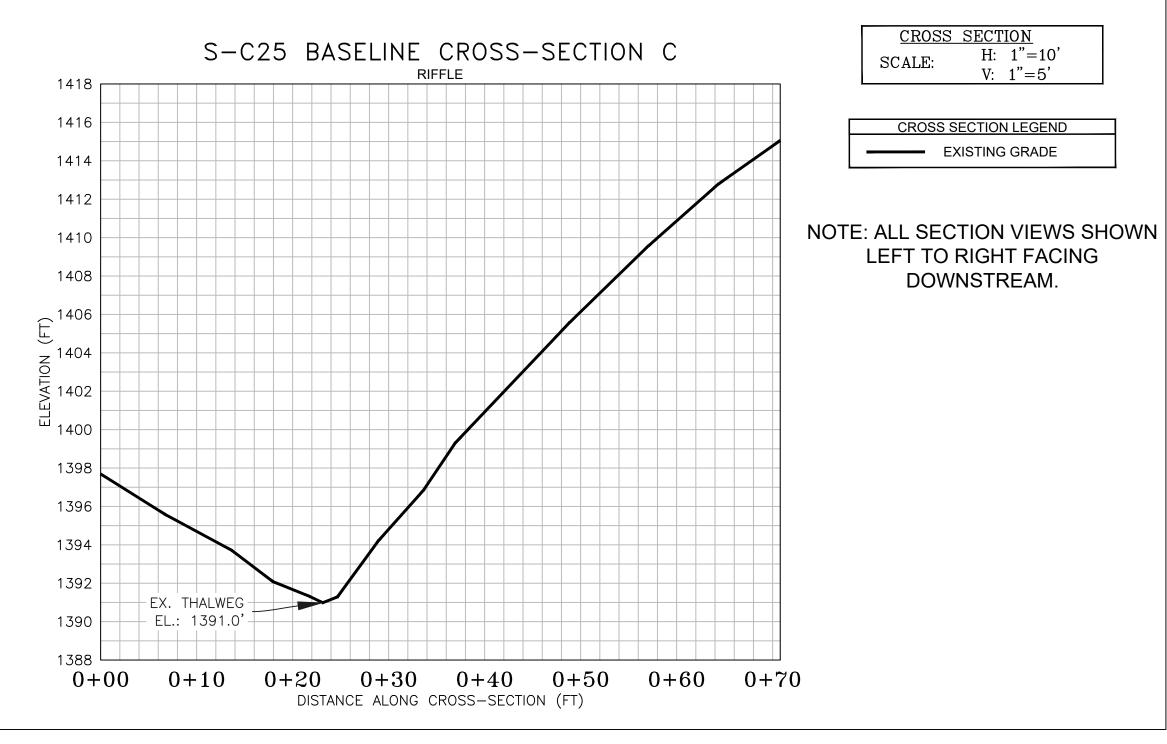
Looking upstream within ROW. Assessment is limited to areas within the temporary ROW.

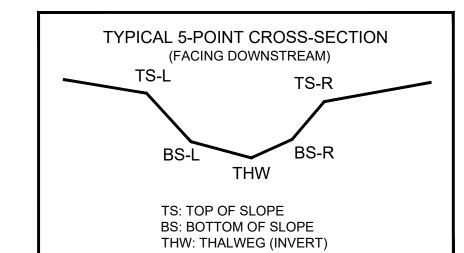
DESCRIBE PROPOSED IMPACT	•	
--------------------------	---	--

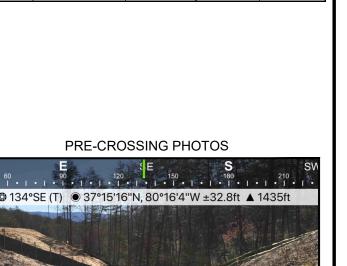

PROVIDED UNDER SEPARATE COVER






SURVEY NOTES:


- 1. This map has been oriented to NAD 1983 UTM ZONE 17N, and vertically to The North American Vertical Datum of 1988 (NAVD 88), using a Real Time Network (RTN) GPS. Field locations were completed on February 26, 2019.
- 2. Monumentation, including traverse stations and fly points, shown on this drawing should be used to orient any future boundary, topographic, or location survey.
- 3. Easement lines shown on plan view were provided by Mountain Valley Pipeline (MVP).
- 4. WSSI Contour Interval = 2.0'. Contours within the channel were interpolated using stream channel breaklines (i.e. top of slopes, toe of slopes, thalweg) and cross-sectional points. Contours outside the channel were interpolated using cross-sectional spot shots.
- 5. All section views shown are left to right facing downstream.
- 6. Cross section B shot at location of pipe centerline (based on field stakes).



CL STAKEOUT POINTS: S-C25 CROSS SECTION B (PIPE CL)								
	POST-CROSSING							
PT. LOC.	NORTHING	EASTING	ELEV	VERT.	HORZ			
PT. LOC.	NORTHING	EASTING	CLEV	DIFF.	DIFF.			
TS-L	13527988.04	1853430.15	1396.31					
BS-L	13527990.08	1853420.17	1392.95					
THW	13527990.60	1853418.18	1392.68					
BS-R	13527990.82	1853416.38	1393.27					
TS-R	13527993.08	1853409.01	1398.80					

Wetland

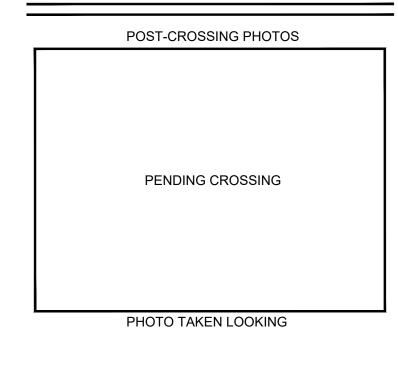
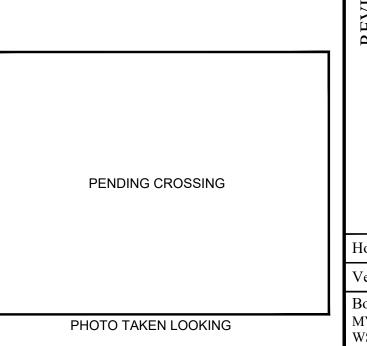

5

PHOTO TAKEN LOOKING DOWNSTREAM ON 02/26/2019


PHOTO TAKEN LOOKING UPSTREAM ON 02/26/2019



H: 1"=10' V: 1"=5'

CROSS SECTION LEGEND

DOWNSTREAM.

WSSI 2' C.I. Topo Approved NAS JSF PFS Sheet #

1 of 1

Computer File Name: Survey\22000s\22800\22865.03\Spread H Work Dwgs