Reach S-Y14 (Pipeline ROW) Perennial Spread H Roanoke County, Virginia

Data	Included
Photos	\checkmark
SWVM Form	\checkmark
FCI Calculator and HGM Form	N/A – Perennial stream (not shadeable)
RBP Physical Characteristics Form	\checkmark
Water Quality Data	\checkmark
RBP Habitat Form	\checkmark
RBP Benthic Form	\checkmark
Benthic Identification Sheet	\checkmark
Wolman Pebble Count	\checkmark
RiverMorph Data Sheet	\checkmark
USM Form (Virginia Only)	\checkmark
Longitudinal Profile and Cross Sections	\checkmark

Stream S-Y14 (ROW)

Roanoke County

Photo Type: RB DS VIEW Location, Orientation, Photographer Initials: Standing on RB looking downstream along the ROW looking NE, SB

Photo Type: LB DS VIEW Location, Orientation, Photographer Initials: Standing on LB looking downstream along the ROW looking NE, SB

DEQ Permit #21-0416

Stream S-Y14 (ROW)

Roanoke County

Photo Type: RB US VIEW Location, Orientation, Photographer Initials: Standing on RB looking upstream along the ROW looking SW, SB

Photo Type: LB US VIEW Location, Orientation, Photographer Initials: Standing on LB looking upstream along the ROW looking SW, SB

DEQ Permit #21-0416

Stream S-Y14 (ROW)

Roanoke County

Photo Type: RB CL Location, Orientation, Photographer Initials: Standing on RB looking at LB along pipe centerline looking NW, SB

Photo Type: LB CL Location, Orientation, Photographer Initials: Standing on LB looking at RB along pipe centerline looking SE, SB

DEQ Permit #21-0416

Stream S-Y14 (ROW)

Roanoke County

Photo Type: DS COND Location, Orientation, Photographer Initials: Downstream conditions outside of ROW looking NE, SB

L:\22000s\22860\22865.06\Admin\05-ENVR\Field Data\Spread H\Field Forms\S-Y14\0_Potesta Submission\Docs\S-Y14_Photo Doc_BKF10plus.docx

USACE FILE NO./ Project Name: (v2.1, Sept 2015)	Mountain	Valley Pipeline	IMPACT COORDINA (in Decimal Degree		37.187568	Lon.	-80.151049	WEATHER:	Sunny	DATE:	August 19	9, 2021
IMPACT STREAM/SITE ID / (watershed size (acreage), ur		S-Y	14		MITIGATION STREAM CLAS (watershed size {acre	SS./SITE ID AND S rage), unaltered or impal				Comments:		
STREAM IMPACT LENGTH:	77 FORM OF MITIGATION: MIT COORDINATES: (in Decimal Degrees) Lat. Lon.		PRECIPITATION PAST 48 HRS:	1.43"	Mitigation Length:							
Column No. 1- Impact Existing	Condition (Debit)	Column No. 2- Mitigation Existing Co	ndition - Baseline (Credit)		Column No. 3- Mitigation Post Comple	Projected at Five Y tion (Credit)	ears	Column No. 4- Mitigation Proje Post Completion (C	ected at Ten Years Credit)	Column No. 5- Mitigation Project	ed at Maturity (Cre	edit)
Stream Classification:	Perennial	Stream Classification:			Stream Classification:		0	Stream Classification:	0	Stream Classification:	0	
Percent Stream Channel Slo	pe 2.19	Percent Stream Channel Slop	De la		Percent Stream Channe	I Slope	0	Percent Stream Channel Ste	ope 0	Percent Stream Channel S	lope	0
HGM Score (attach dat	ta forms):	HGM Score (attach da	ata forms):		HGM Score (atta	ich data forms):		HGM Score (attach da	ata forms):	HGM Score (attach d	ata forms):	
	Average		Averag	,			Average		Average			Average
Hydrology		Hydrology			Hydrology			Hydrology		Hydrology		
Biogeochemical Cycling Habitat	0	Biogeochemical Cycling Habitat	0		Biogeochemical Cycling Habitat		0	Biogeochemical Cycling Habitat	0	Biogeochemical Cycling Habitat		0
PART I - Physical, Chemical and E	Biological Indicators	PART I - Physical, Chemical and	Biological Indicators		PART I - Physical, Chemica	I and Biological Inc	licators	PART I - Physical, Chemical and	Biological Indicators	PART I - Physical, Chemical and	Biological Indicat	tors
	Points Scale Range Site Score		Points Scale Range Site Score			Points Scale Range	Site Score		Points Scale Range Site Score		Points Scale Range	Site Score
PHYSICAL INDICATOR (Applies to all streams of	classifications)	PHYSICAL INDICATOR (Applies to all streams cla	assifications)		PHYSICAL INDICATOR (Applies to all stre	ams classifications)		PHYSICAL INDICATOR (Applies to all streams	classifications)	PHYSICAL INDICATOR (Applies to all streams	classifications)	
USEPA RBP (High Gradient Data Sheet)		USEPA RBP (Low Gradient Data Sheet)			USEPA RBP (High Gradient Data Shee	t)		USEPA RBP (High Gradient Data Sheet)		USEPA RBP (High Gradient Data Sheet)		
1. Epifaunal Substrate/Available Cover	0-20 20	1. Epifaunal Substrate/Available Cover	0-20		1. Epifaunal Substrate/Available Cover	0-20		 Epifaunal Substrate/Available Cover 	0-20	 Epifaunal Substrate/Available Cover 	0-20	
2. Embeddedness	0-20 20	2. Pool Substrate Characterization	0-20		2. Embeddedness	0-20		2. Embeddedness	0-20	2. Embeddedness	0-20	
3. Velocity/ Depth Regime 4. Sediment Deposition	0-20 18	3. Pool Variability 4. Sediment Deposition	0-20		3. Velocity/ Depth Regime 4. Sediment Deposition	0-20		3. Velocity/ Depth Regime 4. Sediment Deposition	0-20	3. Velocity/ Depth Regime 4. Sediment Deposition	0-20	
5. Channel Flow Status	0-20 0.4 15	5. Channel Flow Status	0-20		5. Channel Flow Status	0-20		5. Channel Flow Status	0-20	5. Channel Flow Status	0-20	
6. Channel Alteration	0-20 0-1 20	6. Channel Alteration	0-20 0-1		6. Channel Alteration	0-20 0-1		6. Channel Alteration	0-20 0-1	6. Channel Alteration	0-20 0-1	
7. Frequency of Riffles (or bends)	0-20 19	7. Channel Sinuosity	0-20		7. Frequency of Riffles (or bends)	0-20		7. Frequency of Riffles (or bends)	0-20	7. Frequency of Riffles (or bends)	0-20	
8. Bank Stability (LB & RB)	0-20 14	8. Bank Stability (LB & RB)	0-20		8. Bank Stability (LB & RB)	0-20		8. Bank Stability (LB & RB)	0-20	8. Bank Stability (LB & RB)	0-20	
9. Vegetative Protection (LB & RB)	0-20 10	9. Vegetative Protection (LB & RB)	0-20		9. Vegetative Protection (LB & RB)	0-20		9. Vegetative Protection (LB & RB)	0-20	9. Vegetative Protection (LB & RB)	0-20	
10. Riparian Vegetative Zone Width (LB & RB)	0-20 14	10. Riparian Vegetative Zone Width (LB & RB)	0-20		10. Riparian Vegetative Zone Width (LB & RB	0-20		10. Riparian Vegetative Zone Width (LB & RB)	0-20	 Riparian Vegetative Zone Width (LB & RB) 	0-20	
Total RBP Score	Optimal 169	Total RBP Score	Poor 0		Total RBP Score	Poor	0	Total RBP Score	Poor 0	Total RBP Score	Poor	0
Sub-Total CHEMICAL INDICATOR (Applies to Intermittent	0.845	Sub-Total CHEMICAL INDICATOR (Applies to Intermittent a	0		Sub-Total CHEMICAL INDICATOR (Applies to Interm	ittent and Perennial St	0 reams)	Sub-Total CHEMICAL INDICATOR (Applies to Intermitter	0	Sub-Total CHEMICAL INDICATOR (Applies to Intermitter	nt and Perennial Stree	0 ams)
	,		,				,					,
WVDEP Water Quality Indicators (General) Specific Conductivity		WVDEP Water Quality Indicators (General) Specific Conductivity			WVDEP Water Quality Indicators (Gen Specific Conductivity	eral)		WVDEP Water Quality Indicators (General Specific Conductivity)	WVDEP Water Quality Indicators (General Specific Conductivity)	
opeome conductivity	0.90 27.2	opeenie oonddelivity	0-90		opeome conducting	0-90		opeenie oonddenvity	0-90	opeane conducting	0-90	
<=99 - 90 points	0-90 27.2		0-90			0-90			0-90		0-90	
pH		рН			pH			pH		pH		
6.0-8.0 = 80 points	0-80 7.4		5-90			5-90			5-90		5-90	
DO		DO			DO			DO		DO		
	10-30 8.38		10-30			10-30			10-30		10-30	
>5.0 = 30 points Sub-Total	1	Sub-Total	0		Sub-Total		0	Sub-Total		Sub-Total		0
BIOLOGICAL INDICATOR (Applies to Intermitte		BIOLOGICAL INDICATOR (Applies to Intermitten			BIOLOGICAL INDICATOR (Applies to Int	ermittent and Perenn	<u> </u>	BIOLOGICAL INDICATOR (Applies to Interm	ittent and Perennial Streams)	BIOLOGICAL INDICATOR (Applies to Interm	ittent and Perennial	I Streams)
WV Stream Condition Index (WVSCI)		WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)		WV Stream Condition Index (WVSCI)		
	0-100 0-1 88.1		0-100 0-1			0-100 0-1			0-100 0-1		0-100 0-1	
Very Good Sub-Total	1	Sub-Total	0		Sub-Total		0	Sub-Total	0	Sub-Total		0
PART II - Index and Un	nit Score	PART II - Index and U	nit Score		PART II - Index	and Unit Score		PART II - Index and U	nit Score	PART II - Index and L	Init Score	
Index	Linear Feet Unit Score	Index	Linear Feet Unit Sco	re	Index	Linear Feet	Unit Score	Index	Linear Feet Unit Score	Index	Linear Feet	Unit Score
0.948	77 73.0216667	0	0 0		0	0	0	0	0 0	0	0	0
0.040	10.0210001	<u> </u>	ů ů		, i i i i i i i i i i i i i i i i i i i	, i	, i	Ľ*		Ľ ř		v

