Baseline Assessment – Stream Attributes

Reach S-A11 (Pipeline ROW) Ephemeral Spread I Franklin County, Virginia

Data	Included			
Photos	√			
SWVM Form	✓			
FCI Calculator and HGM Form	✓			
RBP Physical Characteristics Form	✓			
Water Quality Data	N/A – No flow			
RBP Habitat Form	✓			
RBP Benthic Form	✓			
Benthic Identification Sheet	N/A – No flow			
Wolman Pebble Count	✓			
RiverMorph Data Sheet	✓			
USM Form (Virginia Only)	√			
Longitudinal Profile and Cross Sections	✓			

Spread I Stream S-A11 (Pipeline ROW) Franklin County

Location, Orientation, Photographer Initials: Downstream at ROW/LOD looking SE upstream, RAH

Location, Orientation, Photographer Initials: Downstream at ROW/LOD looking NW downstream, RAH

Spread I Stream S-A11 (Pipeline ROW) Franklin County

Location, Orientation, Photographer Initials: On thalweg at pipe centerline looking SE at right streambank, RAH

Location, Orientation, Photographer Initials: On thalweg at pipe centerline looking W at left streambank, RAH

Spread I Stream S-A11 (Pipeline ROW) Franklin County

Location, Orientation, Photographer Initials: Upstream at ROW/LOD looking SE upstream, RAH

Photo Type: DS VIEW Location, Orientation, Photographer Initials: Upstream at ROW/LOD looking NW downstream, RAH

