Baseline Assessment – Stream Attributes

Reach S-AB8 (Pipeline ROW) Intermittent Spread I Franklin County, Virginia

Data	Included
Photos	✓
SWVM Form	✓
FCI Calculator and HGM Form	✓
RBP Physical Characteristics Form	✓
Water Quality Data	N/A –Low flow
RBP Habitat Form	✓
RBP Benthic Form	✓
Benthic Identification Sheet	N/A –Low flow
Wolman Pebble Count	✓
RiverMorph Data Sheet	✓
USM Form (Virginia Only)	✓
Longitudinal Profile and Cross Sections	✓

Photo Type: DS VIEW Location, Orientation, Photographer Initials: Downstream view of ROW/LOD looking S, DW

Photo Type: US VIEW Location, Orientation, Photographer Initials: Upstream view of ROW/LOD looking N, DW

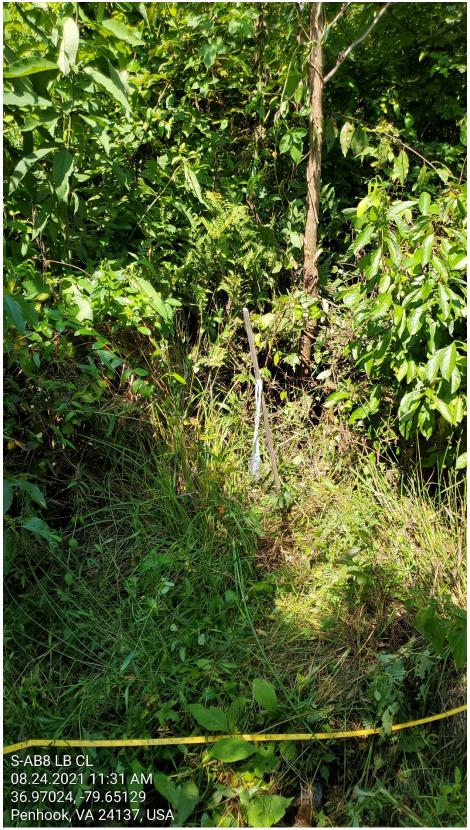


Photo Type: LB CL

Location, Orientation, Photographer Initials: Standing on LB looking at RB along pipe centerline looking W, DW

Photo Type: RB CL

Location, Orientation, Photographer Initials: Standing on RB looking at LB along pipe centerline looking E, DW

Photo Type: DS COND Location, Orientation, Photographer Initials: Downstream conditions outside of ROW/LOD looking S, DW