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

STREAM NAME S-Y14	LOCATION Roanoke County						
STATION # RIVERMILE	STREAM CLASS Perennial						
LAT <u>37.187568</u> LONG <u>-80.151049</u>	RIVER BASIN Upper Roand	bke					
STORET #	AGENCY VADEQ	AGENCY VADEQ					
INVESTIGATORS KB, SB							
FORM COMPLETED BY KB	DATE 8/19/21 TIME 10:58 AM	REASON FOR SURVEY Baseline Assessment					

WEATHER CONDITIONS	Now Past 24 hours Has there been a heavy rain in the last 7 days?
SITE LOCATION/MAP	Draw a map of the site and indicate the areas sampled (or attach a photograph)
STREAM CHARACTERIZATION	Stream Subsystem Stream Type Perennial Intermittent Tidal Stream Origin Coldwater Warmwater Glacial Ølacial montane Ølacial montane Swamp and bog Other Km²

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

WATERSHED FEATURES RIPARIAN VEGETATION (18 meter buffer)	Predominant Surrounding Landuse ☐ Forest ☐ Commercial ☐ Field/Pasture Industrial ☐ Agricultural Other ☐ Residential	
INSTREAM FEATURES	Estimated Reach Length49 mEstimated Stream Width2 mSampling Reach Area98 m²Area in km² (m²x1000)km²Estimated Stream Depth0.1 mSurface Velocity0.6 m/sec(at thalweg)0.6 m/sec	Canopy Cover □Partly shaded □Shaded Image: Partly open □Partly shaded □Shaded High Water Mark 0.25 m Proportion of Reach Represented by Stream Morphology Types Riffle 70 % Pool 30 % Channelized Yes No Dam Present Yes No
LARGE WOODY DEBRIS	LWD _2m ² Density of LWDm ² /km ² (LWD/ rea	ch area)
AQUATIC VEGETATION	Indicate the dominant type and record the domin Rooted emergent Floating Algae Dominant species present Portion of the reach with aquatic vegetation <u>5</u>	
WATER QUALITY (DS)	Temperature_17.6 0 C Specific Conductance 27.2 us/cm Dissolved Oxygen _8.38 mg/L pH _7.4 Turbidity WQ Instrument Used _YSU VA-2	Water Odors Normal/None Sewage Petroleum Chemical Fishy Other N/A Water Surface Oils Slick Slick Sheen Globs Vater Surface Oils Other N/A Turbidity (if not measured) Turbid Valear Slightly turbid Turbid Opaque Stained Other N/A
SEDIMENT/ SUBSTRATE	Odors □ Petroleum □ Chemical □ Anaerobic □ None □ Other №A □ Other №A □ Petroleum Oils □ Absent □ Slight □ Moderate □ Profuse	Deposits □Sludge □Sawdust □Paper fiber ✓Sand □Relict shells □Other N/A □ □ Hooking at stones which are not deeply embedded, are the undersides black in color? □ Yes ☑No

INC	ORGANIC SUBSTRATE ((should add up to 1			ORGANIC SUBSTRATE COMPONENTS (does not necessarily add up to 100%)						
Substrate Type	Diameter	% Composition in Sampling Reach	Substrate Type	Characteristic	% Composition in Sampling Area					
Bedrock			Detritus	sticks, wood, coarse plant	45					
Boulder	> 256 mm (10")	15		materials (CPOM)	15					
Cobble	64-256 mm (2.5"-10") 60		Muck-Mud	black, very fine organic	Г					
Gravel	2-64 mm (0.1"-2.5")	10		(FPOM)	5					
Sand	0.06-2mm (gritty)	15	Marl	grey, shell fragments	0					
Silt	0.004-0.06 mm		1		0					
Clay	< 0.004 mm (slick)]							

Notes: Only downstream water quality measurements taken due to low flow.

