
Reach S-D4 (Pipeline ROW) Intermittent Spread I Pittsylvania County, Virginia

Data	Included
Photos	\checkmark
SWVM Form	\checkmark
FCI Calculator and HGM Form	\checkmark
RBP Physical Characteristics Form	\checkmark
Water Quality Data	\checkmark
RBP Habitat Form	\checkmark
RBP Benthic Form	\checkmark
Benthic Identification Sheet	N/A No benthic sample taken due to lack of habitat.
Wolman Pebble Count	\checkmark
RiverMorph Data Sheet	\checkmark
USM Form (Virginia Only)	\checkmark
Longitudinal Profile and Cross Sections	\checkmark

Spread I Stream S-D4 (Pipeline ROW) Pittsylvania County

Photo Type: US VIEW

Location, Orientation, Photographer Initials: Downstream at ROW/LOD looking NE upstream, RFC

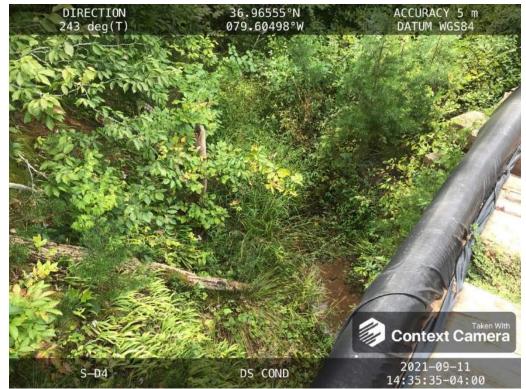


Photo Type: DS COND Location, Orientation, Photographer Initials: Downstream at ROW/LOD looking SW downstream, RFC

Photo Type: LB CL Location, Orientation, Photographer Initials: On thalweg at pipe centerline looking NW at right streambank, COC

Photo Type: RB CL Location, Orientation, Photographer Initials: On thalweg at pipe centerline looking E at left streambank, COC

Spread I Stream S-D4 (Pipeline ROW) Pittsylvania County

Photo Type: US COND Location, Orientation, Photographer Initials: Upstream at ROW/LOD looking NE upstream, COC

US COND

Photo Type: DS VIEW Location, Orientation, Photographer Initials: Upstream at ROW/LOD looking W downstream, COC

S-D4

Context Camera

2021-09-11

14:30:49-04:00

West Virginia Stream and Wetland Valuation Metric (SWVM) Version 2.1, September 2017