USACE FILE NO./ Project Name: (v2.1, Sept 2015)		Mounta	nin Valley Pipeline		ORDINATES: al Degrees)	Lat.	36.973237	Lon.	-79.669898	WEATHER:	Sunny	DATE:	8/27/2	2021
IMPACT STREAM/SITE ID (watershed size {acreage			S-A11;	2.28 ac			MITIGATION STREAM CLASS. (watershed size {acreage					Comments:	No water parameters of data taken during asse	or benthics le to no flow
STREAM IMPACT LENGTH:	55	FORM OF MITIGATION:	RESTORATION (Levels I-III)		RDINATES: al Degrees)	Lat.		Lon.		PRECIPITATION PAST 48 HRS:	No	Mitigation Length:		
Column No. 1- Impact Existin	ng Condition (Debi	it)	Column No. 2- Mitigation Existing C	ondition - Baseline	e (Credit)		Column No. 3- Mitigation Pr Post Completio		Years	Column No. 4- Mitigation Proje Post Completion (C		Column No. 5- Mitigation Proje	cted at Maturity (Cr	redit)
Stream Classification:	Ephem	neral	Stream Classification:				Stream Classification:		0	Stream Classification:	0	Stream Classification:	0	
Percent Stream Channel S	Slope	14.78	Percent Stream Channel Slo	оре			Percent Stream Channel S	lope	0	Percent Stream Channel Slo	ope 0	Percent Stream Channel	Slope	0
HGM Score (attach o	data forms):		HGM Score (attach o	data forms):			HGM Score (attach	data forms):		HGM Score (attach da	ta forms):	HGM Score (attach	data forms):	
		Average			Average				Average		Average			Average
Hydrology	0.11		Hydrology				Hydrology			Hydrology		Hydrology		
Biogeochemical Cycling	0.13	0.08	Biogeochemical Cycling		0		Biogeochemical Cycling		0	Biogeochemical Cycling	0	Biogeochemical Cycling		0
Habitat PART I - Physical, Chemical and	d Biological Indica	tors	PART I - Physical, Chemical and	d Biological Indica	tors		Habitat PART I - Physical, Chemical a	nd Biological Ir	ndicators	Habitat PART I - Physical, Chemical and E	Biological Indicators	Habitat PART I - Physical, Chemical and	d Biological Indica	itors
	Points Scale Range	Site Score		Points Scale Range	Site Score			Points Scale Range	le Site Score		Points Scale Range Site Score		Points Scale Range	Site Score
PHYSICAL INDICATOR (Applies to all stream	ns classifications)		PHYSICAL INDICATOR (Applies to all streams	classifications)			PHYSICAL INDICATOR (Applies to all streams	s classifications)	1	PHYSICAL INDICATOR (Applies to all streams	classifications)	PHYSICAL INDICATOR (Applies to all stream	ns classifications)	
USEPA RBP (High Gradient Data Sheet)			USEPA RBP (Low Gradient Data Sheet)				USEPA RBP (High Gradient Data Sheet)			USEPA RBP (High Gradient Data Sheet)		USEPA RBP (High Gradient Data Sheet)		
Epifaunal Substrate/Available Cover	0-20	0	Epifaunal Substrate/Available Cover	0-20			Epifaunal Substrate/Available Cover	0-20		Epifaunal Substrate/Available Cover	0-20	Epifaunal Substrate/Available Cover	0-20	
2. Embeddedness	0-20	2	Pool Substrate Characterization	0-20			2. Embeddedness	0-20		2. Embeddedness	0-20	2. Embeddedness	0-20	
3. Velocity/ Depth Regime	0-20	0 17	3. Pool Variability	0-20			3. Velocity/ Depth Regime	0-20		3. Velocity/ Depth Regime	0-20	3. Velocity/ Depth Regime	0-20	
Sediment Deposition Channel Flow Status	0-20	0	Sediment Deposition Channel Flow Status	0-20			Sediment Deposition Channel Flow Status	0-20		Sediment Deposition Channel Flow Status	0-20	Sediment Deposition Channel Flow Status	0-20	
6. Channel Alteration	0-20 0-1	13	6. Channel Alteration	0-20 0-1			6. Channel Alteration	0-20 0-1		6. Channel Alteration	0-20 0-1	6. Channel Alteration	0-20 0-1	
7. Frequency of Riffles (or bends)	0-20	0	7. Channel Sinuosity	0-20			7. Frequency of Riffles (or bends)	0-20		7. Frequency of Riffles (or bends)	0-20	7. Frequency of Riffles (or bends)	0-20	
8. Bank Stability (LB & RB)	0-20	14	8. Bank Stability (LB & RB)	0-20			8. Bank Stability (LB & RB)	0-20		8. Bank Stability (LB & RB)	0-20	8. Bank Stability (LB & RB)	0-20	
9. Vegetative Protection (LB & RB)	0-20	8	9. Vegetative Protection (LB & RB)	0-20			9. Vegetative Protection (LB & RB)	0-20		9. Vegetative Protection (LB & RB)	0-20	9. Vegetative Protection (LB & RB)	0-20	
10. Riparian Vegetative Zone Width (LB & RB)	0-20	6	10. Riparian Vegetative Zone Width (LB & RB)	0-20			10. Riparian Vegetative Zone Width (LB & RB)	0-20		10. Riparian Vegetative Zone Width (LB & RB)	0-20	10. Riparian Vegetative Zone Width (LB & RB)		
Total RBP Score Sub-Total	Marginal	0.5	Total RBP Score Sub-Total	Poor	0		Total RBP Score Sub-Total	Poor	0	Total RBP Score Sub-Total	Poor 0	Total RBP Score Sub-Total	Poor	0
									<u> </u>					·
CHEMICAL INDICATOR (Applies to Intermitte		ams)	CHEMICAL INDICATOR (Applies to Intermittent		(s)		CHEMICAL INDICATOR (Applies to Intermitte		Streams)	CHEMICAL INDICATOR (Applies to Intermittent	,	CHEMICAL INDICATOR (Applies to Intermitt		ams)
WVDEP Water Quality Indicators (General Specific Conductivity	ai)		WVDEP Water Quality Indicators (General) Specific Conductivity		0		WVDEP Water Quality Indicators (Genera Specific Conductivity	1)		WVDEP Water Quality Indicators (General) Specific Conductivity		WVDEP Water Quality Indicators (Gener Specific Conductivity	ai)	
	0-90			0-90				0-90		,	0-90		0-90	
100-199 - 85 points			-11				m11			-11		-11	,	
рН	0-1		рн	0-1			рн	0-1		рн	0-1	рн	0-1	
5.6-5.9 = 45 points	0-80			5-90				5-90			5-90		5-90	
DO			DO	_	0		DO			DO		DO	_ '	
	10-30			10-30				10-30			10-30		10-30	
Sub-Total			Sub-Total	•	0		Sub-Total		0	Sub-Total	0	Sub-Total		0
BIOLOGICAL INDICATOR (Applies to Intermi	ittent and Perennial St	reams)	BIOLOGICAL INDICATOR (Applies to Intermitte	ent and Perennial Strea	ams)		BIOLOGICAL INDICATOR (Applies to Intern	nittent and Peren	nnial Streams)	BIOLOGICAL INDICATOR (Applies to Interm	ittent and Perennial Streams)	BIOLOGICAL INDICATOR (Applies to Inte	mittent and Perennia	al Streams)
WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)				WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)		WV Stream Condition Index (WVSCI)		
0	0-100 0-1			0-100 0-1				0-100 0-1			0-100 0-1		0-100 0-1	
Sub-Total		0	Sub-Total		0		Sub-Total		0	Sub-Total	0	Sub-Total		0
PART II - Index and	Unit Coors		PART II - Index and	Unit Coors			PART II - Index and	d Unit Coors		PART II - Index and Ur	nit Sooro	PART II - Index and	Unit Coors	
PART II - INGEX and I	Onit Score		PART II - Index and	Onit Score			PART II - Index and	J OHIL SCORE		PART II - Index and Ur	iii ocore	PART II - Index and	Onit Score	
Index	Linear Feet	Unit Score	Index	Linear Feet	Unit Score		Index	Linear Feet	t Unit Score	Index	Linear Feet Unit Score	Index	Linear Feet	Unit Score
0.365	55	20.075	0	0	0		0	0	0	0	0 0	0	0	0