USACE FILE NO./ Project Name: (v2.1, Sept 2015)	Mountain Valley Pipeline		IMPACT COORDINATES: Lat. 36.970133 Lon. (in Decimal Degrees)		-79.651328		WEATHER:		Sunny	DAT	ä	8/24	4/2021						
IMPACT STREAM/SITE IE (watershed size (acreage),				S-AB8	/8.42 ac			MITIGATION STREAM CLAS (watershed size (acre	SS./SITE ID AND page), unaltered or imp		N:				Comme	nts:			
STREAM IMPACT LENGTH:	84	FORM MITIGAT		RESTORATION (Levels I-III)		OORDINATES: imal Degrees)	Lat.		Lon.			PRECIPITATION PAST 48 HRS:		No	Mitigation	ength:			
Column No. 1- Impact Existing	g Condition (Deb	it)		Column No. 2- Mitigation Existing C	ondition - Basel	ine (Credit)		Column No. 3- Mitigation Post Comple		Years		Column No. 4- Mitigation Proj Post Completion (ars	Column No. 5	Mitigation Projecte	d at Maturity ((Credit)	
Stream Classification:	Interm	ittent		Stream Classification:				Stream Classification:		0		Stream Classification:	0)	Stream Classification:			0	
Percent Stream Channel Si	lope	3.72		Percent Stream Channel Sid	рре			Percent Stream Channe	I Slope	0		Percent Stream Channel Si	lope	0	Percent S	tream Channel Slo	ope	0	
HGM Score (attach d	lata forms):			HGM Score (attach	data forms):			HGM Score (atta	ch data forms):			HGM Score (attach d	ata forms):		HGI	/ Score (attach da	ita forms):		
		Average				Average				Average				Average				Averag	je
Hydrology				Hydrology				Hydrology				Hydrology			Hydrology		l l		П
Biogeochemical Cycling		0		Biogeochemical Cycling		0		Biogeochemical Cycling		0		Biogeochemical Cycling		0	Biogeochemical Cyclin	9		0	
PART I - Physical, Chemical and	Biological Indica	ators		Habitat PART I - Physical, Chemical an	d Biological Ind	icators		PART I - Physical, Chemica	al and Biological Ir	ndicators		PART I - Physical, Chemical and	Biological Indic	ators	Habitat PART I - Phys	ical, Chemical and I	Biological Ind	icators	_
	Points Scale Range	Site Score			Points Scale Range	Site Score			Points Scale Range	e Site Score			Points Scale Range	Site Score			Points Scale Rang	go Sito Score	_
PHYSICAL INDICATOR (Applies to all stream	s classifications)			PHYSICAL INDICATOR (Applies to all streams	classifications)			PHYSICAL INDICATOR (Applies to all stre	ams classifications)			PHYSICAL INDICATOR (Applies to all streams	s classifications)		PHYSICAL INDICATOR	(Applies to all streams	classifications)		
USEPA RBP (High Gradient Data Sheet)				USEPA RBP (Low Gradient Data Sheet)				USEPA RBP (High Gradient Data Shee				USEPA RBP (High Gradient Data Sheet)			USEPA RBP (High Gra				
Epifaunal Substrate/Available Cover	0-20	11		Epifaunal Substrate/Available Cover	0-20			Epifaunal Substrate/Available Cover	0-20			Epifaunal Substrate/Available Cover	0-20		 Epifaunal Substrate/A 	vailable Cover	0-20		_
2. Embeddedness	0-20	8		Pool Substrate Characterization Pool Variability	0-20			2. Embeddedness	0-20			2. Embeddedness	0-20		2. Embeddedness		0-20		_
Velocity/ Depth Regime Sediment Deposition	0-20 0-20	19		Sediment Deposition	0-20			Velocity/ Depth Regime Sediment Deposition	0-20			Velocity/ Depth Regime Sediment Deposition	0-20		 Velocity/ Depth Regin Sediment Deposition 	e	0-20	-	_
5. Channel Flow Status	0.20	6		5. Channel Flow Status	0-20			5. Channel Flow Status	0-20			5. Channel Flow Status	0-20		5. Channel Flow Status		0-20	_	-
6. Channel Alteration	0-20 0-1	20		6. Channel Alteration	0-20 0-1			6. Channel Alteration	0-20 0-1			6. Channel Alteration	0-20 0-1		6. Channel Alteration		0-20 0-1		-
7. Frequency of Riffles (or bends)	0-20	1		7. Channel Sinuosity	0-20			7. Frequency of Riffles (or bends)	0-20			7. Frequency of Riffles (or bends)	0-20		7. Frequency of Riffles (or bends)	0-20	7	_
8. Bank Stability (LB & RB)	0-20	20		8. Bank Stability (LB & RB)	0-20			8. Bank Stability (LB & RB)	0-20			8. Bank Stability (LB & RB)	0-20		8. Bank Stability (LB & F		0-20	7	_
9. Vegetative Protection (LB & RB)	0-20	20		9. Vegetative Protection (LB & RB)	0-20			9. Vegetative Protection (LB & RB)	0-20			Vegetative Protection (LB & RB)	0-20		Vegetative Protection	(LB & RB)	0-20	7	
 Riparian Vegetative Zone Width (LB & RB) 	0-20	20		10. Riparian Vegetative Zone Width (LB & RB)	0-20			 Riparian Vegetative Zone Width (LB & RE 	3) 0-20			 Riparian Vegetative Zone Width (LB & RB) 	0-20		Riparian Vegetative Zo	ne Width (LB & RB)	0-20	1	
Total RBP Score	Suboptimal	127		Total RBP Score	Poor	0		Total RBP Score	Poor	0		Total RBP Score	Poor	0	Total RBP Score		Poor	0	
Sub-Total		0.635		Sub-Total		0		Sub-Total		0		Sub-Total		0	Sub-Total			0	_
CHEMICAL INDICATOR (Applies to Intermitte		eams)		CHEMICAL INDICATOR (Applies to Intermittent		eams)		CHEMICAL INDICATOR (Applies to Interm		Streams)		CHEMICAL INDICATOR (Applies to Intermitte		reams)	CHEMICAL INDICATOR			Streams)	
WVDEP Water Quality Indicators (General	il)			WVDEP Water Quality Indicators (General)				WVDEP Water Quality Indicators (Gen	eral)			WVDEP Water Quality Indicators (General	I)		WVDEP Water Quality	ndicators (General)			_
Specific Conductivity	_			Specific Conductivity				Specific Conductivity				Specific Conductivity			Specific Conductivity				_
100-199 - 85 points	0-90				0-90				0-90				0-90				0-90	1	
nH				ηΗ				nH				nH			nН				_
	0-80				5-90 0-1				5-90				5-90 0-1				5-90 0-1	1 /	
5.6-5.9 = 45 points	0-80				5-90				5-90				5-90				5-90	1	
DO				DO				DO				DO			DO				
	10-30				10-30				10-30				10-30				10-30	1	
Sub-Total	-			Sub-Total		0		Sub-Total		0		Sub-Total		0	Sub-Total			0	-
BIOLOGICAL INDICATOR (Applies to Intermi	ttent and Perennial S	Streams)		BIOLOGICAL INDICATOR (Applies to Intermitte	ent and Perennial S	Streams)		BIOLOGICAL INDICATOR(Applies to Int	termittent and Peren	nial Streams)		BIOLOGICAL INDICATOR (Applies to Interm	nittent and Perenn	ial Streams)	BIOLOGICAL INDICAT	OR(Applies to Intermi	ittent and Peren	inial Streams)	Τ
WV Stream Condition Index (WVSCI)				WV Stream Condition Index (WVSCI)				WV Stream Condition Index (WVSCI)				WV Stream Condition Index (WVSCI)			WV Stream Condition I	ndey (WVSCI)			т
WY Outcam Condition mack (WYCO)	0-100 0-1			TT Gucum Gondadon macx (TT Gon)	0-100 0-1			TV Gream condition mack (WCCs)	0-100 0-1			Tr on cam condition mack (11100)	0-100 0-1		W Outum Condition	idex (11100)	0-100 0-1		
0 Sub-Total	0-100	•		Sub-Total	0-100	•		Sub-Total	0-100			Sub-Total	0-100	_	Sub-Total		0.100	_	4
OUD-TOTAL		U	1	OUD-TOTAL		U		OUD-TOIN		U	,	oub- rotal		U	Sub-Total				-
																			_
PART II - Index and U	Jnit Score			PART II - Index and	Unit Score			PART II - Index	and Unit Score			PART II - Index and U	Init Score		P	ART II - Index and Ur	nit Score		
																	لأسلم		
Index	Linear Feet	Unit Score		Index	Linear Feet	Unit Score		Index	Linear Feet	Unit Score		Index	Linear Feet	Unit Score	Inde	4	Linear Feet	t Unit Sco	re
0.718	84	60.27		0	0	0		0	0	0		0	0	0	0		0	0	

