### **Baseline Assessment – Stream Attributes**

# Reach S-D22 (Pipeline ROW) Intermittent Spread I Franklin County, Virginia

| Data                                    | Included                          |  |  |  |
|-----------------------------------------|-----------------------------------|--|--|--|
| Photos                                  | ✓                                 |  |  |  |
| SWVM Form                               | ✓                                 |  |  |  |
| FCI Calculator and HGM Form             | N/A – Headwater stream <4% slope  |  |  |  |
| RBP Physical Characteristics Form       | ✓                                 |  |  |  |
| Water Quality Data                      | ✓                                 |  |  |  |
| RBP Habitat Form                        | ✓                                 |  |  |  |
| RBP Benthic Form                        | ✓                                 |  |  |  |
| Benthic Identification Sheet            | N/A – No Assessable reach present |  |  |  |
| Wolman Pebble Count                     | ✓                                 |  |  |  |
| RiverMorph Data Sheet                   | ✓                                 |  |  |  |
| USM Form (Virginia Only)                | ✓                                 |  |  |  |
| Longitudinal Profile and Cross Sections | ✓                                 |  |  |  |



Photo Type: DS VIEW
Location, Orientation, Photographer Initials: Downstream view of ROW looking S, AO



Location, Orientation, Photographer Initials: Upstream view of ROW looking NE, AO



Location, Orientation, Photographer Initials: Standing on RB looking at LB along pipe centerline looking E, AO



Location, Orientation, Photographer Initials: Standing on LB looking at RB along pipe centerline looking NW, AO



Photo Type: DS COND

Location, Orientation, Photographer Initials: Downstream conditions outside of ROW looking S, AO

| USACE FILE NO./ Project Name:<br>(v2.1, Sept 2015)                                            | Mountain V             | alley Pipeline                                                              | IMPACT COORDINATES:<br>(in Decimal Degrees) | Lat. | 37.070101                                                                    | Lon.              | -79.929732      | WEATHER:                                                                     |                            | Sunny      | DATE:                                                                        | August 27             | 7, 2021    |
|-----------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------------|---------------------------------------------|------|------------------------------------------------------------------------------|-------------------|-----------------|------------------------------------------------------------------------------|----------------------------|------------|------------------------------------------------------------------------------|-----------------------|------------|
| IMPACT STREAM/SITE ID AND SITE DESCRI<br>(watershed size (acreage), unaltered or impairments) |                        | S-D2                                                                        | 22                                          |      | MITIGATION STREAM CLASS<br>(watershed size {acreag                           |                   |                 |                                                                              |                            |            | Comments:                                                                    |                       |            |
| STREAM IMPACT LENGTH: 83                                                                      | FORM OF<br>MITIGATION: | RESTORATION (Levels I-III)                                                  | MIT COORDINATES:<br>(in Decimal Degrees)    | Lat. |                                                                              | Lon.              |                 | PRECIPITATION PAST 48 HRS:                                                   |                            | No         | Mitigation Length:                                                           |                       |            |
| Column No. 1- Impact Existing Condition (Debit)                                               |                        | Column No. 2- Mitigation Existing Con                                       | dition - Baseline (Credit)                  | •    | Column No. 3- Mitigation Pr<br>Post Completion                               |                   | re Years        | Column No. 4- Mitigation Proje<br>Post Completion (6                         | cted at Ten Yea<br>Credit) | irs        | Column No. 5- Mitigation Projecte                                            | ed at Maturity (Cre   | edit)      |
| Stream Classification: Intermittent                                                           | nt                     | Stream Classification:                                                      |                                             |      | Stream Classification:                                                       |                   | 0               | Stream Classification:                                                       | c                          | )          | Stream Classification:                                                       | 0                     |            |
| Percent Stream Channel Slope                                                                  | 1.11                   | Percent Stream Channel Slop                                                 | е                                           |      | Percent Stream Channel S                                                     | lope              | 0               | Percent Stream Channel Sle                                                   | оре                        | 0          | Percent Stream Channel Sl                                                    | оре                   | 0          |
| HGM Score (attach data forms):                                                                |                        | HGM Score (attach da                                                        | ta forms):                                  |      | HGM Score (attach                                                            | data forms        | :               | HGM Score (attach da                                                         | ata forms):                |            | HGM Score (attach da                                                         | ata forms):           |            |
| Ar                                                                                            | Average                |                                                                             | Average                                     |      |                                                                              |                   | Average         |                                                                              |                            | Average    |                                                                              |                       | Average    |
| Hydrology                                                                                     | _                      | Hydrology                                                                   |                                             |      | Hydrology                                                                    |                   |                 | Hydrology                                                                    |                            |            | Hydrology                                                                    |                       |            |
| Biogeochemical Cycling Habitat                                                                | 0                      | Biogeochemical Cycling<br>Habitat                                           | 0                                           |      | Biogeochemical Cycling Habitat                                               |                   | 0               | Biogeochemical Cycling Habitat                                               |                            | 0          | Biogeochemical Cycling Habitat                                               |                       | 0          |
| PART I - Physical, Chemical and Biological Indicators                                         | s                      | PART I - Physical, Chemical and B                                           | Biological Indicators                       |      | PART I - Physical, Chemical a                                                | ind Biological    | Indicators      | PART I - Physical, Chemical and                                              | Biological Indic           | ators      | PART I - Physical, Chemical and                                              | Biological Indicat    | tors       |
| Points Scale Range Si                                                                         | Site Score             | •                                                                           | Points Scale Range Site Score               |      |                                                                              | Points Scale R    | ange Site Score |                                                                              | Points Scale Range         | Site Score |                                                                              | Points Scale Range    | Site Score |
| PHYSICAL INDICATOR (Applies to all streams classifications)                                   |                        | PHYSICAL INDICATOR (Applies to all streams cla                              | essifications)                              |      | PHYSICAL INDICATOR (Applies to all stream                                    | s classifications | )               | PHYSICAL INDICATOR (Applies to all streams                                   | classifications)           |            | PHYSICAL INDICATOR (Applies to all streams                                   | classifications)      |            |
| USEPA RBP (High Gradient Data Sheet)  1. Epifaunal Substrate/Available Cover 0-20             | 12                     | USEPA RBP (Low Gradient Data Sheet)  1. Epifaunal Substrate/Available Cover |                                             |      | USEPA RBP (High Gradient Data Sheet)  1. Epifaunal Substrate/Available Cover |                   |                 | USEPA RBP (High Gradient Data Sheet)  1. Epifaunal Substrate/Available Cover | 0-20                       |            | USEPA RBP (High Gradient Data Sheet)  1. Epifaunal Substrate/Available Cover |                       |            |
| Epifaunal Substrate/Available Cover 0-20     Embeddedness 0-20                                | 0                      |                                                                             | 0-20                                        |      | Epitaunal Substrate/Available Cover     Embeddedness                         | 0-20              |                 | Epiraunai Substrate/Available Cover     Embeddedness                         | 0-20                       |            | Epiraunai Substrate/Available Cover     Embeddedness                         | 0-20                  |            |
| 3. Velocity/ Depth Regime 0-20                                                                | 9                      |                                                                             | 0-20                                        |      | Velocity/ Depth Regime                                                       | 0-20              |                 | Velocity/ Depth Regime                                                       | 0-20                       |            | 3. Velocity/ Depth Regime                                                    | 0-20                  |            |
| 4. Sediment Deposition 0-20                                                                   | 6                      |                                                                             | 0-20                                        |      | Sediment Deposition                                                          | 0-20              |                 | Sediment Deposition                                                          | 0-20                       |            | 4. Sediment Deposition                                                       | 0-20                  |            |
| 5. Channel Flow Status 0-20                                                                   | 8                      |                                                                             | 0-20                                        |      | 5. Channel Flow Status                                                       | 0-20              | м               | 5. Channel Flow Status                                                       | 0-20                       |            | 5. Channel Flow Status                                                       | 0-20 0-1              |            |
|                                                                                               | 15                     |                                                                             | 0-20                                        |      | Channel Alteration                                                           | 0-20              |                 | Channel Alteration                                                           | 0-20                       |            | Channel Alteration                                                           | 0-20                  |            |
|                                                                                               | 7                      |                                                                             | 0-20                                        |      | 7. Frequency of Riffles (or bends)                                           | 0-20              |                 | 7. Frequency of Riffles (or bends)                                           | 0-20                       |            | 7. Frequency of Riffles (or bends)                                           | 0-20                  |            |
| 8. Bank Stability (LB & RB) 0-20                                                              |                        |                                                                             | 0-20                                        |      | 8. Bank Stability (LB & RB)                                                  | 0-20              |                 | 8. Bank Stability (LB & RB)                                                  | 0-20                       |            | 8. Bank Stability (LB & RB)                                                  | 0-20                  |            |
|                                                                                               | 12                     | Vegetative Protection (LB & RB)     Regetative Zone Width (LB & RB)         | 0.20                                        |      | Vegetative Protection (LB & RB)     Riparian Vegetative Zone Width (LB & RB) | 0-20              |                 | Vegetative Protection (LB & RB)     Riparian Vegetative Zone Width (LB & RB) | 0-20                       |            | Vegetative Protection (LB & RB)     Riparian Vegetative Zone Width (LB & RB) | 0-20                  |            |
|                                                                                               | 94                     | Total RBP Score                                                             | Poor 0                                      |      | Total RBP Score                                                              | 0-20<br>Poor      | 0               | Total RBP Score                                                              | 0-20<br>Poor               | 0          | Total RBP Score Total RBP Score                                              | Poor                  | 0          |
| Sub-Total                                                                                     | 0.47                   | Sub-Total                                                                   | 0                                           |      | Sub-Total                                                                    | FUUI              | Ö               | Sub-Total                                                                    | FOOI                       | 0          | Sub-Total                                                                    | FOOI                  | 0          |
| CHEMICAL INDICATOR (Applies to Intermittent and Perennial Streams)                            |                        | CHEMICAL INDICATOR (Applies to Intermittent and                             | nd Perennial Streams)                       |      | CHEMICAL INDICATOR (Applies to Intermitte                                    | ent and Perennis  | l Streams)      | CHEMICAL INDICATOR (Applies to Intermitter                                   | nt and Perennial St        | reams)     | CHEMICAL INDICATOR (Applies to Intermitten                                   | t and Perennial Stres | ams)       |
| WVDEP Water Quality Indicators (General)                                                      |                        | WVDEP Water Quality Indicators (General)                                    |                                             |      | WVDEP Water Quality Indicators (General                                      | al)               |                 | WVDEP Water Quality Indicators (General                                      | )                          |            | WVDEP Water Quality Indicators (General)                                     | )                     |            |
| Specific Conductivity                                                                         | 118                    | Specific Conductivity                                                       | 0-90                                        |      | Specific Conductivity                                                        | 0.90              |                 | Specific Conductivity                                                        | 0-90                       |            | Specific Conductivity                                                        | 0-90                  |            |
| 100-199 - 85 points                                                                           | 110                    | pH                                                                          | 0-90                                        |      | pH                                                                           | 0-90              |                 | pH                                                                           | 0-90                       |            | pH                                                                           | 0-90                  |            |
| 6.0-8.0 = 80 points                                                                           | 6.31                   |                                                                             | 5-90 0-1                                    |      |                                                                              | 5-90              | H               |                                                                              | 5-90 0-1                   |            |                                                                              | 5-90 0-1              |            |
| DO 10-30                                                                                      |                        | DO                                                                          | 10-30                                       |      | DO                                                                           | 10-30             |                 | DO                                                                           | 10-30                      |            | DO                                                                           | 10-30                 |            |
| >5.0 = 30 points                                                                              | 0.975                  | Sub-Total                                                                   | 10-30                                       |      | Sub-Total                                                                    | 10-30             | 0               | Sub-Total                                                                    | 10-30                      | 0          | Sub-Total                                                                    | 10-30                 | 0          |
| BIOLOGICAL INDICATOR (Applies to Intermittent and Perennial Stream                            |                        | BIOLOGICAL INDICATOR (Applies to Intermittent                               | and Perennial Streams)                      |      | BIOLOGICAL INDICATOR (Applies to Interr                                      | mittent and Per   | ennial Streams) | BIOLOGICAL INDICATOR (Applies to Interm                                      | ittent and Perenn          |            | BIOLOGICAL INDICATOR (Applies to Intermi                                     | ittent and Perennial  |            |
| WV Stream Condition Index (WVSCI)                                                             |                        | WV Stream Condition Index (WVSCI)                                           |                                             |      | WV Stream Condition Index (WVSCI)                                            |                   |                 | WV Stream Condition Index (WVSCI)                                            |                            |            | WV Stream Condition Index (WVSCI)                                            |                       |            |
| 0-100 0-1                                                                                     |                        |                                                                             | 0-100 0-1                                   |      |                                                                              | 0-100             | М               |                                                                              | 0-100 0-1                  |            |                                                                              | 0-100 0-1             |            |
| Sub-Total Sub-Total                                                                           | 0                      | Sub-Total                                                                   | 0                                           |      | Sub-Total                                                                    |                   | 0               | Sub-Total                                                                    |                            | 0          | Sub-Total                                                                    |                       | 0          |
| PART II - Index and Unit Score                                                                |                        | PART II - Index and Ur                                                      | nit Score                                   |      | PART II - Index an                                                           | d Unit Score      |                 | PART II - Index and U                                                        | nit Score                  |            | PART II - Index and U                                                        | nit Score             |            |
| Index Linear Feet Uni                                                                         | nit Score              | Index                                                                       | Linear Feet Unit Score                      |      | Index                                                                        | Linear Fe         | et Unit Score   | Index                                                                        | Linear Feet                | Unit Score | Index                                                                        | Linear Feet           | Unit Score |
| 0.723 83 59                                                                                   | 9.9675                 | 0                                                                           | 0 0                                         |      | 0                                                                            | 0                 | 0               | 0                                                                            | 0                          | 0          | 0                                                                            | 0                     | 0          |

# PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

| STREAM NAME S-D22     |               | LOCATION Franklin County        | LOCATION Franklin County                                                         |  |  |  |  |  |
|-----------------------|---------------|---------------------------------|----------------------------------------------------------------------------------|--|--|--|--|--|
| STATION #             | RIVERMILE     | STREAM CLASS Intermittent       | STREAM CLASS Intermittent                                                        |  |  |  |  |  |
| LAT <u>37.070101</u>  | LONG79.929732 | RIVER BASIN Upper Roand         | oke                                                                              |  |  |  |  |  |
| STORET#               |               | AGENCY VADEQ                    |                                                                                  |  |  |  |  |  |
| INVESTIGATORS AO, I   | MM            |                                 |                                                                                  |  |  |  |  |  |
| FORM COMPLETED BY     | YAO, MM       | DATE 8/27/2021<br>TIME 12:43 PM |                                                                                  |  |  |  |  |  |
|                       |               |                                 |                                                                                  |  |  |  |  |  |
| WEATHER<br>CONDITIONS | rain (        | hours [                         | Has there been a heavy rain in the last 7 days?  Yes ✓No  Air Temperature 30 0 C |  |  |  |  |  |

| WEATHER<br>CONDITIONS      | Now  Past 24 hours  Yes ✓ No  Air Temperature 30 ° C  Other  Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SITE LOCATION/MAP          | Draw a map of the site and indicate the areas sampled (or attach a photograph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                            | Row US LB  Res Convert dirt slope  Studies  Coming s  Severe T  Evosion  Do  Severe T  Evosion  Evosion  Do  Severe T  Evosion  Evosion |
| STREAM<br>CHARACTERIZATION | Stream Subsystem     Stream Type       □Perennial     □Tidal     □Coldwater     □Warmwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                            | Stream Origin  Glacial  Non-glacial montane Swamp and bog  Catchment Area 0.54 km²  Mixture of origins Other  Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

## PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

| WATERS<br>FEATURI              |                                  | ✓ Fores ✓ Field                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pasture Industria                                                                                                                                                                    | rcial               | Local Watershed NPS  ☑ No evidence ☐ Son ☐ Obvious sources ☐ Local Watershed Erosi ☑ None ☐ Moderate                                                 | ne potential sources                                              |  |  |  |  |  |  |
|--------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--|--|--|--|--|--|
| RIPARIA<br>VEGETA<br>(18 meter | TION                             | Trees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Indicate the dominant type and record the dominant species present  Trees Grasses Herbaceous  Dominant species present  Wingstem, deertongue grass, frocut grass, Impatiens capensis |                     |                                                                                                                                                      |                                                                   |  |  |  |  |  |  |
| INSTREA<br>FEATURI             |                                  | Estimat<br>Samplin<br>Area in<br>Estimat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                      | m<br>m²<br>km²<br>m | Canopy Cover  Partly open □Part  High Water Mark ○  Proportion of Reach Re Morphology Types  Riffle ³ % Pool □ %  Channelized □Yes  Dam Present □Yes |                                                                   |  |  |  |  |  |  |
| LARGE V<br>DEBRIS              | VOODY                            | LWD<br>Density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LWD _om²  Density of LWDm²/km² (LWD/ reach area)                                                                                                                                     |                     |                                                                                                                                                      |                                                                   |  |  |  |  |  |  |
| AQUATION VEGETA                |                                  | Indicate the dominant type and record the dominant species present  ☐ Rooted emergent ☐ Floating Algae ☐ Attached Algae ☐ Dominant species present ☐ Pree floating ☐ Free flo |                                                                                                                                                                                      |                     |                                                                                                                                                      |                                                                   |  |  |  |  |  |  |
| WATER ((DS, US)                | QUALITY                          | Specific<br>Dissolve<br>pH 6.31,6<br>Turbidi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                      | :                   |                                                                                                                                                      | Chemical Other                                                    |  |  |  |  |  |  |
| SEDIMEN<br>SUBSTRA             |                                  | Odors Norm Chem Other Oils  Absen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ical Anaerobic                                                                                                                                                                       | Petroleum None      | Lρoking at stones whic are the undersides blac                                                                                                       | □Paper fiber ☑Sand Other □ h are not deeply embedded, k in color? |  |  |  |  |  |  |
| INC                            |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | COMPONENTS                                                                                                                                                                           |                     | ORGANIC SUBSTRATE C                                                                                                                                  |                                                                   |  |  |  |  |  |  |
| Substrate<br>Type              | (should a                        | dd up to 1<br>er                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | % Composition in<br>Sampling Reach                                                                                                                                                   | Substrate<br>Type   | (does not necessarily add  Characteristic                                                                                                            | wp to 100%)  % Composition in Sampling Area                       |  |  |  |  |  |  |
| Bedrock                        |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                    | Detritus            | sticks, wood, coarse plant<br>materials (CPOM)                                                                                                       | 50                                                                |  |  |  |  |  |  |
| Boulder<br>Cobble              | > 256 mm (10")<br>64-256 mm (2.5 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0<br>25                                                                                                                                                                              | Muck-Mud            | black, very fine organic                                                                                                                             |                                                                   |  |  |  |  |  |  |
| Gravel                         | 2-64 mm (0.1"-2                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15                                                                                                                                                                                   | 1                   | (FPOM)                                                                                                                                               | 5                                                                 |  |  |  |  |  |  |
| Sand                           | 0.06-2mm (gritt                  | y)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15                                                                                                                                                                                   | Marl                | grey, shell fragments                                                                                                                                | 0                                                                 |  |  |  |  |  |  |
| Silt                           | 0.004-0.06 mm                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25                                                                                                                                                                                   | 1                   |                                                                                                                                                      | 0                                                                 |  |  |  |  |  |  |
| Clay                           | < 0.004 mm (sli                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                      |                     |                                                                                                                                                      |                                                                   |  |  |  |  |  |  |

