Baseline Assessment – Stream Attributes

Reach S-D2 (Timber Mat Crossing) Perennial Spread I Pittsylvania County, Virginia

Data	Included
Photos	✓
SWVM Form	✓
FCI Calculator and HGM Form	N/A – Perennial stream (not shadeable, slope >4%)
RBP Physical Characteristics Form	✓
Water Quality Data	✓
RBP Habitat Form	✓
RBP Benthic Form	✓
Benthic Identification Sheet	✓
Wolman Pebble Count	✓
RiverMorph Data Sheet	✓
USM Form (Virginia Only)	✓
Longitudinal Profile and Cross Sections	✓

Spread I Stream S-D2 (Timber Mat) Pittsylvania County

Photo Type: US VIEW Location, Orientation, Photographer Initials: Downstream at ROW/LOC looking SE upstream, VM

Photo Type: DS COND Location, Orientation, Photographer Initials: Downstream at ROW/LOC looking S downstream, VM

Spread I Stream S-D2 (Timber Mat) Pittsylvania County

Photo Type: LB CL Location, Orientation, Photographer Initials: On thalweg at pipe centerline looking SE at left streambank, VM

Photo Type: RB CL

Location, Orientation, Photographer Initials: On thalweg at pipe centerline looking NW at right streambank, VM

Spread I Stream S-D2 (Timber Mat) Pittsylvania County

Photo Type: DS VIEW Location, Orientation, Photographer Initials: Upstream at ROW/LOC looking SE downstream, VM

USACE FILE NO./ Project Name: (v2.1, Sept 2015)		Moun	tain Valley Pipeline	IMPACT COORDINATES: (in Decimal Degrees)	Lat.	36.965405	Lon.	-79.59913	WEATHER:	20 % cloud cover, sunny	DATE:	8/24/2021
IMPACT STREAM/SITE ID AN (watershed size {acreage}, una			S-D2/ 6	53.58 ac		MITIGATION STREAM CLASS./ (watershed size {acreage					Comments:	
STREAM IMPACT LENGTH:	20	FORM OF MITIGATION:	RESTORATION (Levels I-III)	MIT COORDINATES: (in Decimal Degrees)	Lat.		Lon.		PRECIPITATION PAST 48 HRS:	Yes	Mitigation Length:	
Column No. 1- Impact Existing Co	ondition (Debit))	Column No. 2- Mitigation Existing C	ondition - Baseline (Credit)		Column No. 3- Mitigation Pr Post Completio		Years	Column No. 4- Mitigation Proje Post Completion (G		Column No. 5- Mitigation Proje	cted at Maturity (Credit)
Stream Classification:	Perenn	ial	Stream Classification:			Stream Classification:		0	Stream Classification:	0	Stream Classification:	0
Percent Stream Channel Slope	е	1.06%	Percent Stream Channel Slo	ре		Percent Stream Channel S	lope	0	Percent Stream Channel Sk	ope 0	Percent Stream Channel	Slope 0
HGM Score (attach data	a forms):		HGM Score (attach o	lata forms):		HGM Score (attach	data forms):		HGM Score (attach da	ata forms):	HGM Score (attach	data forms):
Hydrology Biogeochemical Cycling		Average 0	Hydrology Biogeochemical Cycling	Average 0		Hydrology Biogeochemical Cycling		Average 0	Hydrology Biogeochemical Cycling	Average 0	Hydrology Biogeochemical Cycling	Average 0
Habitat PART I - Physical, Chemical and Bio	ological Indicate	ors	Habitat PART I - Physical, Chemical and	Biological Indicators		PART I - Physical, Chemical a	nd Biological I	ndicators	Habitat PART I - Physical, Chemical and I	Biological Indicators	Habitat PART I - Physical, Chemical ar	nd Biological Indicators
PHYSICAL INDICATOR (Applies to all streams cla	oints Scale Range	Site Score	PHYSICAL INDICATOR (Applies to all streams	Points Scale Range Site Score Classifications)		PHYSICAL INDICATOR (Applies to all stream	Points Scale Range s classifications)		PHYSICAL INDICATOR (Applies to all streams	Points Scale Range Site Score classifications)	PHYSICAL INDICATOR (Applies to all strea	Points Scale Range Site Score
USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover	0-20	15	USEPA RBP (Low Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover	0-20		USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover	0-20		USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover	0-20	USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover	0-20
3. Velocity/ Depth Regime 4. Sediment Deposition 5. Channel Flow Status 6. Channel Alteration 7. Frequency of Riffles (or bends) 8. Bank Stability (LB & RB) 9. Vegetative Protection (LB & RB) 10. Riparian Vegetative Zone Width (LB & RB) Total RBP Score Sub-Total CHEMICAL INDICATOR (Applies to Intermittent a WVDEP Water Quality Indicators (General) Specific Conductivity <=99 - 90 points PH 6.0-8.0 = 80 points DO	0-90	97.6	2. Pool Substrate Characterization 3. Pool Variability 4. Sediment Deposition 5. Channel Flow Status 6. Channel Alteration 7. Channel Sinuosity 8. Bank Stability (LB & RB) 9. Vegetative Protection (LB & RB) 10. Riparian Vegetative Zone Width (LB & RB) Total RBP Score Sub-Total CHEMICAL INDICATOR (Applies to Intermitten WYDEP Water Quality Indicators (General) Specific Conductivity DO	5-90		2. Embeddedness 3. Velocity/ Depth Regime 4. Sediment Deposition 5. Channel Flow Status 6. Channel Alteration 7. Frequency of Riffles (or bends) 8. Bank Stability (LB & RB) 9. Vegetative Protection (LB & RB) 10. Riparian Vegetative Zone Width (LB & RB) Total RBP Score Sub-Total CHEMICAL INDICATOR (Applies to Intermitte WYDEP Water Quality Indicators (Genera Specific Conductivity PH DO	0-90	O O Streams)	2. Embeddedness 3. Velocity/ Depth Regime 4. Sediment Deposition 5. Channel Flow Status 6. Channel Alteration 7. Frequency of Riffles (or bends) 8. Bank Stability (LB & RB) 9. Vegetative Protection (LB & RB) 10. Riparian Vegetative Zone Width (LB & RB) Total RBP Score Sub-Total CHEMICAL INDICATOR (Applies to Intermitter WVDEP Water Quality Indicators (General) Specific Conductivity DO	5-90	2. Embeddedness 3. Velocity/ Depth Regime 4. Sediment Deposition 5. Channel Flow Status 6. Channel Alteration 7. Frequency of Riffles (or bends) 8. Bank Stability (LB & RB) 9. Vegetative Protection (LB & RB) 10. Riparian Vegetative Zone Width (LB & RB) Total RBP Score Sub-Total CHEMICAL INDICATOR (Applies to Intermit WVDEP Water Quality Indicators (General Specific Conductivity PH DO	tent and Perennial Streams) ral) 0-90 5-90 0-1
>5.0 = 30 points Sub-Total	10-30	7.67	Sub-Total	10-30		Sub-Total	10-30	0	Sub-Total	10-30	Sub-Total	10-30
BIOLOGICAL INDICATOR (Applies to Intermitten	nt and Perennial St	treams)	BIOLOGICAL INDICATOR (Applies to Intermitt	ent and Perennial Streams)		BIOLOGICAL INDICATOR (Applies to Intern	nittent and Pere	nnial Streams)	BIOLOGICAL INDICATOR (Applies to Interm	ittent and Perennial Streams)	BIOLOGICAL INDICATOR (Applies to Inte	rmittent and Perennial Streams)
WV Stream Condition Index (WVSCI) Very Good Sub-Total	0-100 0-1	83.9 0.839	WV Stream Condition Index (WVSCI) Sub-Total	0-100 0-1 0		WV Stream Condition Index (WVSCI) Sub-Total	0-100 0-	0	WV Stream Condition Index (WVSCI) Sub-Total	0-100 0-1 0	WV Stream Condition Index (WVSCI) Sub-Total	0-100 0-1 0
PART II - Index and Unit		Unit Score	PART II - Index and Index	Unit Score Linear Feet Unit Score		PART II - Index and	Unit Score	t Unit Score	PART II - Index and Ui	Linear Feet Unit Score	PART II - Index and	Unit Score Linear Feet Unit Score
0.811	20 1	16.2266667	0	0 0		0	0	0	0	0 0	0	0 0