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

STREAM NAME		LOCATION					
STATION # RIV	VERMILE	STREAM CLASS					
LAT LON	AT LONG		RIVER BASIN				
STORET#		AGENCY					
INVESTIGATORS							
FORM COMPLETED BY		DATE	REASON FOR SURVEY				

WEATHER CONDITIONS	Now Past 24 hours Yes No storm (heavy rain) rain (steady rain) showers (intermittent) % cloud cover clear/sunny Has there been a heavy rain in the last 7 days? Yes No Air Temperature Other
SITE LOCATION/MAP	Draw a map of the site and indicate the areas sampled (or attach a photograph)
	Rt C
	LOD Timber Mart
STREAM CHARACTERIZATION	Stream Subsystem Perennial Intermittent Tidal Stream Type Coldwater Warmwater Stream Origin Glacial Spring-fed Non-glacial montane Mixture of origins Swamp and bog Other

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

WATERS FEATURI		Fores Field/ Agric	Pasture Industria	rcial	Local Watershed NPS Pollution No evidence ☐ Some potential sources Obvious sources Local Watershed Erosion None Moderate Heavy	
RIPARIA VEGETA (18 meter	TION	Trees	SI SI	hrubs	Ominant species present Grasses Herbaceous	
INSTREA FEATURI		Estimat Estimat Samplin Area in Estimat	ed Reach Length ed Stream Width g Reach Area km² (m²x1000) ed Stream Depth Velocity m	m m m² km²	Canopy Cover Partly open Partly shaded Shaded High Water Markm Proportion of Reach Represented by Stream Morphology Types Riffle % Run% Pool% Channelized Yes No Dam Present Yes No	
LARGE V DEBRIS	VOODY		of LWDm	n ² /km ² (LWD/	reach area)	
AQUATION VEGETA		Roote Floati Domin a	e the dominant type and d emergent Re ng Algae At unt species present of the reach with aquat	ooted submerge tached Algae		
WATER (QUALITY	Specific Dissolve pH Turbidi	cature0 C Conductance ed Oxygen ty trument Used		Water Odors Normal/None Sewage Petroleum Chemical Fishy Other	
SEDIMENT/ SUBSTRATE Odor No Ch Oti Oils					Relict shells Other	_
INC	ORGANIC SUBS		COMPONENTS 00%)		ORGANIC SUBSTRATE COMPONENTS (does not necessarily add up to 100%)	
Substrate Type	Diamete	er	% Composition in Sampling Reach	Substrate Type	Characteristic % Composition in Sampling Area	
Bedrock Boulder	> 256 mm (10")			Detritus	sticks, wood, coarse plant materials (CPOM)	
Cobble Gravel	64-256 mm (2.5 2-64 mm (0.1"-2			Muck-Mud	black, very fine organic (FPOM)	
Sand	0.06-2mm (gritt	y)		Marl	grey, shell fragments	

Silt

Clay

0.004-0.06 mm

< 0.004 mm (slick)

HABITAT ASSESSMENT FIELD DATA SHEET - HG - USE ON ALL STREAMS (FRONT)

STREAM NAME	LOCATION				
STATION # RIVERMILE	STREAM CLASS				
LAT LONG	RIVER BASIN				
STORET#	AGENCY				
INVESTIGATORS					
FORM COMPLETED BY	DATE TIME AM PM	REASON FOR SURVEY			

	Habitat	Condition Category										
	Parameter	Optimal	Suboptimal	Marginal	Poor							
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.							
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0							
n sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0-25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.							
ted in	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0							
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/depth regime (usually slow-deep).							
ıram	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0							
Pa	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.							
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0							
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.							
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0							

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

	Habitat		Condition	n Category					
	Parameter	Optimal	Suboptimal	Marginal	Poor				
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.				
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0				
ng reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.				
samp	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0				
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.				
e eva	SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0				
to be	SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0				
Parameters to be	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.				
	SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0				
	SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0				
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.				
	SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0				
ĺ	SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0				

Total	Caama	
i otai	Score	

BENTHIC MACROINVERTEBRATE FIELD DATA SHEET

STREAM NAME	LOCATION				
STATION # RIVERMILE	STREAM CLASS				
LAT LONG	RIVER BASIN				
STORET#	AGENCY				
INVESTIGATORS		LOT NUMBER			
FORM COMPLETED BY	DATE REASON FOR SURVEY TIME				
HADITAT TYPES Indicate the percentage of	and habitat type present				

HABITAT TYPES	Indicate the percentage of each habitat type present Cobble% Snags% Vegetated Banks% Sand% Submerged Macrophytes% Other ()%
SAMPLE COLLECTION	Gear used D-frame kick-net Other How were the samples collected? wading from bank from boat
	Indicate the number of jabs/kicks taken in each habitat type. Cobble Snags Vegetated Banks Sand Submerged Macrophytes Other ()
GENERAL COMMENTS	