#### HABITAT ASSESSMENT FIELD DATA SHEET - HG - USE ON ALL STREAMS (FRONT)

| STREAM NAME S-D22                           | LOCATION Franklin County                                                    |  |  |  |  |  |
|---------------------------------------------|-----------------------------------------------------------------------------|--|--|--|--|--|
| STATION # RIVERMILE                         | STREAM CLASS Intermittent                                                   |  |  |  |  |  |
| LAT <u>37.070101</u> LONG <u>-79.929732</u> | RIVER BASIN Upper Roanoke                                                   |  |  |  |  |  |
| STORET#                                     | AGENCY VADEQ                                                                |  |  |  |  |  |
| INVESTIGATORS AO, MM                        |                                                                             |  |  |  |  |  |
| FORM COMPLETED BY AO, MM                    | DATE 8/27/2021<br>TIME 12:43 PM AM PM REASON FOR SURVEY Baseline Assessment |  |  |  |  |  |

|                                              | Habitat                                       |                                                                                                                                                                                                                                                                               | Condition                                                                                                                                                                                                                                                   | Category                                                                                                                                                                                                                                  |                                                                                                                                                                                               |
|----------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                              | Parameter                                     | Optimal                                                                                                                                                                                                                                                                       | Suboptimal                                                                                                                                                                                                                                                  | Marginal                                                                                                                                                                                                                                  | Poor                                                                                                                                                                                          |
|                                              | 1. Epifaunal<br>Substrate/<br>Available Cover | Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient). | 40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale). | 20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.                                                                                                                        | Less than 20% stable<br>habitat; lack of habitat is<br>obvious; substrate<br>unstable or lacking.                                                                                             |
|                                              | SCORE 12                                      | 20 19 18 17 16                                                                                                                                                                                                                                                                | 15 14 13 12 11                                                                                                                                                                                                                                              | 10 9 8 7 6                                                                                                                                                                                                                                | 5 4 3 2 1 0                                                                                                                                                                                   |
| n sampling reach                             | 2. Embeddedness                               | Gravel, cobble, and<br>boulder particles are 0-<br>25% surrounded by fine<br>sediment. Layering of<br>cobble provides diversity<br>of niche space.                                                                                                                            | Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment.                                                                                                                                                                               | Gravel, cobble, and<br>boulder particles are 50-<br>75% surrounded by fine<br>sediment.                                                                                                                                                   | Gravel, cobble, and<br>boulder particles are more<br>than 75% surrounded by<br>fine sediment.                                                                                                 |
| ted in                                       | SCORE 3                                       | 20 19 18 17 16                                                                                                                                                                                                                                                                | 15 14 13 12 11                                                                                                                                                                                                                                              | 10 9 8 7 6                                                                                                                                                                                                                                | 5 4 3 2 1 0                                                                                                                                                                                   |
| Parameters to be evaluated in sampling reach | 3. Velocity/Depth<br>Regime                   | All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)                                                                                                                                             | Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).                                                                                                                                                    | Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low).                                                                                                                                         | Dominated by 1 velocity/<br>depth regime (usually<br>slow-deep).                                                                                                                              |
| ıram                                         | SCORE 9                                       | 20 19 18 17 16                                                                                                                                                                                                                                                                | 15 14 13 12 11                                                                                                                                                                                                                                              | 10 9 8 7 6                                                                                                                                                                                                                                | 5 4 3 2 1 0                                                                                                                                                                                   |
| P <sub>2</sub>                               | 4. Sediment<br>Deposition                     | Little or no enlargement<br>of islands or point bars<br>and less than 5% of the<br>bottom affected by<br>sediment deposition.                                                                                                                                                 | Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.                                                                                                                    | Moderate deposition of<br>new gravel, sand or fine<br>sediment on old and new<br>bars; 30-50% of the<br>bottom affected; sediment<br>deposits at obstructions,<br>constrictions, and bends;<br>moderate deposition of<br>pools prevalent. | Heavy deposits of fine<br>material, increased bar<br>development; more than<br>50% of the bottom<br>changing frequently;<br>pools almost absent due to<br>substantial sediment<br>deposition. |
|                                              | <sub>SCORE</sub> 6                            | 20 19 18 17 16                                                                                                                                                                                                                                                                | 15 14 13 12 11                                                                                                                                                                                                                                              | 10 9 8 7 6                                                                                                                                                                                                                                | 5 4 3 2 1 0                                                                                                                                                                                   |
|                                              | 5. Channel Flow<br>Status                     | Water reaches base of<br>both lower banks, and<br>minimal amount of<br>channel substrate is<br>exposed.                                                                                                                                                                       | Water fills >75% of the available channel; or <25% of channel substrate is exposed.                                                                                                                                                                         | Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.                                                                                                                                                 | Very little water in<br>channel and mostly<br>present as standing pools.                                                                                                                      |
|                                              | score 8                                       | 20 19 18 17 16                                                                                                                                                                                                                                                                | 15 14 13 12 11                                                                                                                                                                                                                                              | 10 9 8 7 6                                                                                                                                                                                                                                | 5 4 3 2 1 0                                                                                                                                                                                   |

Notes:

#### HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

|                                                        | Habitat                                                                                        |                                                                                                                                                                                                                                                                                      | Condition                                                                                                                                                                                                                                                                  | ı Category                                                                                                                                                                                                                           |                                                                                                                                                                                                   |  |  |  |
|--------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                        | Parameter                                                                                      | Optimal                                                                                                                                                                                                                                                                              | Suboptimal                                                                                                                                                                                                                                                                 | Marginal                                                                                                                                                                                                                             | Poor                                                                                                                                                                                              |  |  |  |
|                                                        | 6. Channel<br>Alteration                                                                       | Channelization or<br>dredging absent or<br>minimal; stream with<br>normal pattern.                                                                                                                                                                                                   | Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.                                                                    | Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.                                                                                   | Banks shored with gabion<br>or cement; over 80% of<br>the stream reach<br>channelized and<br>disrupted. Instream<br>habitat greatly altered or<br>removed entirely.                               |  |  |  |
|                                                        | <sub>SCORE</sub> 15                                                                            | 20 19 18 17 16                                                                                                                                                                                                                                                                       | 15 14 13 12 11                                                                                                                                                                                                                                                             | 10 9 8 7 6                                                                                                                                                                                                                           | 5 4 3 2 1 0                                                                                                                                                                                       |  |  |  |
| ling reach                                             | 7. Frequency of<br>Riffles (or bends)                                                          | Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.     | Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.                                                                                                                                                          | Occasional riffle or bend;<br>bottom contours provide<br>some habitat; distance<br>between riffles divided by<br>the width of the stream is<br>between 15 to 25.                                                                     | Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.                                                         |  |  |  |
| amb                                                    | score 12                                                                                       | 20 19 18 17 16                                                                                                                                                                                                                                                                       | 15 14 13 12 11                                                                                                                                                                                                                                                             | 10 9 8 7 6                                                                                                                                                                                                                           | 5 4 3 2 1 0                                                                                                                                                                                       |  |  |  |
| Parameters to be evaluated broader than sampling reach | 8. Bank Stability (score each bank)  Note: determine left or right side by facing development. | Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.                                                                                                                                                     | Moderately stable;<br>infrequent, small areas of<br>erosion mostly healed<br>over. 5-30% of bank in<br>reach has areas of erosion.                                                                                                                                         | Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.                                                                                                                             | Unstable; many eroded<br>areas; "raw" areas<br>frequent along straight<br>sections and bends;<br>obvious bank sloughing;<br>60-100% of bank has<br>erosional scars.                               |  |  |  |
| eva                                                    | SCORE 3                                                                                        | Left Bank 10 9                                                                                                                                                                                                                                                                       | 8 7 6                                                                                                                                                                                                                                                                      | 5 4 3                                                                                                                                                                                                                                | 2 1 0                                                                                                                                                                                             |  |  |  |
| to be                                                  | SCORE 4                                                                                        | Right Bank 10 9                                                                                                                                                                                                                                                                      | 8 7 6                                                                                                                                                                                                                                                                      | 5 4 3                                                                                                                                                                                                                                | 2 1 0                                                                                                                                                                                             |  |  |  |
| Parameters                                             | 9. Vegetative<br>Protection (score<br>each bank)                                               | More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally. | 70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining. | 50-70% of the<br>streambank surfaces<br>covered by vegetation;<br>disruption obvious;<br>patches of bare soil or<br>closely cropped vegetation<br>common; less than one-<br>half of the potential plant<br>stubble height remaining. | Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height. |  |  |  |
|                                                        | SCORE 5                                                                                        | Left Bank 10 9                                                                                                                                                                                                                                                                       | 8 7 6                                                                                                                                                                                                                                                                      | 5 4 3                                                                                                                                                                                                                                | 2 1 0                                                                                                                                                                                             |  |  |  |
|                                                        | SCORE 7                                                                                        | Right Bank 10 9                                                                                                                                                                                                                                                                      | 8 7 6                                                                                                                                                                                                                                                                      | 5 4 3                                                                                                                                                                                                                                | 2 1 0                                                                                                                                                                                             |  |  |  |
|                                                        | 10. Riparian Vegetative Zone Width (score each bank riparian zone)                             | Width of riparian zone<br>>18 meters; human<br>activities (i.e., parking<br>lots, roadbeds, clear-cuts,<br>lawns, or crops) have not<br>impacted zone.                                                                                                                               | Width of riparian zone<br>12-18 meters; human<br>activities have impacted<br>zone only minimally.                                                                                                                                                                          | Width of riparian zone 6-<br>12 meters; human<br>activities have impacted<br>zone a great deal.                                                                                                                                      | Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.                                                                                                       |  |  |  |
|                                                        | SCORE 4                                                                                        | Left Bank 10 9                                                                                                                                                                                                                                                                       | 8 7 6                                                                                                                                                                                                                                                                      | 5 4 3                                                                                                                                                                                                                                | 2 1 0                                                                                                                                                                                             |  |  |  |
|                                                        | SCORE 9                                                                                        | Right Bank 10 9                                                                                                                                                                                                                                                                      | 8 7 6                                                                                                                                                                                                                                                                      | 5 4 3                                                                                                                                                                                                                                | 2 1 0                                                                                                                                                                                             |  |  |  |

Total Score \_\_\_\_\_ Notes: Bridge crossing footers in stream.

