Reach S-D12 (Pipeline ROW) Intermittent Spread H Franklin County, Virginia

Data	Included
Photos	\checkmark
SWVM Form	\checkmark
FCI Calculator and HGM Form	\checkmark
RBP Physical Characteristics Form	\checkmark
Water Quality Data	\checkmark
RBP Habitat Form	\checkmark
RBP Benthic Form	\checkmark
Benthic Identification Sheet	N/A – Not enough riffle habitat
Wolman Pebble Count	\checkmark
RiverMorph Data Sheet	\checkmark
USM Form (Virginia Only)	\checkmark
Longitudinal Profile and Cross Sections	\checkmark

Spread H

Stream S-D12 (ROW)

Franklin County

Photo Type: DS VIEW Location, Orientation, Photographer Initials: Downstream view of ROW looking SE, AW

Photo Type: US VIEW Location, Orientation, Photographer Initials: Upstream view of ROW looking NW, AW

Stream S-D12 (ROW)

Franklin County

Photo Type: LB CL Location, Orientation, Photographer Initials: Standing on LB looking at RB along pipe centerline looking SW, AW

Photo Type: RB CL Location, Orientation, Photographer Initials: Standing on RB looking at LB along pipe centerline looking NE, AW

Photo Type: DS COND

Stream S-D12 (ROW)

Franklin County

Location, Orientation, Photographer Initials: Downstream conditions outside of ROW looking SE at confluence of S-D12 and S-D13, ES

L:\22000s\22800\22865.06\Admin\05-ENVR\Field Data\Spread H\Field Forms\S-D12\Photo Document Template_S-D12.docx

West Virginia Stream and Wetland Valuation Metric (SWVM) Version 2.1, September 2017

USACE FILE NO./ Project Name: (v2.1, Sept 2015)	Mountain	Valley Pipeline	IMPACT COORDINATES: (in Decimal Degrees)	Lat.	37.121558	Lon.	-80.085642	WEATHER:	Sunny	DATE:	August 26, 2021
IMPACT STREAM/SITE ID AN (watershed size (acreage), unal		S-C	012		MITIGATION STREAM CLASS (watershed size (acrea	S./SITE ID AND SI age), unaltered or impai				Comments:	
STREAM IMPACT LENGTH:	54 FORM OF MITIGATION:	RESTORATION (Levels I-III)	MIT COORDINATES: (in Decimal Degrees)	Lat.		Lon.		PRECIPITATION PAST 48 HRS:	None	Mitigation Length:	
Column No. 1- Impact Existing Co	ondition (Debit)	Column No. 2- Mitigation Existing Co	ondition - Baseline (Credit)		Column No. 3- Mitigation Post Complet		ears	Column No. 4- Mitigation Proje Post Completion (C		Column No. 5- Mitigation Project	cted at Maturity (Credit)
Stream Classification:	Intermittent	Stream Classification:			Stream Classification:		0	Stream Classification:	0	Stream Classification:	0
Percent Stream Channel Slope	7.3	Percent Stream Channel Slo	pe		Percent Stream Channel	Slope	0	Percent Stream Channel Slo	pe 0	Percent Stream Channel	Slope 0
HGM Score (attach data	forms):	HGM Score (attach d	lata forms):		HGM Score (attac	ch data forms):		HGM Score (attach da	ta forms):	HGM Score (attach	data forms):
	Average		Average				Average		Average		Average
Hydrology Biogeochemical Cycling	0.62 0.456666667	Hydrology Biogeochemical Cycling	0		Hydrology Biogeochemical Cycling		0	Hydrology Biogeochemical Cycling	0	Hydrology Biogeochemical Cycling	0
Habitat PART I - Physical, Chemical and Bio	0.35 logical Indicators	Habitat PART I - Physical, Chemical and	Biological Indicators		Habitat PART I - Physical, Chemical	and Biological Indi	cators	Habitat PART I - Physical, Chemical and E	liological Indicators	Habitat PART I - Physical, Chemical an	d Biological Indicators
Pair	into Scale Range Site Score		Paints Scale Range Site Scare			Points Scale Range	Site Score		Points Scale Range Sille Score		Pointa Scale Range Site Score
PHYSICAL INDICATOR (Applies to all streams class	ssifications)	PHYSICAL INDICATOR (Applies to all streams of	lassifications)		PHYSICAL INDICATOR (Applies to all strea	ms classifications)		PHYSICAL INDICATOR (Applies to all streams	classifications)	PHYSICAL INDICATOR (Applies to all stream	ns classifications)
Entendeducines (1) Extendeducines (1) Submicht Deposition (1) Submicht Deposition (1) Submicht Deposition (1) Submicht Deposition (1) Channel River Status (1) E. Channel River Status (1) E. Channel River Status (1) B. Bark Stability (LB & RB) (1) Vergestarber Zone Width (LB & RB) (1) CHEMICAL INDICATOR (Applies to Intermittent are WODEP Water Cuality Indicators (General) Specific Conductivity WODEP Water Cuality Indicators (General) (2) pH (1) (2) >5.0 - 100 (1) Sub-Total (1) Biol.COGICAL INDICATOR (Applies to Intermittent are status) (1) Sub-Total (1) Biol.COGICAL INDICATOR (Applies to Intermittent are status) (1) Sub-Total (1) BIOLCOGICAL INDICATOR (Applies to Intermittent are status) (1)	Subootmail 118 0.59 0.59 d Perenial Streams) 125.8 0.00 0.1 0.50 0.8 0.50 0.8	DEEPA AREP (Low Gradient Date Sheet) DEEPA AREP (Low Gradient Date Sheet) DEEPA Area (Low Characteristic Cover Deepa Variability DeepA Var	0.40 5.40 10.30 0		SEP ABP High Gradiant Data Sheet September Sheet Section 2015 Section	Poor ttent and Perennial Stre ral) 0.90 0.90 0.1 0.1	0	BEPA RBP High constant: Data Sheet) Editional Sociatal-Available Cover Enbeddedness Subtrait/Available Cover Enbeddedness Subtrait/Available Cover Subtrait/Available Cover Subtrait/PostBata Scharmel ProvStatus Charmel Alteration Tergenerous of Rillies (or bonds) Bank Stability (LB & RB) Total Reparam Vegetate Zowe Widh (LB & RB) Total RP Score Sub-Total BIOLOGICAL INDICATOR (Applies to Intermit WV Stream Condition Index (WVSC) Sub-Total	0.90 0.1	USEPA REP High Gradient Data Shead) 1. Enforcement Schottschwinzbie Cover 2. Enhandschotess 3. Valocity/Depth Regime 4. Sedimert Deposition 6. Channel How Status 6. Channel How Status 1. Frequency of Hillis (or bends) 8. Bank Stability (LB & RB) 10. Repartin Vegetalve Zone Widh (LB & RB) 10. Repartin Vegetalve Zone Widh (LB & RB) 10. Repartine Protection (LB & RB) 10. Exception Status CHEMICAL INDICATOR (Applies to Intermit BIOLOGICAL INDICATOR (Applies to Inter- BIOLOGICAL INDICATOR (Applies to Inter- WY Stream Condition Index (WYSC)) Sub-Total	Poor 0 0 0 a)
PART II - Index and Unit 1	Score	PART II - Index and L	Jnit Score Linear Feet Unit Score		PART II - Index a	nd Unit Score	Unit Score	PART II - Index and Un	It Score	PART II - Index and	Unit Score
0.576	54 31.095	0	0 0		0	0	0	0	0 0	0	0 0

FCI Calculator for the High-Gradient Headwater Streams in Appalachia

To ensure accurate calculations, the <u>UPPERMOST STRATUM</u> of the plant community is determined based on the calculated value for $V_{CCANOPY}$ (\geq 20% cover is required for tree/sapling strata). Go to the SAR Data Entry tab and enter site characteristics and data in the yellow cells. For information on determining how to split a project into SARs, see Chapter 5 of the Operational Draft Regional Guidebook for the Functional Assessment of High-Gradient Headwater Streams and Low-Gradient Perennial Streams in Appalachia (Environmental Laboratory U.S. Army Corps of Engineers 2017).