QUALITATIVE LISTING OF AQUATIC BIOTA

Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare, 2 = Common, 3 = Abundant, 4 = Dominant

Periphyton	0	1	2	3	4	Slimes	0	1	2	3	4
Filamentous Algae	0	1	2	3	4	Macroinvertebrates	0	1	2	3	4
Macrophytes	0	1	2	3	4	Fish	0	1	2	3	4

FIELD OBSERVATIONS OF MACROBENTHOS

Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare (1-3 organisms), 2 = Common (3-9 organisms), 3 = Abundant (>10 organisms), 4 = Dominant (>50 organisms)

Porifera	0	1	2	3	4	Anisoptera	0	1	2	3	4	Chironomidae	0	1	2	3	4
Hydrozoa	0	1	2	3	4	Zygoptera	0	1	2	3	4	Ephemeroptera	0	1	2	3	4
Platyhelminthes	0	1	2	3	4	Hemiptera	0	1	2	3	4	Trichoptera	0	1	2	3	4
Turbellaria	0	1	2	3	4	Coleoptera	0	1	2	3	4	Other	0	1	2	3	4
Hirudinea	0	1	2	3	4	Lepidoptera	0	1	2	3	4						
Oligochaeta	0	1	2	3	4	Sialidae	0	1	2	3	4						
Isopoda	0	1	2	3	4	Corydalidae	0	1	2	3	4						
Amphipoda	0	1	2	3	4	Tipulidae	0	1	2	3	4						
Decapoda	0	1	2	3	4	Empididae	0	1	2	3	4						
Gastropoda	0	1	2	3	4	Simuliidae	0	1	2	3	4						
Bivalvia	0	1	2	3	4	Tabinidae	0	1	2	3	4						
						Culcidae	0	1	2	3	4						

WOLMAN PEBBLE COUNT FORM

County: Franklin County Stream ID: S-AB8

Stream Name: UNT to Owens Creek

HUC Code: 03010101 Basin: Upper Roanoke

Survey Date: 8/24/2021
Surveyors: JM, DW
Type: Representative

	7		LE COUNT			1	T
Inches	PARTICLE	Millimeters		Particle Count	Total #	Item %	% Cum
	Silt/Clay	< .062	S/C	▲	68	68.00	68.00
	Very Fine	.062125		A	0	0.00	68.00
	Fine	.12525		•	0	0.00	68.00
	Medium	.255	SAND	•	0	0.00	68.00
	Coarse	.50-1.0		•	0	0.00	68.00
.0408	Very Coarse	1.0-2		•	0	0.00	68.00
.0816	Very Fine	2 -4		•	2	2.00	70.00
.1622	Fine	4 -5.7		•	0	0.00	70.00
.2231	Fine	5.7 - 8		-	2	2.00	72.00
.3144	Medium	8 -11.3	1	-	4	4.00	76.00
.4463	Medium	11.3 - 16	GRAVEL	A	2	2.00	78.00
.6389	Coarse	16 -22.6		^	2	2.00	80.00
.89 - 1.26	Coarse	22.6 - 32		^	1	1.00	81.00
1.26 - 1.77	Vry Coarse	32 - 45	1	A	1	1.00	82.00
1.77 -2.5	Vry Coarse	45 - 64		^	2	2.00	84.00
2.5 - 3.5	Small	64 - 90		^	4	4.00	88.00
3.5 - 5.0	Small	90 - 128		^	0	0.00	88.00
5.0 - 7.1	Large	128 - 180	COBBLE	^	12	12.00	100.00
7.1 - 10.1	Large	180 - 256	1	^	0	0.00	100.00
10.1 - 14.3	Small	256 - 362		A	0	0.00	100.00
14.3 - 20	Small	362 - 512	1	A	0	0.00	100.00
20 - 40	Medium	512 - 1024	BOULDER	A	0	0.00	100.00
40 - 80	Large	1024 -2048	1	A	0	0.00	100.00
80 - 160	Vry Large	2048 -4096	1	A	0	0.00	100.00
	Bedrock		BDRK	A		0.00	100.00
				Totals:	100		
	Total Tally:						

RIVERMORPH PARTICLE SUMMARY

River Name: UNT to Owens Creek Reach Name: S-AB8 Sample Name: Representative 08/24/2021

Size (mm)	TOT #	ITEM %	CUM %
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	68 0 0 0 0 0 2 0 2 4 2 2 1 1 2 4 0 0 0 0 0 0 0	68.00 0.00 0.00 0.00 0.00 2.00 2.00 4.00 2.00 1.00 1.00 2.00 4.00 0.00 12.00 0.00 0.00 0.00 0.00 0.00	68.00 68.00 68.00 68.00 68.00 70.00 70.00 72.00 76.00 78.00 80.00 81.00 82.00 84.00 88.00 100.00 100.00 100.00 100.00 100.00
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Cobble (%) Boulder (%) Bedrock (%)	0.02 0.03 0.05 64 158.33 180 68 0 16 16		

Total Particles = 100.