#### BENTHIC MACROINVERTEBRATE FIELD DATA SHEET

LOCATION Franklin County

STREAM CLASS Intermittent

STREAM NAME S-D22

RIVERMILE

STATION #

|                                                                                                                                                                 | LONG79.929732                   |                                                                                                                                                                                |                                                                                             |                                           |                                                                                                                               | RIVER BASIN Upper Roanoke                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                     |                                      |                                |                                       |                                      |                            |                                                           |                |                                           |                        |                                          |                       |         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------|--------------------------------------|--------------------------------|---------------------------------------|--------------------------------------|----------------------------|-----------------------------------------------------------|----------------|-------------------------------------------|------------------------|------------------------------------------|-----------------------|---------|
| STORET#                                                                                                                                                         |                                 |                                                                                                                                                                                |                                                                                             |                                           |                                                                                                                               |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AGENCY VADEQ      |                     |                                      |                                |                                       |                                      |                            |                                                           |                |                                           |                        |                                          |                       |         |
| INVESTIGATORS A                                                                                                                                                 |                                 |                                                                                                                                                                                |                                                                                             |                                           |                                                                                                                               |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I                 | LOT                 | NUMBER                               |                                |                                       |                                      |                            |                                                           |                |                                           |                        |                                          |                       |         |
| FORM COMPLETED                                                                                                                                                  | ) BY                            | Α                                                                                                                                                                              | Ο,                                                                                          | . 1                                       | //\                                                                                                                           | 1                                                   | DAT<br>TIMI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _                 | /27/2021<br>2:43 PM | -                                    |                                |                                       | I                                    | REAS                       | SON FOR SUF                                               | RVEY<br>E      | Baselii                                   | ne A                   | sse                                      | ssm                   | ent     |
| HABITAT TYPES                                                                                                                                                   |                                 | Cob                                                                                                                                                                            | ble                                                                                         | -                                         | %                                                                                                                             | tage of Sna                                         | ags 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | %                 | at type             | ĴV                                   | eget                           | t<br>ated<br>ther                     |                                      | ks_95                      |                                                           | Sand_80<br>%   | %                                         |                        |                                          |                       |         |
| SAMPLE                                                                                                                                                          | G                               | ear ı                                                                                                                                                                          | used                                                                                        |                                           | D-fr                                                                                                                          | ame [                                               | kick-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -net              |                     |                                      | o                              | ther                                  |                                      |                            |                                                           |                |                                           |                        |                                          |                       |         |
| COLLECTION                                                                                                                                                      |                                 |                                                                                                                                                                                |                                                                                             |                                           |                                                                                                                               |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                     |                                      | _                              |                                       | £                                    | n baı                      | .1.                                                       | from bo        | _                                         |                        |                                          |                       |         |
|                                                                                                                                                                 | н                               | DW V                                                                                                                                                                           | vere                                                                                        | tne s                                     | amp                                                                                                                           | les coll                                            | ectea?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                 | wae                 | aing                                 | 3                              | ш                                     | ıror                                 | n bai                      | ік Ц                                                      | irom bo        | at                                        |                        |                                          |                       |         |
|                                                                                                                                                                 |                                 | Cob                                                                                                                                                                            | ble                                                                                         |                                           |                                                                                                                               | r of jab<br>Sna<br>phytes_                          | ags                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s tak             | en in e:<br>C       | $]_{V_i}$                            | eget                           | itat<br>ated<br>ther                  | Ban                                  | ks                         |                                                           | Sand           |                                           |                        |                                          |                       |         |
| GENERAL<br>COMMENTS                                                                                                                                             | be                              | Limited space to complete 4 kicks within sample reach; therefore, benthics not sampled. Fish, water penny, megaloptera larvae, leech, and caddisfly casings visually observed. |                                                                                             |                                           |                                                                                                                               |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                     |                                      | h,                             |                                       |                                      |                            |                                                           |                |                                           |                        |                                          |                       |         |
| QUALITATIVE I<br>Indicate estimated<br>Dominant                                                                                                                 |                                 |                                                                                                                                                                                |                                                                                             |                                           | ) = /                                                                                                                         |                                                     | /Not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Obs               | erved,              |                                      | = I                            |                                       | e, 2                                 | = 0                        | ommon, 3=                                                 | - Abun         |                                           |                        |                                          |                       |         |
| I CITPITY WII                                                                                                                                                   |                                 |                                                                                                                                                                                |                                                                                             |                                           |                                                                                                                               |                                                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                     |                                      |                                |                                       |                                      |                            |                                                           |                | 0                                         | 1                      | 2                                        | 3                     | 4       |
|                                                                                                                                                                 |                                 |                                                                                                                                                                                |                                                                                             |                                           |                                                                                                                               | 1 2                                                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                 |                     |                                      |                                | croi                                  | nve                                  | rtebi                      | ates                                                      |                |                                           | 1                      |                                          |                       |         |
| Filamentous Algae Macrophytes                                                                                                                                   |                                 |                                                                                                                                                                                |                                                                                             |                                           | 0                                                                                                                             |                                                     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                     |                                      |                                |                                       | nve                                  | rtebi                      | rates                                                     |                | 0                                         | _                      |                                          | 3                     | 4       |
| Filamentous Algae<br>Macrophytes<br>FIELD OBSERVA<br>Indicate estimated                                                                                         | ATI(                            | ınd                                                                                                                                                                            | anco                                                                                        | e:                                        | 0<br>0<br>ACI<br>0 = orga                                                                                                     | 1 2 ROBE                                            | NTH(t/Not), 3=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OS<br>Obs<br>Abu  | ındanı              | l, 1<br>t (>                         | Ma<br>Fisl<br>1 = 1            | n<br>Rar                              | e (1<br>anis                         | -3 o<br>sms)               | rganisms), ;<br>, 4 = Domir                               | nant (>        | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 1<br>1<br>n (3         | 2<br>2<br>-9<br>nism                     | 3<br>3                | 4       |
| Filamentous Algae Macrophytes  FIELD OBSERVA Indicate estimated                                                                                                 | ATIO<br>l abu                   | ınd:                                                                                                                                                                           | 2                                                                                           | 3                                         | 0<br>0<br>ACI<br>0 = orga                                                                                                     | 1 2 ROBEL Absentanisms Aniso                        | NTH(t/Not), 3=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OS<br>CObs<br>Abu | ından               | l, 1<br>t (>                         | Ma Fis  1 = 1  1               | Rar<br>org                            | e (1<br>anis                         | -3 o<br>sms)               | rganisms), ; , 4 = Domin                                  | nant (><br>dae | 0<br>0<br>0<br>0<br>0<br>0<br>0           | 1<br>1<br>n (3<br>rgan | 2<br>2<br>-9<br>nism                     | 3<br>3<br>3           | 4 4     |
| Filamentous Algae Macrophytes  FIELD OBSERVA Indicate estimated  Porifera Hydrozoa                                                                              | ATIO<br>d abu                   | 1<br>1                                                                                                                                                                         | 2<br>2                                                                                      | 3 3                                       | 0<br>0<br>ACI<br>0 = orga                                                                                                     | 1 2 ROBEI Absentanisms Aniso Zygo                   | NTHO t/Not ), 3=  optera ptera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OS<br>Obs<br>Abu  | ındanı              | 0<br>0                               | Ma<br>Fisi<br>1 = 10           | Rar<br>orga                           | e (1<br>anis                         | -3 o sms)                  | rganisms), ; , 4 = Domir Chironomi Ephemeror              | dae            | 0<br>0<br>0<br>0<br>0<br>0<br>0           | 1<br>n (3<br>rgan      | 2<br>2<br>-9<br>nism                     | 3<br>3<br>3<br>3      | 4 4 4   |
| Filamentous Algae Macrophytes  FIELD OBSERVA Indicate estimated  Porifera Hydrozoa Platyhelminthes                                                              | 0<br>0<br>0                     | 1<br>1<br>1                                                                                                                                                                    | 2<br>2<br>2                                                                                 | 3<br>3<br>3                               | 0<br>0<br>ACI<br>0 = orga<br>4<br>4<br>4<br>4                                                                                 | 1 2  ROBE Absentanisms  Aniso Zygo Hemi             | NTHO t/Not ), 3=  optera ptera iptera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | OS<br>Obs<br>Abu  | ındanı              | 0<br>0<br>0                          | Ma<br>Fisl<br>1 = 1<br>1 1 1   | Rar<br>orga                           | e (1<br>anis                         | -3 o sms) 4 4 4            | rganisms), , 4 = Domin  Chironomi  Ephemerop  Trichopters | dae            | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 1<br>1<br>1<br>1<br>1  | 2<br>2<br>2<br>-9<br>nism<br>2<br>2<br>2 | 3 3 3 3 3 3 3 3 3 3 3 | 4 4 4 4 |
| Filamentous Algae Macrophytes  FIELD OBSERVA Indicate estimated  Porifera Hydrozoa Platyhelminthes Turbellaria                                                  | 0<br>0<br>0<br>0                | 1<br>1<br>1<br>1                                                                                                                                                               | 2<br>2<br>2<br>2                                                                            | 3<br>3<br>3<br>3                          | 0<br>0<br>0<br>ACI<br>0 = orga<br>4<br>4<br>4<br>4<br>4<br>4                                                                  | Aniso Zygo Hemi                                     | NTHO<br>t/Not<br>), 3=<br>optera<br>optera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OS<br>Obs<br>Abu  | ındanı              | 0<br>0<br>0<br>0                     | Ma<br>Fish<br>1 = 1<br>1 1 1 1 | Rarrorgs  2 2 2 2                     | 3<br>3<br>3<br>3                     | -3 o sms) 4 4 4 4          | rganisms), ; , 4 = Domir Chironomi Ephemeror              | dae            | 0<br>0<br>0<br>0<br>0<br>0<br>0           | 1<br>n (3<br>rgan      | 2<br>2<br>-9<br>nism                     | 3<br>3<br>3<br>3      | 4 4 4   |
| Filamentous Algae Macrophytes  FIELD OBSERVA Indicate estimated  Porifera Hydrozoa Platyhelminthes Turbellaria Hirudinea                                        | 0<br>0<br>0<br>0<br>0           | 1<br>1<br>1<br>1                                                                                                                                                               | 2<br>2<br>2<br>2<br>2                                                                       | 3<br>3<br>3<br>3                          | 0<br>0<br>0<br>ACI<br>0 = orga<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                             | Aniso Zygo Hemi Coleo Lepio                         | NTHO t/Not ), 3=  optera ptera optera optera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | OS<br>Obs<br>Abu  | indan               | 0<br>0<br>0<br>0<br>0                | Ma Fish  1 = 1 1 1 1 1 1 1     | 2<br>2<br>2<br>2<br>2                 | 3<br>3<br>3<br>3<br>3                | -3 o sms) 4 4 4 4 4        | rganisms), , 4 = Domin  Chironomi  Ephemerop  Trichopters | dae            | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 1<br>1<br>1<br>1<br>1  | 2<br>2<br>2<br>-9<br>nism<br>2<br>2<br>2 | 3 3 3 3 3 3 3 3 3 3 3 | 4 4 4 4 |
| Filamentous Algae Macrophytes  FIELD OBSERVA Indicate estimated  Porifera Hydrozoa Platyhelminthes Turbellaria Hirudinea Oligochaeta                            | 0<br>0<br>0<br>0<br>0           | 1<br>1<br>1<br>1<br>1                                                                                                                                                          | 2<br>2<br>2<br>2<br>2<br>2                                                                  | 3<br>3<br>3<br>3<br>3                     | 0<br>0<br>0<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                           | Aniso Zygo Hemi Colec Lepic Sialio                  | NTHO t/Not ), 3=  optera ptera iptera optera doptera dae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | OS Obs Abu        | indan               | 0<br>0<br>0<br>0<br>0<br>0           | Ma Fisl  1 = 1 1 1 1 1 1 1     | 2 2 2 2 2 2 2                         | e (1<br>3<br>3<br>3<br>3<br>3<br>3   | -3 o sms) 4 4 4 4 4 4      | rganisms), , 4 = Domin  Chironomi  Ephemerop  Trichopters | dae            | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 1<br>1<br>1<br>1<br>1  | 2<br>2<br>2<br>-9<br>nism<br>2<br>2<br>2 | 3 3 3 3 3 3 3 3 3 3 3 | 4 4 4 4 |
| Filamentous Algae Macrophytes  FIELD OBSERVA Indicate estimated  Porifera Hydrozoa Platyhelminthes Turbellaria Hirudinea Oligochaeta Isopoda                    | 0<br>0<br>0<br>0<br>0           | 1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                     | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                   | 3<br>3<br>3<br>3<br>3<br>3<br>3           | 0<br>0<br>0<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                      | Aniso Zygo Hemi Colec Lepid Sialid Coryo            | NTHO t/Not ), 3=  optera ptera iptera optera doptera dae dalida                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OS Obs Abu        | indan               | 0<br>0<br>0<br>0<br>0<br>0<br>0      | Ma Fis  1 = 1 1 1 1 1 1 1 1    | 2<br>2<br>2<br>2<br>2<br>2<br>2       | 3<br>3<br>3<br>3<br>3<br>3           | -3 o sms)  4 4 4 4 4 4     | rganisms), , 4 = Domin  Chironomi  Ephemerop  Trichopters | dae            | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 1<br>1<br>1<br>1<br>1  | 2<br>2<br>2<br>-9<br>nism<br>2<br>2<br>2 | 3 3 3 3 3 3 3 3 3 3 3 | 4 4 4 4 |
| Filamentous Algae Macrophytes  FIELD OBSERVA Indicate estimated  Porifera Hydrozoa Platyhelminthes Turbellaria Hirudinea Oligochaeta Isopoda Amphipoda          | 0<br>0<br>0<br>0<br>0<br>0<br>0 | 1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                         | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3      | 0 0<br>0 ACII<br>4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                        | Aniso Zygo Hemi Colec Lepic Sialio Coryo Tipul      | NTH(Not t/Not a), 3=  pptera pptera pptera doptera dalidae dalidae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OS Obs Abu        | ından               | 0<br>0<br>0<br>0<br>0<br>0<br>0      | Ma Fiss  1 = 1 1 1 1 1 1 1 1   | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2  | 3<br>3<br>3<br>3<br>3<br>3<br>3      | -3 o sms)  4 4 4 4 4 4 4 4 | rganisms), , 4 = Domin  Chironomi  Ephemerop  Trichopters | dae            | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 1<br>1<br>1<br>1<br>1  | 2<br>2<br>2<br>-9<br>nism<br>2<br>2<br>2 | 3 3 3 3 3 3 3 3 3 3 3 | 4 4 4 4 |
| Filamentous Algae Macrophytes  FIELD OBSERVA Indicate estimated  Porifera Hydrozoa Platyhelminthes Turbellaria Hirudinea Oligochaeta Isopoda Amphipoda Decapoda | 0<br>0<br>0<br>0<br>0<br>0<br>0 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                           | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 0<br>0<br>0<br>ACI<br>0 = orga<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4 | Aniso Zygo Hemi Colec Lepic Sialic Coryo Tipul Empi | NTHO   | OS Obs Abu        | ından               | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Ma<br>Fisi                     | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | -3 o sms)  4 4 4 4 4 4 4 4 | rganisms), , 4 = Domin  Chironomi  Ephemerop  Trichopters | dae            | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 1<br>1<br>1<br>1<br>1  | 2<br>2<br>2<br>-9<br>nism<br>2<br>2<br>2 | 3 3 3 3 3 3 3 3 3 3 3 | 4 4 4 4 |
| Filamentous Algae Macrophytes  FIELD OBSERVA Indicate estimated  Porifera Hydrozoa Platyhelminthes Turbellaria Hirudinea Oligochaeta Isopoda Amphipoda          | 0<br>0<br>0<br>0<br>0<br>0<br>0 | 1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                         | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3      | 0 0<br>0 ACII<br>4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                        | Aniso Zygo Hemi Colec Lepic Sialio Coryo Tipul      | NTHO t/Not t | OS Obs Abu        | indan               | 0<br>0<br>0<br>0<br>0<br>0<br>0      | Ma Fiss  1 = 1 1 1 1 1 1 1 1   | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2  | 3<br>3<br>3<br>3<br>3<br>3<br>3      | -3 o sms)  4 4 4 4 4 4 4 4 | rganisms), , 4 = Domin  Chironomi  Ephemerop  Trichopters | dae            | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 1<br>1<br>1<br>1<br>1  | 2<br>2<br>2<br>-9<br>nism<br>2<br>2<br>2 | 3 3 3 3 3 3 3 3 3 3 3 | 4 4 4 4 |