USACE FILE NO./ Project Name: (v2.1, Sept 2015)	Mountain	Valley Pipeline	IMPACT COORDINATES: (in Decimal Degrees)	Lat.	36.9656	Lon.	-79.604894	WEATHER:	Partly cloudy, sunny	DATE:	8/24/2021
IMPACT STREAM/SITE ID AN (watershed size (acreage), unalt		S-D4/ 1	2.14 ac		MITIGATION STREAM CLA (watershed size (acr	ASS./SITE ID AND SIT reage}, unaltered or impairm				Comments:	
STREAM IMPACT LENGTH:	105 FORM OF MITIGATION:	RESTORATION (Levels I-III)	MIT COORDINATES: (in Decimal Degrees)	Lat.		Lon.		PRECIPITATION PAST 48 HRS:	Yes	Mitigation Length:	
Column No. 1- Impact Existing Co	ndition (Debit)	Column No. 2- Mitigation Existing Co	ondition - Baseline (Credit)		Column No. 3- Mitigation Post Comple	n Projected at Five Yea letion (Credit)	irs	Column No. 4- Mitigation Proje Post Completion (C		Column No. 5- Mitigation Project	ted at Maturity (Credit)
Stream Classification:	Intermittent	Stream Classification:			Stream Classification:			Stream Classification:	0	Stream Classification:	0
Percent Stream Channel Slope	11.48%	Percent Stream Channel Slo	ope		Percent Stream Channe	el Slope	0	Percent Stream Channel Sto	ope O	Percent Stream Channel	Slope 0
HGM Score (attach data f	forms):	HGM Score (attach o	data forms):		HGM Score (att	tach data forms):		HGM Score (attach da	ta forms):	HGM Score (attach	data forms):
	Average		Average				Average		Average		Average
Hydrology Biogeochemical Cycling Habitat	0.3 0.27 0.13 0.233333333	Hydrology Biogeochemical Cycling Habitat	0		Hydrology Biogeochemical Cycling Habitat		0	Hydrology Biogeochemical Cycling Habitat	0	Hydrology Biogeochemical Cycling Habitat	0
PART I - Physical, Chemical and Biol		PART I - Physical, Chemical and	d Biological Indicators		PART I - Physical, Chemic	cal and Biological Indic	ators	PART I - Physical, Chemical and I	Biological Indicators	PART I - Physical, Chemical an	d Biological Indicators
Pein	ns Scale Range Site Score		Points Scale Range Site Score			Points Scale Range	Site Score		Points Scale Range Site Score		Points Scale Range Site Score
PHYSICAL INDICATOR (Applies to all streams class	sifications)	PHYSICAL INDICATOR (Applies to all streams of	classifications)		PHYSICAL INDICATOR (Applies to all stre	reams classifications)		PHYSICAL INDICATOR (Applies to all streams	classifications)	PHYSICAL INDICATOR (Applies to all stream	ns classifications)
JSEPA RBP (High Gradient Data Sheet)		USEPA RBP (Low Gradient Data Sheet)			USEPA RBP (High Gradient Data She			USEPA RBP (High Gradient Data Sheet)		USEPA RBP (High Gradient Data Sheet)	
	1-20 7	1. Epifaunal Substrate/Available Cover 2. Pool Substrate Characterization	0-20		1. Epifaunal Substrate/Available Cover 2. Embeddedness	0-20		1. Epifaunal Substrate/Available Cover 2. Embeddedness	0-20	 Epifaunal Substrate/Available Cover Embeddedness 	0-20
	-20 6	3. Pool Variability	0-20		3. Velocity/ Depth Regime	0-20		3. Velocity/ Depth Regime	0-20	3. Velocity/ Depth Regime	0-20
	-20 16	4. Sediment Deposition	0-20		4. Sediment Deposition	0-20		4. Sediment Deposition	0-20	4. Sediment Deposition	0-20