		5	Strean		essm			orm	1)		
					cowardin				Impact	Impact	
Project #		t Name (App	•	Locality	Class.	HUC	Date	SAR#	Length	Factor	
22865.06		alley Pipeline ey Pipeline, L		Franklin County	R3 or R4	03010101	8/24/2021	S-AB8	84	1	
Name	e(s) of Evalua	tor(s)	Stream Nam	e and Inform	ation				SAR Length		
	JM, DW		UNT to Ower	ns Creek, Fra	nklin County	, Spread I			84		
1. Channel C	Condition: Asse	ess the cross-sec	tion of the stream	and prevailing co	, ,	,					
	Opti	imal	Subo	ptimal	Conditional Catego Mar	ory ginal	Po	oor	Sev	ere	
Channel Condition	Very little incision o 100% stable ban surface protectio prominent (80-100% bankfull benches ar to their original fi developed wide bar channel bars and tr Transient sediment less than 100	nks. Vegetative n or natural rock, %). AND/OR Stable re present. Access loodplain or fully nkfull benches. Mid ansverse bars few. t deposition covers	erosion or unproted of banks are s Vegetative protec prominent (60 Depositional feat stability. The bar channels are wel likely has acc benches,or ne portions of the r sediment covers	ew areas of active ted banks. Majorituble (60-80%). tion or natural rock-80%). AND/OR urres contribute to kfull and low flow I defined. Stream ess to bankfull why developed each. Transient s 10-40% of the bottom.	Poor. Banks more or Poor due to Ic Erosion may be priboth banks. Vege 40-60% of banks. be vertical or un 40-60% Sediment transient, contribeposition that comay be forming/py shaped channels	Sed, but less than Severe or ks more stable than Severe due to lower bank slopes. ay be present on 40-60% of sx. Vegetative protection on to fanks. Streambanks may cal or undercut. AND/OR ediment may be temporary int, contribute to stability, atture, and contributing to instability. In that contribute to stability, channels have vegetative protection is present on 50-branks. Streambed to prevent erosion. AND/OR 60-80% of banks, and is insufficient to prevent erosion. AND/OR 60-80% of banks, and is insufficient to prevent erosion. AND/OR 60-80% of banks, and is insufficient to prevent erosion. AND/OR 60-80% of banks, and is insufficient to prevent erosion. AND/OR follows from the stream is covered by sediment. Sediment is temporary / transient in atture, and contributing to instability. AND/OR V-shaped channels have vegetative protection is present on 50-branks. Streambed than 80% of stream on 20-40% of banks, and is insufficient to prevent erosion. AND/OR 40-branks, and is insufficient to prevent erosion. AND/OR 40-80-80% of banks, and is insufficient to prevent erosion. AND/OR 40-80-80% of banks, and is insufficient to prevent erosion. AND/OR 40-80-80% of banks, and is insufficient to prevent erosion. AND/OR 40-80-80% of banks, and is insufficient to prevent erosion. AND/OR 40-80-80% of banks, and is insufficient to prevent erosion. AND/OR 40-80-80% of banks, and is insufficient to prevent erosion. AND/OR 40-80-80% of banks, and is insufficient to prevent erosion. AND/OR 40-80-80% of banks, and is insufficient to prevent erosion. AND/OR 40-80-80% of banks, and is insufficient to prevent erosion. AND/OR 40-80-80% of banks, and is insufficient to prevent erosion. AND/OR 40-80-80% of banks, and is incision, flow contribution and the prevention of t		stability. Severe tained within the d below average vertical/undercut. on present on less, is not preventing a bank sloughing raw banks on 80-ggrading channel, bed is covered by			
Scores	3	,	2	.4	to sta		·	is absent.	1		CI 2.40
NOTES>> 2. RIPARIAN	N BUFFERS: A	Assess both bank	<u> </u>		<u> </u>	gh measurements	of length & width	may be acceptab			
Conditional Category NOTES>> Optimal Suboptimal Marginal Poor											
Riparian Buffers	Tree stratum (dbh > with > 60% tree Wetlands located are	> 3 inches) present, canopy cover. within the riparian	High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory.	Low Subontimal:	High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub	Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <a>30 % tree canopy cover with maintained understory.	High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition.	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions.			
			High	Low	High	Low	High	Low]		
Scores	1.	.5	1.2	1.1	0.85	0.75	0.6	0.5	1		
2. Determine squelow.	arian areas along e uare footage for ea Riparian Area and S	ach by measuring	or estimating len	gth and width. Ca		•	of % F	the sums Riparian equal 100			
	% Riparian Area>	35%	65%	50.011				100%	j		
Right Bank	Score >	1.2	0.5								,
	% Riparian Area>	25%	75%					100%	CI= (Sum % RA * So Rt Bank CI >	ores*0.01)/2 0.75	CI
Left Bank	Score >	1.2	0.5					100/0	Lt Bank CI >	0.68	0.71
		aried substrate si	zes, water velocity	and depths; woo	ody and leafy debr	is; stable substrat	e; low embededne	ess; shade; under	cut banks; root ma		
nme/pool comple	exes, stable feature	<i>5</i> 5.		Condition	al Category				NOTES>>		
Instream	Opti	imal	Subo	ptimal	Marginal Poor						
Habitat/ Available Cover	Habitat elements a in greater than 5		present in 30-50% are adequate fo	ments are typically 6 of the reach and r maintenance of ations.	present in 10-30% are adequate fo	ments are typically 6 of the reach and r maintenance of ations.	Habitat elements listed above are lacking or are unstable. Habitat elements are typically present in less than 10% of the reach.		Stream (Gradient	CI
	1.5 1.2		0.9 0.5			High	0.90				