HABITAT ASSESSMENT FIELD DATA SHEET - HG - USE ON ALL STREAMS (FRONT)

STREAM NAME S-Y14	LOCATION Roanoke County					
STATION # RIVERMILE	STREAM CLASS Perennial					
LAT <u>37.187568</u> LONG <u>-80.151049</u>	RIVER BASIN Upper Roanoke					
STORET #	AGENCY VADEQ					
INVESTIGATORS KB, SB						
FORM COMPLETED BY KB	DATE 8/19/21 TIME 10:58 AM AM PM REASON FOR SURVEY Baseline Assessment					

	Habitat		Condition	Category					
	Parameter	Optimal	Suboptimal	Marginal	Poor				
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are <u>not</u> new fall and <u>not</u> transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.				
	_{SCORE} 20	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0				
n sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.				
ted ii	_{score} 20	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0				
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow- deep, slow-shallow, fast- deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast- shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).				
ıram	_{SCORE} 18	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0				
P	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.				
	_{SCORE} 19	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0				
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.				
	_{score} 15	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0				

Notes:

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

Habitat		Conditio	n Category	
Parameter	Optimal	Suboptimal	Marginal	Poor
6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabic or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
_{score} 20	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 (
7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water of shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.
score 19	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
8. Bank Stability (score each bank) Note: determine left or right side by facing desumetroom.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30- 60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing 60-100% of bank has erosional scars.
SCORE 6	Left Bank 10 9	8 7 6	5 4 3	2 1 0
SCORE 8	Right Bank 10 9	8 7 6	5 4 3	2 1 0
9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well- represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streamban vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
SCORE 5	Left Bank 10 9	8 7 6	5 4 3	2 1 0
SCORE 5	Right Bank 10 9	8 7 6	5 4 3	2 1 0
10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone - meters: little or no riparian vegetation due human activities.
SCORE 7	Left Bank 10 9	8 7 6	5 4 3	2 1 0
SCORE 7		8 7 6	5 4 3	

BENTHIC MACROINVERTEBRATE FIELD DATA SHEET

STREAM NAME S-Y	14	LOCATION Roanoke County	/							
STATION #	_ RIVERMILE	STREAM CLASS Perennial	STREAM CLASS Perennial							
LAT37.187568	LONG80.151049	RIVER BASIN Upper Roand	ke							
STORET #		AGENCY VADEQ								
INVESTIGATORS KE	3, SB		LOT NUMBER							
FORM COMPLETED	^{BY} KB	DATE 8/19/21 TIME 10:58 AM	REASON FOR SURVEY Baseline Assessment							
HABITAT TYPES	✓Cobble_90 % ✓Sn	licate the percentage of each habitat type present Cobble ∞ % ✓Snags 10 % □Vegetated Banks % □Sand % Submerged Macrophytes % □Other ()_%								
SAMPLE COLLECTION	Gear used D-frame	kick-net Other								
COLLECTION	How were the samples coll	lected? wading fi	rom bank from boat							
	How were the samples collected? wading from bank from boat Indicate the number of jabs/kicks taken in each habitat type. Sand									
GENERAL COMMENTS		ollected in riffle habi noved from sample.	tats. Salamanders and crayfish							

QUALITATIVE LISTING OF AQUATIC BIOTA

Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare, 2 = Common, 3= Abundant, 4 = Dominant

Periphyton	0	1	2	3	4	Slimes	0	1	2	3	4
Filamentous Algae	0	1	2	3	4	Macroinvertebrates	0	1	2	3	4
Macrophytes	0	1	2	3	4	Fish	0	1	2	3	4

FIELD OBSERVATIONS OF MACROBENTHOS

Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare (1-3 organisms), 2 = Common (3-9 organisms), 3= Abundant (>10 organisms), 4 = Dominant (>50 organisms)

Porifera	0	1	2	3	4	Anisoptera	0	1	2	3	4	Chironomidae	0	1	2	3	4
Hydrozoa	0	1	2	3	4	Zygoptera	0	1	2	3	4	Ephemeroptera	0	1	2	3	4
Platyhelminthes	0	1	2	3	4	Hemiptera	0	1	2	3	4	Trichoptera	0	1	2	3	4
Turbellaria	0	1	2	3	4	Coleoptera	0	1	2	3	4	Other	0	1	2	3	4
Hirudinea	0	1	2	3	4	Lepidoptera	0	1	2	3	4						
Oligochaeta	0	1	2	3	4	Sialidae	0	1	2	3	4						
Isopoda	0	1	2	3	4	Corydalidae	0	1	2	3	4						
Amphipoda	0	1	2	3	4	Tipulidae	0	1	2	3	4						
Decapoda	0	1	2	3	4	Empididae	0	1	2	3	4						
Gastropoda	0	1	2	3	4	Simuliidae	0	1	2	3	4						
Bivalvia	0	1	2	3	4	Tabinidae	0	1	2	3	4						
						Culcidae	0	1	2	3	4						

Mountain Valley Pipeline Data are not adjusted for subsampling

ECO ANALYSTS, INC. LIFE IN WATER

	Sample ID	S-Y14
	Collection Date	08-19-2021
ORDER	GENUS/SPECIES	COUNT
Ephemeroptera	Baetis sp.	7
Ephemeroptera	Diphetor hageni	2
Ephemeroptera	Epeorus sp.	1
Ephemeroptera	Eurylophella sp.	5
Ephemeroptera	Habrophlebiodes sp.	11
Ephemeroptera	Heptagenia sp.	35
Ephemeroptera	Leucrocuta sp.	1
Ephemeroptera	Maccaffertium sp.	7
Ephemeroptera	Procloeon sp.	3
Plecoptera		3
	Peltoperla sp.	1
Plecoptera		6
Plecoptera	•	4
Plecoptera		18
•	Tallaperla sp.	5
	Diplectrona sp.	17
•	Dolophilodes sp.	2
•	Glossosoma sp.	2
	Hydropsyche sp.	2
	Neophylax sp.	1
•	Polycentropus sp.	2
	Rhyacophila sp.	2
•	Lanthus sp.	4
Coleoptera	•	5
•	Optioservus sp.	5
•		10
-	Oulimnius sp.	-
Diptera-Chironomidae		1
Diptera-Chironomidae		3
Diptera-Chironomidae		1
Diptera-Chironomidae		2
Diptera-Chironomidae		25
Diptera-Chironomidae		5 17
Diptera-Chironomidae	Tanytarsus sp. Thienemannimyia gr. sp.	9
•	Ceratopogoninae	9
•	Hexatoma sp.	3
	Neoplasta sp.	3
•	Branchiobdellida	2
	Lumbricina	1
	tubificoid Naididae w/o cap setae	1
Annenua	TOTAL	216