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

STREAM NAME S-D2	LOCATION Pittsylvania	
STATION # RIVERMILE	STREAM CLASS Perennial	
LAT <u>36.965405</u> LONG <u>-79.59913</u>	RIVER BASIN Upper Roano	ke
STORET#	AGENCY VADEQ	
INVESTIGATORS AJ/VM		
FORM COMPLETED BY AJ/VM	DATE 8/24/21 TIME 12:30	REASON FOR SURVEY Baseline Assessment

WEATHER CONDITIONS	Now Past 24 hours Yes No Air Temperature 33 ° C Other Clear/sunny Has there been a heavy rain in the last 7 days? Air Temperature 33 ° C Other
SITE LOCATION/MAP	Down ST Stream 60ft x 1.5ft
STREAM CHARACTERIZATION	Stream Subsystem Perennial Intermittent Tidal Stream Origin Glacial Spring-fed Non-glacial montane Swamp and bog Other Stream Type Coldwater Varmwater Catchment Area 2.65 km²

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

WATERS FEATURI		Predom Fores Field Agric Resid	ultural □Oth	Landuse mmercial ustrial er	Local Watershed NPS ☑ No evidence ☐ Son ☐ Obvious sources Local Watershed Eros ☑ None ☐ Moderate	ne potential sources
RIPARIA VEGETA (18 meter	TION				ominant species present Grasses Head of Head	
INSTREA FEATURI		Estimat Samplin Area in Estimat		1.0668 m m²km²	_ , ,	Run%
LARGE V DEBRIS	VOODY	LWD Density	of LWD	m²/km² (LWD /	reach area)	
AQUATIC VEGETA		Roote Floati	d emergent ng Algae	Rooted submerg Attached Algae		☐Free floating
WATER (QUALITY	Specific Dissolve pH 723d Turbidi	rature 21.6d 21.4u 0 C Conductance 97.6d 97. ed Oxygen 7.67d 7.13u 7.17u Su tty NA ttrument Used vsi			Other]Globs Flecks
SEDIMEN SUBSTRA		Odors Norm Chem Other Oils			Relict shells Looking at stones which are the undersides blace.	Othereh are not deeply embedded,
INC		STRATE of	COMPONENTS 00%)		ORGANIC SUBSTRATE C	
Substrate Type	Diamet	er	% Composition Sampling Reacl		Characteristic	% Composition in Sampling Area
Bedrock Boulder	> 256 mm (10")		3	Detritus	sticks, wood, coarse plant materials (CPOM)	0
Cobble Gravel	64-256 mm (2.5 2-64 mm (0.1"-2	2.5")	60 30	Muck-Mud	black, very fine organic (FPOM)	
Sand Silt Clay	0.06-2mm (gritt 0.004-0.06 mm < 0.004 mm (sli		7	Marl	grey, shell fragments	

HABITAT ASSESSMENT FIELD DATA SHEET - HG - USE ON ALL STREAMS (FRONT)

STREAM NAME S-D2	LOCATION Pittsylvania				
STATION # RIVERMILE	STREAM CLASS Perennial				
LAT <u>36.965405</u> LONG <u>-79.59913</u>	RIVER BASIN Upper Roanoke				
STORET#	AGENCY VADEQ				
INVESTIGATORS AJ/VM					
FORM COMPLETED BY AJ/VM	DATE 8/24/21 REASON FOR SURVEY TIME 12:30 AM PM Baseline Assessment				

	Habitat		Condition	Category			
	Parameter	Optimal	Suboptimal	Marginal	Poor		
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.		
	SCORE 15	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
n sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50-75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.		
ted in	SCORE 13	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).		
ıram	SCORE 11	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
P ₂	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.		
	_{SCORE} 9	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	channel and mostly		
	SCORE 11	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

	Habitat		Condition	on Category	
	Habitat Parameter	Optimal	Suboptimal	Marginal	Poor
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
	SCORE 16	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
oling reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.
amp	SCORE 8	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion	areas of erosion; high erosion potential during	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.
e eva	SCORE 6	Left Bank 10 9	8 7 6	5 4 3	2 1 0
to be	SCORE 6	Right Bank 10 9	8 7 6	5 4 3	2 1 0
Parameters	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potentia to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
	SCORE 5	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE 5	Right Bank 10 9	8 7 6	5 4 3	2 1 0
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.
	SCORE 7	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE 7	Right Bank 10 9	8 7 6	5 4 3	2 1 0