	Stream Impact Assessment Form Page 2									
Project #	Project Name (App	licant)	Locality	Cowardin Class.	нис	Date	SAR#	Impact Length	Impact Factor	
22865.06	Mountain Valley Pipeline (Mountain Valley Pipeline, LLC)		Franklin County	R3 or R4	03010101	8/24/2021	S-AB8	84	1	
4. CHANNEL ALTERATION: Stream crossings, riprap, concrete, gabions, or concrete blocks, straightening of channel, channelization, embankments, spoil piles, constrictions, livestock										
	Negligible	Conditional Category Moderate			Severe		NOTES>>			
Channel Alteration	Channelization, dredging, alteration, or hardening absent. Stream has an unaltered pattern or has naturalized.	Less than 20% of the stream reach is disrupted by any of the channel alterations listed in the parameter guidelines.	20-40% of the stream reach is disrupted by any of the channel alterations listed in the parameter guidelines.	guidelines. If	of the channel	Greater than 80% o by any of the chann in the parameter g 80% of banks sh riprap, or	f reach is disrupted tel alterations listed uidelines AND/OR ored with gabion,			
Scores	1.5	1.3	1.1	0.9	0.7	0.	5			
	REACH CONDITION INDEX and STREAM CONDITION UNITS FOR THIS REACH									

REACH CONDITION INDEX and STREAM CONDITION UNITS FOR T

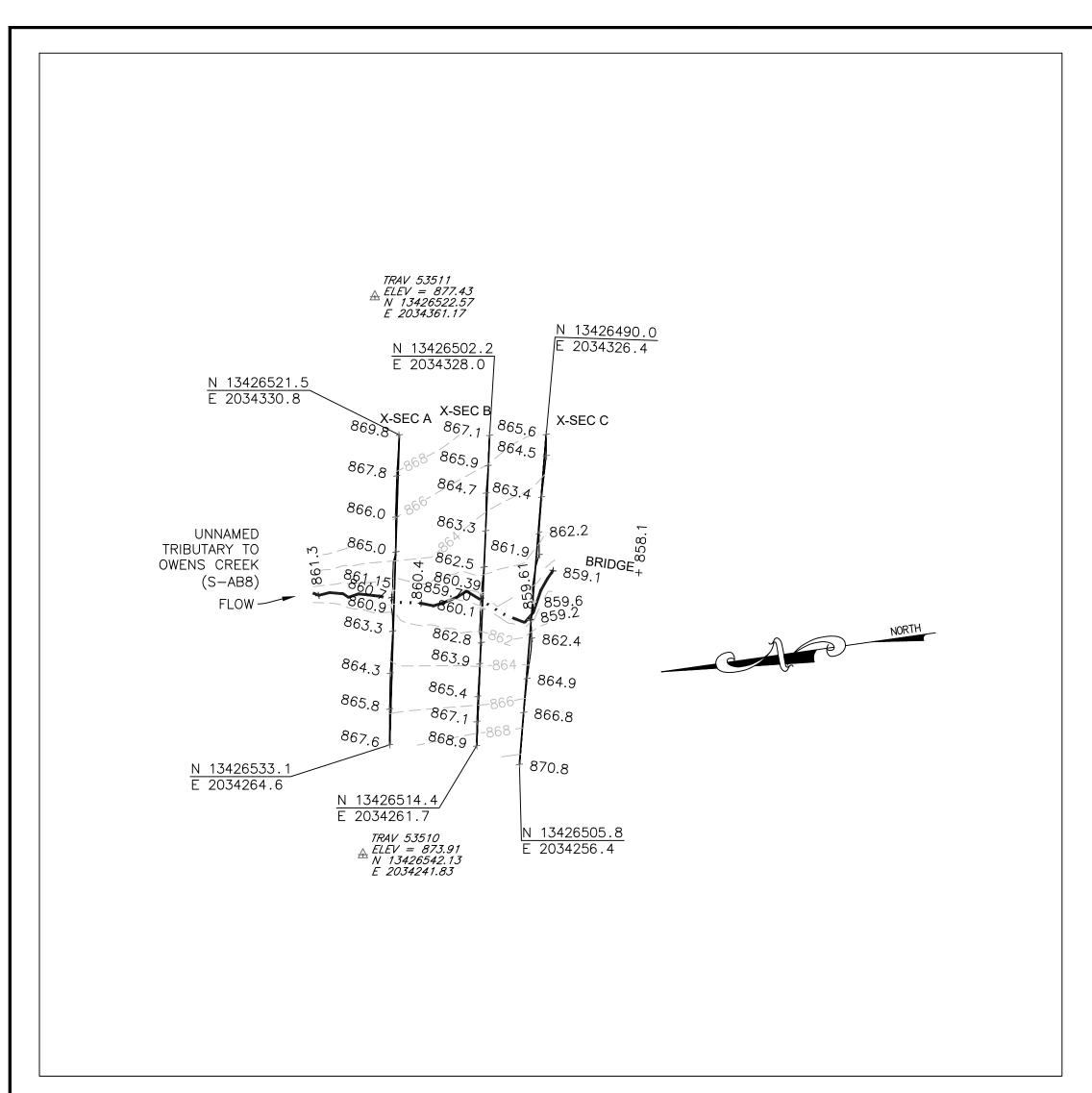
THE REACH CONDITION INDEX (RCI) >> 1.10

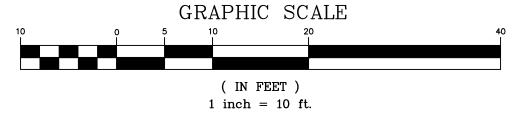
RCI= (Sum of all Cl's)/5, except if stream is ephemeral RCI = (Riparian Cl/2)