			High-G	radient				•	а		
	-	DI LOI		Field L	ata She	et and C				00 070007	
6		RH, CL	/ II - D: II				•		_	36.973237	
Pro		Mountain V					L	-	_	-79.669898	
	Location:	Franklin Co	ounty, Sprea	id I				San	pling Date:	8/27/2021	
SA	R Number:	S-A11	Reach	Length (ft):	69	Stream Ty	/pe: Ephe	meral Stream			▼
Top Strata: Shrub/Herb Strata (determined from percent calculated in V _{CCANOPY})											
Site a	Site and Timing: Project Site ▼ Before Project ▼										
Sample	Variables	1-4 in strea	ım channel								
1	V _{CCANOPY}	equidistant 20%, enter	Average percent cover over channel by tree and sapling canopy. Measure at no fewer than 10 roughly equidistant points along the stream. Measure only if tree/sapling cover is at least 20%. (If less than 20%, enter at least one value between 0 and 19 to trigger Top Strata choice.) tent cover measurements at each point below:								
i	List the per	cent cover r	measureme	nts at each	point below:						
	0										
2	V_{EMBED}	along the s	tream. Sele	ect a particle	from the be	ed. Before	moving it, d	etermine the	e percentag		1.0
				unding the							
				ing table. If bed is com					Tine seaim	ents, use a	
				for gravel, c	•				tte Magaha	n and	Magaura
		Minshall 19	•	ioi gravei, c	obble and b	ouluei parti	cies (rescar	eu iioiii Fia	iis, iviegaria	ii, aiiu	Measure at least
				a vintia n							30 points
		Rating 5	Rating Des	of surface of	overed sur	rounded or	huried by fi	ne sedimen	t (or bedroo	:k)	30 points
		4		cent of surfa						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		3		rcent of sur							
		2		rcent of sur							
	1:-4414:	1		t of surface	covered, su	irrounded, c	or buried by	fine sedime	nt (or artific	ial surface)	
		ngs at each			4	4	4	4	4	4	
	1	1	1	1	1	1	1	1	1	1	
	1	1	ı	ı	I	I	ı	ı	ı	I	
	I	ı									
3	V	Median stre	oom channe	l cubetrato i	particlo cizo	Mogeuro	at no fower:	than 30 rou	ably oquidic	tant points	
3	V SUBSTRATE			the same po					grily equiuis	itani points	0.08 in
	Enter partie	de size in in						_	ounted on 0	nO in	
	•	concrete as				•	w (bediock	siloulu be c	ounted as s	73 III,	
	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	
	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	
	0.08	0.08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00	0.00									
4	V_{BERO}		e total perce	d stream cha entage will b							0 %
) = 2 = P	Left Bank:	n	ft	ı	Right Bank:	0	ft	l	
						<u> </u>	J Danik.				
Sample	Variables	5-9 within t	the entire ri	parian/buff	er zone ad	acent to th	e stream c	hannel (25	feet from e	ach bank).	
5	V_{LWD}	stream read	ch. Enter th	y stems (at line in the standard of the standa	om the enti						0.0

Number of downed woody stems:

0

6	V_{TDBH}		oh of trees (cm) in diam				ng cover is a	at least 20%	6). Trees ar	e at least 4	Not Used
		List the dbl	n measurem				n) within the	buffer on e	each side of		
		the stream	below: Left Side					Right Side			1
	0		Left Side			0		Right Side			
7	V_{SNAG}		snags (at le stream, and				t of stream. lculated.	Enter num	ber of snag	s on each	0.0
			Left Side:		0		Right Side:		0		
8	V_{SSD}									easure only	
			r is <20%). r 100 ft of st				lbs on each	side of the	stream, and	the	50.7
		amount po	Left Side:		20		Right Side:	1	15		
9	V _{SRICH}						m reach. C				
		•					ve species from these (all strata. Sp	pecies	0.00
			p 1 = 1.0	and the east	Hack Will Bo	carcarated			2 (-1.0)		
	Acer rubru			Magnolia tı	ripetala		Ailanthus a			Lonicera ja	ponica
	Acer sacch	narum		Nyssa sylv	atica		Albizia julib	rissin		Lonicera ta	tarica
	Aesculus f	lava		Oxydendrum	arboreum		Alliaria peti	olata		Lotus corni	culatus
	Asimina tri	loba		Prunus ser	otina		Alternanthe	era		Lythrum sa	licaria
	Betula alleg	ghaniensis		Quercus al	ba		philoxeroid		\checkmark	Microstegiun	n vimineum
	Betula lent	'a		Quercus co	occinea		Aster tatari	cus		Paulownia	tomentosa
	Carya alba	1		Quercus in	nbricaria		Cerastium	fontanum		Polygonum d	cuspidatum
	Carya glab	ora		Quercus pi	rinus		Coronilla va	aria		Pueraria m	ontana
	Carya ova	lis		Quercus ru	ıbra		Elaeagnus u	mbellata		Rosa multir	flora
	Carya ova	ta		Quercus ve	elutina		Lespedeza	bicolor		Sorghum h	alepense
	Cornus flo	rida		Sassafras	albidum		Lespedeza	cuneata		Verbena br	asiliensis
	Fagus grai	ndifolia		Tilia amerio	cana		Ligustrum ob	otusifolium			
	Fraxinus a	mericana		Tsuga cana	adensis		Ligustrum s	sinense			
✓	Liriodendror	tulipifera		Ulmus ame	ericana						
	Magnolia a	acuminata									
		1	Species in	Group 1				1	Species in	Group 2	
Sample	e Variables	10-11 with	in at least 8	subplots (40" x 40" <i>(</i>	or 1m x 1m	in the rina	rian/buffer	zone withi	n 25 feet fro	om each
_		bplots sho					-				
10	V _{DETRITUS}						material. W ital layer at			ter and	2.50 %
				Side			-	Side]	
		0	0	5	10	5	0	0	0		
										I	

11	V_{HERB}	include woo	ody stems a percentages	at least 4" db	bh and 36" t	tall. Because	easure only if se there may Enter the pe	be several l	layers of gro	ound cover	98 %
	ļ			Side				t Side]	
		100	100	95	90	95	100	100	100		
Sample	e Variable 1	2 within the	e entire cat	tchment of	the stream	i.					
12	V _{WLUSE}	Weighted A	verage of F	Runoff Scor	e for waters	hed:					0.20
			Land	Use (Choos	se From Dro	op List)			Runoff Score	% in Catch- ment	Running Percent (not >100)
ļ	Forest and n	ative range (>	∙75% ground	cover)				—	1	4	4
	Impervious areas (parking lots, roofs, driveways, etc)							0	42	46	
ļ	Open space (pasture, lawns, parks, etc.), grass cover >75%							0.3	54	100	
ļ	<u></u>										
ļ									<u> </u>		
ļ	<u></u>										
									<u> </u>		
							NI-	4			
V		S-A11	V(2)	Land Cov	or Analysis	- Mae com	Not pleted using	otes:	Mational I	and Cover	Datahase
	ariable CANOPY	Value Not Used,	VSI Not Used	(NLCD), f	from Lands	sat satellite	imagery and sed off of fie	nd other su	ıpplementa	ary datasets	
	MBED	<20% 1.0	0.10				lues have be				number
	UBSTRATE	0.08 in	0.04								
	ERO	0 %	1.00								
V _{LV}		0.0	0.00								
V _{TE}		Not Used	Not Used								
Vsn		0.0	0.10								
Vss		50.7	0.78								
Vsı	RICH	0.00	0.00								