Total Score 119

BENTHIC MACROINVERTEBRATE FIELD DATA SHEET

LOCATION Pittsylvania County

STREAM NAME S-D2

STATION #	R	IVE	RMI	LE_			STRE	EAM CI	LASSF	ere.	nnial								
LAT <u>36.965405</u>	_ L	ONC	-79.	59913			RIVE	ER BAS	IN										
STORET#							AGE	NCY V	ADEQ										
INVESTIGATORS K	ВТС											I	LOT	NUMBER					
FORM COMPLETED	ЭBY	K	В				DAT TIMI					F	REAS	ON FOR SURVEY	aselir	ne A	sses	ssme	ent
HABITAT TYPES		Cob	ble		%	tage of e	gs	abitat 1 % 6	√V	eget	ated	Banl	ks_100	%	%				
SAMPLE COLLECTION	H In	ow v dica	vere te th	the s	amp	les colle r of jabs	cted?	y]wadin	g ı ha l	□ oitat	fron	n ban	k	at				
GENERAL COMMENTS						in co I ship						ffle	s. S	Samples colle	ecte	o b	n		
Dominant) = A	Absent/	Not (Observ	ved, 1			·, 2	= C	ommon, 3= Abun					
Periphyton					-	1 2	-	-		Slir					-	1		3	
Filamentous Algae	;					1 2	_					nvei	rtebr	ates			2	_	4
Macrophytes					0	1 2	3	_4		Fisl	1						2	3	
FIELD OBSERV	ATIO	ANI6													U				4
Indicate estimate	d abı	ınd	anco	2:	0 = orga	Absent nnisms)	/Not), 3=	Obser Abund						rganisms), 2 = Co , 4 = Dominant (>	mmo			.s)	_4_
Porifera	d ab ı	and	2	3	0 = orga	Absent anisms) Aniso	/ Not), 3=	Obser Abund	dant (2	>10 1	org	anis	5ms)	Chironomidae	mmo 50 o	rgar 1	nism 2	3	4
Porifera Hydrozoa	0 0	and	2 2	3 3	0 = orga	Absent nnisms) Aniso Zygop	/Not), 3= ptera	Obser Abund	dant (2	>10 1	2 2	3 3	4 4	Chironomidae Ephemeroptera	mmo 50 o	rgar 1	2 2	3	4 4
Porifera Hydrozoa Platyhelminthes	d ab ı	and	2 2 2	3 3 3	0 = orga	Absent anisms) Aniso Zygop Hemi	/Not), 3= ptera otera ptera	Obser Abund	dant (2	>10 1	2 2 2	3 3 3	5ms)	Chironomidae Ephemeroptera Trichoptera	0 0 0	rgar 1	2 2 2	3 3 3	4 4 4
Porifera Hydrozoa Platyhelminthes Turbellaria	0 0 0 0	1 1	2 2 2 2	3 3 3 3	0 = 4 4 4 4	Aniso Zygop Hemi Coleo	ptera	Obser Abund	0 0 0 0	>10 1 1	2 2 2 2	3 3 3 3	4 4 4 4	Chironomidae Ephemeroptera	0 0	rgar 1	2 2	3	4 4
Porifera Hydrozoa Platyhelminthes Turbellaria Hirudinea	0 0 0 0	1 1 1 1	2 2 2 2 2 2	3 3 3 3 3	0 = orga 4 4 4 4 4 4	Aniso Zygop Hemi Coleo Lepid	ptera	Obser Abund	0 0 0 0 0	>10 1 1 1	2 2 2 2 2	3 3 3 3	4 4 4 4 4	Chironomidae Ephemeroptera Trichoptera	0 0 0	1 1 1	2 2 2	3 3 3	4 4 4
Porifera Hydrozoa Platyhelminthes Turbellaria Hirudinea Oligochaeta	0 0 0 0 0	1 1 1 1	2 2 2 2 2 2	3 3 3 3 3 3	0 = orga 4 4 4 4 4 4 4	Anisos Zygop Hemi Coleo Lepid Sialid	ptera ptera ptera ptera optera	Obser Abund	0 0 0 0 0	1 1 1 1	2 2 2 2 2 2	3 3 3 3 3	4 4 4 4 4 4	Chironomidae Ephemeroptera Trichoptera	0 0 0	1 1 1	2 2 2	3 3 3	4 4 4
Porifera Hydrozoa Platyhelminthes Turbellaria Hirudinea Oligochaeta Isopoda	0 0 0 0 0 0	1 1 1 1	2 2 2 2 2 2 2 2	3 3 3 3 3 3 3	0 = orga 4 4 4 4 4 4 4 4	Anisoo Zygop Hemiy Coleo Lepid Sialid Coryc	ptera ptera ptera ptera opter ae	Obser Abund	0 0 0 0 0 0	1 1 1 1 1 1 1	2 2 2 2 2 2 2 2	3 3 3 3 3 3	4 4 4 4 4 4 4	Chironomidae Ephemeroptera Trichoptera	0 0 0	1 1 1	2 2 2	3 3 3	4 4 4
Porifera Hydrozoa Platyhelminthes Turbellaria Hirudinea Oligochaeta Isopoda Amphipoda	0 0 0 0 0 0	1 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2	3 3 3 3 3 3 3 3	4 4 4 4 4 4 4 4 4	Anison Zygor Hemi Coleo Lepid Sialid Coryc	ptera ptera ptera ptera opter ae lalida	Obser Abund	0 0 0 0 0 0 0	1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 2 2 2	3 3 3 3 3 3 3 3	4 4 4 4 4 4 4	Chironomidae Ephemeroptera Trichoptera	0 0 0	1 1 1	2 2 2	3 3 3	4 4 4
Porifera Hydrozoa Platyhelminthes Turbellaria Hirudinea Oligochaeta Isopoda Amphipoda Decapoda	0 0 0 0 0 0 0	1 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 3 3 3 3 3 3 3 3 3	0 = 1	Anison Zygop Hemi Coleo Lepid Sialid Coryo Tipuli Empid	ptera ptera ptera ptera opter ae lalida idae	Obser Abund	0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 3 3 3 3 3 3 3 3	4 4 4 4 4 4 4 4 4	Chironomidae Ephemeroptera Trichoptera	0 0 0	1 1 1	2 2 2	3 3 3	4 4 4
Porifera Hydrozoa Platyhelminthes Turbellaria Hirudinea Oligochaeta Isopoda Amphipoda	0 0 0 0 0 0	1 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2	3 3 3 3 3 3 3 3	4 4 4 4 4 4 4 4 4	Anison Zygor Hemi Coleo Lepid Sialid Coryc	/Not), 3= ptera ptera ptera opter ae dalida idae didae	Obser Abund	0 0 0 0 0 0 0	1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 2 2 2	3 3 3 3 3 3 3 3	4 4 4 4 4 4 4	Chironomidae Ephemeroptera Trichoptera	0 0 0	1 1 1	2 2 2	3 3 3	4 4 4

Mountain Valley Pipeline Data are not adjusted for subsampling

LIFE IN WATER

	Sample ID	S-D2
	Collection Date	09-08-2021
ORDER	GENUS/SPECIES	COUNT
Ephemeroptera		15
Ephemeroptera	•	2
Ephemeroptera		2
· · ·	Leptophlebiidae	1
Ephemeroptera		2
· · ·	Maccaffertium sp.	23
Ephemeroptera	Teloganopsis deficiens	1
Plecoptera	Eccoptura xanthenes	13
Plecoptera	Leuctra sp.	12
Trichoptera	Cheumatopsyche sp.	91
Trichoptera	Polycentropodidae	1
	Gomphidae	2 5
•	Optioservus sp.	5
	Oulimnius sp.	5
•	Psephenus sp.	12
Coleoptera	Stenelmis sp.	1
Diptera-Chironomidae	·	1
Diptera-Chironomidae		1
Diptera-Chironomidae		2 5
	Thienemannimyia gr. sp.	5
Diptera-Chironomidae		1
	Atrichopogon sp.	5
<u> </u>	Dicranota sp.	1
•	Empididae	1
•	Ephydridae] 1
-	Simulium sp.	1
Gastropoda	Elimia sp.	21