#### WOLMAN PEBBLE COUNT FORM

County: Franklin County Stream ID: S-D22

Stream Name: UNT to Teels Creek

HUC Code: 03010101 Basin: Upper Roanoke

Survey Date: 8/27/2021 Surveyors: AO, MM Type: Representative

| T 1         | DADTICI E   |             | LE COUNT | D (1.1            | 700 4 71 11 | T. 0/  | 0/ 0  |
|-------------|-------------|-------------|----------|-------------------|-------------|--------|-------|
| Inches      | PARTICLE    | Millimeters |          | Particle<br>Count | Total #     | Item % | % Cur |
|             | Silt/Clay   | < .062      | S/C      | <b>^</b>          | 36          | 36.00  | 36.00 |
|             | Very Fine   | .062125     |          | •                 | 5           | 5.00   | 41.00 |
|             | Fine        | .12525      | 1        | •                 | 3           | 3.00   | 44.00 |
|             | Medium      | .255        | SAND     | •                 | 0           | 0.00   | 44.00 |
|             | Coarse      | .50-1.0     | 1        | •                 | 4           | 4.00   | 48.00 |
| .0408       | Very Coarse | 1.0-2       | 1        | •                 | 2           | 2.00   | 50.00 |
| .0816       | Very Fine   | 2 -4        |          | •                 | 5           | 5.00   | 55.00 |
| .1622       | Fine        | 4 -5.7      | 1        | •                 | 1           | 1.00   | 56.00 |
| .2231       | Fine        | 5.7 - 8     | 1        | •                 | 3           | 3.00   | 59.00 |
| .3144       | Medium      | 8 -11.3     | 1        | •                 | 3           | 3.00   | 62.00 |
| .4463       | Medium      | 11.3 - 16   | GRAVEL   | •                 | 1           | 1.00   | 63.00 |
| .6389       | Coarse      | 16 -22.6    |          | •                 | 1           | 1.00   | 64.00 |
| .89 - 1.26  | Coarse      | 22.6 - 32   |          | •                 | 0           | 0.00   | 64.00 |
| 1.26 - 1.77 | Vry Coarse  | 32 - 45     | 1        | •                 | 1           | 1.00   | 65.00 |
| 1.77 -2.5   | Vry Coarse  | 45 - 64     | 1        | •                 | 8           | 8.00   | 73.00 |
| 2.5 - 3.5   | Small       | 64 - 90     |          | •                 | 13          | 13.00  | 86.00 |
| 3.5 - 5.0   | Small       | 90 - 128    | GODDIE   | •                 | 12          | 12.00  | 98.00 |
| 5.0 - 7.1   | Large       | 128 - 180   | COBBLE   | •                 | 1           | 1.00   | 99.00 |
| 7.1 - 10.1  | Large       | 180 - 256   | 1        | •                 | 0           | 0.00   | 99.00 |
| 10.1 - 14.3 | Small       | 256 - 362   |          | •                 | 0           | 0.00   | 99.00 |
| 14.3 - 20   | Small       | 362 - 512   | 1        | •                 | 0           | 0.00   | 99.00 |
| 20 - 40     | Medium      | 512 - 1024  | BOULDER  | •                 | 0           | 0.00   | 99.00 |
| 40 - 80     | Large       | 1024 -2048  | 1        | •                 | 0           | 0.00   | 99.00 |
| 80 - 160    | Vry Large   | 2048 -4096  | 1        | •                 | 0           | 0.00   | 99.00 |
|             | Bedrock     |             | BDRK     | •                 | 1           | 1.00   | 100.0 |
|             |             |             |          | Totals            | 100         |        |       |