 $\mathbf{V}_{\text{DETRITUS}}$

 \mathbf{V}_{HERB}

 V_{WLUSE}

2.5 %

98 %

0.2

0.03

1.00

0.21

Ver. 10-20-17

FCI Calculator for the High-Gradient Headwater Streams in Appalachia

To ensure accurate calculations, the <u>UPPERMOST STRATUM</u> of the plant community is determined based on the calculated value for V_{CCANOPY} (220% cover is required for tree/sapling strata). Go to the SAR Data Entry tab and enter site characteristics and data in the yellow cells. For information on determining how to split a project into SARs, see Chapter 5 of the Operational Draft Regional Guidebook for the Functional Assessment of High-Gradient Headwater Streams and Low-Gradient Perennial Streams in Appalachia (Environmental Laboratory U.S. Army Corps of Engineers 2017).

Project Name: Mountain Valley Pipeline **Location:** Franklin County, Spread I

Sampling Date: 8/27/2021 Project Site Before Project

Subclass for this SAR:

Ephemeral Stream

Uppermost stratum present at this SAR: SAR number: S-A11

Shrub/Herb Strata

Functional Results Summary: Enter Results in Section A of the Mitigation Sufficiency Calculator

Function	Functional Capacity Index
Hydrology	0.12
Biogeochemical Cycling	0.13
Habitat	0.05

Variable Measure and Subindex Summary:

Variable	Name	Average Measure	Subindex
V _{CCANOPY}	Percent canpoy over channel.	Not Used, <20%	Not Used
V_{EMBED}	Average embeddedness of channel.	1.00	0.10
V _{SUBSTRATE}	Median stream channel substrate particle size.	0.08	0.04
V_{BERO}	Total percent of eroded stream channel bank.	0.00	1.00
V_{LWD}	Number of down woody stems per 100 feet of stream.	0.00	0.00
V _{TDBH}	Average dbh of trees.	Not Used	Not Used
V _{SNAG}	Number of snags per 100 feet of stream.	0.00	0.10
V _{SSD}	Number of saplings and shrubs per 100 feet of stream.	50.72	0.78
V _{SRICH}	Riparian vegetation species richness.	0.00	0.00
V _{DETRITUS}	Average percent cover of leaves, sticks, etc.	2.50	0.03
V_{HERB}	Average percent cover of herbaceous vegetation.	97.50	1.00
V _{WLUSE}	Weighted Average of Runoff Score for Catchment.	0.20	0.21

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

STREAM NAME	LOCATION		
STATION # RIVERMILE	STREAM CLASS		
LAT LONG	RIVER BASIN		
STORET#	AGENCY		
INVESTIGATORS			
FORM COMPLETED BY	DATE	REASON FOR SURVEY	

WEATHER CONDITIONS	Now storm (heavy rain) rain (steady rain) showers (intermittent) % %cloud cover clear/sunny	Past 24 hours Has there been a heavy rain in the last 7 days? Yes No Air Temperature Other
SITE LOCATION/MAP	Crass, Dense veg.	the areas sampled (or attach a photograph) Pipe CL Stream Cidge ROW
STREAM CHARACTERIZATION	Stream Origin	Fidal Stream Type Coldwater Warmwater Catchment Areakm² -fed re of origins

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

WATERS FEATURI		Fores Field/ Agric	Pasture Industria	rcial	Local Watershed NPS Pollution No evidence ☐ Some potential sources Obvious sources Local Watershed Erosion None Moderate Heavy	No evidence				
RIPARIA VEGETA (18 meter	TION	Trees	SI SI	hrubs	Ominant species present Grasses Herbaceous					
INSTREA FEATURI		Estimat Estimat Samplin Area in Estimat	ed Reach Length ed Stream Width g Reach Area km² (m²x1000) ed Stream Depth Velocity m	m m m² km²	Canopy Cover Partly open Partly shaded Shaded High Water Markm Proportion of Reach Represented by Stream Morphology Types Riffle % Run% Pool% Channelized Yes No Dam Present Yes No					
LARGE V DEBRIS	VOODY		m²	n ² /km ² (LWD/	reach area)					
AQUATION VEGETA		Indicate the dominant type and record the dominant species present Rooted emergent Rooted submergent Rooted floating Floating Algae Attached Algae Dominant species present Portion of the reach with aquatic vegetation Medicate the dominant species present Rooted floating Free floating Free floating Free floating								
WATER (QUALITY	Specific Dissolve pH Turbidi	cature0 C Conductance ed Oxygen ty trument Used		Water Odors Normal/None Sewage Petroleum Chemical Fishy Other					
SEDIMEN SUBSTRA		Odors Norm Chem Other Oils Abser			Relict shells Other	_				
INC	ORGANIC SUBS		COMPONENTS 00%)		ORGANIC SUBSTRATE COMPONENTS (does not necessarily add up to 100%)					
Substrate Type	Diamete	er	% Composition in Sampling Reach	Substrate Type	Characteristic % Composition in Sampling Area					
Bedrock Boulder	> 256 mm (10")			Detritus	sticks, wood, coarse plant materials (CPOM)					
Cobble Gravel	64-256 mm (2.5 2-64 mm (0.1"-2			Muck-Mud	black, very fine organic (FPOM)					
Sand	0.06-2mm (gritt	y)		Marl	grey, shell fragments					