5. Channel Flow Status 0	-20 6	5. Channel Flow Status	0-20		5. Channel Flow Status	0-20		5. Channel Flow Status	0-20	5. Channel Flow Status	0-20
	-20 0-1 16	6. Channel Alteration	0-20		6. Channel Alteration	0-20 0-1		6. Channel Alteration	0-20	6. Channel Alteration	0-20
	-20 5	7. Channel Sinuosity	0-20		7. Frequency of Riffles (or bends)	0-20		7. Frequency of Riffles (or bends)	0-20	7. Frequency of Riffles (or bends)	0-20
	1-20 10	8. Bank Stability (LB & RB)	0-20		8. Bank Stability (LB & RB)	0-20		8. Bank Stability (LB & RB)	0-20	8. Bank Stability (LB & RB)	0-20
	120 16	9. Vegetative Protection (LB & RB)	0-20		9. Vegetative Protection (LB & RB)	0-20		9. Vegetative Protection (LB & RB)	0-20	9. Vegetative Protection (LB & RB)	0-20
	120 14	10. Riparian Vegetative Zone Width (LB & RB)	0-20		10. Riparian Vegetative Zone Width (LB & R			10. Riparian Vegetative Zone Width (LB & RB)	0-20	10. Riparian Vegetative Zone Width (LB & RB)	0-20
	Marginal 102	Total RBP Score	Poor 0		Total RBP Score	Poor	0	Total RBP Score	Poor 0	Total RBP Score	Poor 0
Sub-Total	0.51	Sub-Total			Sub-Total	1 001	0	Sub-Total	0	Sub-Total	0
CHEMICAL INDICATOR (Applies to Intermittent and		CHEMICAL INDICATOR (Applies to Intermittent	and Perennial Streams)		CHEMICAL INDICATOR (Applies to Inter	mittent and Perennial Stream	ims)	CHEMICAL INDICATOR (Applies to Intermitten	t and Perennial Streams)	CHEMICAL INDICATOR (Applies to Intermitt	-
WVDEP Water Quality Indicators (General)		WVDEP Water Quality Indicators (General)			WVDEP Water Quality Indicators (Ger	neral)		WVDEP Water Quality Indicators (General)		WVDEP Water Quality Indicators (Gener	al)
Specific Conductivity	1-90 77	Specific Conductivity	0.90		Specific Conductivity	0-90		Specific Conductivity	0-90	Specific Conductivity	0-90
<=99 - 90 points 0		рН			pH			рН		рН	
6.0-8.0 = 80 points	-80 ⁰⁻¹ 7.49		5-90 0-1			5-90 0-1			5-90		5-90 0-1
DO		DO			DO			DO		DO	
>5.0 = 30 points	0-30 75		10-30		0.1.7.1.	10-30		0.1.7.1.	10-30	0.1.7.1	10-30
Sub-Total BIOLOGICAL INDICATOR (Applies to Intermittent a	and Perennial Streams)	Sub-Total BIOLOGICAL INDICATOR (Applies to Intermitte	ent and Perennial Streams)		Sub-Total BIOLOGICAL INDICATOR (Applies to In	ntermittent and Perennial	Streams)	Sub-Total BIOLOGICAL INDICATOR (Applies to Intermi	ttent and Perennial Streams)	Sub-Total BIOLOGICAL INDICATOR(Applies to Inter	mittent and Perennial Streams)
WV Stream Condition Index (WVSCI)		WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)		WV Stream Condition Index (WVSCI)	
0 0-	-100 0-1		0-100 0-1			0-100 0-1			0-100 0-1		0-100 0-1
Sub-Total	0	Sub-Total	0		Sub-Total		0	Sub-Total	0	Sub-Total	0
PART II - Index and Unit S	Score	PART II - Index and	Unit Score		PART II - Index	and Unit Score		PART II - Index and U	nit Score	PART II - Index and	Unit Score
Index Li	inear Feet Unit Score	Index	Linear Feet Unit Score		Index	Linear Feet	Unit Score	Index	Linear Feet Unit Score	Index	Linear Feet Unit Score