TOTAL

228

Mountain Valley Pipeline WV SCI Metrics

Sample Collection Da	
WVSCI Metric Values Total taxa EPT taxa EPT Chironomidae 2 Dominant HBI	20 10 71.5 4.4 50.9 4.33
WVSCI Metric Scores Total taxa EPT taxa % EPT % Chironomidae % 2 Dominant HBI	95.2 76.9 77.8 96.6 76.8 79.9
WVSCI Metric Scores Total taxa EPT taxa % EPT % Chironomidae % 2 Dominant HBI	95.2 76.9 77.8 96.6 76.8 79.9
WVSCI Total Score	83.9

WVSCI Thresholds

Unimpaired = > 68.00 Gray Zone = 60.61 to 68.00 Impaired = <60.61

WOLMAN PEBBLE COUNT FORM

County: Pittsylvania Stream ID: S-D2

Stream Name: Jonnikin Creek

HUC Code: 03010101 Basin: Upper Roanoke

Survey Date: 8/24/2021
Surveyors: AJ/VM
Type: Representative

			LE COUNT			l	·
Inches	PARTICLE	Millimeters		Particle Count	Total #	Item %	% Cum
	Silt/Clay	< .062	S/C	^		0.00	0.00
	Very Fine	.062125		A		0.00	0.00
	Fine	.12525		*	7	7.00	7.00
	Medium	.255	SAND	•		0.00	7.00
	Coarse	.50-1.0	1	^		0.00	7.00
.0408	Very Coarse	1.0-2	1	^		0.00	7.00
.0816	Very Fine	2 -4		A		0.00	7.00
.1622	Fine	4 -5.7	1	A		0.00	7.00
.2231	Fine	5.7 - 8	1	A		0.00	7.00
.3144	Medium	8 -11.3	1	A		0.00	7.00
.4463	Medium	11.3 - 16	GRAVEL	A		0.00	7.00
.6389	Coarse	16 -22.6	1	▲		0.00	7.00
.89 - 1.26	Coarse	22.6 - 32	1	^	16	16.00	23.00
1.26 - 1.77	Vry Coarse	32 - 45	1	^	10	10.00	33.00
1.77 -2.5	Vry Coarse	45 - 64	1	^	4	4.00	37.00
2.5 - 3.5	Small	64 - 90		A	20	20.00	57.00
3.5 - 5.0	Small	90 - 128	1	A	30	30.00	87.00
5.0 - 7.1	Large	128 - 180	- COBBLE	A	10	10.00	97.00
7.1 - 10.1	Large	180 - 256	1	A		0.00	97.00
10.1 - 14.3	Small	256 - 362		^	3	3.00	100.00
14.3 - 20	Small	362 - 512	1	A		0.00	100.00
20 - 40	Medium	512 - 1024	BOULDER	A		0.00	100.00
40 - 80	Large	1024 -2048	1	A		0.00	100.00
80 - 160	Vry Large	2048 -4096	1	A		0.00	100.00
	Bedrock		BDRK	A		0.00	100.00
				Totals:	100		
	Total Tally:						

RIVERMORPH PARTICLE SUMMARY

River Name: Jonnikin Creek
Reach Name: S-D2
Sample Name: Representative
Survey Date: 08/24/2021

Size (mm)	TOT #	ITEM %	CUM %
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 16 10 4 20 30 10 0 0 0 0	0.00 0.00 7.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 16.00 10.00 4.00 20.00 30.00 10.00 0.00 0.00	0.00 0.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 23.00 33.00 37.00 57.00 87.00 97.00 100.00 100.00 100.00 100.00
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Cobble (%) Boulder (%) Bedrock (%)	27.89 54.5 80.9 124.2 169.6 362 0 7 30 60 3		

Total Particles = 100.

