Reach S-C16 (Timber Mat Crossing) Perennial Spread I Franklin County, Virginia

Data	Included
Photos	\checkmark
SWVM Form	\checkmark
FCI Calculator and HGM Form	N/A – Perennial stream (not shadeable)
RBP Physical Characteristics Form	\checkmark
Water Quality Data	\checkmark
RBP Habitat Form	\checkmark
RBP Benthic Form	\checkmark
Benthic Identification Sheet	\checkmark
Wolman Pebble Count	\checkmark
RiverMorph Data Sheet	\checkmark
USM Form (Virginia Only)	\checkmark
Longitudinal Profile and Cross Sections	\checkmark

*Benthic samples collected 8/31/21, shipped 9/8/21

Spread I Stream S-C16 (Timber Mat) Franklin County

Photo Type: US VIEW Location, Orientation, Photographer Initials: Downstream at ROW/LOD looking W upstream, DW

Photo Type: DS COND Location, Orientation, Photographer Initials: Downstream at ROW/LOD looking E downstream, DW

Spread I Stream S-C16 (Timber Mat) Franklin County

Photo Type: LB CL

Location, Orientation, Photographer Initials: On thalweg at pipe centerline looking S at right streambank, DW

Photo Type: RB CL Location, Orientation, Photographer Initials: On thalweg at pipe centerline looking N at left streambank, DW

Spread I Stream S-C16 (Timber Mat) Franklin County

Photo Type: US COND Location, Orientation, Photographer Initials: Upstream at ROW/LOD looking W upstream, DW

Photo Type: DS VIEW Location, Orientation, Photographer Initials: Upstream at ROW/LOD looking E downstream, DW

JSACE FILE NO./ Project Name: Mountain V (2.1, Sept 2015)			in Valley Pipeline		COORDINATES: ecimal Degrees)	Lat.	37.06061	Lon.	-79.921179	WEATHER:		Sunny
IMPACT STREAM/SITE ID (watershed size {acreage}			S	-C16/111.2 ac			MITIGATION STREAM CLA (watershed size {a	ASS./SITE ID AND acreage}, unaltered or in				
STREAM IMPACT LENGTH:	20	FORM OF MITIGATION:	RESTORATION (Levels I-III)		OORDINATES: ecimal Degrees)	Lat.		Lon.		PRECIPITATION PAST 48 HRS:		No
Column No. 1- Impact Existin	g Condition (Del	bit)	Column No. 2- Mitigation Exist	ting Condition - Bas	eline (Credit)		Column No. 3- Mitigati Post Comp	ion Projected at Fiv pletion (Credit)	e Years	Column No. 4- Mitigation Pro Post Completion		ears
Stream Classification:	Pere	nnial	Stream Classification:				Stream Classification:		0	Stream Classification:		0
Percent Stream Channel S	lope	1.27	Percent Stream Chann	el Slope			Percent Stream Chanr	nel Slope	0	Percent Stream Channel S	lope	0
HGM Score (attach d	lata forms):		HGM Score (at	tach data forms):			HGM Score (at	ttach data forms)	:	HGM Score (attach o	lata forms):	
		Average			Average				Average			Average
Hydrology Biogeochemical Cycling		0	Hydrology Biogeochemical Cycling		0		Hydrology Biogeochemical Cycling		0	Hydrology Biogeochemical Cycling		0
Habitat PART I - Physical, Chemical and	Biological Indic	ators	Habitat PART I - Physical, Chemic	cal and Biological In	dicators		Habitat PART I - Physical, Chemi	ical and Biological	Indicators	Habitat PART I - Physical, Chemical and	l Biological India	icators
	Points Scale Range	Site Score		Points Scale Range				Points Scale Rar			Points Scale Range	
PHYSICAL INDICATOR (Applies to all streams			PHYSICAL INDICATOR (Applies to all st				PHYSICAL INDICATOR (Applies to all si			PHYSICAL INDICATOR (Applies to all stream		
USEPA RBP (High Gradient Data Sheet)	s classifications)		USEPA RBP (Low Gradient Data She				USEPA RBP (High Gradient Data Sho	,		USEPA RBP (High Gradient Data Sheet)	s classifications)	
1. Epifaunal Substrate/Available Cover	0-20	20	1. Epifaunal Substrate/Available Cover	0-20			1. Epifaunal Substrate/Available Cover	0-20		1. Epifaunal Substrate/Available Cover	0-20	
2. Embeddedness	0-20	<u>18</u> 9	2. Pool Substrate Characterization 3. Pool Variability	0-20			2. Embeddedness	0-20		2. Embeddedness	0-20	
3. Velocity/ Depth Regime 4. Sediment Deposition	0-20	16	4. Sediment Deposition	0-20			3. Velocity/ Depth Regime 4. Sediment Deposition	0-20		3. Velocity/ Depth Regime 4. Sediment Deposition	0-20	
5. Channel Flow Status	0-20	9	5. Channel Flow Status	0-20			5. Channel Flow Status	0-20		5. Channel Flow Status	0-20	
6. Channel Alteration	0-20 0-1	15	6. Channel Alteration	0-20			6. Channel Alteration	0-20	-1	6. Channel Alteration	0-20	
7. Frequency of Riffles (or bends)	0-20	10	7. Channel Sinuosity	0-20			7. Frequency of Riffles (or bends)	0-20		7. Frequency of Riffles (or bends)	0-20	
8. Bank Stability (LB & RB)	0-20	11	8. Bank Stability (LB & RB)	0-20			8. Bank Stability (LB & RB)	0-20		8. Bank Stability (LB & RB)	0-20	
9. Vegetative Protection (LB & RB)	0-20	10	9. Vegetative Protection (LB & RB)	0-20			9. Vegetative Protection (LB & RB)	0-20		9. Vegetative Protection (LB & RB)	0-20	
10. Riparian Vegetative Zone Width (LB & RB)	0-20	10	10. Riparian Vegetative Zone Width (LB & R				10. Riparian Vegetative Zone Width (LB & F			10. Riparian Vegetative Zone Width (LB & RB)	0-20	
Total RBP Score	Suboptimal	128	Total RBP Score	Poor	0		Total RBP Score	Poor	0	Total RBP Score	Poor	0
Sub-Total CHEMICAL INDICATOR (Applies to Intermitter	nt and Perennial Str	0.64 reams)	Sub-Total CHEMICAL INDICATOR (Applies to Inter	rmittent and Perennial S	0 treams)		Sub-Total CHEMICAL INDICATOR (Applies to Inte	ermittent and Perennial		Sub-Total CHEMICAL INDICATOR (Applies to Intermittee	ent and Perennial St	U
WVDEP Water Quality Indicators (Genera	I)		WVDEP Water Quality Indicators (Ge	neral)			WVDEP Water Quality Indicators (Ge	eneral)		WVDEP Water Quality Indicators (Genera	al)	
Specific Conductivity	0.00	50.0	Specific Conductivity	0.00			Specific Conductivity	0.00		Specific Conductivity		
<=99 - 90 points	0-90	59.8	pH	0-90			На	0-90		pH	0-90	
рН	0-1	8.59	μn I	5-90 0-1			pn	5-90 0-	.1	βn	5-90 0-1	
8.1-9.0 = 45 points			DO				DO			DO		
	10-30	7.39		10-30				10-30			10-30	
>5.0 = 30 points Sub-Total		0.825	Sub-Total		0		Sub-Total		0	Sub-Total		0
BIOLOGICAL INDICATOR (Applies to Intermit	ttont and Poronnial		BIOLOGICAL INDICATOR (Applies to In	tormittant and Parannial			BIOLOGICAL INDICATOR (Applies to	Intermittent and Pere	~	BIOLOGICAL INDICATOR (Applies to Inter	mittont and Poron	v
		Streams)			Suearrs							
WV Stream Condition Index (WVSCI)	0-100 0-1		WV Stream Condition Index (WVSCI)	0-100 0-1			WV Stream Condition Index (WVSCI)	0-100 0-	1	WV Stream Condition Index (WVSCI)	0-100 0-1	
0 Sub-Total		0	Sub-Total		0		Sub-Total		0	Sub-Total		0
					U					oub-rotai		
PART II - Index and U	Jnit Score		PART II - Index	x and Unit Score			PART II - Inde	ex and Unit Score		PART II - Index and I	Jnit Score	
Index	Linear Feet	Unit Score	Index	Linear Feet	Unit Score		Index	Linear Fee	et Unit Score	Index	Linear Feet	Unit Score
0.733	20	14.65	0	0	0		0	0	0	0	0	0
<u>.</u>	1	<u> </u>	L		1		L					