105 51.8875

0.494

		High-G		Headwat				ia	versio	on 10-20-1
			Field D	Data She	et and C					
	AJ/VM						Latitude/UT	-		
Project Name			Course of L			L	•	•	-79.604894	1
		nikin Creek		75	Otras area Tr			npling Date:	8-24-21	
SAR Number Top Strata		Reach rub/Herb Str	Length (ft):		Stream Ty	/pe: Inter	mittent Strea			•
ite and Timing			ulu	(uotorrinio	•	Before Proje		JPT/		•
nple Variables		(9):			35					25
1 V _{CCANOPY}	equidistant 20%, enter	ercent cover t points alon at least one	g the strean e value betw	n. Measure veen 0 and 1	only if tree/ 19 to trigger	sapling cov	er is at leas			Not Use <20%
List the pe	rcent cover	measureme	nts at each	point below:						1
2 V _{EMBED}		mbeddednes								1.5
		ig the strean e and area s								1.5
	according	to the follow	ing table. If	the bed is a	an artificial s	surface, or c	omposed o		0	
		e of 1. If the Iness rating			,	0		tts. Megaha	an, and	Measur
	Minshall 19		ioi gratoi, o		ouldor para	0.00 (10000		uo, moguno	in, and	at least
	Rating	Rating Des								30 point
	5			overed, sur					ck)	-
	3			face covere						
	2			face covere						-
l ist the rat	1 ings at each	>75 percen point below		covered, su	irrounded, o	or buried by	fine sedime	ent (or artific	cial surface)]
3	3	1	. 1	1	1	1	1	1	1	1
3	3	3	1	1	1	1	1	1	1	
V	Modion etr	eam channe	Loubetroto	partiala aiza	Moosuro	at no fowor	than 20 rou	ably oquidig	tont points	
	along the s	stream; use t the to the	the same po	pints and pa	rticles as us	ed in V _{EMBE}	D.			0.29 in
asphalt or	concrete as	0.0 in, sand	or finer par	ticles as 0.0	8 in):			1		
4.00	3.50	0.08	0.08	0.08	0.08	0.08	0.08	8.00	0.08	
3.25	2.50	2.50	0.08	0.50	0.08	0.75	0.80	0.08	0.75	
V _{BERO}		ent of erodeo ne total perce								12.0/
	may be up		entage win t			ins are en	ueu, ioiai e		le sueam	13 %
		Left Bank:	5	ft		Right Bank:	5	ft		
ple Variables	5-9 within	the entire ri	inarian/buf	for zono ad	iacent to th	o stroam c	hannel (25	feet from (ach hank)	
V _{LWD}		down wood					•			
		ch. Enter th et of stream			re 50'-wide	buffer and v	vithin the ch	annel, and	the amount	0.0
	per 100 lee	et of Stream	will be calcu		downed wo	ody stems:		0		
V _{TDBH}	•	bh of trees (I				ng cover is	at least 20%	b). Trees ar	e at least 4	Not Use
	`	cm) in diam								1401 030
	List the db the stream	h measurem	ents of indiv	vidual trees	(at least 4 i	n) within the	buffer on e	each side of		
	ule sucalli	Left Side					Right Side			1
0					0		J			
]
										l
										ł
										ł
										1
										1
V _{SNAG}		snags (at le		,	•		Enter num	ber of snag	s on each	
	side of the	stream, and	the amoun	t per 100 fe	et will be ca	Iculated.				0.0
		Left Side:	(C		Right Side:		0		
V _{SSD}		saplings an								
	if tree cove	er is <20%).	Enter numb	per of saplin	as and shru	ihs on each	side of the	stream and	the	66.7
		r 100 ft of st					0.00 0. 0.0	ou ourin, une	i uic	00.1