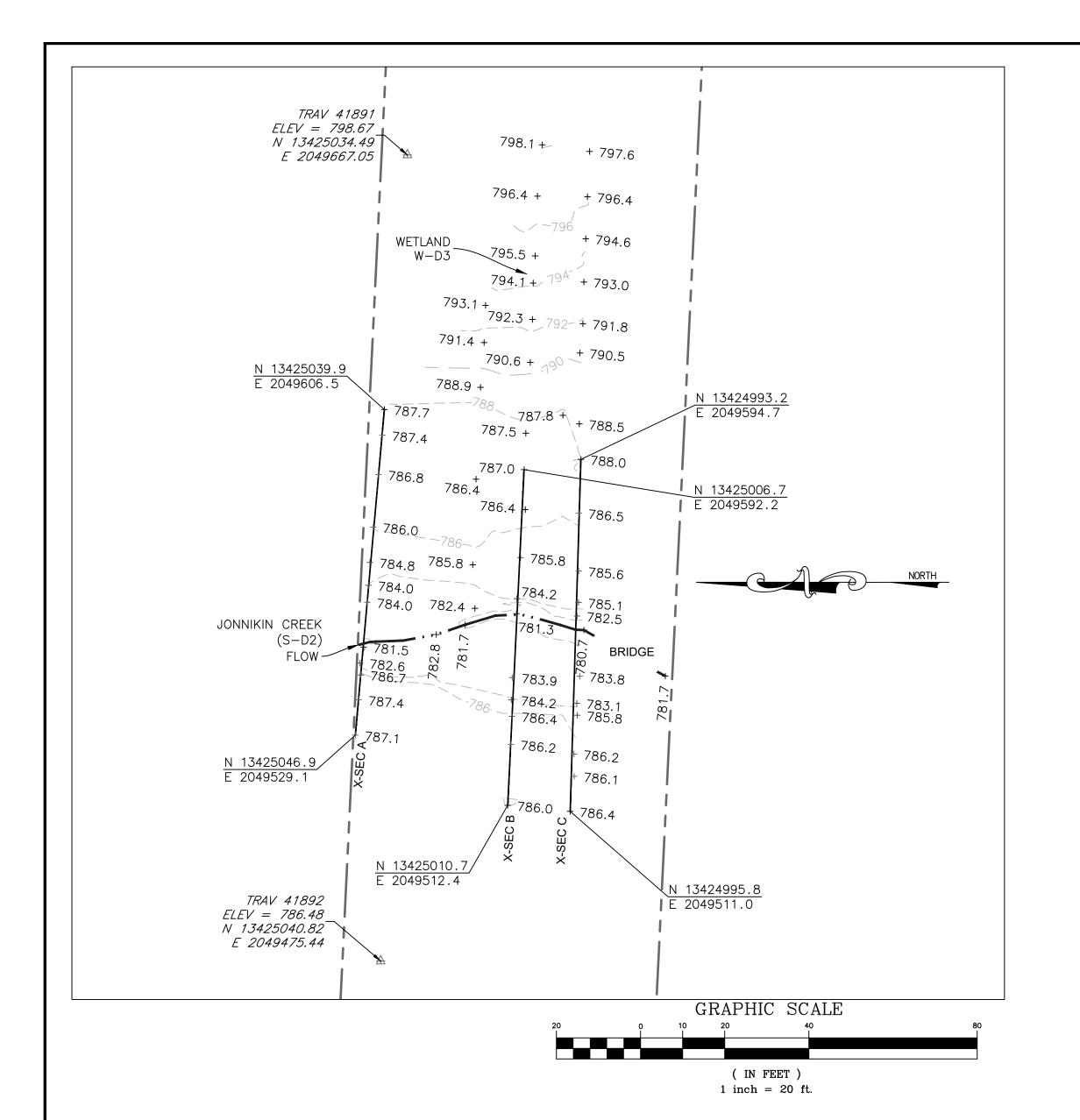
i	_	ti Gari	1 Ass		ent Fo	-	orm	1)		
		ı	or use in wadea				ial			
Project #	Project Name (App		Locality	Cowardin Class.	HUC	Date	SAR#	Impact Length	Impact Factor	
22865.06	Mountain Valley Pipeline (Mountain Valley Pipeline, LLC)		R3	03010101	8/24/21	S-D2	20	1		
Name	e(s) of Evaluator(s)	Stream Nam	Stream Name and Information					SAR Length		
	AJ/VM	Jonnikin Cre	ikin Creek				77			
1. Channel C	Condition: Assess the cross-sec	ction of the stream	and prevailing co	ondition (erosion,	aggradation)					
	Ontimal	Conditional Category Optimal Suboptimal Marginal Poor				or	Sev			
Channel Condition	Very little incision or active erosion; 80 100% stable banks. Vegetative surface protection or natural rock, prominent (80-100%). AND/OR Stable bankfull benches are present. Access	Slightly incised, f erosion or unprote of banks are s Vegetative prote prominent (60	ew areas of active ted banks. Majority table (60-80%). tion or natural rock -80%) AND/OR	Often incised, but Poor. Banks more or Poor due to le Erosion may be pr both banks. Vege	less than Severe or stable than Severe ower bank slopes. esent on 40-60% of tative protection on	or elaterally unstable. Likely to widen further. Majority of both banks are near vertical. Erosion present on 60-		Deeply incised (or excavated), vertical/lateral instability. Severe incision, flow contained within the banks. Streambed below average majority of banks vertical/undercut.		
	to their original floodplain or fully developed wide bankfull benches. channel bars and transverse bars few. Transient sediment deposition covers less than 10% of bottom.	Depositional feat stability. The bar channels are we likely has acc benches,or ne portions of the r sediment covers	tures contribute to hkfull and low flow II defined. Stream ess to bankfull ewly developed reach. Transient s 10-40% of the bottom.	40-60% of banks. be vertical or un 40-60% Sediment transient, contr Deposition that co may be forming/p shaped channel: protection on > 40 depositional featur	Streambanks may dercut. AND/OR may be temporary / ibute instability. Intribute to stability, resent. AND/OR V-save vegetative % of the banks and res which contribute ability.	on 20-40% of insufficient to put the stream is cov Sediment is temprature, and contri AND/OR V-shap vegetative protect 40% of the banks a	banks, and is orevent erosion. ered by sediment. orary / transient in buting to instability. ed channels have ion is present on > and stable sediment is absent.	Vegetative protecti than 20% of banks erosion. Obvious present. Erosion/ 100%. AND/OR A than 80% of stream deposition, contrib	ion present on less s, is not preventing s bank sloughing /raw banks on 80- /ray	CI
Scores	3	2	.4		2	1	.6	1	1	2.40
2. RIPARIAN	N BUFFERS: Assess both bank Optimal	Con	ditional Cate	gory	gh measurements ginal Low Marginal:		n may be acceptab	Assessment is limited to areas within the temporary ROW.		
Riparian Buffers	Tree stratum (dbh > 3 inches) present, with > 60% tree canopy cover. Wetlands located within the riparian areas.	with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory.	Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation).	High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High	Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory Low	High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition.	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions.	areas wi	ithin the	
•	with > 60% tree canopy cover. Wetlands located within the riparian	with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory.	with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation).	Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with ~30% tree canopy cover.	Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory	Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition.	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions.	areas wi	ithin the	
Scores 1. Delineate ripa descriptors. 2. Determine squibelow. 3. Enter the % R	with > 60% tree canopy cover. Wetlands located within the riparian areas.	with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Ca	with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 ttegories and Congth and width. Candada	Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85 dition Scores using alculators are proving the service of the	Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75	Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure of % F	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions.	areas wi	ithin the	
Scores 1. Delineate ripa descriptors. 2. Determine squelow.	with > 60% tree canopy cover. Wetlands located within the riparian areas. 1.5 arian areas along each stream bank uare footage for each by measuring caparian Area and Score for each right arian areas seems are	with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Ca	with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 ttegories and Congth and width. Candada	Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85 dition Scores using alculators are proving the service of the	Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75	Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure of % F	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5	areas wi tempora	ithin the ary ROW.	
Scores 1. Delineate ripa descriptors. 2. Determine squibelow. 3. Enter the % R	with > 60% tree canopy cover. Wetlands located within the riparian areas. 1.5 Arian areas along each stream bank uare footage for each by measuring Riparian Area and Score for each rig % Riparian Area > 100% Score > 0.85	with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Ca	with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 ttegories and Congth and width. Candada	Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85 dition Scores using alculators are proving the service of the	Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75	Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure of % F	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100 100%	areas wi tempora	ithin the ary ROW.	
Scores 1. Delineate ripa descriptors. 2. Determine squebelow. 3. Enter the % R	with > 60% tree canopy cover. Wetlands located within the riparian areas. 1.5 Arian areas along each stream bank uare footage for each by measuring Riparian Area and Score for each rig % Riparian Area > 100% Score > 0.85	with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Ca	with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 ttegories and Congth and width. Candada	Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85 dition Scores using alculators are proving the service of the	Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75	Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure of % F	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5	areas wi tempora CI= (Sum % RA * So Rt Bank CI >	cores*0.01)/2	CI
Scores 1. Delineate ripa descriptors. 2. Determine squelow. 3. Enter the % R Right Bank Left Bank 3. INSTREAM	with > 60% tree canopy cover. Wetlands located within the riparian areas. 1.5 Arian areas along each stream bank user footage for each by measuring Riparian Area and Score for each rig % Riparian Area > 100% Score > 0.85 W Riparian Area> 100% Score > 0.85 W HABITAT: Varied substrate si	with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Ca	with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 Integories and Congth and width. Cathe blocks below.	Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85 dition Scores using alculators are provided to the second control of the second control	Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh > 3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75 gg the vided for you	Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure of % I Blocks 6	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100 100%	areas wi tempora CI= (Sum % RA * Sc Rt Bank CI > Lt Bank CI >	cores*0.01)/2 0.85 0.85	C1 0.85
Scores 1. Delineate ripa descriptors. 2. Determine squelow. 3. Enter the % R Right Bank Left Bank 3. INSTREAM	with > 60% tree canopy cover. Wetlands located within the riparian areas. 1.5 arian areas along each stream bank uare footage for each by measuring Riparian Area and Score for each rip % Riparian Area > 100% Score > 0.85	with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Ca	with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 Itegories and Congth and width. Catthe blocks below.	Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85 dition Scores using alculators are provided to the second control of the second control	Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh > 3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75 gg the vided for you	Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure of % I Blocks 6	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100 100%	areas wi tempora CI= (Sum % RA * Sc Rt Bank CI > Lt Bank CI >	cores*0.01)/2 0.85 0.85	
Scores 1. Delineate ripa descriptors. 2. Determine squelow. 3. Enter the % R Right Bank Left Bank 3. INSTREAM	with > 60% tree canopy cover. Wetlands located within the riparian areas. 1.5 Arian areas along each stream bank user footage for each by measuring Riparian Area and Score for each rig % Riparian Area > 100% Score > 0.85 W Riparian Area> 100% Score > 0.85 W HABITAT: Varied substrate si	with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Cagor estimating lendarian category in category in Stable habitat ele present in 30-50% are adequate fo are designed.	with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 Itegories and Congth and width. Catthe blocks below.	Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85 dition Scores using alculators are provided alculators are provided alculators. Stable habitat ele present in 10-30 are adequate for a shrub with the stable and control of the stable habitat ele present in 10-30 are adequate for a shrub with the stable habitat ele present in 10-30 are adequate for a shrub with the stable habitat ele present in 10-30 are adequate for a shrub with the stable habitat ele present in 10-30 are adequate for a shrub with the stable habitat ele present in 10-30 are adequate for a shrub with the stable habitat ele present in 10-30 are adequate for a shrub with the stable habitat ele present in 10-30 are adequate for a shrub with the stable habitat ele present in 10-30 are adequate for a shrub with the stable habitat ele present in 10-30 are adequate for a shrub with the stable habitat ele present in 10-30 are adequate for a shrub with the stable habitat ele present in 10-30 are adequate for a shrub with the stable habitat ele present in 10-30 are adequate for a shrub with the stable habitat ele present in 10-30 are adequate for a shrub with the stable habitat elements and the stable habitat elements and the stable habitat elements are shrub with the stable habitat elements and the stable habitat elements are shrub with the stable habitat element	Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh > 3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75 gg the vided for you	Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure of % if Blocks e	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100 100%	areas wi tempora CI= (Sum % RA * Sc Rt Bank CI > Lt Bank CI > rcut banks; root ma	cores*0.01)/2 0.85 0.85	