#### RIVERMORPH PARTICLE SUMMARY

UNT to Teels Creek

River Name: Reach Name: Sample Name: Survey Date: S-D22 Representative 08/27/2021

| <br> | <br> |
|------|------|
|      |      |
|      |      |

| Size (mm)                                                                                                                                                                                                                                                                                                                       | тот #                                                                                                              | ITEM %                                                                                                                                                                                                        | CUM %                                                                                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 - 0.062<br>0.062 - 0.125<br>0.125 - 0.25<br>0.25 - 0.50<br>0.50 - 1.0<br>1.0 - 2.0<br>2.0 - 4.0<br>4.0 - 5.7<br>5.7 - 8.0<br>8.0 - 11.3<br>11.3 - 16.0<br>16.0 - 22.6<br>22.6 - 32.0<br>32 - 45<br>45 - 64<br>64 - 90<br>90 - 128<br>128 - 180<br>180 - 256<br>256 - 362<br>362 - 512<br>512 - 1024<br>1024 - 2048<br>Bedrock | 36<br>5<br>3<br>0<br>4<br>2<br>5<br>1<br>3<br>3<br>1<br>1<br>0<br>1<br>8<br>13<br>12<br>1<br>0<br>0<br>0<br>0<br>0 | 36.00<br>5.00<br>3.00<br>0.00<br>4.00<br>2.00<br>5.00<br>1.00<br>3.00<br>1.00<br>1.00<br>0.00<br>1.00<br>1.00<br>0.00<br>1.00<br>0.00<br>1.00<br>0.00<br>1.00<br>0.00<br>1.00<br>0.00<br>1.00<br>0.00<br>1.00 | 36.00<br>41.00<br>44.00<br>44.00<br>48.00<br>50.00<br>55.00<br>56.00<br>59.00<br>62.00<br>63.00<br>64.00<br>64.00<br>65.00<br>73.00<br>86.00<br>98.00<br>99.00<br>99.00<br>99.00<br>99.00<br>99.00<br>99.00 |
| D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Cobble (%) Boulder (%) Bedrock (%)                                                                                                                                                                                                     | 0.03<br>0.06<br>2<br>86<br>118.5<br>Bedrock<br>36<br>14<br>23<br>26<br>0                                           |                                                                                                                                                                                                               |                                                                                                                                                                                                             |

Total Particles = 100.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                               | ,                              |                                                                                                                                                                                                     | Unified S                                                                                                                                                                                                                               | tream Method                                                                                                                                                                                                                                                                                                                                                                                          | ent Fo                                                                                                                                                                                                                                    | in Virginia                                                                                                                                                                                                 |                                                                                                                                                                 | <b>I</b> )                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|
| Project #                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Project N                                                                                                                                                     | Name (App                      |                                                                                                                                                                                                     | For use in wade                                                                                                                                                                                                                         | Cowardin                                                                                                                                                                                                                                                                                                                                                                                              | ssified as interm                                                                                                                                                                                                                         | ittent or perennia                                                                                                                                                                                          | SAR#                                                                                                                                                            | Impact                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Impact   |            |
| 22865.06                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mountain Valley Pipeline (Mountain Frankli                                                                                                                    |                                | Franklin                                                                                                                                                                                            | Class.                                                                                                                                                                                                                                  | 03010101                                                                                                                                                                                                                                                                                                                                                                                              | 8/27/2021                                                                                                                                                                                                                                 | S-D22                                                                                                                                                                                                       | Length<br>83                                                                                                                                                    | Factor<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Valley<br>e(s) of Evaluator                                                                                                                                   | Pipeline, L                    |                                                                                                                                                                                                     | County and Information                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                       | 00010101                                                                                                                                                                                                                                  | 0/21/2021                                                                                                                                                                                                   | O-DZZ                                                                                                                                                           | SAR Length                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>'</u> |            |
| - Turin                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AO, MM                                                                                                                                                        | UNT to Teels                   |                                                                                                                                                                                                     | .011                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                           | 85                                                                                                                                                                                                          |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |            |
| . Channel C                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ondition: Assess t                                                                                                                                            | he cross-secti                 | on of the stream a                                                                                                                                                                                  | and prevailing con                                                                                                                                                                                                                      | dition (erosion, ag                                                                                                                                                                                                                                                                                                                                                                                   | gradation)                                                                                                                                                                                                                                |                                                                                                                                                                                                             |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Optimal                                                                                                                                                       |                                | Suboptimal                                                                                                                                                                                          |                                                                                                                                                                                                                                         | Conditional Category  Marginal                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                           | Poor                                                                                                                                                                                                        |                                                                                                                                                                 | Severe                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |            |
| Channel<br>Condition                                                                                                                                                                                                                                                                                                                                                                                                                                               | Very little incision or active erosion; 80- 100% stable banks. Vegetative surface protection or natural rock, prominent (89.100%) AND/O/R Stable point bars / |                                | erosion or unproted of banks are s Vegetative protec prominent (60 Depositional feat stability. The ban channels are well dhas access to be newly developed portions of the 1 sediment covers 1     | ew areas of active cted banks. Majority table (60-80%), tion or natural rock-80%) AND/OR tures contribute to nkfull and low flow effined. Stream likely inkfull benches, or floodplains along reach. Transient 0-40% of the stream tom. | e of the incised, but less than Severe or poor. Banks more stable than Severe or Poor due to lower bank slopes. Erosion may be present on 40-60% of both banks. Vegetative protection on 40-60% of banks. Streambanks may be vertical or undercut. AND/OR vetty and the stability. Deposition that contribute instability. Deposition that contribute to stability, may be forming/present. AND/OR V- |                                                                                                                                                                                                                                           | Overwidened/incised. Vertically / laterally unstable. Likely to widen further. Majority of both banks are near vertical. Erosion present on 60-80% of banks. Vegetative protection present                  |                                                                                                                                                                 | Deeply incised (or excavated), vertical/lateral instability. Severe rincision, flow contained within the banks. Streambed below average rooting depth, majority of banks vertical/undercut. Vegetative protection present on less than 20% of banks, is not preventing erosion. Obvious bank sloughing present. Erosion/raw banks on 80-100%, AND/OR Aggrading channel. Greater than 80% of stream bed is covered by deposition, contributing to instability. |          |            |
| Scores                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                                                                                                                                             |                                | 2                                                                                                                                                                                                   | .4                                                                                                                                                                                                                                      | to sta                                                                                                                                                                                                                                                                                                                                                                                                | ability.                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                           |                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | CI<br>2.00 |
| Scores                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                                                                                                                                             |                                |                                                                                                                                                                                                     |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                           |                                                                                                                                                                                                             | .0                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | 2.00       |
| Riparian<br>Buffers                                                                                                                                                                                                                                                                                                                                                                                                                                                | Optima  Tree stratum (dbh > 3 i with > 60% tree car Wetlands located with areas.                                                                              | nches) present,<br>nopy cover. | Subo  High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. | Riparian areas with<br>tree stratum (dh ><br>3 inches) present<br>with 30% to 60%<br>tree canopy cover<br>and a maintained<br>understory. Recen-<br>cutover (dense-<br>vegetation).                                                     | High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover.                                                                                                                                                                                                                                           | Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh > 3 inches) present, with <30% tree canopy cover with maintained understory. | High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition. | Low Poor:<br>Impervious<br>surfaces, mine<br>spoil lands,<br>denuded surfaces,<br>row crops, active<br>feed lots, trails, or<br>other comparable<br>conditions. | NOTES>>                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |            |
| Caaraa                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                               |                                | High                                                                                                                                                                                                | Low                                                                                                                                                                                                                                     | High                                                                                                                                                                                                                                                                                                                                                                                                  | Low                                                                                                                                                                                                                                       | High                                                                                                                                                                                                        | Low                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |            |
| Scores                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.5 1.2                                                                                                                                                       |                                | 1.2                                                                                                                                                                                                 | 1.1                                                                                                                                                                                                                                     | 0.85                                                                                                                                                                                                                                                                                                                                                                                                  | 0.75                                                                                                                                                                                                                                      | 0.6                                                                                                                                                                                                         | 0.5                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |            |
| Delineate riparian areas along each stream bank into Condition Categories and Condition Scores using the descriptors.  Determine square footage for each by measuring or estimating length and width. Calculators are provided for you below.  Determine square footage for each by measuring or estimating length and width. Calculators are provided for you below.  Determine square footage for each priparian category in the blocks below.  Blocks equal 100 |                                                                                                                                                               |                                |                                                                                                                                                                                                     |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                           |                                                                                                                                                                                                             |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | % Riparian Area>                                                                                                                                              | 80%                            | 12%                                                                                                                                                                                                 | 8%                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                           | DIOCKS                                                                                                                                                                                                      | 100%                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |            |
| Right Bank                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Score >                                                                                                                                                       | 0.75                           | 0.6                                                                                                                                                                                                 | 0.85                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                           |                                                                                                                                                                                                             |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ****     |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | % Riparian Area> 80%                                                                                                                                          |                                | 20%                                                                                                                                                                                                 |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                           | 100%                                                                                                                                                                                                        |                                                                                                                                                                 | CI= (Sum % RA * Scores*0.01)/2  Rt Bank CI > 0.74                                                                                                                                                                                                                                                                                                                                                                                                             |          | CI         |
| Left Bank                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Score >                                                                                                                                                       | 0.6                            | 0.75                                                                                                                                                                                                |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                           |                                                                                                                                                                                                             | 100/0                                                                                                                                                           | Lt Bank CI >                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.63     | 0.69       |
| INSTREAM HABITAT: Varied substrate sizes, water velocity and depths; woody and leafy debris; stable substrate; low embeddeness; shade; undercut banks; root mats; SAV; riffle/pool omplexes, stable features.    Conditional Category   NOTES>>                                                                                                                                                                                                                    |                                                                                                                                                               |                                |                                                                                                                                                                                                     |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                           | SAV; riffle/pool                                                                                                                                                                                            |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |            |
| Habitat/<br>Available<br>Cover                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sta                                                                                                                                                           |                                |                                                                                                                                                                                                     |                                                                                                                                                                                                                                         | Stable habitat elements are typically present in 10-30% of the reach and are adequate for maintenance of populations.                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                           | Habitat elements listed above are lacking or are unstable. Habitat elements are typically present in less than 10% of the reach.                                                                            |                                                                                                                                                                 | Stream (                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Gradient | CI         |
| Scores                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.5                                                                                                                                                           |                                | 1                                                                                                                                                                                                   | .2                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                     | .9                                                                                                                                                                                                                                        | 0.5 High                                                                                                                                                                                                    |                                                                                                                                                                 | gh                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.20     |            |