Project Name: Mountain Valley Pipeline		
Location: Franklin		
Sampling Date: 8/26/21	Project Site	Before Project
Subclass for this SAR:		
Intermittent Stream		
Uppermost stratum present at this SAR:	SAR number:	S-D12

Shrub/Herb Strata

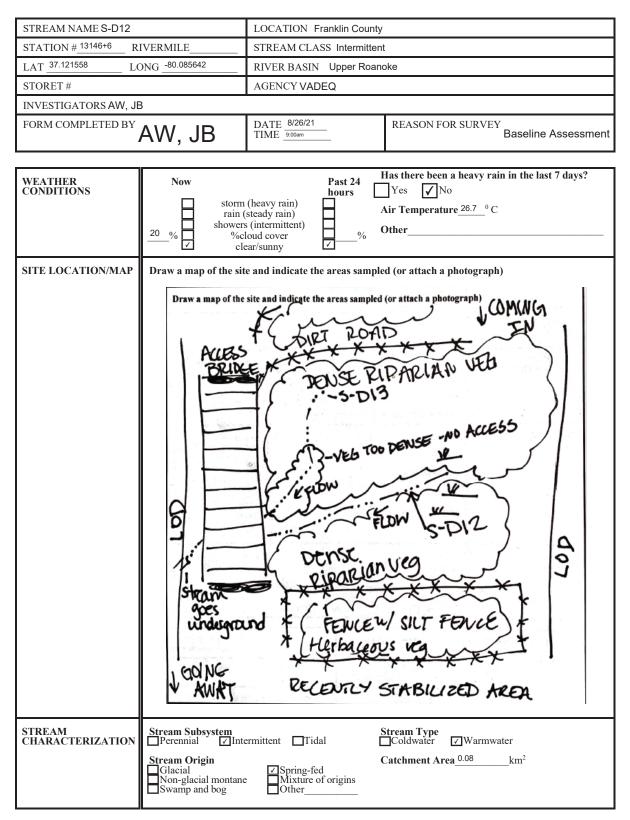
 Functional Results Summary:
 Enter Results in Section A of the Mitigation Sufficiency Calculator

Function	Functional Capacity Index
Hydrology	0.62
Biogeochemical Cycling	0.40
Habitat	0.35

Variable Measure and Subindex Summary:

Variable	Name	Average Measure	Subindex
V _{CCANOPY}	Percent canpoy over channel.	Not Used, <20%	Not Used
V _{EMBED}	Average embeddedness of channel.	2.00	0.46
V _{SUBSTRATE}	Median stream channel substrate particle size.	1.30	0.65
V _{BERO}	Total percent of eroded stream channel bank.	100.00	0.54
V _{LWD}	Number of down woody stems per 100 feet of stream.	0.00	0.00
V _{TDBH}	Average dbh of trees.	Not Used	Not Used
V _{SNAG}	Number of snags per 100 feet of stream.	0.00	0.10
V _{SSD}	Number of saplings and shrubs per 100 feet of stream.	9.26	0.14
V _{SRICH}	Riparian vegetation species richness.	0.00	0.00
V _{DETRITUS}	Average percent cover of leaves, sticks, etc.	38.75	0.47
V _{HERB}	Average percent cover of herbaceous vegetation.	75.00	1.00
V _{WLUSE}	Weighted Average of Runoff Score for Catchment.	1.00	1.00

				Field [Data She	et and C	alculato	r				
	Team:	AW JB						Latitude/UT	M Northing:	<mark>37.121558</mark>		
Pro	oject Name:	Mountain V	/alley Pipelir	ne			I	_ongitude/U [·]	TM Easting:	-80.085642	2	
	Location:	Franklin						San	npling Date:	8/26/21		
SA	R Number:	S-D12	Reach	Length (ft):	54	Stream Ty	/pe: Inte	rmittent Strea	m		•	
	Top Strata:	Sh	rub/Herb Sti	rata	(determine	d from perce	ent calculate	ed in V _{CCANO}	_{PY})			
Site a	and Timing:	Project Site				-	Before Proje	ect			▼	
nple	Variables	1-4 in strea	m channel									
1	V _{CCANOPY}	Average pe equidistant 20%, enter	ercent cover points alon at least one	g the stream value betw	n. Measure reen 0 and 1	only if tree/s 9 to trigger	sapling cov	asure at no [.] er is at least choice.)			Not Us <20%	
	-	cent cover i	measuremer	nts at each p	Doint below:						1	
	0										_	
)	V _{EMBED}			6 H				than 30 rou				
		surface and according t rating score	d area surro to the followi e of 1. If the	unding the p ing table. If bed is com	particle that the bed is a posed of be	is covered b an artificial s edrock, use a	by fine sedin surface, or o a rating sco		nter the ratir fine sedime	ng ents, use a	2.0 Measu	
		Minshall 19	linshall 1983)									
		Rating	Rating Des		overed our	roundod or	buried by f	no oodimon	t (or hadroa	k)	30 poi	
		5					-	ne sedimen by fine sedi		к)		
		3						d by fine sec			-	
		2						d by fine sec			-	
		1	>75 percen	t of surface	covered, su	ırrounded, o	or buried by	fine sedime	nt (or artifici	ial surface)		
r	List the rati	ngs at each	point below	/:							-	
	1	3	1									
	1	3	1									
	1	3	1									
	1	3	4									
	1	2	4									
3	Enter partic	along the s cle size in in	tream; use t	he same po nearest 0.1	ints and par inch at eacl	rticles as us n point belov	ed in V _{EMBE}	than 30 roug _D . should be co			1.30 i	
											_	
	2.20	1.70	0.08									
	2.20 1.50	1.70 1.10	0.08									
	1.50	1.10	0.08									
	1.50 7.40	1.10 2.30	0.08 0.08									
ŀ	1.50 7.40 0.08	1.10 2.30 1.30 0.60 Total perce	0.08 0.08 3.30 2.00 ent of eroded e total perce to 200%.	entage will b	e calculated	Enter the to	nks are ero	of feet of er oded, total e	rosion for th		100 %	
ŀ	1.50 7.40 0.08 0.08	1.10 2.30 1.30 0.60 Total perceside and the	0.08 0.08 3.30 2.00 ent of erodec e total perce	entage will b		Enter the to		oded, total e			100 9	
	1.50 7.40 0.08 0.08 V _{BERO}	1.102.301.300.60Total perceside and the may be up	0.08 0.08 3.30 2.00 ent of eroded e total perce to 200%. Left Bank:	entage will b 39	e calculated	Enter the to	nks are ero Right Bank	oded, total e	rosion for th 5 ft	e stream	100 9	
nple	1.50 7.40 0.08 0.08 V _{BERO}	1.102.301.300.60Total percesside and the may be up5-9 within tNumber of stream read	0.08 0.08 3.30 2.00 ent of eroded e total perce to 200%. Left Bank: the entire ri	entage will b 39 parian/buffo y stems (at l e number fro	e calculated oft er zone adji east 4 inche om the entir ilated.	Enter the to d If both ba acent to the	nks are ero Right Bank e stream cl er and 36 ir puffer and w	nannel (25 f	rosion for th 5 ft eet from ea gth) per 100	e stream ch bank). feet of	100 9	
nple	1.50 7.40 0.08 0.08 V _{BERO}	1.102.301.300.60Total percesside and the may be up5-9 within tNumber of stream reasper 100 feed her 100 feed kinches (10	0.08 0.08 3.30 2.00 ent of eroded e total perce to 200%. Left Bank: the entire ri down wood the entire ri down wood the entire ri down wood the entire ri ch of trees (ri cm) in diam	entage will b 39 parian/buff y stems (at l e number fr will be calcu measure onl eter. Enter	e calculated oft er zone adji east 4 inche om the entir ilated. Number o y if V _{CCANOP} tree DBHs i	Enter the to Enter the to d If both ba acent to the es in diamete e 50'-wide to f downed wo y tree/saplin n inches.	nks are ero Right Bank e stream cl er and 36 ir puffer and w pody stems ng cover is a	nannel (25 f	rosion for th 5 ft eet from ea gth) per 100 annel, and th 0). Trees are	e stream Ich bank). feet of he amount	0.0	
nple	1.50 7.40 0.08 V _{BERO}	1.102.301.300.60Total percesside and the may be up5-9 within tNumber of stream reasper 100 feed her 100 feed kinches (10	0.08 0.08 3.30 2.00 ent of erodec e total perce to 200%. Left Bank: the entire ri down wood ch. Enter th et of stream oh of trees (r cm) in diam	entage will b 39 parian/buff y stems (at l e number fr will be calcu measure onl eter. Enter	e calculated oft er zone adji east 4 inche om the entir ilated. Number o y if V _{CCANOP} tree DBHs i	Enter the to Enter the to d If both ba acent to the es in diamete e 50'-wide to f downed wo y tree/saplin n inches.	nks are ero Right Bank e stream cl er and 36 ir puffer and w pody stems ng cover is a	nannel (25 f	rosion for th 5 ft eet from ea gth) per 100 annel, and th 0). Trees are	e stream Ich bank). feet of he amount		