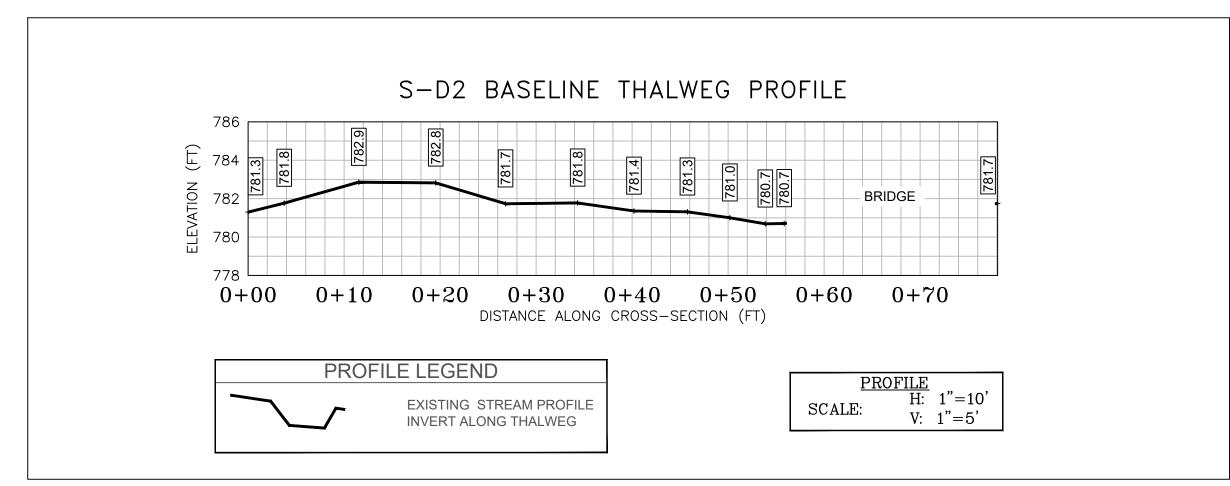
	St	ream In	npact A	ssessn	nent Fo	rm Pag	e 2		
Project #	Project Name (Applicant)		ant) Locality		Cowardin Class.		SAR#	Impact Length	Impact Factor
22865.06	Mountain Valley Pipeline (Mountain Valley Pipeline, LLC)		Pittslyvania	R3	03010101	8/24/21	S-D2	20	1
. CHANNE	L ALTERATION: Stream cross	sings, riprap, conc		concrete blocks, s	traightening of ch	annel, channeliza	tion, embankment	ts, spoil piles, const	trictions, livestoc
	Negligible	nor Moderate		Severe		NOTEOFF			
Channel Alteration	Channelization, dredging, alteration, or hardening absent. Stream has an unaltered pattern or has naturalized.	of the channel	20-40% of the stream reach is	is disrupted by any of the channel alterations listed in the parameter guidelines. If stream has been channelized, normal stable stream meander pattern has not recovered.	is disrupted by any of the channel alterations listed in the parameter guidelines. If stream has been channelized, normal stable stream meander pattern has not recovered.	Greater than 80% of by any of the changing the parameter of	of reach is disrupted nel alterations listed uidelines AND/OR ored with gabion, r cement.		
Scores	1.5	1.3	1.1	0.9	0.7	0	.5		
							•		
	REACH C	CONDITION	INDEX and S	STREAM CO	NDITION UN	NITS FOR TH	IIS REACH		