9	V _{SRICH}	Group 1 in	the tallest s	ecies richnes tratum. Che and the subir	eck all exoti	c and invas	ive species	present in			0.00
		Grou	p 1 = 1.0					Grou	o 2 (-1.0)		
	Acer rubru	m		Magnolia tri	ipetala		Ailanthus a	ltissima		Lonicera ja	ponica
	Acer sacch	narum		Nyssa sylva	atica		Albizia julib	orissin		Lonicera ta	tarica
	Aesculus f	lava		Oxydendrum	arboreum		Alliaria peti	olata		Lotus corn	culatus
	Asimina tri	loba		Prunus sero	otina		Alternanthe	era		Lythrum sa	licaria
	Betula alleg	haniensis		Quercus alb	ba		philoxeroid	es	12	Microstegiur	n vimineum
	Betula lent	а		Quercus co	ccinea		Aster tatari	cus		Paulownia	tomentosa
	Carya alba	ı –		Quercus im	bricaria		Cerastium	fontanum		Polygonum	cuspidatum
	Carya glabra Quercus prinus				Coronilla v	aria		Pueraria m	ontana		
	Carya oval	lis		Quercus rul	bra		Elaeagnus u	mbellata		Rosa multi	flora
	Carya ovai	ta		Quercus ve	lutina		Lespedeza	bicolor		Sorghum h	alepense
	Cornus flor	rida		Sassafras a	albidum		Lespedeza	cuneata		Verbena bi	rasiliensis
	Fagus grai	ndifolia		Tilia americ	ana		Ligustrum ol	otusifolium			
	Fraxinus a	mericana		Tsuga cana	adensis		Ligustrum s	sinense			
	Liriodendror	n tulipifera		Ulmus ame	ricana						
	Magnolia a	cuminata									
			On enior in	0					0	<u> </u>	
		0	Species in	•	4011 4011			3	Species in	•	
		bplots sho Average pe	uld be place ercent cover	subplots (4 ed roughly of of leaves, s Enter the pe	equidistan	itly along e ner organic	ach side of material. W	the strea	n. s <4" diame		4.17 %
				Side	ercent cove			t Side	iot.	1	
		0	15	5		0	0	5			
		0	10	J		Ŭ		<u> </u>			
11	V _{HERB}	include wo	ody stems a percentage: oplot.	over of herba it least 4" dbl s up through	h and 36" t	all. Becaus	e there may Enter the pe	be severa rcent cove	layers of gro	ound cover	96 %
		100	Leπ 85	Side 95			-	Side			
1		100	00	95							
Sample	e Variable 1	2 within th	e entire cat	chment of t	the stream	100	100	95			
Sample	e Variable 1 V _{WLUSE}		Average of F	Runoff Score	or waters	hed:	100	95	Rupoff	% in	0.50 Running
			Average of F		or waters	hed:	100	95	Runoff Score	Catch-	Running Percent
	V _{WLUSE}	Weighted A	Average of F Land	Runoff Score Use (Choose	or waters	hed:		95	Score	Catch- ment	Running Percent (not >100)
	V _{WLUSE}		Average of F Land	Runoff Score Use (Choose	or waters	hed:	100	95		Catch-	Running Percent
	V _{WLUSE}	Weighted A	Average of F Land	Runoff Score Use (Choose	or waters	hed:		95	Score	Catch- ment	Running Percent (not >100)
	V _{WLUSE}	Weighted A	Average of F Land	Runoff Score Use (Choose	or waters	hed:		<u> </u>	Score	Catch- ment	Running Percent (not >100)
	V _{WLUSE}	Weighted A	Average of F Land	Runoff Score Use (Choose	or waters	hed:		<u> </u>	Score	Catch- ment	Running Percent (not >100)
	V _{WLUSE}	Weighted A	Average of F Land	Runoff Score Use (Choose	or waters	hed:		<u> </u>	Score	Catch- ment	Running Percent (not >100)
	V _{WLUSE}	Weighted A	Average of F Land	Runoff Score Use (Choose	or waters	hed:			Score	Catch- ment	Running Percent (not >100)
	V _{WLUSE}	Weighted A	Average of F Land	Runoff Score Use (Choose	or waters	hed:			Score	Catch- ment	Running Percent (not >100)
	V _{WLUSE}	Weighted A	Average of F Land	Runoff Score Use (Choose	or waters	hed:			Score	Catch- ment	Running Percent (not >100)
	V _{WLUSE}	Weighted A	Average of F Land	Runoff Score Use (Choose	or waters	hed:			Score	Catch- ment	Running Percent (not >100)