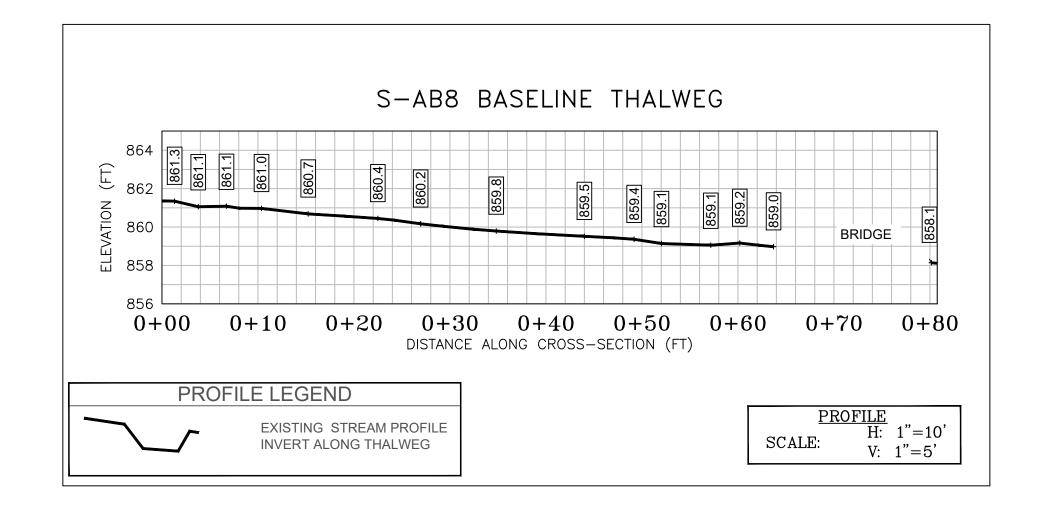
COMPENSATION REQUIREMENT (CR) >> 92

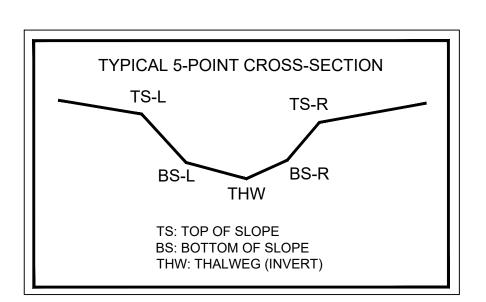
CR = RCI X L_I X IF

INSERT PHOTOS:

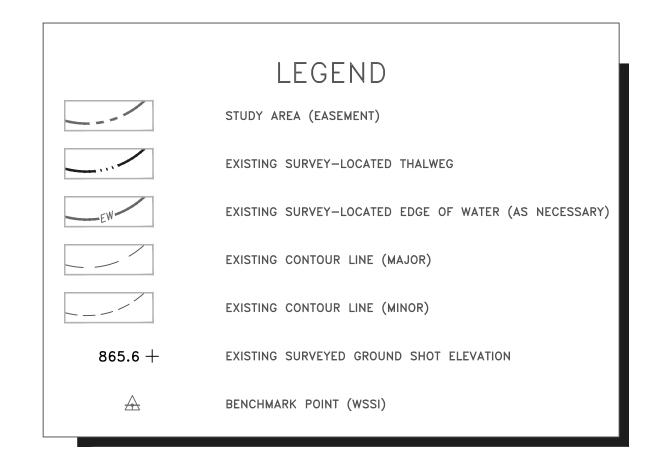

NOTE: The CIs and RCI should be rounded to 2 decimal places. The CR should be rounded to a whole number.