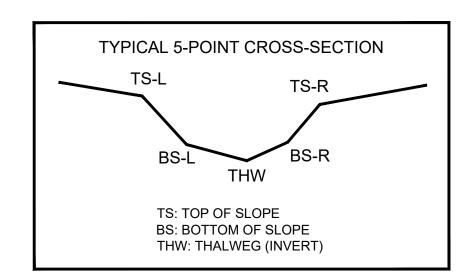
RCI= (Sum of all Cl's)/5, except if stream is ephemeral RCI = (Riparian Cl/2)

COMPENSATION REQUIREMENT (CR) >> 25

CR = RCI X L_I X IF

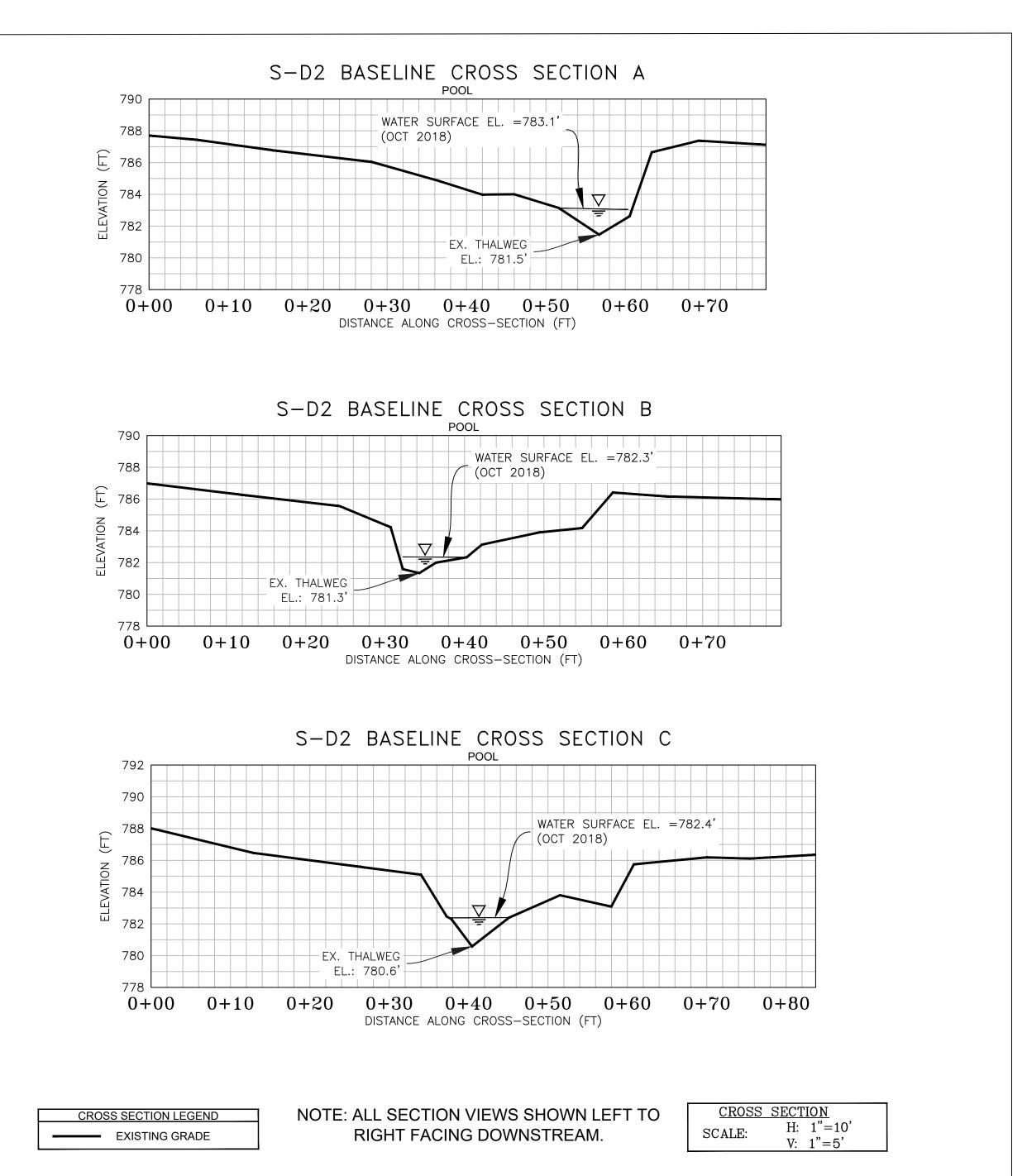

INSERT PHOTOS:

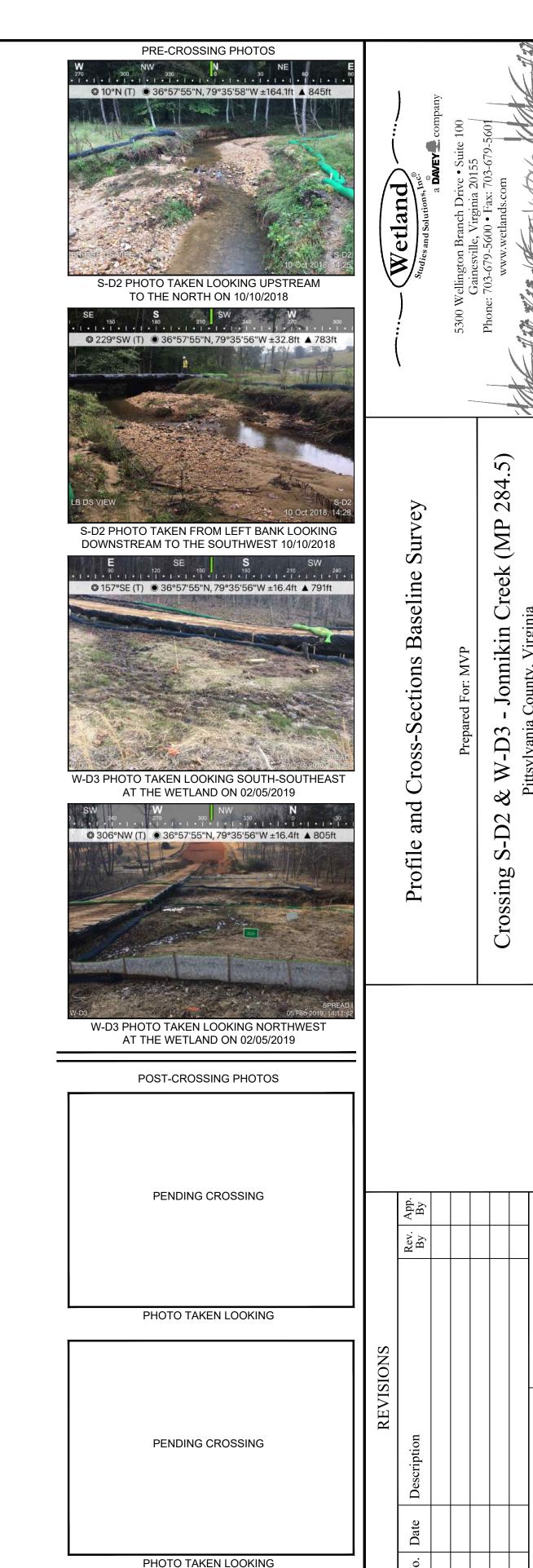



CAPTION. Assessment is limited to areas within the temporary ROW.