| Stream Impact Assessment Form Page 2                                                                                                                                                 |                                                             |                    |                    |          |           |                       |                        |                  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------|--------------------|----------|-----------|-----------------------|------------------------|------------------|--|--|
| Project #                                                                                                                                                                            | Project Name (Applicant)                                    | Locality           | Cowardin<br>Class. | HUC      | Date      | SAR # / Data<br>Point | Impact / SAR<br>length | Impact<br>Factor |  |  |
| 22865.06                                                                                                                                                                             | Mountain Valley Pipeline (Mountain<br>Valley Pipeline, LLC) | Franklin<br>County | R4                 | 03010101 | 8/27/2021 | S-D22                 | 83                     | 1                |  |  |
| 4. CHANNEL ALTERATION: Stream crossings, riprap, concrete, gabions, or concrete blocks, straightening of channel, channelization, embankments, spoil piles, constrictions, livestock |                                                             |                    |                    |          |           |                       |                        |                  |  |  |
| Conditional Category                                                                                                                                                                 |                                                             |                    |                    |          |           |                       | NOTES>>                |                  |  |  |

|                       | Conditional Category                                                                                                 |                                                                                                                                        |     |                                                                                                   |                                                                                                                                                                                              |        |   |  |
|-----------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---|--|
|                       | Negligible                                                                                                           | Minor                                                                                                                                  |     | Moderate                                                                                          |                                                                                                                                                                                              | Severe |   |  |
| Channel<br>Alteration | Channelization, dredging, alteration, or<br>hardening absent. Stream has an<br>unaltered pattern or has naturalized. | Less than 20% of<br>the stream reach is<br>disrupted by any of<br>the channel<br>alterations listed in<br>the parameter<br>guidelines. |     | is disrupted by any<br>of the channel<br>alterations listed in<br>the parameter<br>guidelines. If | 60 - 80% of reach is disrupted by any of the channel alterations listed in the parameter guidelines. If stream has been channelized, normal stable stream meander pattern has not recovered. |        | d |  |
| Scores                | 1.5                                                                                                                  | 1.3                                                                                                                                    | 1.1 | 0.9                                                                                               | 0.7                                                                                                                                                                                          | 0.5    |   |  |

CI 1.10

REACH CONDITION INDEX and STREAM CONDITION UNITS FOR THIS REACH

NOTE: The CIs and RCI should be rounded to 2 decimal places. The CR should be rounded to a whole number.

THE REA

THE REACH CONDITION INDEX (RCI) >>

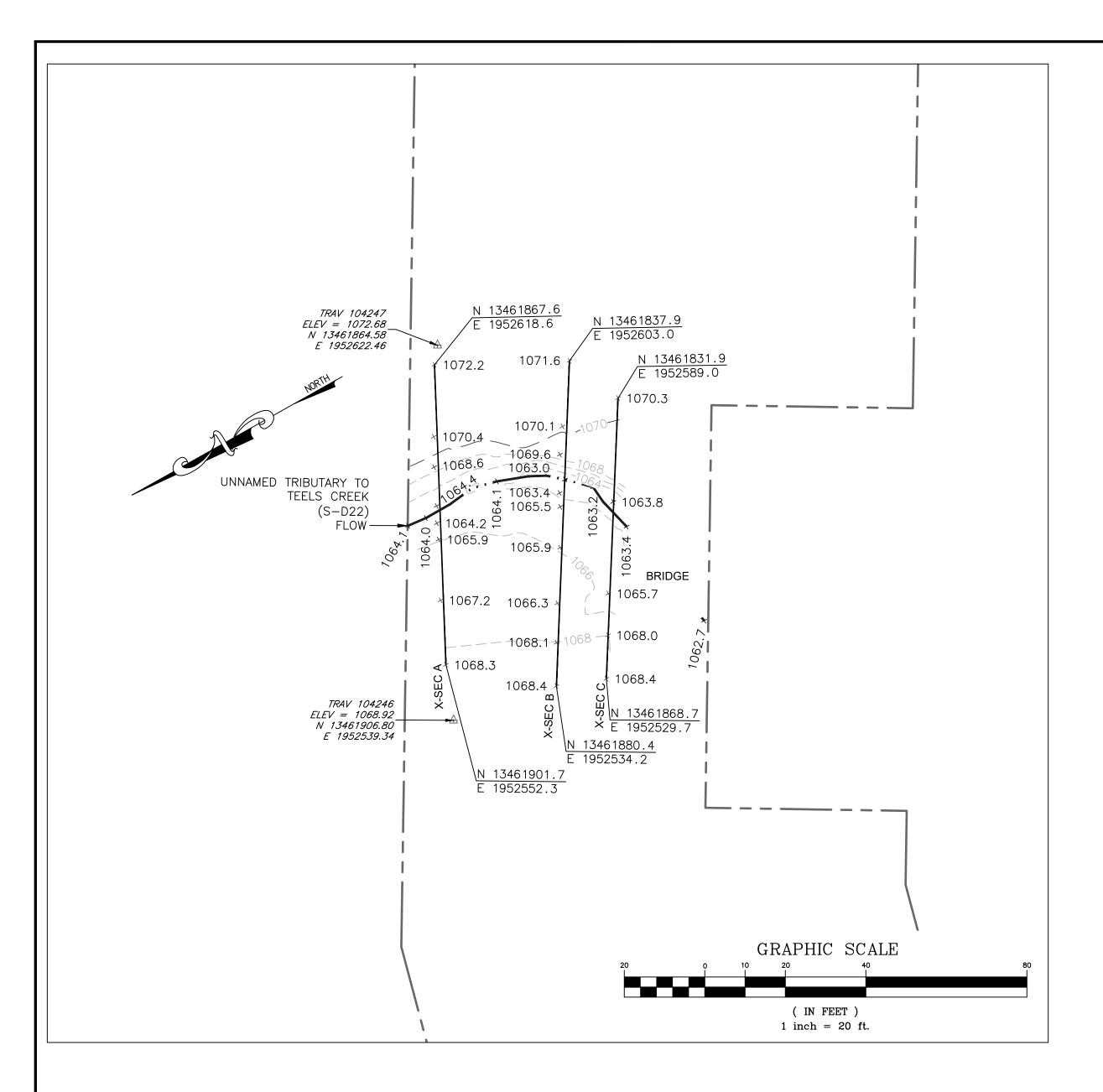
1.00

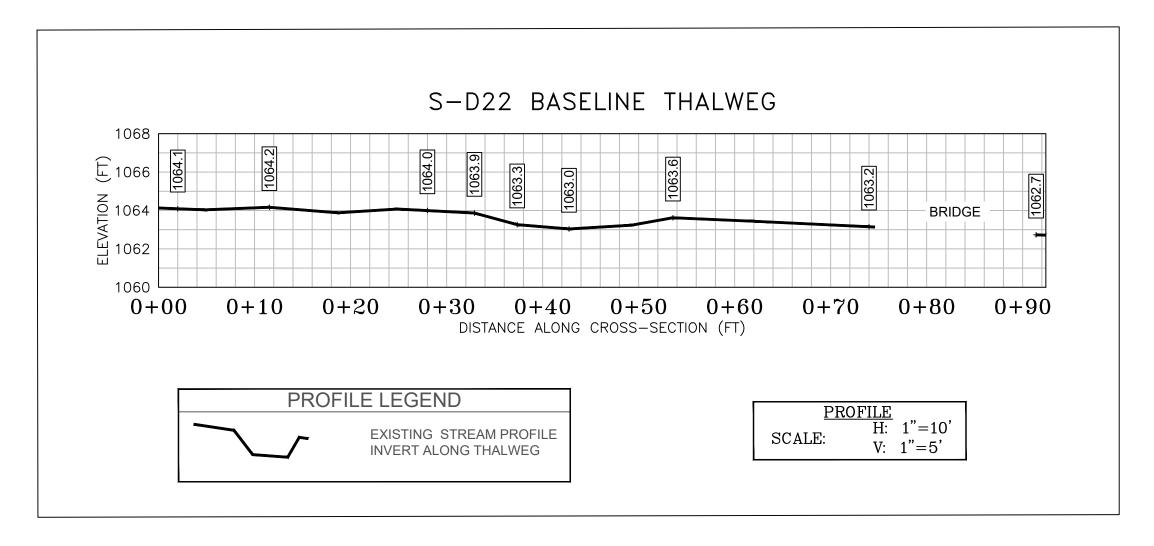
RCI= (Sum of all Cl's)/5, except if stream is ephemeral RCI = (Riparian Cl/2)