Mountain Valley Pipeline WV SCI Metrics

ECO ANALYSTS, INC. LIFE IN WATER

Sample ID Collection Date	
WVSCI Metric Values	25
EPT taxa	15
% EPT	63.4
% Chironomidae	19.9
% 2 Dominant HBI	40.3 3.95
	3.95
WVSCI Metric Scores	
Total taxa EPT taxa	119.0 115.4
SPT laxa	69.0
% Chironomidae	80.9
% 2 Dominant	93.3
HBI	85.2
WVSCI Metric Scores	
Total taxa	100.0
EPT taxa	100.0
% EPT % Chironomidae	69.0 80.9
% 2 Dominant	93.3
HBI	85.2
WVSCI Total Score	88.1

WVSCI Thresholds Unimpaired = > 68.00 Gray Zone = 60.61 to 68.00 Impaired = <60.61

WOLMAN PEBBLE COUNT FORM

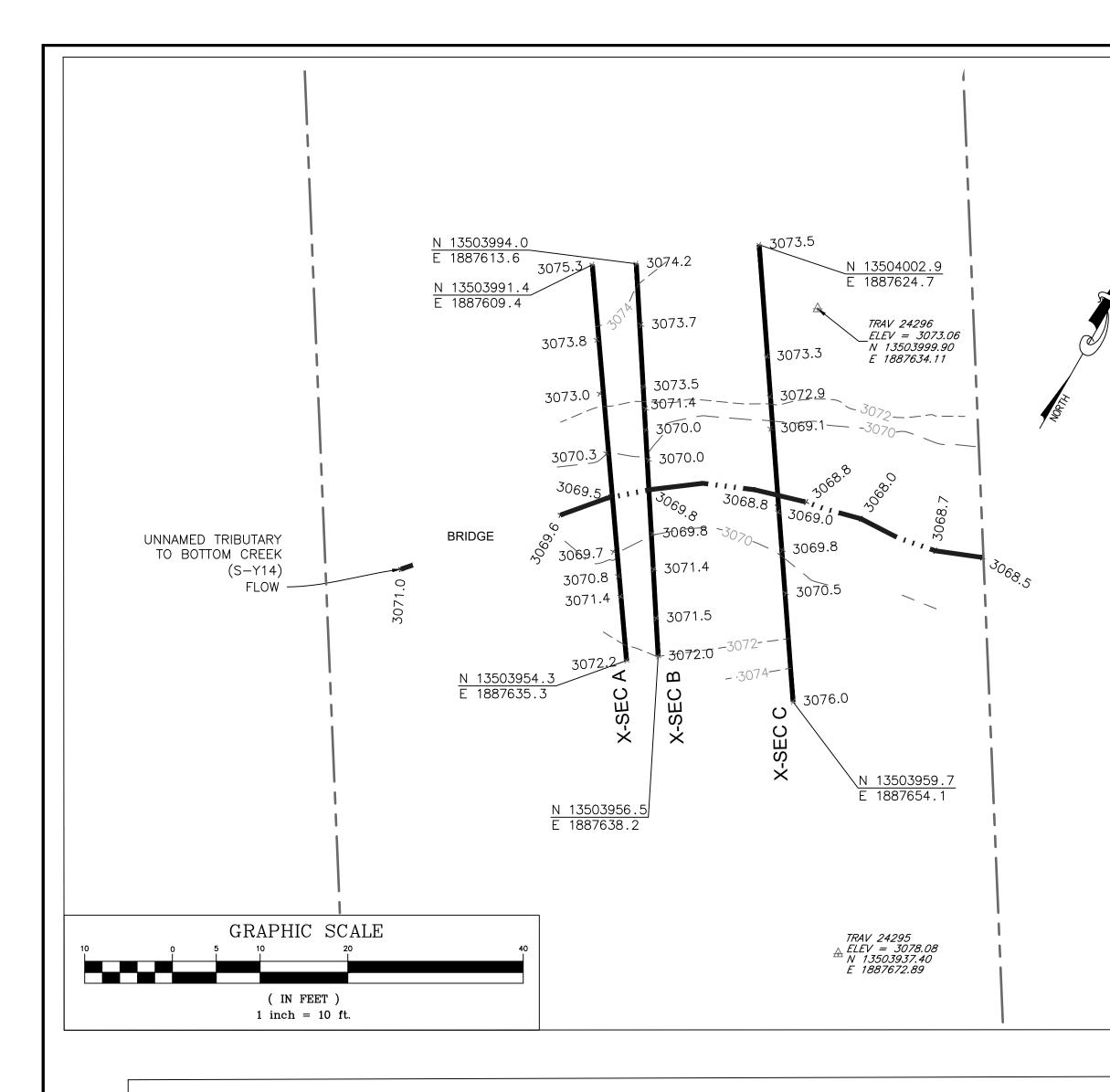
CountyRoanoke CountyStream NameUNT to Bottom CreekHUC Code03010101Survey Date8/19/2021Surveyors:KB, SBTypeRepresentative