PART II - Index and Unit Score							
Index	Linear Feet	Unit Score					
0.733	20	14.65					

West Virginia Stream and Wetland Valuation Metric (SWVM) Version 2.1, September 2017

,	DATE:							
		August 28, 2021						
	Comments:							
	Mitigation Length:							
	Column No. 5- Mitigation Projecte	ed at Matu	ırity (Cı	redit)				
	Stream Classification:		0					
	Percent Stream Channel Si HGM Score (attach da		<u></u>	0				
); 	1				
ge				Average				
	Hydrology							
	Biogeochemical Cycling			0				
	Habitat PART I - Physical, Chemical and	Biologica	Indica	tors				
		Diologica	indica					
re		Points Scale	Range	Site Score				
	PHYSICAL INDICATOR (Applies to all streams	classificatio	ons)					
	USEPA RBP (High Gradient Data Sheet)			_				
	1. Epifaunal Substrate/Available Cover	0-20	_					
	2. Embeddedness	0-20	-					
	3. Velocity/ Depth Regime	0-20	-					
	4. Sediment Deposition	0-20	-					
	5. Channel Flow Status	0-20	0-1					
	6. Channel Alteration	0-20	-					
	7. Frequency of Riffles (or bends)	0-20	-					
	8. Bank Stability (LB & RB)	0-20	-					
	9. Vegetative Protection (LB & RB) 10. Riparian Vegetative Zone Width (LB & RB)	0-20	-					
	Total RBP Score	Po	or	0				
	Sub-Total	-		0				
	CHEMICAL INDICATOR (Applies to Intermitten	t and Peren	nial Stre	ams)				
	WVDEP Water Quality Indicators (General)							
	Specific Conductivity							
		0-90	1					
			-					
	рН	1	0-1					
		5-90	0-1					
	DO		1					
		10-30						
	Sub-Total		<u> </u>	0				
s)	BIOLOGICAL INDICATOR (Applies to Interm	ittent and I	Perennia	al Streams)				
	WV Stream Condition Index (WVSCI)							
		0.400	0.4					
		0-100	0-1					
	Sub-Total			0				
	PART II - Index and U	nit Seere						
	PART II - Index and U	int Score						
core	Index	Linear	Feet	Unit Score				
		Linear						
	0	0		0				
]		<u> </u>						