7	V_{SNAG}	Number of	snags (at le	ast 4" dbh a	nd 36" tall)	per 100 feet	t of stream.	Enter numb	er of snags	on each	
		side of the	stream, and	the amount	per 100 fee	et will be cal	culated.				0.0
			Left Side:	(C		Right Side:	(0		
8	V_{SSD}	Number of	saplings and	d shrubs (w	oody stems	up to 4 inch	es dbh) per	100 feet of	stream (mea	asure only	
		if tree cove	r is <20%).	Enter numb	er of saplin	gs and shrul	bs on each	side of the s	tream, and	the amount	9.3
		per 100 ft o	of stream wil	l be calculat	ted.						
			Left Side:	;	3		Right Side:	-	2		

9	V _{SRICH}	Riparian vegetation species richness per 100 feet of stream reach. Check all species present from Group 1 in the tallest stratum. Check all exotic and invasive species present in all strata. Species0.00							0.00	
				and the subindex will b	e calculate	ed from these o				
		Grou	p 1 = 1.0				Group	2 (-1.0)		
	Acer rubru	т		Magnolia tripetala	7	Ailanthus a	ltissima	7	Lonicera ja	ponica
	Acer sacch	narum		Nyssa sylvatica		Albizia julib	rissin		Lonicera ta	tarica
	Aesculus f	lava		Oxydendrum arboreum		Alliaria peti	olata		Lotus corni	culatus
	Asimina tri	loba		Prunus serotina		Alternanthe	era		Lythrum sa	licaria
	Betula alleg	Ihaniensis		Quercus alba		philoxeroid	es	7	Microstegiun	n vimineum
	Betula lent	a		Quercus coccinea		Aster tatari	cus		Paulownia	tomentosa
	Carya alba	1		Quercus imbricaria		Cerastium	fontanum		Polygonum d	uspidatum
	Carya glab	ora		Quercus prinus		Coronilla v	aria		Pueraria m	ontana
	Carya ova	lis		Quercus rubra		Elaeagnus u	mbellata	7	Rosa multi	flora
	Carya ova	ta		Quercus velutina		Lespedeza	bicolor		Sorghum h	alepense
	Cornus flo	florida		Sassafras albidum		Lespedeza	cuneata		Verbena bi	rasiliensis
	Fagus gra	ndifolia		Tilia americana		Ligustrum ob	otusifolium			
	Fraxinus a	mericana		Tsuga canadensis		Ligustrum	sinense			
	Liriodendror	tulipifera		Ulmus americana						
	Magnolia a	acuminata								
		0	Species in	Group 1			4	Species in	n Group 2	
-		bplots shou Average pe	IId be place ercent cover	subplots (40" x 40", ed roughly equidista of leaves, sticks, or c	ntly along ther organ	each side of t ic material. W	t he stream. oody debris			
		long are ind	clude. Ente	r the percent cover of	the detrita	layer at each	subplot.		_	38.75 %
				Side			t Side			
		15	20		20	100			-	
11	V _{HERB}	include woo	ody stems a percentage ot.	bver of herbaceous ve t least 4" dbh and 36" s up through 200% ar	tall. Becau	ise there may l . Enter the pe	be several la rcent cover	ayers of gro	ound cover	75 %
				Side			t Side		4	
		100	90		90	20				

Sample Variable 12 within the entire catchment of the stream. 12 V_{WLUSE} Weighted Average of Runoff Score for watershed: 1.00 Running Percent % in Catch Runoff Land Use (Choose From Drop List) Score ment (not >100) ▼ Forest and native range (>75% ground cover) 100 100 1 ▼ ▼ ▼ ▼ ▼ ▼ ▼ S-D12 Notes: Land Cover Analysis was completed using the 2019 National Land Cover Database Variable Value VSI (NLCD), from Landsat satellite imagery and other supplementary datasets. Not Used, VCCANOPY Not Used Watershed boundaries are based off of field delineated stream impacts. <20%

V _{EMBED}	2.0	0.46	*Percentages in catchment values have been rounded to the nearest full number.
V _{SUBSTRATE}	1.30 in	0.65	
V _{BERO}	100 %	0.54	
V _{LWD}	0.0	0.00	
V_{TDBH}	Not Used	Not Used	
V _{SNAG}	0.0	0.10	
V _{SSD}	9.3	0.14	
	0.00	0.00	
	38.8 %	0.47	
V _{HERB}	75 %	1.00	
V _{WLUSE}	1	1.00	