COMPENSATION REQUIREMENT (CR) >> 83

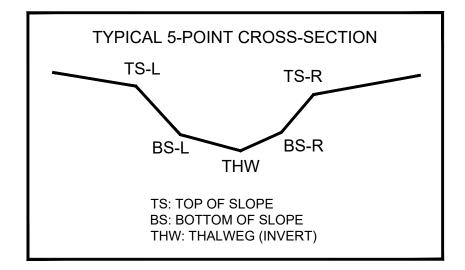
CR = RCI X L<sub>I</sub> X IF

**INSERT PHOTOS:** 


(WSSI Photo Location "L:\22000s\22800\22865.06\Admin\05-ENVR\Field Data\Spread |\Field Forms\S-D22\Photos\S-D22\_DS VIEW\_2021-08-27.jpg")

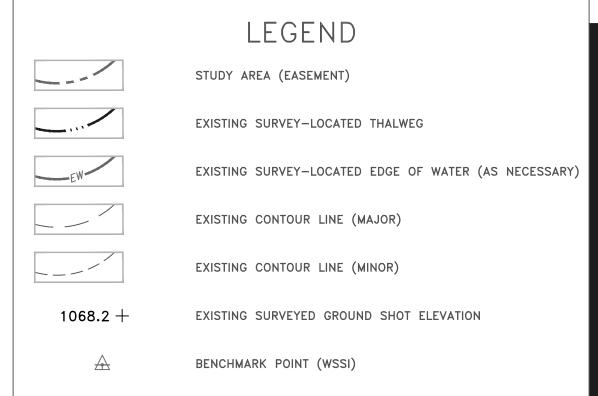


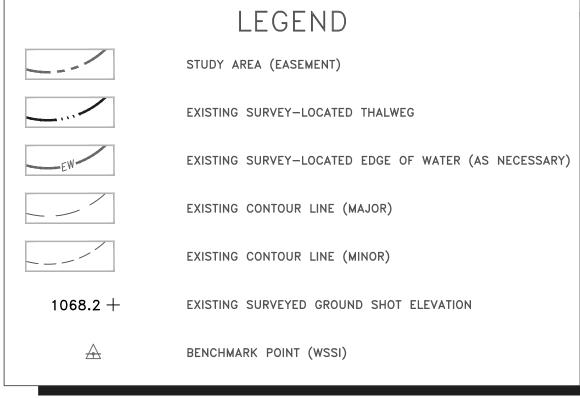

Looking downstream within the ROW. Assessment is limited to areas within the temporary ROW.

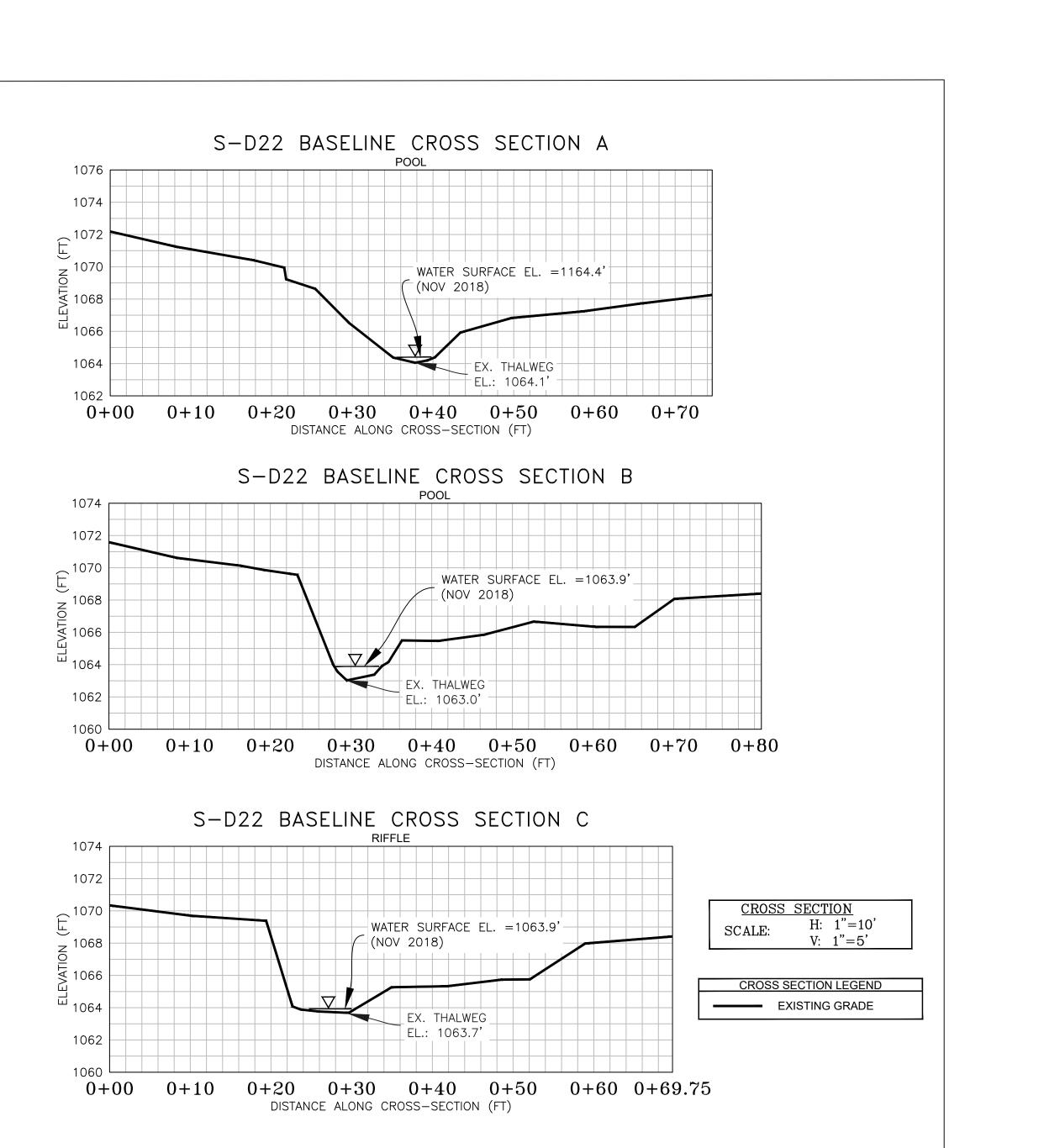

DESCRIBE PROPOSED IMPACT:

PROVIDED UNDER SEPARATE COVER







| CL STAKEOUT POINTS: S-D22 CROSS SECTION B (PIPE CL) |             |               |         |       |       |  |  |  |
|-----------------------------------------------------|-------------|---------------|---------|-------|-------|--|--|--|
|                                                     | PF          | POST-CROSSING |         |       |       |  |  |  |
| PT. LOC.                                            | NORTHING    | EASTING       | ELEV    | VERT. | HORZ. |  |  |  |
| P1. LOC.                                            | NORTHING    | EASTING       |         | DIFF. | DIFF. |  |  |  |
| TS-L                                                | 13461851.40 | 1952583.89    | 1069.57 |       |       |  |  |  |
| BS-L                                                | 13461852.84 | 1952578.96    | 1063.57 |       |       |  |  |  |
| THW                                                 | 13461853.36 | 1952577.88    | 1063.02 |       |       |  |  |  |
| BS-R                                                | 13461856.14 | 1952575.62    | 1063.38 |       |       |  |  |  |
| TS-R                                                | 13461857.70 | 1952572.55    | 1065.50 |       |       |  |  |  |




## SURVEY NOTES:

- 1. This map has been oriented to NAD 1983 UTM ZONE 17N, and vertically to The North American Vertical Datum of 1988 (NAVD 88), using a Real Time Network (RTN) GPS. Field locations were completed on November 19, 2018.
- 2. Monumentation, including traverse stations and fly points, shown on this drawing should be used to orient any future boundary, topographic, or location survey.
- 3. Easement lines shown on plan view were provided by Mountain Valley Pipeline (MVP).
- 4. WSSI Contour Interval = 2.0'. Contours within the channel were interpolated using stream channel breaklines (i.e. top of slopes, toe of slopes, thalweg) and cross-sectional points. Contours outside the channel were interpolated using cross-sectional spot shots.
- 5. All section views shown are left to right facing downstream.
- 6. Cross-section B shot at location of pipe centerline (based on best professional judgement).







NOTE: ALL SECTION VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.

PRE-CROSSING PHOTOS

Wetland

260.8)

**-**D22



PHOTO TAKEN LOOKING DOWNSTREAM TO THE SOUTH ON 11/19/2018



PHOTO TAKEN LOOKING UPSTREAM TO THE EAST ON 11/19/2018

POST-CROSSING PHOTOS

PENDING CROSSING

PHOTO TAKEN LOOKING

PENDING CROSSING

PHOTO TAKEN LOOKING

Horizontal Datum: NAD 1983 UTM ZONE 1 Vertical Datum: NAVD 88 Boundary and Topo Source: WSSI 2' C.I. Topo

> Approved NAS JSF EJC Sheet #

Computer File Name:

1 of 1

Survey\22000s\22800\22865.03\Spread I Work Dwgs 2865\_03 S-I MP 254-267 Sheets\_2.dwg