	V _{WLUSE}	Weighted A	Average of F Land	Runoff Score Use (Choose	or waters	hed:		95	Score	Catch- ment	Running Percent (not >100)
12	V _{WLUSE}	Weighted A	Average of F Land	Runoff Score	e From Dro	- hed: .p List)		tes:	Score 0.5	Catch- ment 100	Running Percent (not >100) 100
12 Va	VwLUSE Forest and n	Weighted A native range (~ S-D4 Value Not Used,	Land Color of F	Runoff Score Use (Choose cover) Land Cove Database	e From Dro er Analysis (NLCD), fr	• hed: op List) s was com rom Lands	No pleted usin sat satellite	tes: g the 201 imagery a	9 National I and other su	Catch- ment 100	Running Percent (not >100) 100
12 Va Vcc	VwLUSE Forest and r ariable CANOPY	S-D4 Not Used, <20%	Verage of F Land <50% ground VSI Not Used	Land Cover	e From Dro e From Dro or Analysis (NLCD), fr Watershec	• hed: p List) s was com rom Lands I boundari	No pleted usin sat satellite es are base	tes: g the 201 imagery a ed off of fi	9 National I and other su	Catch- ment 100	Running Percent (not >100) 100
12 Va Va	VwLUSE Forest and n	Weighted A native range (~ S-D4 Value Not Used,	Land Color of F	Land Cover	e From Dro e From Dro or Analysis (NLCD), fr Watershec	• hed: p List) s was com rom Lands I boundari	No pleted usin sat satellite	tes: g the 201 imagery a ed off of fi	9 National I and other su	Catch- ment 100	Running Percent (not >100) 100
12 Va Vcc Vcr	VwLUSE Forest and r ariable CANOPY	S-D4 Not Used, <20%	Verage of F Land <50% ground VSI Not Used	Land Cover	e From Dro e From Dro or Analysis (NLCD), fr Watershec	• hed: p List) s was com rom Lands I boundari	No pleted usin sat satellite es are base	tes: g the 201 imagery a ed off of fi	9 National I and other su	Catch- ment 100	Running Percent (not >100) 100
12 Va Vca Vca Vsu	VwLUSE Forest and r ariable CANOPY MBED	S-D4 Value Not Used, <20% 1.5	Verage of F Land <50% ground VSI Not Used 0.28	Land Cover	e From Dro e From Dro or Analysis (NLCD), fr Watershec	• hed: p List) s was com rom Lands I boundari	No pleted usin sat satellite es are base	tes: g the 201 imagery a ed off of fi	9 National I and other su	Catch- ment 100	Running Percent (not >100) 100
12 Va Vcc Vsu Vsu Vsu	VwLUSE Forest and r ariable CANOPY MBED UBSTRATE ERO	S-D4 Not Used, <20% 1.5 0.29 in 13 %	Verage of F Land <50% ground <50% ground 0.28 0.15 1.00	Land Cover	e From Dro e From Dro or Analysis (NLCD), fr Watershec	• hed: p List) s was com rom Lands I boundari	No pleted usin sat satellite es are base	tes: g the 201 imagery a ed off of fi	9 National I and other su	Catch- ment 100	Running Percent (not >100) 100
Va Va Vcc Vcc Vsu Vsu Vsu	VwLUSE Forest and r Forest and r ariable CANOPY MBED UBSTRATE ERO WD	S-D4 Value Not Used, <20% 1.5 0.29 in 13 % 0.0	Verage of F Land 50% ground 50% ground 0.28 0.28 0.15 1.00 0.00	Land Cover	e From Dro e From Dro or Analysis (NLCD), fr Watershec	• hed: p List) s was com rom Lands I boundari	No pleted usin sat satellite es are base	tes: g the 201 imagery a ed off of fi	9 National I and other su	Catch- ment 100	Running Percent (not >100) 100
12 12 Va Vca Vca Vsu Vsu Vsu Vsu Vта	VwLUSE Forest and n Forest and n ariable CANOPY MBED UBSTRATE ERO ND DBH	S-D4 Not Used, <20% 1.5 0.29 in 13 %	Verage of F Land <50% ground <50% ground 0.28 0.15 1.00	Land Cover	e From Dro e From Dro or Analysis (NLCD), fr Watershec	• hed: p List) s was com rom Lands I boundari	No pleted usin sat satellite es are base	tes: g the 201 imagery a ed off of fi	9 National I and other su	Catch- ment 100	Running Percent (not >100) 100