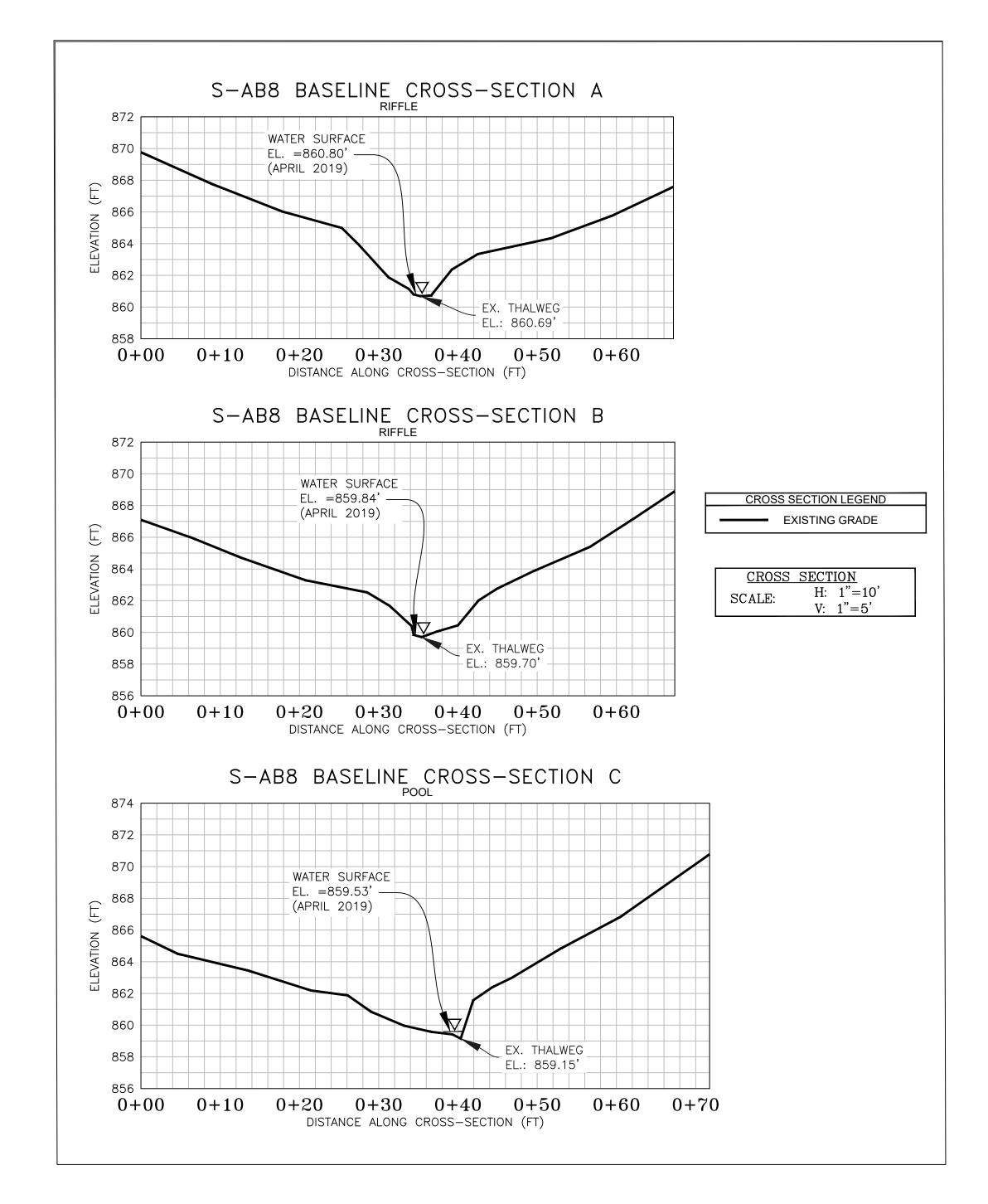



CAPTION. Assessment is limited to areas within the temporary ROW.


ח	ESCRI	IRF	PRO	POSE	D IMP	ΔCT·

PROVIDED UNDER SEPARATE COVER





CL STAKEOUT POINTS: S-AB8 CROSS SECTION B (PIPE CL)									
	PR	POST-C	ROSSING						
PT. LOC.	NODTHING	FACTING		VERT.	HORZ.				
	NORTHING	EASTING	ELEV	DIFF.	DIFF.				
TS-L	13426507.38	2034299.86	862.52						
BS-L	13426508.76	2034294.42	860.39						
THW	13426508.99	2034293.20	859.70						
BS-R	13426509.44	2034291.28	860.06						
TS-R	13426510.27	2034283.70	862.77						

SURVEY NOTES:

- 1. This map has been oriented to NAD 1983 UTM ZONE 17N, and vertically to The North American Vertical Datum of 1988 (NAVD 88), using a Real Time Network (RTN) GPS. Field locations were completed on April 2, 2019.
- 2. Monumentation, including traverse stations and fly points, shown on this drawing should be used to orient any future boundary, topographic, or location survey.
- 3. Easement lines shown on plan view were provided by Mountain Valley Pipeline (MVP).
- 4. WSSI Contour Interval = 2.0'. Contours within the channel were interpolated using stream channel breaklines (i.e. top of slopes, toe of slopes, thalweg) and cross-sectional points. Contours outside the channel were interpolated using cross-sectional spot shots.
- 5. All section views shown are left to right facing downstream.
- 6. Cross-section B shot at location of pipe centerline (based on best professional judgement).

NOTE: ALL SECTION VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.

Wetland

5

281

to

B8

PHOTO TAKEN LOOKING UPSTREAM FROM BRIDGE ON 04/02/2019

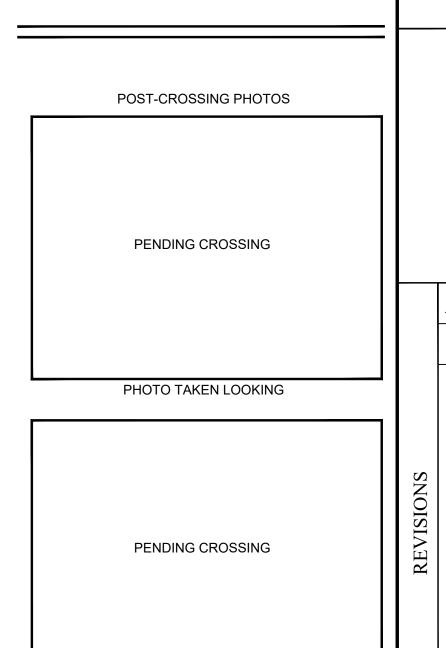


PHOTO TAKEN LOOKING

Horizontal Datum: NAD 1983 UTM ZONE 1 Vertical Datum: NAVD 88

Boundary and Topo Source: WSSI 2' C.I. Topo Approved NAS JSF EJC Sheet # 1 of 1

Computer File Name: Survey\22000s\22800\22865.03\Spread I Work Dwgs 2865_03 S-I MP 279-291 Sheets.dwg