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

WATERSHED FEATURES RIPARIAN VEGETATION (18 meter buffer)	Predominant Surrounding Landuse ☐ Forest ☐ Commercial ☐ Field/Pasture ☐ Industrial ☐ Agricultural ☑ Other ☐ Residential ☑ Other ☐ Indicate the dominant type and record the domin ☐ Trees ☐ Trees ☑ Shrubs ☐ Dominant species present Rubus sp., Fireweed, Impatiens capensis	Grasses Herbaceous
INSTREAM FEATURES	Estimated Reach Length 11.9 m Estimated Stream Width 0.8 m Sampling Reach Area 9.0 m² Area in km² (m²x1000) km² Estimated Stream Depth 0.05-0.10 m Surface Velocity (at thalweg) 0.01 m/sec	Canopy Cover □Partly shaded □Shaded ☑ Partly open □Partly shaded □Shaded High Water Mark 0.1 m Proportion of Reach Represented by Stream Morphology Types Riffle 5 % Pool 5 % Channelized Yes Dam Present Yes
LARGE WOODY DEBRIS	LWDm ² Density of LWDM ^A m ² /km ² (LWD/ read	ch area)
AQUATIC VEGETATION	Indicate the dominant type and record the domin PRooted emergent Floating Algae Dominant species present Impattens capensis Portion of the reach with aquatic vegetation 15	nant species present ☐Rooted floating ☐Free floating _%
WATER QUALITY (DS, US)	Temperature 19.8, 19.8 0 C Specific Conductance 125.8, 132.2 uS/cm Dissolved Oxygen 8.27,7.46 mg/L pH 867, 8.44 Turbidity WQ Instrument Used YSI	Water Odors ✓ Normal/None Sewage Petroleum Fishy Øther Water Surface Oils Slick Slick Other Turbidity (if not measured) Clear Slightly turbid Opaque Stained
SEDIMENT/ SUBSTRATE	Odors Petroleum Normal Anaerobic Petroleum Chemical Anaerobic None Other Unknown Oils Pofuse	Deposits □Sludge □Sawdust □Paper fiber □Sand □Relict shells □Other □Lpoking at stones which are not deeply embedded, are the undersides black in color? □Yes ☑No

INC	ORGANIC SUBSTRATE (should add up to			ORGANIC SUBSTRATE C (does not necessarily add		
Substrate Type	Diameter	% Composition in Sampling Reach	Substrate Type	Characteristic	% Composition in Sampling Area	
Bedrock		0	Detritus	sticks, wood, coarse plant	20	
Boulder	> 256 mm (10")	0		materials (CPOM)	20	
Cobble	64-256 mm (2.5"-10")	5	Muck-Mud black, very fine organic		0	
Gravel	2-64 mm (0.1"-2.5")	10		(FPOM)	0	
Sand	0.06-2mm (gritty)	35	Marl	grey, shell fragments	0	
Silt	0.004-0.06 mm	30]		0	
Clay	< 0.004 mm (slick)	10				

HABITAT ASSESSMENT FIELD DATA SHEET - HG - USE ON ALL STREAMS (FRONT)

STREAM NAME S-D12	LOCATION Franklin County				
STATION #_13146+6 RIVERMILE	STREAM CLASS Intermittent				
LAT <u>37.121558</u> LONG <u>-80.085642</u>	RIVER BASIN Upper Roanoke				
STORET #	AGENCY VADEQ				
INVESTIGATORS AW, JB					
FORM COMPLETED BY AW, JB	DATE 8/26/21 TIME 9:00am AM PM REASON FOR SURVEY Baseline Assessment				

	Habitat		Condition	Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are <u>not</u> new fall and <u>not</u> transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
	_{score} 10	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
n sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.
ted in	score 7	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow- deep, slow-shallow, fast- deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast- shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).
ıram	_{score} 10	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
P	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
	_{score} 13	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
	SCORE 11	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0

Notes:

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

	Habitat		Conditio	n Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabio or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
	_{score} 19	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
0	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water of shallow riffles; poor habitat; distance betwee riffles divided by the width of the stream is a ratio of >25.
1	score 14	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1
	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30- 60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing 60-100% of bank has erosional scars.
	_{SCORE} 5	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE 6	Right Bank 10 9	8 7 6	5 4 3	2 1 0
	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well- represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	removed to 5 centimeters or less in average stubble height.
	SCORE 6	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE 5	Right Bank 10 9	8 7 6	5 4 3	2 1 0
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone - meters: little or no riparian vegetation due human activities.
	SCORE 6	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE 6	Right Bank 10 9	8 7 6	5 4 3	2 1 0

Total Score 118

BENTHIC MACROINVERTEBRATE FIELD DATA SHEET

STREAM NAME S-D	12	LOCATION Franklin County	
STATION #_13146+6	RIVERMILE	STREAM CLASS Intermittent	
LAT <u>37.121558</u>	LONG80.085642	RIVER BASIN Upper Roano	ke
STORET #		AGENCY VADEQ	
INVESTIGATORS A			LOT NUMBER
FORM COMPLETED	^{BY} AW, JB	DATE 8/26/21 TIME 9:00am	REASON FOR SURVEY Baseline Assessment
HABITAT TYPES	Indicate the percentage of Cobble% Sn		
SAMPLE COLLECTION	Gear used D-frame		rom bank
	How were the samples coll		rom bank I Irom boat
		bs/kicks taken in each habitat ty lags Vegetated Ba Other (
GENERAL COMMENTS	Stream not wide habitat for sampli	•	sampling and not enough riffle

QUALITATIVE LISTING OF AQUATIC BIOTA

Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare, 2 = Common, 3= Abundant, 4 = Dominant

Periphyton	0	1	2	3	4	Slimes	0	1	2	3	4
Filamentous Algae	0	1	2	3	4	Macroinvertebrates	0	1	2	3	4
Macrophytes	0	1	2	3	4	Fish	0	1	2	3	4

FIELD OBSERVATIONS OF MACROBENTHOS

Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare (1-3 organisms), 2 = Common (3-9 organisms), 3= Abundant (>10 organisms), 4 = Dominant (>50 organisms)

Porifera	0	1	2	3	4	Anisoptera	0	1	2	3	4	Chironomidae	0	1	2	3	4
Hydrozoa	0	1	2	3	4	Zygoptera	0	1	2	3	4	Ephemeroptera	0	1	2	3	4
Platyhelminthes	0	1	2	3	4	Hemiptera	0	1	2	3	4	Trichoptera	0	1	2	3	4
Turbellaria	0	1	2	3	4	Coleoptera	0	1	2	3	4	Other	0	1	2	3	4
Hirudinea	0	1	2	3	4	Lepidoptera	0	1	2	3	4						
Oligochaeta	0	1	2	3	4	Sialidae	0	1	2	3	4						
Isopoda	0	1	2	3	4	Corydalidae	0	1	2	3	4						
Amphipoda	0	1	2	3	4	Tipulidae	0	1	2	3	4						
Decapoda	0	1	2	3	4	Empididae	0	1	2	3	4						
Gastropoda	0	1	2	3	4	Simuliidae	0	1	2	3	4						
Bivalvia	0	1	2	3	4	Tabinidae	0	1	2	3	4						
						Culcidae	0	1	2	3	4						