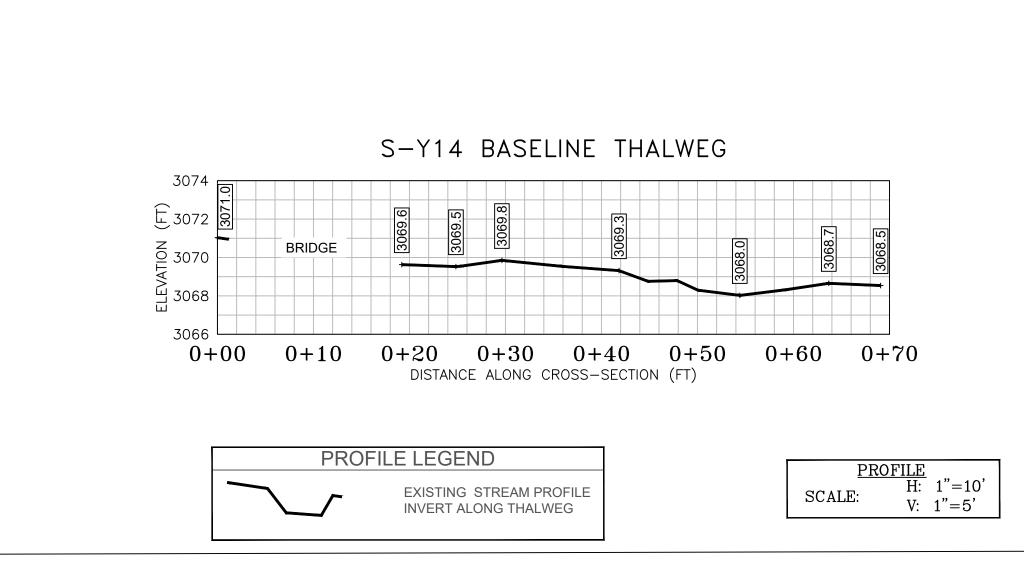
Stream ID S-Y14

Upper Roanoke

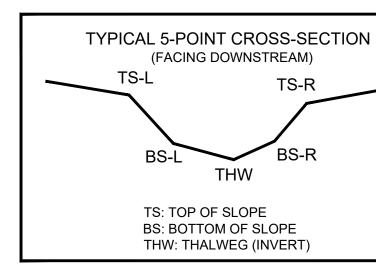
Inches	D & D TLOI E						
	PARTICLE	Millimeters		Particle Count	Total #	Item %	% Cum
	Silt/Clay	< .062	S/C	* *	0	0.00	0.00
	Very Fine	.062125		▲ ▼	0	0.00	0.00
	Fine	.12525	1	▲ ▼	0	0.00	0.00
	Medium	.255	SAND	▲ ▼	0	0.00	0.00
	Coarse	.50-1.0		▲ ▼	0	0.00	0.00
.0408	Very Coarse	1.0-2	1	▲ ▼	0	0.00	0.00
.0816	Very Fine	2 -4		▲ ▼	4	4.00	4.00
.1622	Fine	4 -5.7	1	▲ ▼	4	4.00	8.00
.2231	Fine	5.7 - 8	1	▲ ▼	0	0.00	8.00
.3144	Medium	8 -11.3	GRAVEL	▲ ▼	10	10.00	18.00
.4463	Medium	11.3 - 16		▲ ▼	7	7.00	25.00
.6389	Coarse	16 -22.6		▲ ▼	12	12.00	37.00
.89 - 1.26	Coarse	22.6 - 32	1	▲ ▼	6	6.00	43.00
1.26 - 1.77	Vry Coarse	32 - 45	-	▲ ▼	8	8.00	51.00
1.77 -2.5	Vry Coarse	45 - 64	1	▲ ▼	8	8.00	59.00
2.5 - 3.5	Small	64 - 90		▲ ▼	12	12.00	71.00
3.5 - 5.0	Small	90 - 128	1	▲ ▼	16	16.00	87.00
5.0 - 7.1	Large	128 - 180	COBBLE	▲ ▼	10	10.00	97.00
7.1 - 10.1	Large	180 - 256	1	▲ ▼	2	2.00	99.00
10.1 - 14.3	Small	256 - 362		▲ ▼	1	1.00	100.00
14.3 - 20	Small	362 - 512	1	▲ ▼	0	0.00	100.00
20 - 40	Medium	512 - 1024	BOULDER	▲ ▼	0	0.00	100.00
40 - 80	Large	1024 -2048	1	▲ ▼	0	0.00	100.00
80 - 160	Vry Large	2048 -4096	1		0	0.00	100.00
	Bedrock		BDRK		0	0.00	100.00
				Totals:	100		

Basin


	Representative 08/19/2021						
Size (mm)	TOT #	ITEM %	CUM %				
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 4 \\ 4 \\ 0 \\ 10 \\ 7 \\ 12 \\ 6 \\ 8 \\ 8 \\ 12 \\ 16 \\ 10 \\ 2 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	0.00 0.00 0.00 0.00 0.00 4.00 4.00 10.00 7.00 12.00 6.00 8.00 12.00 16.00 10.00 2.00 1.00 0.00	$ \begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 4.00\\ 8.00\\ 8.00\\ 18.00\\ 25.00\\ 37.00\\ 43.00\\ 51.00\\ 59.00\\ 71.00\\ 87.00\\ 97.00\\ 99.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00 \end{array} $				
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Gravel (%) Boulder (%) Bedrock (%)	10.64 21.5 43.38 120.88 169.6 361.99 0 0 59 40 1 0						


Total Particles = 100.