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

STREAM NAME S-C16		LOCATION Franklin County	
STATION # R	IVERMILE 262.1	STREAM CLASS Perennial	
LAT 37.06061 LO	ONG79.921179	RIVER BASIN Upper Roanol	(e
STORET #		AGENCY VADEQ	
INVESTIGATORS JM DV	V CB	-	
FORM COMPLETED BY	JM	DATE 8/28/2021 TIME 1100	REASON FOR SURVEY Baseline Assessment
	1		
WEATHER CONDITIONS	rain (showers	(heavy rain) (steady rain) (steady rain)	Ias there been a heavy rain in the last 7 days? Yes ✓ No .ir Temperature 26.7 ° C Other
SITE LOCATION/MAP	Draw a map of the sit	e and indicate the areas sampled	l (or attach a photograph)
STREAM CHARACTERIZATION	Stream Subsystem ☑ Perennial Into Stream Origin ☐ Glacial Non-glacial montane ☐ Swamp and bog	C Spring-fed	tream Type Coldwater Catchment Area 0.45 km ²

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

WATERSHED FEATURES RIPARIAN VEGETATION (18 meter buffer)	Predominant Surrounding Landuse Forest Commercial Field/Pasture Industrial Agricultural Other Residential Industrial Indicate the dominant type and record the domin Trees Dominant species present Unknown	Local Watershed NPS Pollution ☑ No evidence □ Some potential sources □ Obvious sources Local Watershed Erosion ☑ None □ Moderate □ Moderate □ Heavy nant species present □ Herbaceous
INSTREAM FEATURES	Estimated Reach Length 16.7 m Estimated Stream Width 1 m Sampling Reach Area 16.7 m² Area in km² (m²x1000) N/A km² Estimated Stream Depth 0.102 m Surface Velocity (at thalweg) 0.08 m/sec	Canopy Cover
LARGE WOODY DEBRIS	LWD <u>•</u> m ² Density of LWD <u>•</u> m ² /km ² (LWD/ read	_{ch area)} O
AQUATIC VEGETATION	Indicate the dominant type and record the domin Rooted emergent Floating Algae Dominant species present None Portion of the reach with aquatic vegetation 0	hant species present ☐Rooted floating ☐Free floating _%
WATER QUALITY	Temperature 20.8d/20.9u 0 C Specific Conductance 59.8d/59.7u ms/cm Dissolved Oxygen 7.39d/8.20u mg/L pH 8.59d/8.15u su Turbidity N/A	Water Odors Normal/None Sewage Petroleum Chemical Fishy Other Water Surface Oils Slick Slick Sheen Globs Vone Other Turbidity (if not measured) Turbid Clear Slightly turbid Turbid Opaque Stained Other
SEDIMENT/ SUBSTRATE	Odors Sewage Petroleum Chemical Anaerobic None Other Oils Pofuse	Deposits □Sludge □Sawdust □Paper fiber □Sand □Relict shells □Other □Lpoking at stones which are not deeply embedded, are the undersides black in color? □Yes ☑No

INC	DRGANIC SUBSTRATE (should add up to 1			ORGANIC SUBSTRATE COMPONENTS (does not necessarily add up to 100%)				
Substrate Type	Diameter	Diameter % Composition in Sampling Reach		Characteristic	% Composition in Sampling Area			
Bedrock		0	Detritus	sticks, wood, coarse plant	0			
Boulder	> 256 mm (10")	20		materials (CPOM)	0			
Cobble	64-256 mm (2.5"-10")	30	Muck-Mud	black, very fine organic (FPOM)	0			
Gravel	2-64 mm (0.1"-2.5")	50		(FPOIVI)	0			
Sand	0.06-2mm (gritty)	0	Marl	grey, shell fragments	0			
Silt	0.004-0.06 mm	0]		0			
Clay	< 0.004 mm (slick)	0						

HABITAT ASSESSMENT FIELD DATA SHEET - HG - USE ON ALL STREAMS (FRONT)

STREAM NAME S-C16	LOCATION Franklin County			
STATION # RIVERMILE 262.1	STREAM CLASS Perennial			
LAT <u>37.06061</u> LONG <u>-79.921179</u>	RIVER BASIN Upper Roanoke			
STORET #	AGENCY VADEQ			
INVESTIGATORS JM DW CB				
FORM COMPLETED BY JM	DATE 8/28/2021 REASON FOR SURVEY TIME 1100 AM PM Baseline Assessment			

	Habitat		Condition	a Category				
	Parameter	Optimal	Suboptimal	Marginal	Poor			
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are <u>not</u> new fall and <u>not</u> transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.			
	_{SCORE} 20	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.			
ted in	score 18	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow- deep, slow-shallow, fast- deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast- shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).			
ıram	_{SCORE} 9	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
Paran	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.			
	_{score} 16	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.			
	score 9	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

	Habitat		Condition	1 Category				
	Parameter	Optimal	Suboptimal	Marginal	Poor			
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.			
	_{score} 15	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
ding reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.			
amp	_{score} 10	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing deurstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30- 60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.			
e ev	SCORE 6	Left Bank 10 9	8 7 6	5 4 3	2 1 0			
; to b	SCORE 5	Right Bank 10 9	8 7 6	5 4 3	2 1 0			
Parameter	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well- represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.			
	SCORE 5	Left Bank 10 9	8 7 6	5 4 3	2 1 0			
	SCORE 5	Right Bank 10 9	8 7 6	5 4 3	2 1 0			
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.			
	SCORE 5	Left Bank 10 9	8 7 6	5 4 3	2 1 0			
	SCORE 5	Right Bank 10 9	8 7 6	5 4 3	2 1 0			

Total Score 128

BENTHIC MACROINVERTEBRATE FIELD DATA SHEET

STREAM NAME S-C	:16	LOCATION Franklin County	,			
STATION #	_ RIVERMILE	STREAM CLASS Perennial				
LAT _37.06061	LONG79.921179	RIVER BASIN Upper Roand	ke			
STORET #		AGENCY VADEQ				
INVESTIGATORS JA	I DW CB		LOT NUMBER			
FORM COMPLETED	JM	DATE 08-31-21 TIME 1100	REASON FOR SURVEY Baseline Assessment			
HABITAT TYPES	Cobble% Sn	Indicate the percentage of each habitat type present Cobble% Snags% Vegetated Banks% Sand% Submerged Macrophytes% Other ()%				
SAMPLE COLLECTION	Cobble₄ □Sn	lected? wading f bs/kicks taken in each habitat to lags Vegetated B	rom bank			
	Submerged Macrophytes	Other ()			
GENERAL COMMENTS	Four kicks were t	aken in riffle habitat	t.			