Silt

Clay

0.004-0.06 mm

< 0.004 mm (slick)

HABITAT ASSESSMENT FIELD DATA SHEET - HG - USE ON ALL STREAMS (FRONT)

STREAM NAME	LOCATION		
STATION # RIVERMILE	STREAM CLASS		
LAT LONG	RIVER BASIN		
STORET#	AGENCY		
INVESTIGATORS			
FORM COMPLETED BY	DATE AM PM	REASON FOR SURVEY	

	Habitat		Condition	ı Category		
	Parameter	Optimal	Suboptimal	Marginal	Poor	
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.	
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
n sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0-25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.	
ted in	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast- shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/depth regime (usually slow-deep).	
ıram	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
Pa	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.	
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.	
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

	Habitat	Condition Category											
	Parameter	Optimal	Suboptimal	Marginal	Poor								
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.								
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0								
oling reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.								
samp	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0								
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.								
e eva	SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0								
to be	SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0								
Parameters	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.								
	SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0								
	SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0								
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.								
	SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0								
ĺ	SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0								

Total	Caare	
i otai	Score	

BENTHIC MACROINVERTEBRATE FIELD DATA SHEET

STREAM NAME	LOCATION				
STATION # RIVERMILE	STREAM CLASS				
LAT LONG	RIVER BASIN				
STORET#	AGENCY				
INVESTIGATORS		LOT NUMBER			
FORM COMPLETED BY	DATETIME	REASON FOR SURVEY			
HADITAT TYPES Indicate the percentage of	and habitat type present				

HABITAT TYPES	Indicate the percentage of each habitat type present Cobble% Snags% Vegetated Banks% Sand% Submerged Macrophytes% Other ()%
SAMPLE COLLECTION	Gear used D-frame kick-net Other How were the samples collected? wading from bank from boat
	Indicate the number of jabs/kicks taken in each habitat type. Cobble Snags Vegetated Banks Sand Submerged Macrophytes Other ()
GENERAL COMMENTS	

QUALITATIVE LISTING OF AQUATIC BIOTA

Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare, 2 = Common, 3 = Abundant, 4 = Dominant

Periphyton	0	1	2	3	4	Slimes	0	1	2	3	4
Filamentous Algae	0	1	2	3	4	Macroinvertebrates	0	1	2	3	4
Macrophytes	0	1	2	3	4	Fish	0	1	2	3	4

FIELD OBSERVATIONS OF MACROBENTHOS

Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare (1-3 organisms), 2 = Common (3-9 organisms), 3 = Abundant (>10 organisms), 4 = Dominant (>50 organisms)

Porifera	0	1	2	3	4	Anisoptera	0	1	2	3	4	Chironomidae	0	1	2	3	4
Hydrozoa	0	1	2	3	4	Zygoptera	0	1	2	3	4	Ephemeroptera	0	1	2	3	4
Platyhelminthes	0	1	2	3	4	Hemiptera	0	1	2	3	4	Trichoptera	0	1	2	3	4
Turbellaria	0	1	2	3	4	Coleoptera	0	1	2	3	4	Other	0	1	2	3	4
Hirudinea	0	1	2	3	4	Lepidoptera	0	1	2	3	4						
Oligochaeta	0	1	2	3	4	Sialidae	0	1	2	3	4						
Isopoda	0	1	2	3	4	Corydalidae	0	1	2	3	4						
Amphipoda	0	1	2	3	4	Tipulidae	0	1	2	3	4						
Decapoda	0	1	2	3	4	Empididae	0	1	2	3	4						
Gastropoda	0	1	2	3	4	Simuliidae	0	1	2	3	4						
Bivalvia	0	1	2	3	4	Tabinidae	0	1	2	3	4						
						Culcidae	0	1	2	3	4						

WOLMAN PEBBLE COUNT FORM

Stream ID: S-A11

County: Franklin County
Stream Name: UNT to Turkey Creek
HUC Code: 03010101
Survey Date: 8/27/2021 Upper Roanoke Basin:

Survey Date: Surveyors: Type: CL, RH Representative

			LE COUNT				
Inches	PARTICLE	Millimeters		Particle Count	Total #	Item %	% Cum
	Silt/Clay	< .062	S/C	A	95	95.00	95.00
	Very Fine	.062125		A	3	3.00	98.00
	Fine	.12525		*	0	0.00	98.00
	Medium	.255	SAND	*	0	0.00	98.00
	Coarse	.50-1.0		A	0	0.00	98.00
.0408	Very Coarse	1.0-2		A	0	0.00	98.00
.0816	Very Fine	2 -4		^	0	0.00	98.00
.1622	Fine	4 -5.7		*	2	2.00	100.00
.2231	Fine	5.7 - 8		A	0	0.00	100.00
.3144	Medium		^	0	0.00	100.00	
.4463	Medium	GRAVEL	^	0	0.00	100.00	
.6389	Coarse 16 -22.6		^	0	0.00	100.00	
.89 - 1.26	Coarse	22.6 - 32	1	A	0	0.00	100.00
1.26 - 1.77	Vry Coarse	32 - 45	1	A	0	0.00	100.00
1.77 -2.5	Vry Coarse	45 - 64	1	A	0	0.00	100.00
2.5 - 3.5	Small	64 - 90		^	0	0.00	100.00
3.5 - 5.0	Small	90 - 128	CORRIE	^	0	0.00	100.00
5.0 - 7.1	Large	128 - 180	COBBLE	A	0	0.00	100.00
7.1 - 10.1	Large	180 - 256	1	▲	0	0.00	100.00
10.1 - 14.3	Small	256 - 362		▲	0	0.00	100.00
14.3 - 20	Small	362 - 512]	A	0	0.00	100.00
20 - 40	Medium	512 - 1024	BOULDER	A	0	0.00	100.00
40 - 80	Large	1024 -2048]	A	0	0.00	100.00
80 - 160	Vry Large	2048 -4096]	▲	0	0.00	100.00
	Bedrock		BDRK	A	0	0.00	100.00
				Totals:	100		
	Total Tally: Su	bstrate consists	predominant	ly of sed	iment.		