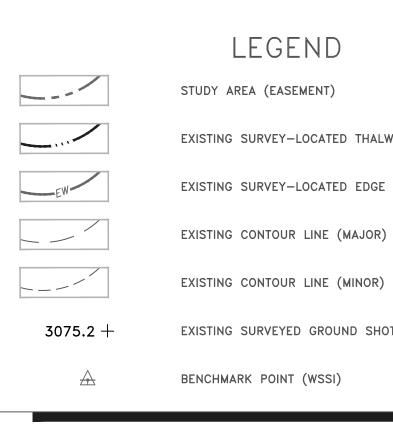
		Ċ	Strean				•		-		
					tream Method able channels cla			al			
					Cowardin				Impact	Impact	
Project #	Project Na Mountain Valley			Locality Roanoke	Class.	HUC	Date	SAR #	Length	Factor	
22865.07	Valley Pi	ipeline, L	LC)	County	R3	03010101	8/19/21	S-Y14	77	1	
Nam	e(s) of Evaluator(s)		Stream Name						SAR Length		
	KB, SB		Unnamed Tri	butary to Bot	tom Creek				161		
Channel C	condition: Assess the	e cross-sectio	on of the stream a		dition (erosion, age Conditional Catego						
	Optimal		Subo	ptimal	_	ginal	Po	or	Sev	ere	
Channel Condition	Very little incision or active 100% stable banks. Vegets protection or natural rock, (80-100%). AND/OR Stable bankfull benches are prese to their original floodpla developed wide bankfull be channel bars and transvers Transient sediment deposi less than 10% of bo	etative surface k, prominent le point bars / sent. Access ain or fully benches. Mid- arse bars few. isition covers	of banks are st Vegetative protect prominent (60- Depositional feat stability. The ban channels are well de has access to ba newly developed	ted banks. Majority table (60-80%). tion or natural rock. 8-80%) AND/OR ures contribute to hkfull and low flow offined. Stream likely nkfull benches,or floodplains along each. Transient 0-40% of the stream	Poor. Banks more or Poor due to lc Erosion may be pri both banks. Vege 40-60% of banks. S vertical or und 40-60% Sediment in transient, contained Deposition that co- may be forming/pri shaped channels protection on > 400	esent on 40-60% of treambanks may be ercut. AND/OR may be temporary / ibute instability. ntribute to stability, resent. AND/OR N. have vegetative % of the banks and	laterally unstable further. Majority of vertical. Erosion pr banks. Vegetative on 20-40% of banks. to prevent erosion. the stream is cov Sediment is temp nature, and contri AND/OR V-shag vegetative protec 40% of the banks s	cised. Vertically / e. Likely to widen both banks are near seent on 60-80% of e protection present s, and is insufficient AND/CR 60-80% of ered by sediment. orary / transient in voring / transient in buting to instability. sed channels have ion is present on > and stable sediment	Streambed below av majority of banks. Vegetative protecti than 20% of banks erosion. Obvious present. Erosion/raw AND/OR Aggradin than 80% of stream deposition, contrib Multiple thread of	stability. Severe ed within the banks, erage rooting depth, vertical/undercut. on present on less is not preventing s bank sloughing banks on 80-100%. g channel. Greater bed is covered by uting to instability. channels and/or	
					to sta	-		is absent.	subterran	ean flow.	CI
Scores	3		2.	.4		2	1	.6	1		2.40
RIPARIAN	BUFFERS: Assess	s both bank's				measurements o	f length & width ma	ay be acceptable)			
. RIPARIAN	I BUFFERS: Assess	s both bank's	Con	areas along the e Iditional Cate ptimal	gory	ginal	Po	ay be acceptable) por	NOTES>>		
RIPARIAN Riparian Buffers	1	thes) present, py cover.	Con	ditional Cate	gory		Poor: Lawns, mowed, and maintained areas, nurseries; no-till	,			
Riparian Buffers	Optimal Tree stratum (dbh > 3 inch with > 60% tree canop Wetlands located within t areas.	thes) present, py cover.	Con Subop High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaccous and shrub layers or a non-maintained understory.	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation).	High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover.	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrut and tree stratum (dbh >3 inches) present, tree stratum (dbh >3 inches) present, with ~30% tree canopy cover with maintained understory. Low	Perind Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition.	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions.			
Riparian	Optimal Tree stratum (dbh > 3 inch with > 60% tree canop Wetlands located within t	thes) present, py cover.	Con Subop High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory.	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation).	Gory High Marginal: Non-maintained, dense herbaccous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover.	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with ~30% tree canopy cover with maintained understory.	Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition.	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other conditions.			
Riparian Buffers Scores Delineate ripa Determine squ	Optimal Tree stratum (dbh > 3 inch with > 60% tree canop Wetlands located within t areas. 1.5 1.5 rian areas along each str uare footage for each by	thes) present, py cover. the riparian the riparian	Con Subop High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 nto Condition Cate or estimating lengt	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy code tree canopy code and a maintained understory. Recent cutover (dense vegetation). Low 1.1 egories and Cond th and width. Cale	gory High Marginal: Non-maintained, dense hetbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30%	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75 the descriptors.	Pec High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure of % F	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian			
Riparian Buffers Scores Delineate ripa Determine squ Enter the % R	Optimal Tree stratum (dbh > 3 inch with > 60% tree canop Wetlands located within t areas. 1.5 1.5 rian areas along each str uare footage for each by tiparian Area and Score f	thes) present, py cover. the riparian the riparian tream bank is y measuring for each ripa	Con Suboy High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 nto Condition Cate or estimating lengt arian category in th	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy code tree canopy code and a maintained understory. Recent cutover (dense vegetation). Low 1.1 egories and Cond th and width. Cale	gory High Marginal: Non-maintained, dense hetbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30%	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75 the descriptors.	Pec High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure of % F	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums tiparian equal 100			
Riparian Buffers Scores Delineate ripa Determine squ Enter the % R	Optimal Tree stratum (dbh > 3 inch with > 60% tree canop Wetlands located within t areas. 1.5 rian areas along each str uare footage for each by tiparian Area and Score f % Riparian Area>	thes) present, py cover. the riparian the riparian	Con Subop High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 nto Condition Cate or estimating lengt	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy code tree canopy code and a maintained understory. Recent cutover (dense vegetation). Low 1.1 egories and Cond th and width. Cale	gory High Marginal: Non-maintained, dense hetbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30%	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75 the descriptors.	Pec High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure of % F	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian	NOTES>>		
Riparian Buffers Scores Delineate ripa Determine squ Enter the % R	Optimal Tree stratum (dbh > 3 inch with > 60% tree canop Wetlands located within t areas. 1.5 1.5 rian areas along each str uare footage for each by tparian Area and Score f % Riparian Area> Score >	thes) present, py cover. the riparian tream bank is y measuring for each ripa 85% 0.75	Con Suboy High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 nto Condition Cate or estimating lengt arian category in th 15% 0.5	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy code tree canopy code and a maintained understory. Recent cutover (dense vegetation). Low 1.1 egories and Cond th and width. Cale	gory High Marginal: Non-maintained, dense hetbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30%	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75 the descriptors.	Pec High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure of % F	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100	NOTES>>	,	