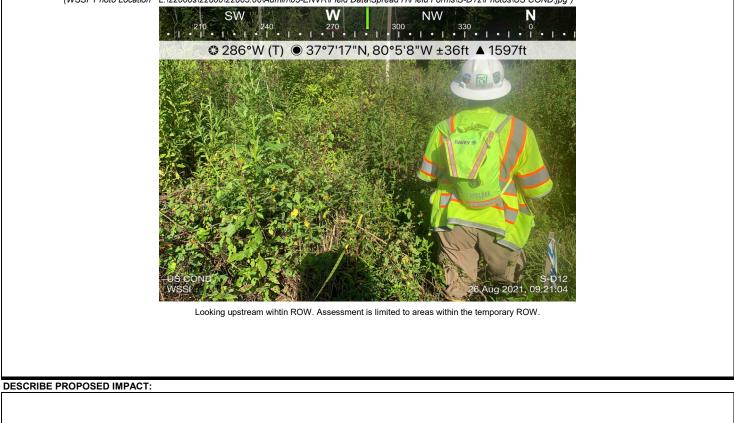
WOLMAN PEBBLE COUNT FORM

County:Franklin CountyStream ID:Stream NameUNT to North Fork Blackwater RiverHUC Code:0301010Basin:Survey Date:8/26/2021Surveyors:AW JBType:Representative

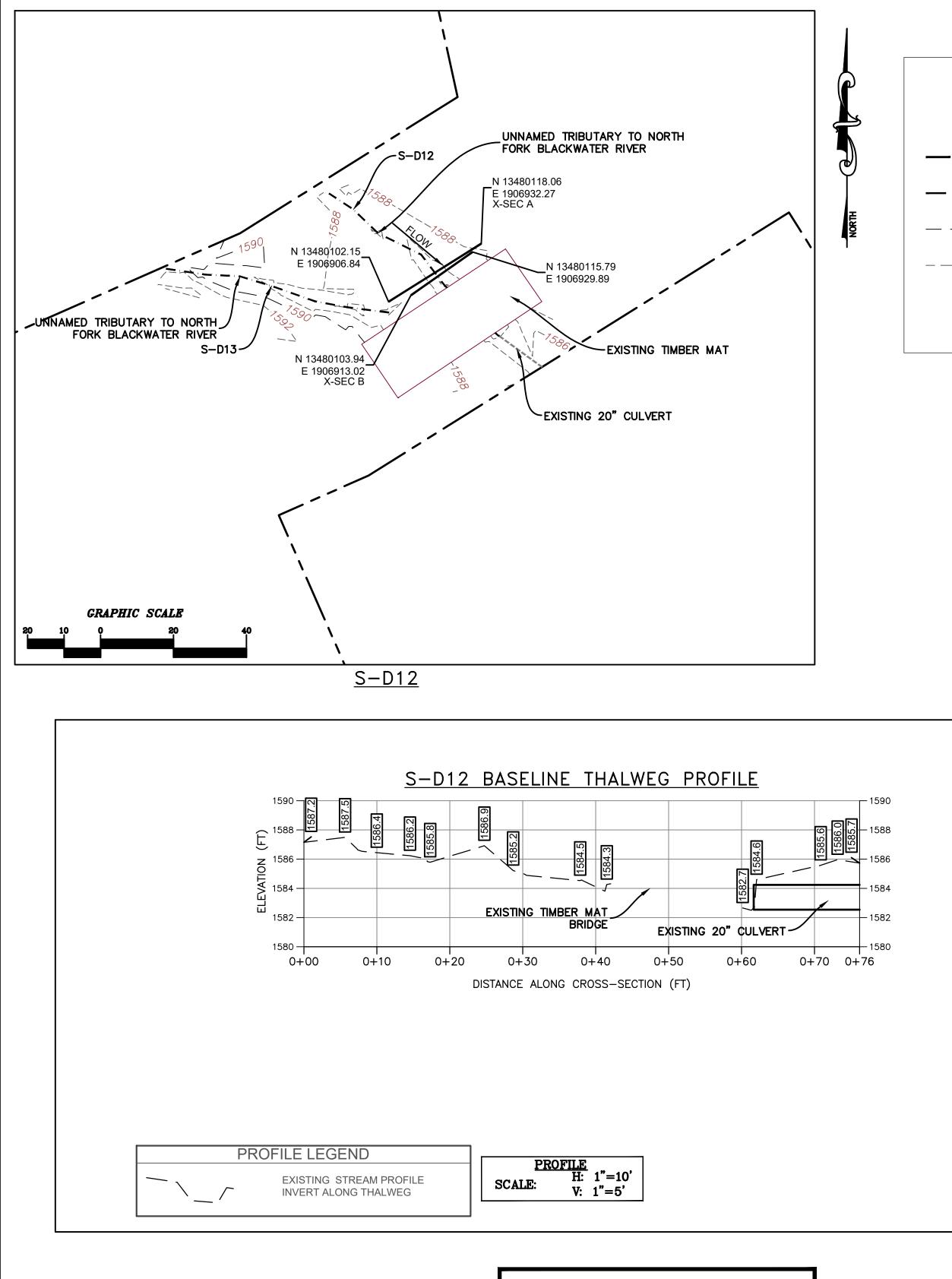
S-D12

Upper Roanoke

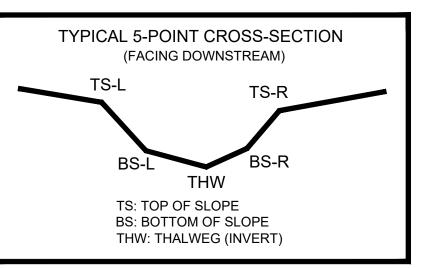
* 1	D + D =		LE COUNT				
Inches	PARTICLE	Millimeters		Particle Count	Total #	Item %	% Cum
	Silt/Clay	< .062	S/C	▲ ▼	39	39.00	39.00
	Very Fine	.062125		▲ ▼	0	0.00	39.00
	Fine	.12525		▲ ▼	0	0.00	39.00
	Medium	.255	SAND	▲ ▼	2	2.00	41.00
	Coarse	.50-1.0		▲ ▼	7	7.00	48.00
.0408	Very Coarse	1.0-2		▲ ▼	6	6.00	54.00
.0816	Very Fine	2 -4		▲ ▼	2	2.00	56.00
.1622	Fine	4 -5.7	1	▲ ▼	3	3.00	59.00
.2231	Fine	5.7 - 8		▲ ▼	2	2.00	61.00
.3144	Medium	8 -11.3		▲ ▼	0	0.00	61.00
.4463	Medium	11.3 - 16	G R A V E L	▲ ▼	6	6.00	67.00
.6389	Coarse	16 -22.6	1	▲ ▼	2	2.00	69.00
.89 - 1.26	Coarse	22.6 - 32	1	▲ ▼	4	4.00	73.00
1.26 - 1.77	Vry Coarse	32 - 45		▲ ▼	9	9.00	82.00
1.77 -2.5	Vry Coarse	45 - 64		▲ ▼	7	7.00	89.00
2.5 - 3.5	Small	64 - 90		▲ ▼	3	3.00	92.00
3.5 - 5.0	Small	90 - 128		▲ ▼	4	4.00	96.00
5.0 - 7.1	Large	128 - 180	COBBLE	▲ ▼	3	3.00	99.00
7.1 - 10.1	Large	180 - 256	1	▲ ▼	1	1.00	100.00
10.1 - 14.3	Small	256 - 362		▲ ▼	0	0.00	100.00
14.3 - 20	Small	362 - 512	1	▲ ▼	0	0.00	100.00
20 - 40	Medium	512 - 1024	BOULDER	▲ ▼	0	0.00	100.00
40 - 80	Large	1024 -2048	1	▲ ▼	0	0.00	100.00
80 - 160	Vry Large	2048 -4096	1	▲ ▼	0	0.00	100.00
	Bedrock		BDRK	▲ ▼	0	0.00	100.00
				Totals	100		