RIVERMORPH PARTICLE SUMMARY

River Name: UNT to Turkey Creek Reach Name: S-A11 Representative 08/27/2021

Size (mm)	TOT #	ITEM %	CUM %
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	95 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	95.00 3.00 0.00 0.00 0.00 0.00 0.00 0.00	95.00 98.00 98.00 98.00 98.00 98.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Cobble (%) Boulder (%) Bedrock (%)	0.01 0.02 0.03 0.05 0.06 5.7 95 3 2 0		

Total Particles = 100.

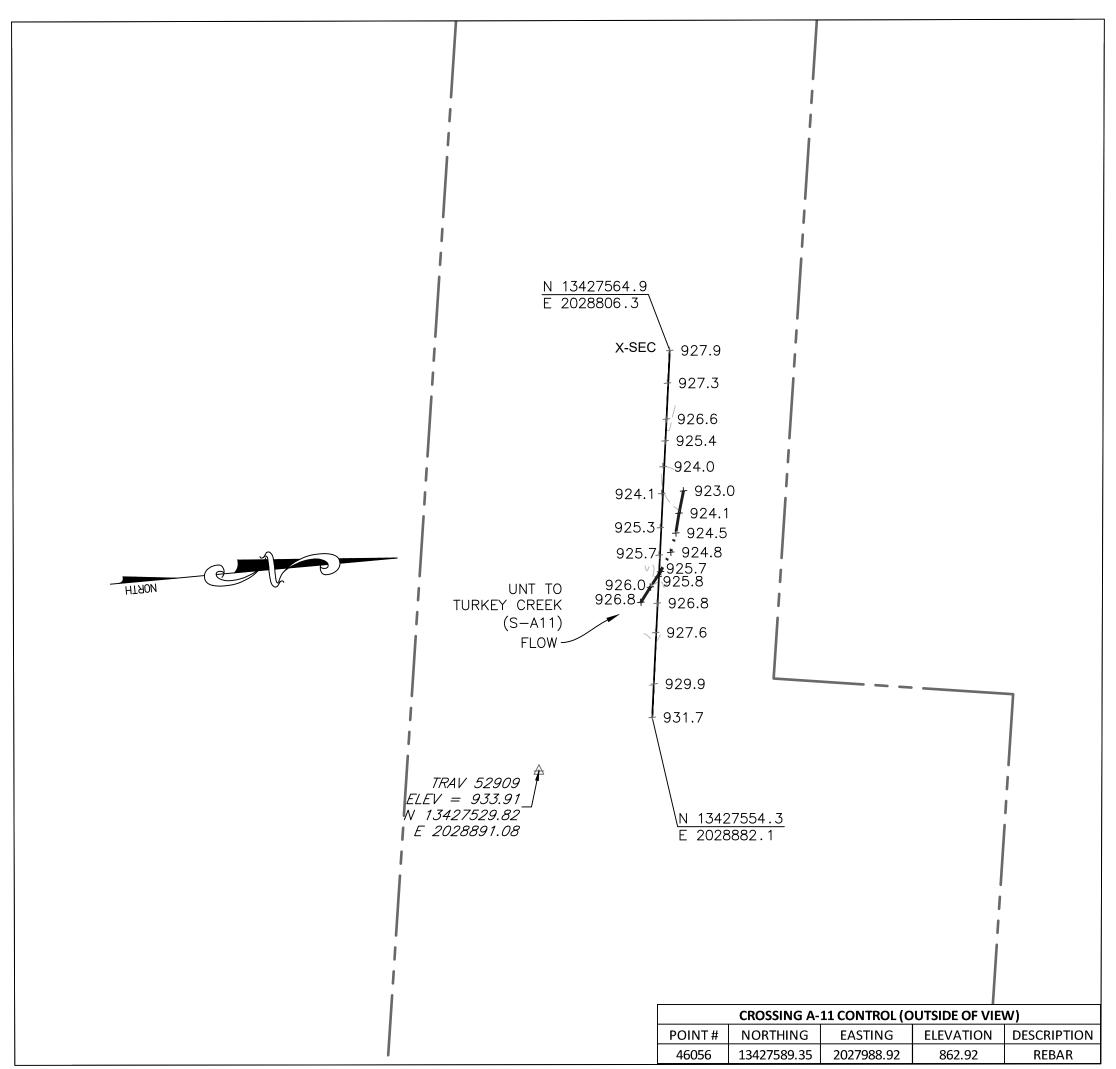
Ephemeral Stream Assessment Form (Form 1a) Unified Stream Methodology for use in Virginia For use in ephemeral streams Cowardin Impact SAR# Project # **Project Name** Locality HUC Date **Factor** Class Length Mountain Valley Pipeline (Mountain 22865.06 03010101 8/27/2021 ranklin Coun R6 S-A11 55 1 Valley Pipeline, LLC) Name(s) of Evaluator(s) Stream Name and Information SAR Length 55 CL, RH **UNT to Turkey Creek** 2. RIPARIAN BUFFERS: Assess both bank's 100 foot riparian areas along the entire SAR. (rough measurements of length & width may be acceptable) **Conditional Category** NOTES>> Assessment is Optimal Poor Suboptimal Marginal limited to areas within the temporary ROW. Low Marginal: High Poor: Lawns Non-maintained, High Suboptimal: Low Suboptimal High Marginal: maintained areas Low Poor: dense herbaceous Riparian areas with Riparian areas with Impervious surfaces, mine spoil lands, Non-maintained egetation, riparia nurseries: no-till ree stratum (dbh > ree stratum (dbh reas lacking shrut and tree stratum, ense herbaceou cropland; actively 3 inches) present with 30% to 60% 3 inches) present Tree stratum (dbh > 3 inches) present vegetation with grazed pasture, Riparian with >30% tree either a shrub laye or a tree layer (dbl 3 inches) presen hay production, onds, open wate If present, tree with > 60% tree canopy cover and an non-maintained understory. Wetlands parsely vegetate non-maintained enuded surface tree canopy cove and containing bot nopy cover and maintained row crops, active feed lots, trails, or **Buffers** areas. area, recently herbaceous and nderstory. Rece with <30% tree stratum (dbh >3 seeded and other comparable shrub layers or a non-maintained cutover (dense vegetation). canopy cover inches) present, with <30% tree stabilized, or othe comparable conditions. understory. canopy cover with maintained understory. condition. High Low High High Low Low Condition 1.5 1.2 1.1 0.85 0.75 0.6 0.5 Scores 1. Delineate riparian areas along each stream bank into Condition Categories and Condition Scores using the descriptors. Ensure the sums 2. Determine square footage for each by measuring or estimating length and width. Calculators are provided for you below. of % Riparian Enter the % Riparian Area and Score for each riparian category in the blocks below Blocks equal 100 20% 80% 100% % Riparian Area> Right Bank 0.6 0.85 Score > CI= (Sum % RA * Scores*0.01)/2 20% 80% 100% CI % Riparian Area> Rt Bank CI > 0.80 Left Bank 0.6 0.85 Lt Bank CI > 0.80 0.80 REACH CONDITION INDEX and STREAM CONDITION UNITS FOR THIS REACH