QUALITATIVE LISTING OF AQUATIC BIOTA

Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare, 2 = Common, 3= Abundant, 4 = Dominant

Periphyton	0	1	2	3	4	Slimes	0	1	2	3	4
Filamentous Algae	0	1	2	3	4	Macroinvertebrates	0	1	2	3	4
Macrophytes	0	1	2	3	4	Fish	0	1	2	3	4

FIELD OBSERVATIONS OF MACROBENTHOS

Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare (1-3 organisms), 2 = Common (3-9 organisms), 3= Abundant (>10 organisms), 4 = Dominant (>50 organisms)

Porifera	0	1	2	3	4	Anisoptera	0	1	2	3	4	Chironomidae	0	1	2	3	4
Hydrozoa	0	1	2	3	4	Zygoptera	0	1	2	3	4	Ephemeroptera	0	1	2	3	4
Platyhelminthes	0	1	2	3	4	Hemiptera	0	1	2	3	4	Trichoptera	0	1	2	3	4
Turbellaria	0	1	2	3	4	Coleoptera	0	1	2	3	4	Other	0	1	2	3	4
Hirudinea	0	1	2	3	4	Lepidoptera	0	1	2	3	4						
Oligochaeta	0	1	2	3	4	Sialidae	0	1	2	3	4						
Isopoda	0	1	2	3	4	Corydalidae	0	1	2	3	4						
Amphipoda	0	1	2	3	4	Tipulidae	0	1	2	3	4						
Decapoda	0	1	2	3	4	Empididae	0	1	2	3	4						
Gastropoda	0	1	2	3	4	Simuliidae	0	1	2	3	4						
Bivalvia	0	1	2	3	4	Tabinidae	0	1	2	3	4						
						Culcidae	Q	1	2	3	4						

Eco ANALYSTS, INC.

	Sample ID Collection Date	S-C16 08-31-2021
ORDER	GENUS/SPECIES	COUNT
Ephemeroptera		1
	Maccaffertium sp.	3
Ephemeroptera		1
	Teloganopsis deficiens	1
	Eccoptura xanthenes	4
Trichoptera	Cheumatopsyche sp.	5
Trichoptera	Chimarra sp.	1
Trichoptera	Diplectrona sp.	1
Trichoptera	Glossosoma sp.	1
	Hydropsyche sp.	
	Hydroptila sp.	3
Coleoptera	Optioservus sp.	5 3 2
Coleoptera	Stenelmis sp.	1
Diptera-Chironomidae	Microtendipes sp.	1
Diptera-Chironomidae	Parakiefferiella sp.	1
Diptera-Chironomidae	Paratendipes sp.	1
Diptera-Chironomidae	Polypedilum sp.	1
Diptera-Chironomidae	Pseudochironomus sp.	1
Diptera-Chironomidae	Tanytarsus sp.	1
Diptera-Chironomidae	Thienemannimyia gr. sp.	1
Diptera	Antocha sp.	1
	Dixa sp.	2
Diptera	Tabanidae	1
Annelida		2
Gastropoda	Ferrissia sp.	2 2 2
Gastropoda	Lymnaeidae	2
Gastropoda	Micromenetus sp.	1
	TOTAL	47

Mountain Valley Pipeline WV SCI Metrics

Sample ID	
Collection Date	08-31-2021
WVSCI Metric Values	
Total taxa	17
EPT taxa	8
% EPT	55.3
% Chironomidae	14.9
% 2 Dominant	38.3
HBI	4.49
WVSCI Metric Scores	
Total taxa	81.0
EPT taxa	61.5
% EPT	60.2
% Chironomidae	85.9
% 2 Dominant HBI	96.4 77.6
пы	11.0
WVSCI Metric Scores	
Total taxa	81.0
EPT taxa	61.5
% EPT	60.2
% Chironomidae	85.9
% 2 Dominant	96.4
НВІ	77.6
WVSCI Total Score	77.1

WVSCI Thresholds

Unimpaired = > 68.00 Gray Zone = 60.61 to 68.00 Impaired = <60.61

*Not comparable due to insufficient number of individuals, thus WVSCI score was not reported on SWVM form.