River Name: UN Reach Name: S-E Sample Name: Rep Survey Date: 08,	oresentativ		ater River
Size (mm)	тот #	ITEM %	CUM %
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	39 0 2 7 6 2 3 2 0 6 2 4 9 7 3 4 3 1 0 0 0 0	39.00 0.00 2.00 7.00 6.00 2.00 3.00 2.00 0.00 6.00 2.00 4.00 9.00 7.00 3.00 4.00 3.00 1.00 0.0	39.00 39.00 39.00 41.00 48.00 54.00 56.00 59.00 61.00 61.00 67.00 69.00 73.00 82.00 89.00 92.00 96.00 99.00 100.00 100.00 100.00 100.00
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Gravel (%) Boulder (%) Bedrock (%)	0.03 0.06 1.33 50.43 118.5 255.99 39 15 35 11 0 0		

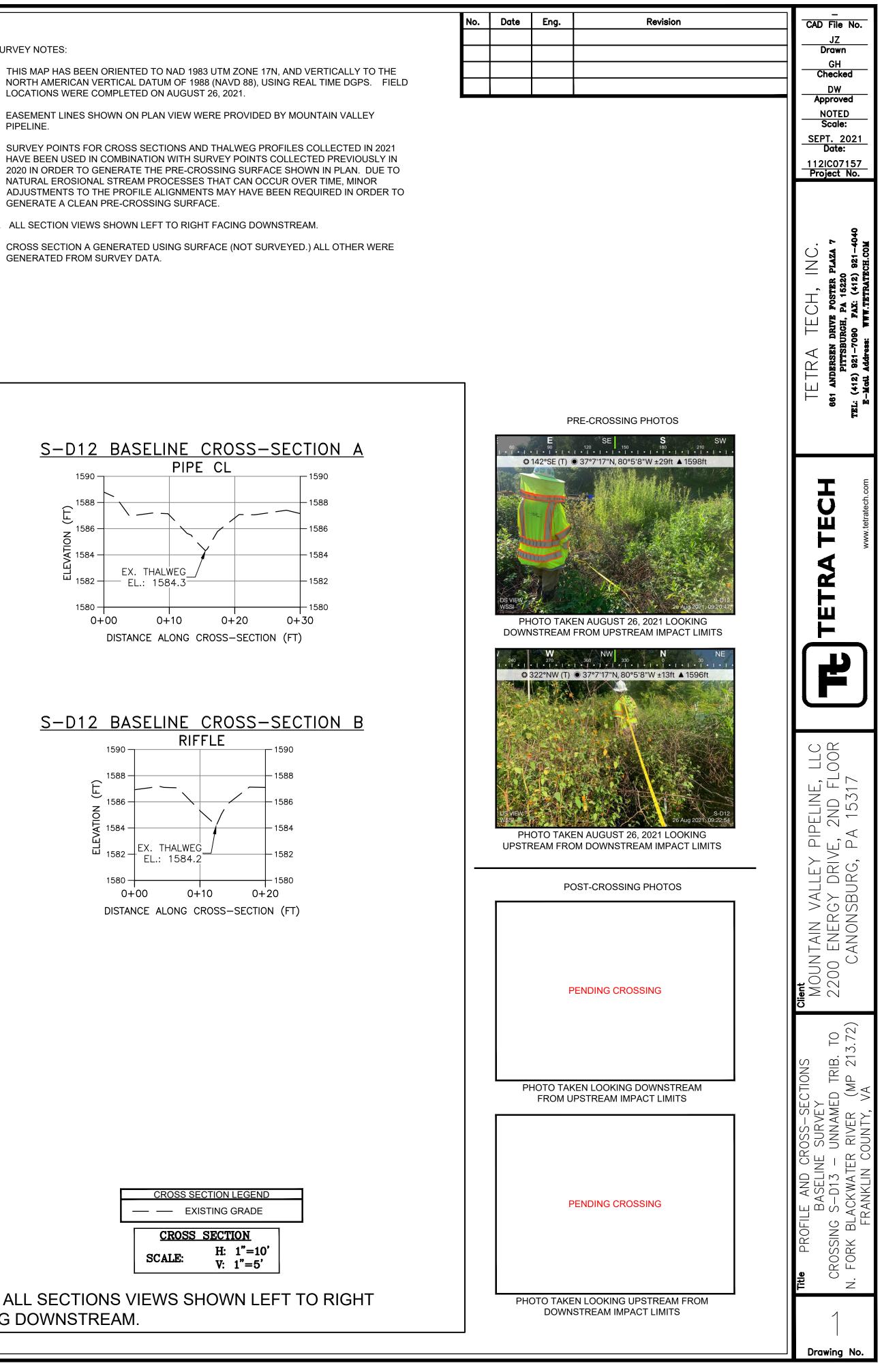

Total Particles = 100.