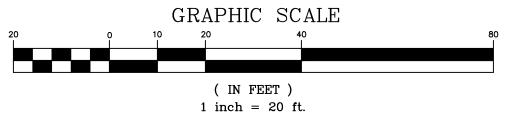
NOTE: The CIs and RCI should be rounded to 2 decimal places. The CR should be rounded to a whole number.

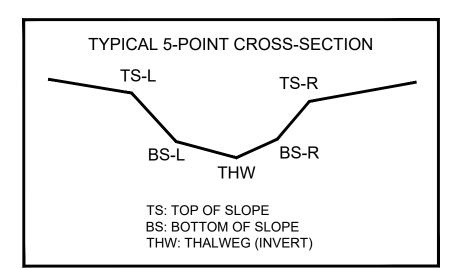
THE REACH CONDITION INDEX (RCI) >> 0.40

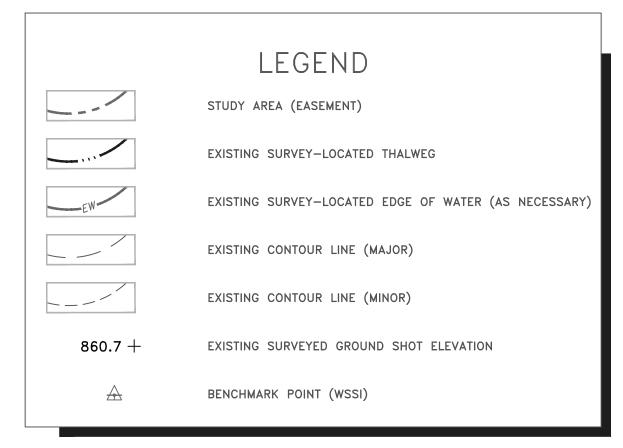
22

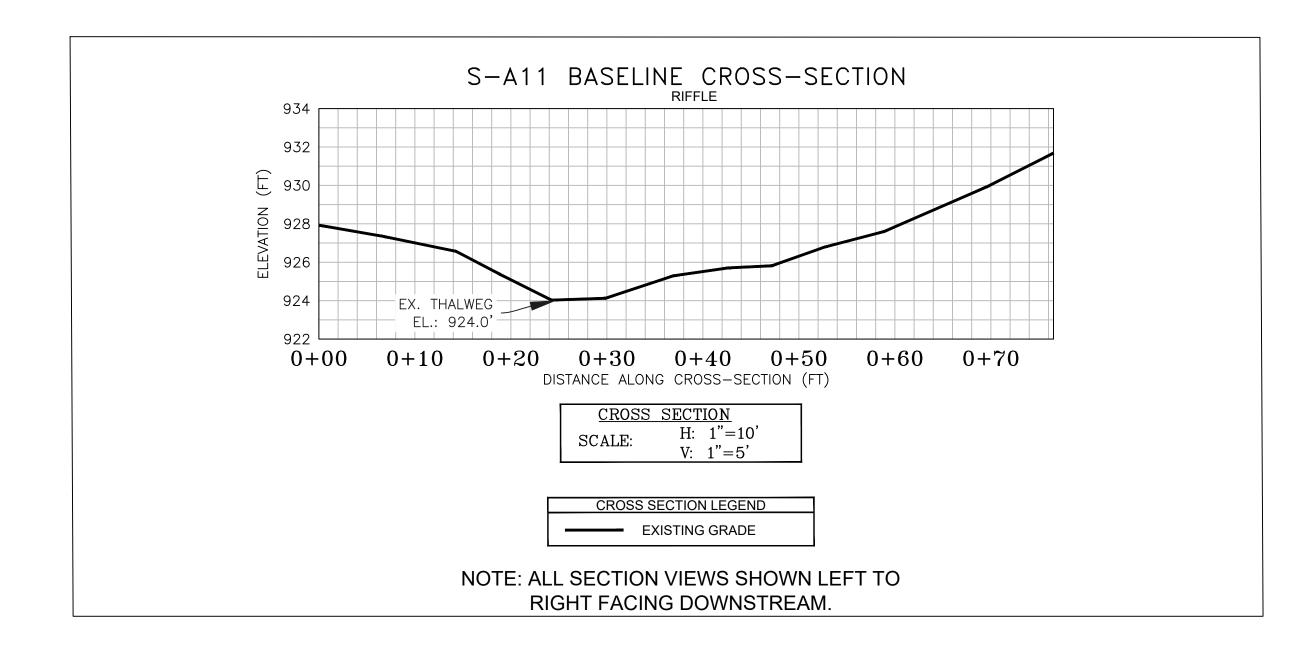
RCI= (Riparian CI)/2


COMPENSATION REQUIREMENT (CR) >>


CR = RCI X LF X IF


INSERT PHOTOS:


DESCRIBE PROPOSED IMPACT:								



CL	CL STAKEOUT POINTS: S-A11 CROSS SECTION (PIPE CL)											
	PR	E-CROSSING		POST-CF	ROSSING							
DT LOC	NODTHING	FACTING	VERT.	HORZ.								
PT. LOC.	NORTHING	EASTING	ELEV	DIFF.	DIFF.							
TS-L	13427562.91	2028820.48	926.56									
THW	13427561.34	2028830.28	924.03									
BS-R	13427560.54	2028835.83	924.12									
TS-R	13427559.62	2028842.88	925.29									
TS-R	13427558.26	2028853.01	925.82									

SURVEY NOTES:

- 1. This map has been oriented to NAD 1983 UTM ZONE 17N, and vertically to The North American Vertical Datum of 1988 (NAVD 88), using a Real Time Network (RTN) GPS. Field locations were completed on March 25, 2019.
- 2. Monumentation, including traverse stations and fly points, shown on this drawing should be used to orient any future boundary, topographic, or location survey.