12 Va Vcc Vcc Vcc Vcc Vcc Vcc Vcc	VwLUSE Forest and n Forest and n ariable CANOPY MBED UBSTRATE ERO ND DBH	S-D4 Value Not Used, <20% 1.5 0.29 in 13 % 0.0	Verage of F Land 50% ground 50% ground 0.28 0.28 0.15 1.00 0.00	Land Cover	e From Dro e From Dro or Analysis (NLCD), fr Watershec	• hed: p List) s was com rom Lands I boundari	No pleted usin sat satellite es are base	tes: g the 201 imagery a ed off of fi	9 National I and other su	Catch- ment 100	Running Percent (not >100) 100
12	VwLuse Forest and n Forest and n ariable CANOPY MBED UBSTRATE ERO ND DBH NAG	S-D4 Value Not Used, <20% 1.5 0.29 in 13 % 0.0 Not Used	VSI Not Used 0.28 0.15 1.00 0.00 Not Used	Land Cover	e From Dro e From Dro or Analysis (NLCD), fr Watershec	• hed: p List) s was com rom Lands I boundari	No pleted usin sat satellite es are base	tes: g the 201 imagery a ed off of fi	9 National I and other su	Catch- ment 100	Running Percent (not >100) 100
12 V2 V _C V _E V _S V _L V _S V _S	VwLUSE Forest and r Forest and r ariable CANOPY MBED UBSTRATE ERO ND DBH NAG SD	S-D4 Value Not Used, <20% 1.5 0.29 in 13 % 0.0 Not Used 0.0 66.7	Verage of F Land <50% ground <50% ground 0.28 0.15 1.00 0.00 Not Used 0.10 1.00	Land Cover	e From Dro e From Dro or Analysis (NLCD), fr Watershec	• hed: p List) s was com rom Lands I boundari	No pleted usin sat satellite es are base	tes: g the 201 imagery a ed off of fi	9 National I and other su	Catch- ment 100	Running Percent (not >100) 100
12 12 Va V _C V _E V _S V _S V _S V _S	VwLUSE Forest and n Forest and n ariable CANOPY MBED UBSTRATE ERO ND DBH NAG SD RICH	Weighted A native range (- Value Not Used, <20%	Verage of F Land <50% ground <50% ground VSI Not Used 0.28 0.15 1.00 0.00 Not Used 0.10 1.00 0.00	Land Cover	e From Dro e From Dro or Analysis (NLCD), fr Watershec	• hed: p List) s was com rom Lands I boundari	No pleted usin sat satellite es are base	tes: g the 201 imagery a ed off of fi	9 National I and other su	Catch- ment 100	Running Percent (not >100) 100
12 12 Va Va Va Va Va Va Va Va Va Va	VwLUSE Forest and r Forest and r ariable CANOPY MBED UBSTRATE ERO ND DBH NAG SD RICH ETRITUS	Weighted A native range (- Value Not Used, -20% 1.5 0.29 in 13 % 0.0 Not Used 0.0 66.7 0.00 4.2 %	Verage of F Land <50% ground <50% ground 0.28 0.15 1.00 0.00 Not Used 0.10 1.00 0.00 0.00 0.05	Land Cover	e From Dro e From Dro or Analysis (NLCD), fr Watershec	• hed: p List) s was com rom Lands I boundari	No pleted usin sat satellite es are base	tes: g the 201 imagery a ed off of fi	9 National I and other su	Catch- ment 100	Running Percent (not >100) 100
12 12 Va Va Va Va Va Va Va Va Va Va	VwLUSE Forest and n Forest and n ariable CANOPY MBED UBSTRATE ERO ND DBH NAG SD RICH	Weighted A native range (- Value Not Used, <20%	Verage of F Land <50% ground <50% ground VSI Not Used 0.28 0.15 1.00 0.00 Not Used 0.10 1.00 0.00	Land Cover	e From Dro e From Dro or Analysis (NLCD), fr Watershec	• hed: p List) s was com rom Lands I boundari	No pleted usin sat satellite es are base	tes: g the 201 imagery a ed off of fi	9 National I and other su	Catch- ment 100	Running Percent (not >100) 100