WOLMAN PEBBLE COUNT FORM

S-C16

Upper Roanoke

County:Franklin CountyStream ID:Stream Name:UNT to Teels CreekHUC Code:03010101Survey Date:8/28/2021Surveyors:JM DW CBType:Representative

			LE COUNT				
Inches	PARTICLE	Millimeters		Particle Count	Total #	Item %	% Cum
	Silt/Clay	< .062	S/C	▲ ▼	0	0.00	0.00
	Very Fine	.062125		▲ ▼	0	0.00	0.00
	Fine	.12525		▲ ▼	0	0.00	0.00
	Medium	.255	SAND	▲ ▼	2	2.00	2.00
	Coarse	.50-1.0		▲ ▼	6	6.00	8.00
.0408	Very Coarse	1.0-2		▲ ▼	5	5.00	13.00
.0816	Very Fine	2 -4		•	5	5.00	18.00
.1622	Fine	4 -5.7		▲ ▼	3	3.00	21.00
.2231	Fine	5.7 - 8		•	6	6.00	27.00
.3144	Medium	8 -11.3		•	3	3.00	30.00
.4463	Medium	11.3 - 16	GRAVEL	•	1	1.00	31.00
.6389	Coarse	16 -22.6		•	2	2.00	33.00
.89 - 1.26	Coarse	22.6 - 32		▲ ▼	4	4.00	37.00
1.26 - 1.77	Vry Coarse	32 - 45		▲ ▼	9	9.00	46.00
1.77 -2.5	Vry Coarse	45 - 64		▲ ▼	8	8.00	54.00
2.5 - 3.5	Small	64 - 90		▲ ▼	9	9.00	63.00
3.5 - 5.0	Small	90 - 128	COBBLE	▲ ▼	12	12.00	75.00
5.0 - 7.1	Large	128 - 180	COBBEE	• •	10	10.00	85.00
7.1 - 10.1	Large	180 - 256		▲ ▼	7	7.00	92.00
10.1 - 14.3	Small	256 - 362		▲ ▼	6	6.00	98.00
14.3 - 20	Small	362 - 512		▲ ▼	2	2.00	100.00
20 - 40	Medium	512 - 1024	BOULDER	▲ ▼	0	0.00	100.00
40 - 80	Large	1024 -2048		• •	0	0.00	100.00
80 - 160	Vry Large	2048 -4096		• •	0	0.00	100.00
	Bedrock		BDRK	•	0	0.00	100.00
				Totals:	100		
	Total Tally:						

River Name: Reach Name: Sample Name: Survey Date:	S-C16 Representative		
Size (mm)	тот #	ITEM %	CUM %
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock		$\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 2.00\\ 6.00\\ 5.00\\ 5.00\\ 5.00\\ 3.00\\ 6.00\\ 3.00\\ 1.00\\ 2.00\\ 4.00\\ 9.00\\ 1.00\\ 9.00\\ 12.00\\ 10.00\\ 7.00\\ 6.00\\ 2.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ \end{array}$	0.00 0.00 2.00 8.00 13.00 13.00 18.00 21.00 27.00 30.00 31.00 33.00 37.00 46.00 54.00 63.00 75.00 85.00 92.00 98.00 100.00
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Gravel (%) Boulder (%) Boulder (%) Bedrock (%)	3.2 27.3 54.5 174.8 309 511.99 0 13 41 38 8 0		

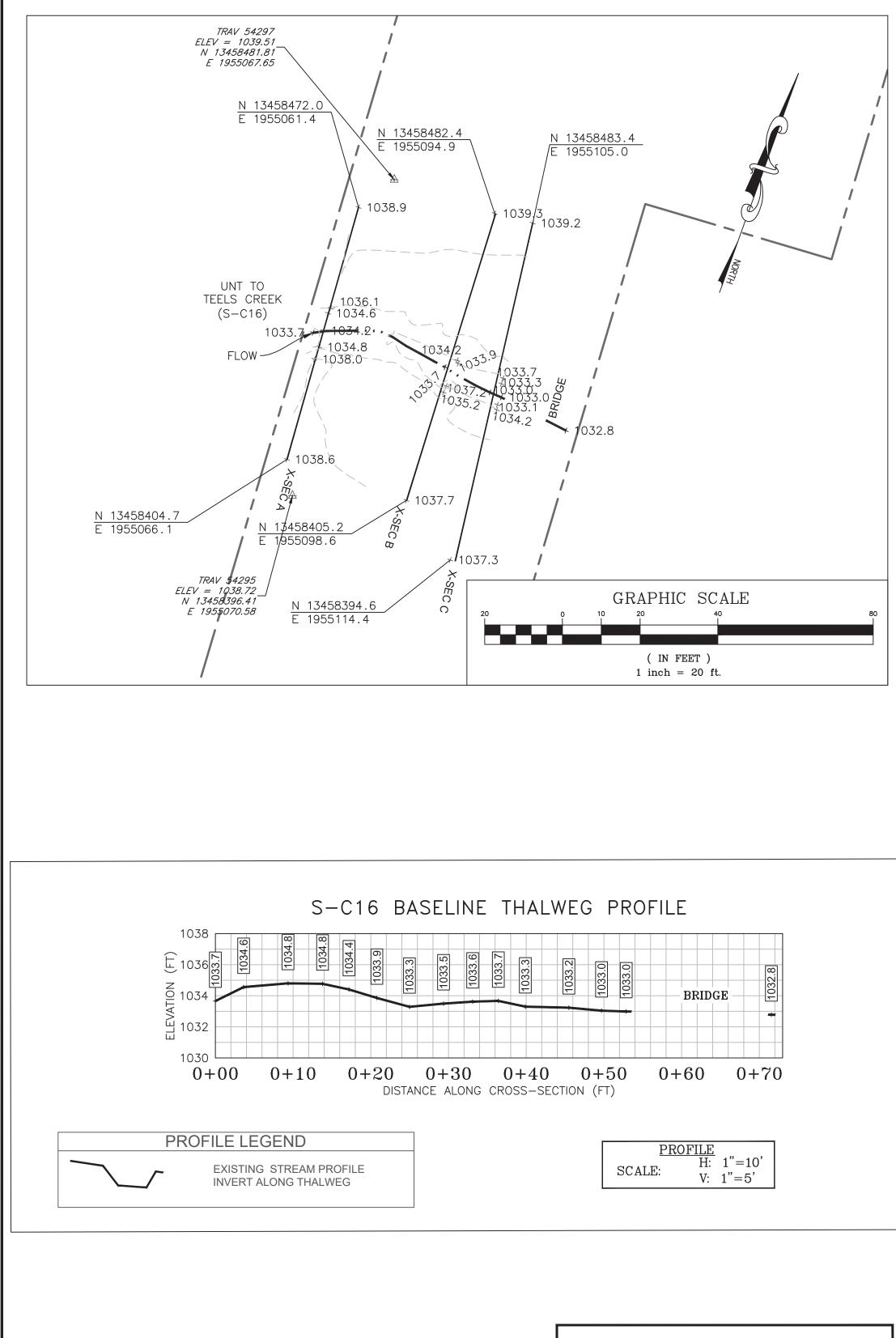
Total Particles = 100.