- 3. Easement lines shown on plan view were provided by Mountain Valley Pipeline (MVP).
- 4. WSSI Contour Interval = 2.0'. Contours within the channel were interpolated using stream channel breaklines (i.e. top of slopes, toe of slopes, thalweg) and cross-sectional points. Contours outside the channel were interpolated using cross-sectional spot shots.
- 5. All section views shown are left to right facing downstream.
- 6. Cross-section S-A11 shot at location of pipe centerline (based on best professional judgement).
- 7. Stream impacted prior to survey (see photos).

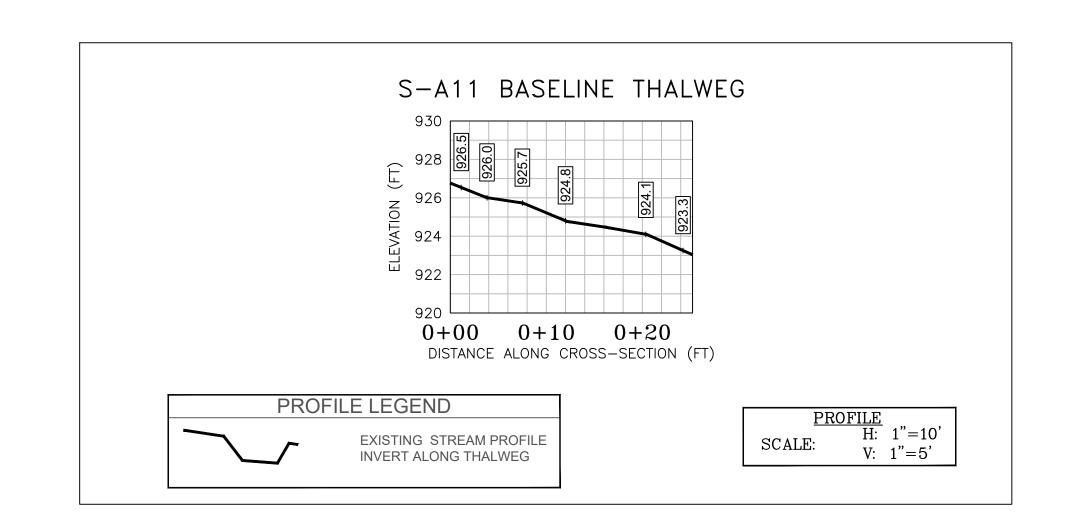


PHOTO TAKEN LOOKING DOWNSTREAM TO THE NORTHWEST ON 03/25/2018

PHOTO TAKEN LOOKING UPSTREAM FROM BRIDGE ON 03/25/2018

POST-CROSSING PHOTOS

PENDING CROSSING

PHOTO TAKEN LOOKING

PENDING CROSSING

PHOTO TAKEN LOOKING

Wetland

280.4)

to

Horizontal Datum: NAD 1983 UTM ZON

Vertical Datum: NAVD 88

Boundary and Topo Source:

MVP
WSSI 2' C.I. Topo

Design Draft Approved

EJC JSF PFS

Sheet #

1 of 1

Computer File Name:
L:\Survey\22000s\22800\22865.03\Spread I Work Dwgs

L:\Survey\22000s\22800\22865.03\Spread I Work Dw 22865_03 S-I MP 279-291 Sheets_2.dwg