Riparian Buffers Scores Delineate ripa Determine squ Enter the % R	Optimal Tree stratum (dbh > 3 inch with > 60% tree canop with > 60% tree canop Wetlands located within t areas. 1.5 rian areas along each struare footage for each by toparian Area and Score f % Riparian Area> Score > % Riparian Area>	thes) present, py cover. the riparian the riparian tream bank in y measuring for each ripa 85%	Con Suboy High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 nto Condition Cate or estimating lenge arian category in th 15%	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy code tree canopy code and a maintained understory. Recent cutover (dense vegetation). Low 1.1 egories and Cond th and width. Cale	gory High Marginal: Non-maintained, dense hetbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30%	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75 the descriptors.	Pec High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure of % F	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums tiparian equal 100	NOTES>>	ores*0.01)/2 0.71 0.71	<u>CI</u> 0.71
Riparian Buffers Scores Delineate ripa Determine sq Enter the % R Right Bank Left Bank	Optimal Tree stratum (dbh > 3 inch with > 60% tree canop with > 60% tree canop Wetlands located within t areas. 1.5 trian areas along each strate ware footage for each by tiparian Area and Score f % Riparian Area> Score > % Riparian Area> Score > % Riparian Area> Score > MHABITAT: Varied su	thes) present, py cover. the riparian tream bank in measuring for each ripa 85% 0.75	Con Subop High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 nto Condition Cate or estimating lengt arian category in th 15% 0.5	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy notioner and a mainter understory. Recent cutover (dense vegetation). Low 1.1 egories and Cond th and width. Cale he blocks below.	gory High Marginal: Non-maintained, dense herbaccous vegetation with > 3 inches) present, with <30% tree canopy cover. High 0.85 tion Scores using culators are provid	ginal Low Marginal: Non-maintained, dense herbaccous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75 the descriptors. ed for you below.	Period High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure of % F Blocks e	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100 100%	NOTES>> CI= (Sum % RA * Sco Rt Bank CI > Lt Bank CI >	0.71	
Riparian Buffers Scores Delineate ripa Determine sq Enter the % R Right Bank Left Bank	Optimal Tree stratum (dbh > 3 inch with > 60% tree canop with > 60% tree canop Wetlands located within t areas. 1.5 trian areas along each strate ware footage for each by tiparian Area and Score f % Riparian Area> Score > % Riparian Area> Score > % Riparian Area> Score > MHABITAT: Varied su	thes) present, py cover. the riparian tream bank in measuring for each ripa 85% 0.75	Con Subop High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 nto Condition Cate or estimating lengt arian category in th 15% 0.5	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 egories and Cond th and width. Cale the and width. Cale the blocks below.	gory High Marginal: Non-maintained, dense hetbaceous vegetation with area layer (dbh area layer (dbh) area layer (dbh) ar	ginal Low Marginal: Non-maintained, dense herbaccous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75 the descriptors. ed for you below.	Period High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure of % F Blocks e	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100 100%	NOTES>> CI= (Sum % RA * So Rt Bank CI > Lt Bank CI > banks; root mats; S	0.71	
Riparian Buffers Scores Delineate ripa Determine sq Enter the % R Right Bank Left Bank .INSTREAM omplexes, stabl	Optimal Tree stratum (dbh > 3 inch with > 60% tree canop with > 60% tree canop Wetlands located within t areas. 1.5 trian areas along each strate ware footage for each by tiparian Area and Score f % Riparian Area> Score > % Riparian Area> Score > % Riparian Area> Score > MHABITAT: Varied su	thes) present, py cover. the riparian tream bank ii y measuring for each ripa 85% 0.75 85% 0.75 ubstrate size	Con Suboy High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 nto Condition Cate or estimating lengt arian category in th 15% 0.5	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 egories and Cond th and width. Cale the and width. Cale the blocks below.	gory High Marginal: Non-maintained, dense hetbaceous vegetation with > 3 inches) either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85 titon Scores using culators are provid culators are provid	ginal Low Marginal: Non-maintained, dense herbaccous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75 the descriptors. ed for you below.	Perind Poor: Lawns, mowed, and maintained areas, nurseries, no-till cropland; actively grazed pasture, sparsely vegetated area, recently seeded and stabilized, or other comparable condition.	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100 100%	NOTES>> CI= (Sum % RA * Sco Rt Bank CI > Lt Bank CI >	0.71	
Riparian Buffers Scores Delineate ripa Determine squ Enter the % R Right Bank	Optimal Tree stratum (dbh > 3 inch with > 60% tree canop Wetlands located within t areas. 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1	thes) present, py cover. the riparian tream bank i y measuring of for each ripa 85% 0.75 85% 0.75 substrate size	Con Subop High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 nto Condition Cate or estimating lengt arian category in th 15% 0.5 15% 0.5 es, water velocity a Stable habitat eler present in 30-50% of	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy code and a maintained understory. Recent cutover (dense vegetation). Low 1.1 egories and Cond th and width. Cale th and width. Cale the blocks below. and depths; woody Conditional ptimal ments are typically of the reach and are	gory Marg Marg High Marginal: Non-maintained, dense herbaceous vegetation with -3 inches) present, with <30% tree canopy cover. High 0.85 titon Scores using culators are provid culators culators are provid culators culators are provid culators culators are provid culators cu	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75 the descriptors. ed for you below. stable substrate;	High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure of % F Blocks e 0.6 Habitat element 1000 model Construction 1000 model Habitat element 1000 model Lacking or are typic 1000 model	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100 100%	NOTES>> CI= (Sum % RA * Soc Rt Bank CI > Lt Bank CI > banks; root mats; S	0.71 0.71 SAV; riffle/pool	0.71
Riparian Buffers Scores Delineate ripa Determine squere Enter the % R Right Bank Left Bank Left Bank .INSTREAN omplexes, stabl Instream Habitat/ Available	Optimal Tree stratum (dbh > 3 inch with > 60% free canop with > 60% free canop Wetlands located within t areas. 1.5 Trian areas along each str uare footage for each by tiparian Area and Score f % Riparian Area and Score f % Riparian Area Score > % Riparian Area> score > % RIPATI Area> score > M HABITAT: Varied sue e features. Optimal Habitat elements are typic	thes) present, py cover. the riparian tream bank i y measuring of for each ripa 85% 0.75 85% 0.75 substrate size	Con Subop High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 nto Condition Cate or estimating lengt arian category in th 15% 0.5 15% 0.5 stable habitat eler present in 30-50% or adequate for n popula	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy code and a maintained understory. Recent cutover (dense vegetation). Low 1.1 egories and Cond th and width. Cale th and width. Cale the blocks below. and depths; woody Conditional ptimal ments are typically of the reach and are	gory High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85 titon Scores using culators are provid culators are pro	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75 the descriptors. ed for you below. stable substrate; ginal ments are typically of the reach and are unintenance of	High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure of % F Blocks e 0 Image: Seeded and stabilized, or other comparable condition. 100 mm and the seeded and stabilized or other comparable condition. High 0.6 Ensure of % F Blocks e 0 High 0.6 Ensure of % F Blocks e 0 Image: Seeded and stabilized, or other seeded and stabilized, or are u elements are typic than 10% of the seeded and seeded a	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 Low 0.5 the sums Riparian equal 100 100% 100% 5 cor	NOTES>> CI= (Sum % RA * So Rt Bank CI > Lt Bank CI > banks; root mats; S	0.71 0.71 SAV; riffle/pool	