DESCRIBE PROPOSED IMPACT:

PROVIDED UNDER SEPARATE COVER




CL STAKEOUT POINTS: S-D2 CROSS SECTION B (PIPE CL)								
	PRI	POST-CROSSING						
PT. LOC.	NORTHING	EASTING	ELEV/	VERT.	HORZ.			
PI. LOC.	NOKIHING	EASTING	ELEV	DIFF.	DIFF.			
TS-L	13425009.60	2049533.61	786.41					
BS-L	13425009.77	2049537.50	784.17					
THW	13425008.55	2049557.98	781.34					
BS-R	13425008.36	2049560.05	781.59					
TS-R	13425008.49	2049561.58	784.23					

LEGEND STUDY AREA (EASEMENT) EXISTING SURVEY-LOCATED THALWEG EXISTING SURVEY-LOCATED EDGE OF WATER (AS NECESSARY) EXISTING CONTOUR LINE (MAJOR) EXISTING CONTOUR LINE (MINOR) EXISTING SURVEYED GROUND SHOT ELEVATION 791.8 + BENCHMARK POINT (WSSI)

SURVEY NOTES:

- 1. This map has been oriented to NAD 1983 UTM ZONE 17N, and vertically to The North American Vertical Datum of 1988 (NAVD 88), using a Real Time Network (RTN) GPS. Field locations were completed on February 4, 2019.
- 2. Monumentation, including traverse stations and fly points, shown on this drawing should be used to orient any future boundary, topographic, or location survey.
- 3. Easement lines shown on plan view were provided by Mountain Valley Pipeline (MVP).
- 4. WSSI Contour Interval = 2.0'. Contours within the channel were interpolated using stream channel breaklines (i.e. top of slopes, toe of slopes, thalweg) and cross-sectional points. Contours outside the channel were interpolated using cross-sectional spot shots.
- 5. All section views shown are left to right facing downstream.
- 6. Cross-section B shot at location of pipe centerline (based on best professional judgement).

Horizontal Datum: NAD 1983 UTM ZONE 1

JSF

Sheet #

1 of 1

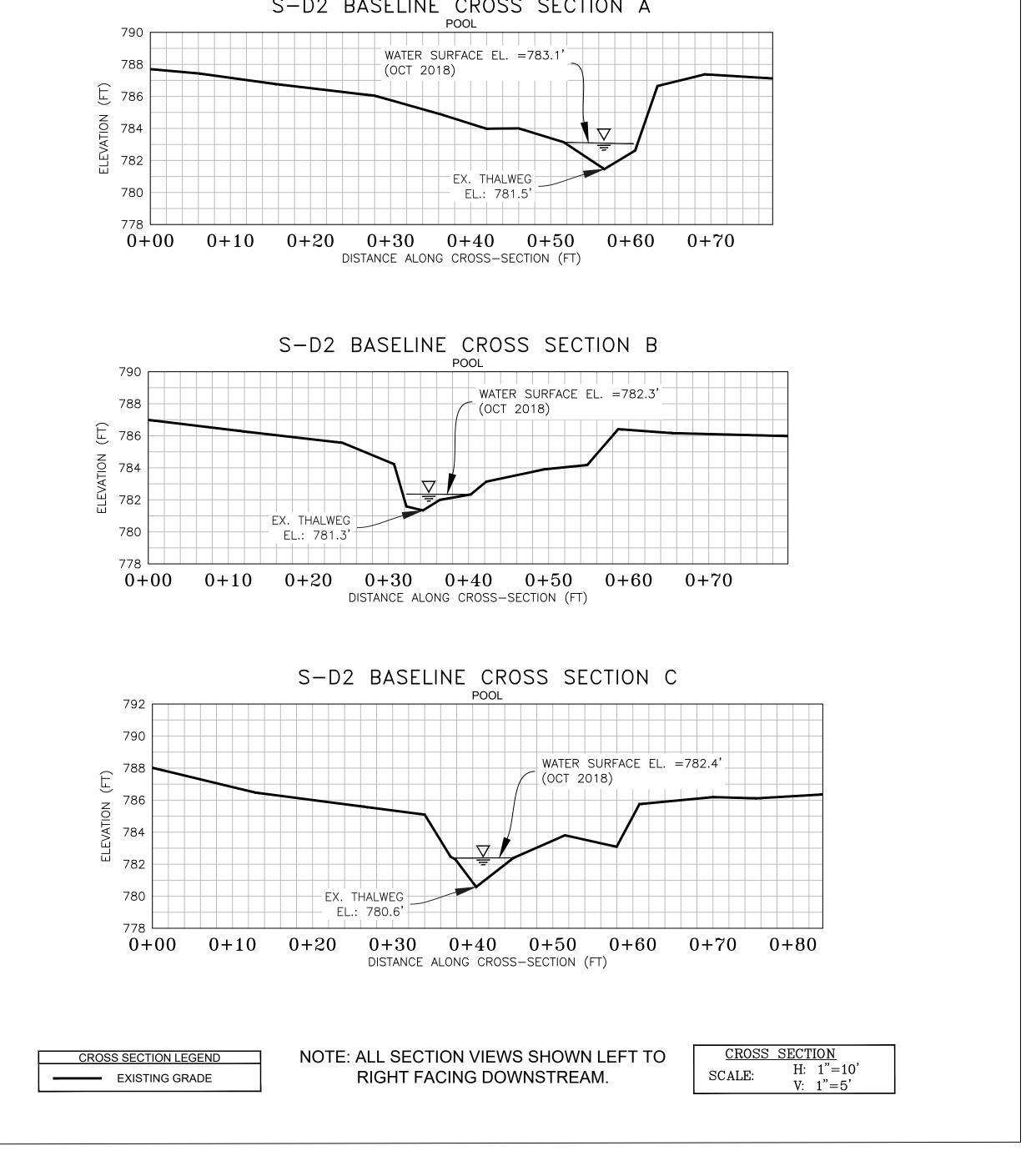
Approved

NAS

Vertical Datum: NAVD 88

Boundary and Topo Source:

WSSI 2' C.I. Topo


Computer File Name:

L:\Survey\22000s\22800\22865.03\Spread I Work Dwgs 2865_03 S-I MP 279-291 Sheets.dwg

EJC

PENDING CROSSING

PHOTO TAKEN LOOKING