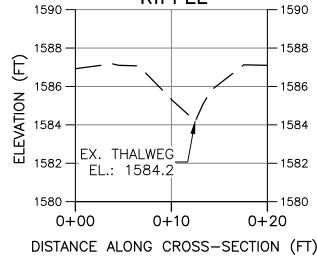
			Stream		essm tream Method		orm (F e in Virginia	' orm 'i)		
				For use in wadea	able channels cla	ssified as interm	nittent or perennia	al			
Project #	Project Nam	ne (App	licant)	Locality	Cowardin Class.	HUC	Date	SAR #	Impact Length	Impact Factor	
22865.06	Mountain Valley I Valley Pip	-	•	Franklin County	R4	03010101	8/26/21	S-D12	54	1	
Nam	e(s) of Evaluator(s)		Stream Name	e and Informa	tion				SAR Length		
	AW, JB		UNT to North	Fork Blackw	ater River				6	5	
Channel C	condition: Assess the c	cross-secti	on of the stream a								
	Optimal		Subo	ptimal	Conditional Catego	ginal	Po	or	Sev	ere	
Channel Condition	Very little incision or active e 100% stable banks. Vegetati protection or natural rock, p (80-100%). AND/OR Stable p bankfull benches are presen- to their original floodplain developed wide bankfull benc channel bars and transverse Transient sediment depositi less than 10% of botto	tive surface prominent point bars / nt. Access n or fully nches. Mid- e bars few. tion covers	prominent (60- Depositional feat stability. The ban channels are well de has access to ba newly developed	ted banks. Majority table (60-80%). tion or natural rock -80%) AND/OR ures contribute to	Poor. Banks more or Poor due to lo Erosion may be pro- both banks. Vegele 40-60% of banks. S vertical or und 40-60% Sediment i transient, contr Deposition that coo	less than Severe or stable than Severe wer bank stopes. esent on 40-60% of tative protection on treambanks may be ercut. AND/OR may be temporary / ibute instability. ntribute to stability, ntribute to stability.	laterally unstable further. Majority of vertical. Erosion pr banks. Vegetative on 20-40% of bank to prevent erosion. the stream is cov Sediment is temp nature, and contri	isised. Vertically / a. Likely to widen both banks are near sent on 60-80% of protection present AND/OR 60-80% of and is insufficient AND/OR 60-80% of ared by sediment. orary (transient in butting to instability. ed channels have	incision, flow contain Streambed below av majority of banks Vegetative protecti than 20% of banks erosion. Obvious present. Erosion/raw AND/OR Aggradin	stability. Severe ned within the banks. verage rooting depth, vertical/undercut. ion present on less s, is not preventing s bank sloughing	
			sediment covers 10 bott	0-40% of the stream com.	shaped channels protection on > 40' depositional featur to sta	s have vegetative % of the banks and es which contribute ability.	vegetative protect 40% of the banks a deposition	tion is present on > and stable sediment n is absent.	deposition, contrib Multiple thread o subterran	outing to instability. channels and/or lean flow.	CI
Scores	3		2.	.4		2	1	.6	1	1	2.40
	Ontimal			ditional Cate	7 - 7	ainal		ay be acceptable)	NOTES>>		
Riparian Buffers	Optimal Tree stratum (dbh > 3 inches with > 60% tree canopy. Wetlands located within the areas.	cover.		ptimal Low Suboptimal:	7 - 7	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrut and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh > 3 inches) present, with <30% tree canopy cover with maintained understrature	High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area; recently seeded and stabilized, or other comparable	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions.	NOTES>>		
•	Tree stratum (dbh > 3 inches with > 60% tree canopy Wetlands located within the	cover.	Subop High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory.	Defining Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation).	Mary High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover.	Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrut and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory.	High Poor: Lawns, mowed, and maintained areas, nurseries, no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition.	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions.	NOTES>>		
Buffers	Tree stratum (dbh > 3 inches with > 60% tree canopy Wetlands located within the areas.	cover.	Subop High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High	Defining Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation).	Mary High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover.	Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrut and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low	High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition.	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions.	NOTES>>		
•	Tree stratum (dbh > 3 inches with > 60% tree canopy Wetlands located within the	cover.	Subop High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory.	Defining Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation).	Mary High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover.	Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrut and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory.	High Poor: Lawns, mowed, and maintained areas, nurseries, no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition.	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions.	NOTES>>		
Buffers Scores Delineate ripa Determine sq	Tree stratum (dbh > 3 inches with > 60% tree canopy Wetlands located within the areas. 1.5	eam bank i neasuring	Subop High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 Into Condition Cate or estimating lengt	ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 egories and Cond th and width. Cale	Mary High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85	Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75 the descriptors.	High Poor: Lawns, mowed, and maintained areas, cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition. High 0.6	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian	NOTES>>		
Buffers Scores Delineate ripa Determine sq Enter the % R	Tree stratum (dbh > 3 inches with > 60% tree canopy Wetlands located within the areas. 1.5 trian areas along each stree uare footage for each by m tiparian Area and Score for	eam bank i neasuring	Subop High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 Into Condition Cate or estimating lengt	ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 egories and Cond th and width. Cale	Mary High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85	Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75 the descriptors.	High Poor: Lawns, mowed, and maintained areas, cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition. High 0.6	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5	NOTES>>		
Buffers Scores Delineate ripa Determine sq Enter the % R	Tree stratum (dbh > 3 inches with > 60% tree canopy Wetlands located within the areas. 1.5 Trian areas along each stree uare footage for each by m tiparian Area and Score for % Riparian Area> 1	eover. e riparian eam bank i neasuring or each ripa	Subop High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 Into Condition Cate or estimating lengt	ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 egories and Cond th and width. Call he blocks below.	Mary High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85	Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75 the descriptors.	High Poor: Lawns, mowed, and maintained areas, cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition. High 0.6	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100			
Buffers Scores Delineate ripa Determine sq Enter the % R	Tree stratum (dbh > 3 inches with > 60% tree canopy Wetlands located within the areas. 1.5 1.5 trian areas along each stree uare footage for each by m tiparian Area and Score for % Riparian Area> 1 Score > 1	eover. e riparian neasuring or each ripa 10%	Subop High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 Into Condition Cate or estimating lengt arian category in th 20% 0.5	ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent understory. Recent cutover (dense vegetation). Low 1.1 egories and Cond th and width. Call he blocks below. 70%	Mary High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85	Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75 the descriptors.	High Poor: Lawns, mowed, and maintained areas, cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition. High 0.6	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100	CI= (Sum % RA * Sc	-	
Buffers Scores Delineate ripa Determine sq Enter the % R Right Bank	Tree stratum (dbh > 3 inches with > 60% tree canopy Wetlands located within the areas. 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.	earn bank i neasuring or each rips 10% 1.5	Subop High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 Into Condition Cate or estimating lengt arian category in th 20% 0.5	ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent understory. Recent cutover (dense vegetation). Low 1.1 egories and Cond th and width. Call he blocks below. 70%	Mary High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85	Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75 the descriptors.	High Poor: Lawns, mowed, and maintained areas, cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition. High 0.6	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100	CI= (Sum % RA * So Rt Bank CI >	0.78	<u>CI</u> 0.70
Buffers Scores Delineate ripa Determine sq Enter the % F Right Bank Left Bank	Tree stratum (dbh > 3 inches with > 60% tree canopy Wetlands located within the areas. 1.5 Trian areas along each stree uare footage for each by m Riparian Area and Score for % Riparian Area? Score > 1 % Riparian Area? Score > 0 1 HABITAT : Varied sub	e over. le riparian neasuring or each ripa 10% 1.5 50% 0.5	Subop High Suboptimal: Riparian areas with tree stratum (dbh > 3 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Cate or estimating lengt arian category in th 20% 0.5 50% 0.75	ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 egories and Cond th and width. Calone blocks below. 70% 0.75	Marg High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85 ition Scores using culators are provid	Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrutu and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75 the descriptors.	High Poor: Lawns, mowed, and maintained areas, cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure 1 of % F Blocks e	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 Low 0.5 the sums Riparian equal 100 100%	CI= (Sum % RA * Sco Rt Bank CI > Lt Bank CI >	0.78 0.63	CI 0.70
Buffers Scores Delineate ripa Determine sq Enter the % R Right Bank Left Bank	Tree stratum (dbh > 3 inches with > 60% tree canopy Wetlands located within the areas. 1.5 Trian areas along each stree uare footage for each by m Riparian Area and Score for % Riparian Area? Score > 1 % Riparian Area? Score > 0 1 HABITAT : Varied sub	e over. le riparian neasuring or each ripa 10% 1.5 50% 0.5	Subop High Suboptimal: Riparian areas with tree stratum (dbh > 3 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Cate or estimating lengt arian category in th 20% 0.5 50% 0.75	ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 egories and Cond th and width. Call th and width. Call th and width. Call th and width. Call th blocks below. 70% 0.75 and depths; woody	Marg High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85 ition Scores using culators are provid	Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrutu and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75 the descriptors.	High Poor: Lawns, mowed, and maintained areas, cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure 1 of % F Blocks e	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 Low 0.5 the sums Riparian equal 100 100%	CI= (Sum % RA * Sco Rt Bank CI > Lt Bank CI >	0.78 0.63	
Buffers Scores Delineate ripa Determine sq Enter the % F Right Bank Left Bank	Tree stratum (dbh > 3 inches with > 60% tree canopy Wetlands located within the areas. 1.5 Trian areas along each stree uare footage for each by m Riparian Area and Score for % Riparian Area? Score > 1 % Riparian Area? Score > 0 1 HABITAT : Varied sub	e over. le riparian neasuring or each ripa 10% 1.5 50% 0.5	Subop High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 Into Condition Cate or estimating lenge arian category in th 20% 0.5 50% 0.75 as, water velocity a	ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 egories and Cond th and width. Call th and width. Call th and width. Call th and width. Call th blocks below. 70% 0.75 and depths; woody	Marg High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85 ition Scores using culators are provid	Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrutu and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75 the descriptors.	High Poor: Lawns, mowed, and maintained areas, parsely egetated non-maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure Blocks e	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lost, trails, or other comparable conditions. Low 0.5 Low 0.5 the sums Riparian equal 100 100%	CI= (Sum % RA * Sc Rt Bank CI > Lt Bank CI > banks; root mats; S	0.78 0.63	
Buffers Scores Delineate ripa Determine sq Enter the % F Right Bank Left Bank	Tree stratum (dbh > 3 inches with > 60% tree canopy Wetlands located within the areas. 1.5 1.5 trian areas along each stree uare footage for each by m tiparian Area and Score for % Riparian Area> 1 Score > 1 % Riparian Area> 5 Score > 0 % HABITAT: Varied sub le features.	eover. le riparian eam bank i neasuring or each ripa 10% 1.5 50% 0.5 50% 0.5 50%	Subop High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 Into Condition Cate or estimating lengt arian category in th 20% 0.5 50% 0.75 ss, water velocity a Stable habitat eler present in 30-50% of	ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 egories and Cond th and width. Call th and depths; woody Conditiona ptimal ments are typically of the reach and are	Mary High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85 tition Scores using culators are provid tition Scores using culators are provid addition addition addition Stable habitat ele present in 10-30% Stable habitat ele present in 10-30%	Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75 the descriptors. led for you below.	High Poor: Lawns, mowed, and maintained areas, sparsely vegetated non-maintained sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure I of % F Blocks e Blocks e Habitat elements lacking or are u elements are typic	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100 100%	CI= (Sum % RA * So Rt Bank CI > Lt Bank CI > banks; root mats; \$	0.78 0.63 SAV; riffle/pool	0.70
Buffers Scores Delineate ripa Determine sq Enter the % F Right Bank Left Bank INSTREAN mplexes, stabi Instream Habitat/ Available	Tree stratum (dbh > 3 inches with > 60% tree canopy Wetlands located within the areas. 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.	eover. le riparian eam bank i neasuring or each ripa 10% 1.5 50% 0.5 50% 0.5 50%	Subop High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 Into Condition Cate or estimating lengt arian category in th 20% 0.5 50% 0.75 stable habitat eler present in 30-50% of adequate for n popula	ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 egories and Cond th and width. Call th and depths; woody Conditiona ptimal ments are typically of the reach and are	Marg High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85 titon Scores using culators are provid culators are pro	Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75 the descriptors. led for you below.	High Poor: Lawns, mowed, and maintained areas, nurseries: no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area; recently seeded and stabilized, or other comparable condition. High 0.6 Ensure 1 of % F Blocks 6 Blocks 6 Habitat elements lacking or are u elements are typic than 10% c	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lost, trails, or other comparable conditions. Low 0.5 Low 0.5 the sums Riparian equal 100 100% 100% 5 cor s listed above are nstable. Habitat ally present in less	CI= (Sum % RA * Sc Rt Bank CI > Lt Bank CI > banks; root mats; S	0.78 0.63 SAV; riffle/pool Gradient	