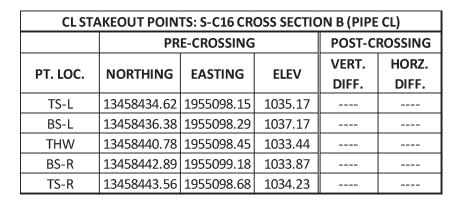
		S	Strean		essm tream Method		•	Form	1)						
Project #	Projec	t Name (Ann		For use in wadea	able channels cla Cowardin	HUC	nittent or perenn Date	ial SAR #	Impact	Impact					
22865.06	Mountain V	Project Name (Applica Iountain Valley Pipeline (N		Franklin	Class. R3	03010101	8/28/2021	S-C16	Length 20	Factor 1					
	Valle e(s) of Evalua	ey Pipeline, I tor(s)	LC) Stream Nam	County e and Inform					SAR Length						
	JM, DW, CB		UNT to Teels						85						
. Channel C	ondition: Asse	ess the cross-sec	tion of the stream	and prevailing co	ondition (erosion, a	aggradation)									
			1		Conditional Catego	ory		oor	Sou	vere					
	Optimal		Optimal Suboptimal Image: Suboptimal Image: Suboptimal					ginal							
Channel Condition	surface protection prominent (80-100% point bankfull benches ar	%). AND/OR Stable bars / re present. Access	erosion or unprotect of banks are st Vegetative protect prominent (60	ew areas of active cted banks. Majority table (60-80%). tion or natural rock -80%) AND/OR	Poor. Banks more or Poor due to lo Erosion may be pro both banks. Vege	less than Severe or stable than Severe ower bank slopes. esent on 40-60% of tative protection on	further. Majority near vertical. Eros 80 ⁰ banks. Vegetative	laterally unstable. Likely to widen further. Majority of both banks are near vertical. Erosion present on 60- 80% of banks. Vegetative protection present		stability. Severe tained within the ed below average depth, vertical/undercut.					
	developed wide bar channel bars and tr Transient sediment	bankfull benches are present. Access to their original floodplain or fully leveloped wide bankfull benches. Mid- channel bars and transverse bars few. Transient sediment deposition covers less than 10% of bottom.		tures contribute to hkfull and low flow Il defined. Stream ess to bankfull wly developed reach. Transient s 10-40% of the bottom.	be vertical or un 40-60% Sediment transient, contr Deposition that co may be forming/pr shaped channels protection on > 400 depositional featur	ibute instability. ntribute to stability, resent. AND/OR V- s have vegetative	 on 20-40% of banks, and is insufficient to prevent erosion. the stream is covered by sediment. Sediment is temporary / transient in nature, and contributing to instability. AND/OR V-shaped channels have vegetative protection is present on > 40% of the banks and stable sediment 		 Vegetative protection present on less than 20% of banks, is not preventing erosion. Obvious bank sloughing present. Erosion/raw banks on 80-100%. AND/OR Aggrading channel than 80% of stream bed is covered to be deposition, contributing to instability. 		present. Erosion/raw banks on 80- 100%. AND/OR Aggrading channel. than 80% of stream bed is covered by deposition, contributing to instability. Multiple thread channels and/or		Vegetative protection present on less than 20% of banks, is not preventing erosion. Obvious bank sloughing present. Erosion/raw banks on 80- 100%. AND/OR Aggrading channel. than 80% of stream bed is covered by deposition, contributing to instability. Multiple thread channels and/or		CI
Scores	3	3	2	.4	:	2	1	.6	1	2.00					
NOTES>> 2. RIPARIAN	I BUFFERS: A	Assess both bank			limited to are entire SAR. (roug				le)						
				ditional Cate		<u>.</u>			NOTES>>						
	Opti	imal		ptimal		ginal	Po	oor							
Riparian Buffers	Tree stratum (dbh > with > 60% tree Wetlands located are	e canopy cover. within the riparian	High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory.	Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation).	High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover.	Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory.	High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non- maintained area, recently seeded and stabilized, or other comparable condition.	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions.							
			High	Low	High	Low	High	Low							
Scores	1.	1.5 1.2 1.1			0.85	0.75	0.6	0.5							
2. Determine squ pelow.	•	ach by measuring	g or estimating leng	gth and width. Ca	Calculators are provided for you of %			the sums Riparian equal 100 100%							
Right Bank	Score >	0.5	0.85					10070							
_	0/ 5	0.00/							CI= (Sum % RA * So	,					
Left Bank	% Riparian Area> Score >	30% 0.5	70% 0.85					100%	Rt Bank CI > Lt Bank CI >	0.75 0.75	CI 0.75				
. INSTREAM				and depths: woo	dy and leafy debr	is; stable substrat	e; low embededn	ess: shade: under	cut banks; root ma						
	xes, stable feature					.,		, 5, 4.1461	-	_, _, .,					
Instream	Condition Condit					ginal	Po	oor	NOTES>>						
Habitat/ Available	Habitat elements a in greater than 5	re typically present	Stable habitat eler present in 30-50%	ments are typically 6 of the reach and r maintenance of	Stable habitat eler present in 10-30%	ments are typically 6 of the reach and r maintenance of	Habitat elements lacking or are u	s listed above are instable. Habitat cally present in less							
Cover			popula	ations.	popula	ations.	than 10% c	of the reach.	Stream (
Scores	1.	.5		.2		.9		.5	High	LOW	0.90				
		St	ream In	npact A		nent Fo	rm Pag	eZ							
	Project Name (Applicant)														
Project #		t Name (App alley Pipeline	•	Locality Franklin	Cowardin Class.	HUC	Date	SAR #	Impact Iength	Impact Factor					