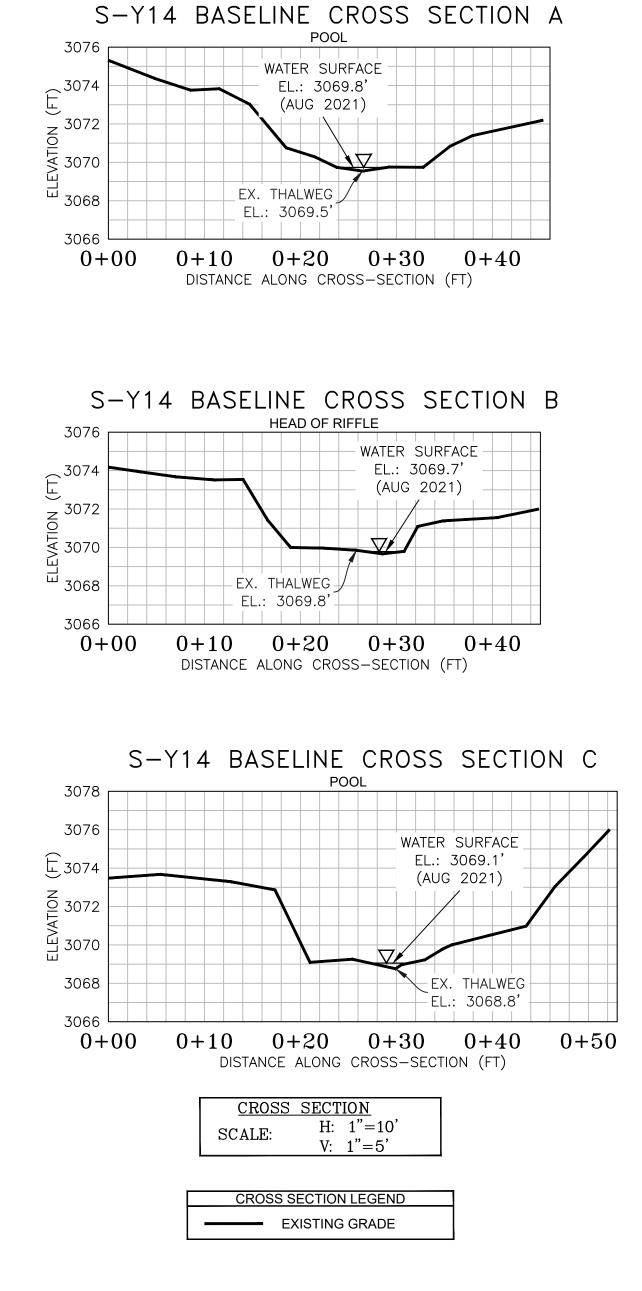

		tream Ir	•	SSESSN		rm Page		Impact	Impact	
Project #	Project Name (App	licant)	Locality	Class.	HUC	Date	SAR #	Length	Factor	
22865.07	Mountain Valley Pipeline Valley Pipeline, L		Roanoke County	R3	03010101	8/19/21	S-Y14	77	1	
. CHANNEL	ALTERATION: Stream crossin	ngs, riprap, concret	te, gabions, or cor	ncrete blocks, stra	ightening of chanr	nel, channelization	, embankments, s	poil piles, constricti	ions, livestock	
				al Category				NOTES>>		
	Negligible	Mir	nor	40 - 60% of reach	erate 60 - 80% of reach	Sev	vere			
Channel Alteration	Channelization, dredging, alteration, or hardening absent. Stream has an unaltered pattern or has naturalized.	the channel alterations listed in the parameter guidelines.	the channel alterations listed in the parameter guidelines.	is disrupted by any of the channel alterations listed in the parameter guidelines. If stream has been channelized, normal stable stream meander pattern has not recovered.	is disrupted by any of the channel alterations listed in the parameter guidelines. If stream has been channelized, normal stable stream meander pattern has not recovered.	by any of the chan in the parameter of 80% of banks sh riprap, o	of reach is disrupted nel alterations listed guidelines AND/OR ored with gabion, r cement.			СІ
Scores	1.5	1.3	1.1	0.9	0.7	0	.5			1.50
	REACH	CONDITION	INDEX and S	STREAM CO	NDITION UN	ITS FOR TH	IS REACH			
IOTE: The CIs a	nd RCI should be rounded to 2 deci	mal places. The Cl	R should be round	led to a whole nur	nber.		THE REACI	H CONDITION IN	IDEX (RCI) >>	1.22
						RCI= (Sum o	f all CI's)/5, exce	ept if stream is ep	ohemeral RCI = (F	Riparian Cl
							COMPENSA	TION REQUIRE	MENT (CR) >>	94

CL STAKEOUT POINTS: S-Y14 CROSS SECTION B (PIPE CL)								
	PR		POST-C	ROSSING				
PT. LOC.	NORTHING	EASTING	ELEV	VERT.	HORZ.			
P1. LOC.	NORTHING	EASTING		DIFF.	DIFF.			
TS-L	13503982.27	1887621.35	3073.53					
BS-L	13503978.13	1887624.04	3070.00					
THW	13503972.34	1887627.73	3069.85					
BS-R	13503968.29	1887630.60	3069.79					
TS-R	13503966.95	1887631.15	3071.09					

SURVEY NOTES:

1. This map has been oriented to NAD 1983 UTM ZONE 17N, and vertically to The North American Vertical Datum of 1988 (NAVD 88), using a Real Time Network (RTN) GPS. Field locations were completed on August 19, 2021.

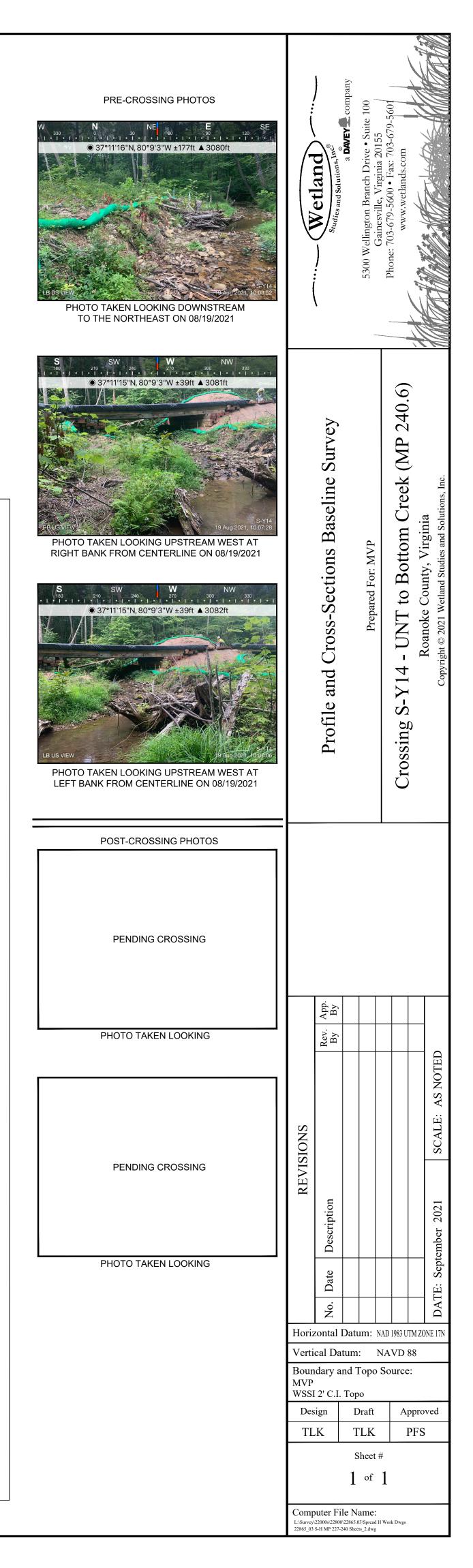

2. Monumentation, including traverse stations and fly points, shown on this drawing should be used to orient any future boundary, topographic, or location survey.


3. Easement lines shown on plan view were provided by Mountain Valley Pipeline (MVP).

4. WSSI Contour Interval = 2.0'. Contours within the channel were interpolated using stream channel breaklines (i.e. top of slopes, toe of slopes, thalweg) and cross-sectional points. Contours outside the channel were interpolated using cross-sectional spot shots.

5. All section views shown are left to right facing downstream.

6. Cross-section B shot at location of pipe centerline (based on best professional judgement).


NOTE: ALL SECTION VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.

LEGEND

EXISTING SURVEY-LOCATED THALWEG

EXISTING SURVEY-LOCATED EDGE OF WATER (AS NECESSARY)

```
EXISTING SURVEYED GROUND SHOT ELEVATION
```