Project #	Project Name (App	licant)	Locality	Cowardin Class.	HUC	Date	SAR #	Impact Length	Impact Factor	
22865.06	Mountain Valley Pipeline Valley Pipeline, L		Franklin County	R4	03010101	8/26/21	S-D12	54	1	
4. CHANNEL	ALTERATION: Stream crossin	ngs, riprap, concret	e, gabions, or cor	ncrete blocks, stra	ightening of chanr	nel, channelization	, embankments, s	spoil piles, constricti	ons, livestock	
			Conditiona	al Category		-		NOTES>>		
	Negligible	Mir	nor		erate 60 - 80% of reach	Sev	/ere			
Channel Alteration	Channelization, dredging, alteration, or hardening absent. Stream has an unaltered pattern or has naturalized.	Less than 20% of the stream reach is disrupted by any of the channel alterations listed in the parameter guidelines.	the channel alterations listed in the parameter guidelines.	is disrupted by any of the channel alterations listed in the parameter guidelines. If stream has been channelized, normal stable stream meander pattern has not recovered.	is disrupted by any of the channel alterations listed in the parameter guidelines. If stream has been channelized, normal stable stream meander pattern has not recovered.	by any of the chan in the parameter g 80% of banks sh riprap, or				СІ
Scores	1.5	1.3	1.1	0.9	0.7	0	.5			1.50
	REACH	CONDITION	INDEX and S	STREAM CO	NDITION UN	ITS FOR THI	S REACH			
<i>IOTE:</i> The CIs a	and RCI should be rounded to 2 deci	mal places. The CF	R should be round	led to a whole nun	nber.		THE REAC	H CONDITION IN	DEX (RCI) >>	1.10
						RCI= (Sum of	all CI's)/5, exce	ept if stream is ep	hemeral RCI = (I	Riparian CI/2
							COMPENSA	TION REQUIRE	MENT (CR) >>	59
							CR = R(CI X L _I X IF		
NSERT PHO	DTOS:									

PROVIDED UNDER SEPARATE COVER

	PR	E-CROSSING		POST-CF	ROSSING
PT. LOC.	NORTHING	EASTING	ELEV	VERT.	HORZ
PT. LOC.	NORTHING	EASTING	ELEV	DIFF.	DIFF.
TS-L	13480112.3500'	1906924.2580'	1587.136'		
BS-L	13480109.7697'	1906921.0109'	1584.405'		
THW	13480109.2235'	1906920.2266'	1584.149'		
BS-R	13480108.8400'	1906919.7320'	1584.242'		
TS-R	13480107.5400'	1906918.4130'	1585.793'		


LEGEND _____ STUDY AREA (EASEMENT) EXISTING SURVEY-LOCATED THALWEG - - - 1904 - EXISTING MINOR CONTOUR


SURVEY NOTES:

- 1. THIS MAP HAS BEEN ORIENTED TO NAD 1983 UTM ZONE 17N, AND VERTICALLY TO THE LOCATIONS WERE COMPLETED ON AUGUST 26, 2021.
- 2. EASEMENT LINES SHOWN ON PLAN VIEW WERE PROVIDED BY MOUNTAIN VALLEY PIPELINE.

3. SURVEY POINTS FOR CROSS SECTIONS AND THALWEG PROFILES COLLECTED IN 2021 NATURAL EROSIONAL STREAM PROCESSES THAT CAN OCCUR OVER TIME, MINOR GENERATE A CLEAN PRE-CROSSING SURFACE.

- 4. ALL SECTION VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.
- 5. CROSS SECTION A GENERATED USING SURFACE (NOT SURVEYED.) ALL OTHER WERE GENERATED FROM SURVEY DATA.

CROSS SECTION LEGEN)
EXISTING GRADE	
CROSS SECTION	
$\begin{array}{c c} & \underline{CROSS SECTION} \\ \hline \\ SCALE: & H: 1"=10 \\ \hline \\ SCALE: & V: 1"=5' \end{array}$,

NOTE: ALL SECTIONS VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.