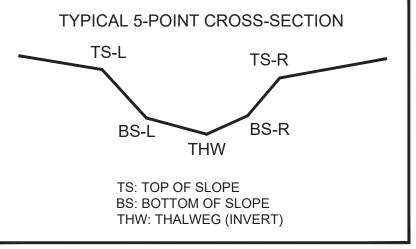
Reach R3-R4

File: C:\Users\emily.foster\Documents\Projects (for telework)\MVP\WV Stream Assessments Data Management\Virginia Final QC Packages\S-C16_20210926EF\8. S-C16_USM_MVP_20210913JC.xlsx

			Conditiona	al Category			NOTES>>	
	Negligible	Minor Mo			erate	Severe		
Channel Alteration	Channelization, dredging, alteration, or hardening absent. Stream has an unaltered pattern or has naturalized.	of the channel	20-40% of the stream reach is	is disrupted by any of the channel alterations listed in	of the channel alterations listed in	Greater than 80% of reach is disrupted by any of the channel alterations listed in the parameter guidelines AND/OR 80% of banks shored with gabion, riprap, or cement.		CI
Scores	1.5	1.3	1.1	0.9	0.7	0.5		1.10
	REACH C	CONDITION I	NDEX and S	STREAM CO	NDITION UN	NITS FOR THIS REACH		
OTE: The Cls a	and RCI should be rounded to 2 dec	imal places. The	CR should be rou	nded to a whole r	iumber.	THE REACH	CONDITION INDEX (RCI) >>	0.95
						RCI= (Sum of all CI's)/5, exce	ept if stream is ephemeral RCI = (Riparian Cl
						COMPENSA	TION REQUIREMENT (CR) >>	19
						 CR = R(


INSERT PHOTOS:

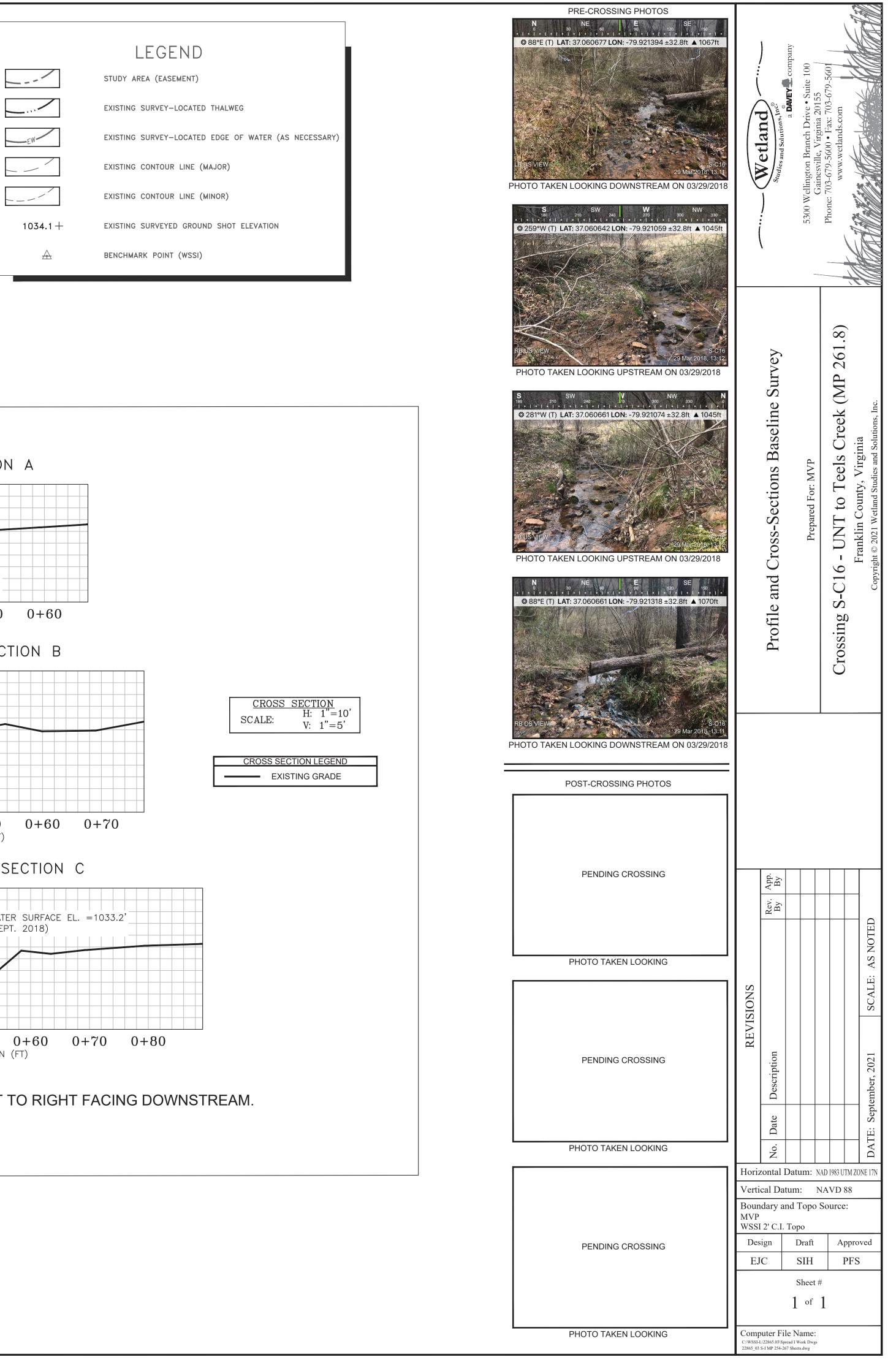


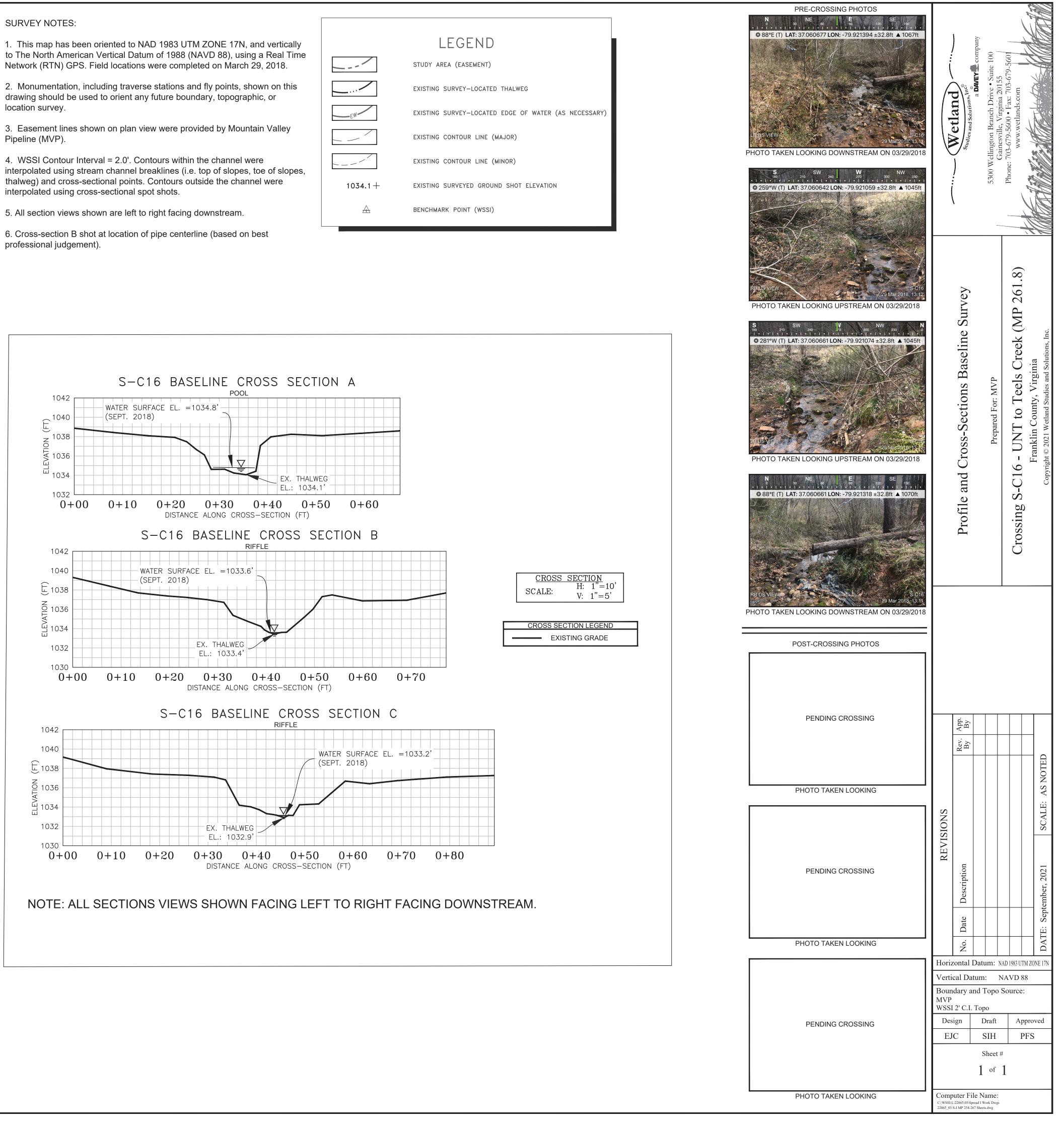

DESCRIBE PROPOSED IMPACT:

PROVIDED UNDER SEPARATE COVER

Reach R3-R4 File: C:\Users\emily.foster\Documents\Projects (for telework)\MVP\WV Stream Assessments Data Management\Virginia Final QC Packages\S-C16_20210926EF\8. S-C16_USM_MVP_20210913JC.xlsx

to The North American Vertical Datum of 1988 (NAVD 88), using a Real Time


drawing should be used to orient any future boundary, topographic, or location survey.


Pipeline (MVP).

4. WSSI Contour Interval = 2.0'. Contours within the channel were interpolated using stream channel breaklines (i.e. top of slopes, toe of slopes, thalweg) and cross-sectional points. Contours outside the channel were interpolated using cross-sectional spot shots.

5. All section views shown are left to right facing downstream.

professional judgement).