Before Project

FCI Calculator for the High-Gradient Headwater Streams in Appalachia

To ensure accurate calculations, the <u>UPPERMOST STRATUM</u> of the plant community is determined based on the calculated value for V_{CCANOPY} (≥20% cover is required for tree/sapling strata). Go to the SAR Data Entry tab and enter site characteristics and data in the yellow cells. For information on determining how to split a project into SARs, see Chapter 5 of the Operational Draft Regional Guidebook for the Functional Assessment of High-Gradient Headwater Streams and Low-Gradient Perennial Streams in Appalachia (Environmental Laboratory U.S. Army Corps of Engineers 2017).

Project Name: MVP Location: UNT to Jonnikin Creek Spread I Sampling Date: 8-24-21

Subclass for this SAR:

Intermittent Stream

SAR number: S-D4

Project Site

Shrub/Herb Strata

Uppermost stratum present at this SAR:

Functional Results Summary:

Enter Results in Section A of the Mitigation Sufficiency Calculator

Function	Functional Capacity Index
Hydrology	0.30
Biogeochemical Cycling	0.27
Habitat	0.13

Variable Measure and Subindex Summary:

Variable	Name	Average Measure	Subindex
VCCANOPY	Percent canpoy over channel.	Not Used, <20%	Not Used
V _{EMBED}	Average embeddedness of channel.	1.50	0.28
V _{SUBSTRATE}	Median stream channel substrate particle size.	0.29	0.15
V _{BERO}	Total percent of eroded stream channel bank.	13.33	1.00
V _{LWD}	Number of down woody stems per 100 feet of stream.	0.00	0.00
V _{TDBH}	Average dbh of trees.	Not Used	Not Used
V _{SNAG}	Number of snags per 100 feet of stream.	0.00	0.10
V _{SSD}	Number of saplings and shrubs per 100 feet of stream.	66.67	1.00
V _{SRICH}	Riparian vegetation species richness.	0.00	0.00
	Average percent cover of leaves, sticks, etc.	4.17	0.05
V _{HERB}	Average percent cover of herbaceous vegetation.	95.83	1.00
V _{WLUSE}	Weighted Average of Runoff Score for Catchment.	0.50	0.53

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

STREAM NAME	LOCATION	
STATION # RIVERMILE	STREAM CLASS	
LAT LONG	RIVER BASIN	
STORET #	AGENCY	
INVESTIGATORS		
FORM COMPLETED BY	DATE TIME	REASON FOR SURVEY

WEATHER CONDITIONS SITE LOCATION/MAP	Now Past 24 hours Has there been a heavy rain in the last 7 days? Storm (heavy rain) rain (steady rain) showers (intermittent) % % cloud cover clear/sunny Air Temperature ° C Other
	LOD In Stream 75x 1.5ft Out
STREAM CHARACTERIZATION	Stream Subsystem Perennial Stream Type Coldwater Warmwater Stream Origin Glacial Spring-fed Mixture of origins Swamp and bog Catchment Area km²

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

WATERSHED FEATURES RIPARIAN VEGETATION (18 meter buffer)	Predominant Surrounding Landuse Forest Commercial Field/Pasture Industrial Agricultural Other Residential Indicate the dominant type and record the domin Trees Shrubs Dominant species present	Grasses Herbaceous
INSTREAM FEATURES	Estimated Reach Length m Estimated Stream Width m Sampling Reach Area ² Area in km² (m²x1000) km² Estimated Stream Depth m Surface Velocity m/sec (at thalweg) m/sec	Canopy Cover Partly open Partly shaded Shaded High Water Mark m Proportion of Reach Represented by Stream Morphology Types Riffle% Run% Riffle % Root % Root % No No
LARGE WOODY DEBRIS AQUATIC VEGETATION	LWDm² Density of LWDm²/km² (LWD/ reac Indicate the dominant type and record the domin Rooted emergent Rooted submergent Floating Algae Attached Algae Dominant species present	ant species present Rooted floating Free floating
WATER QUALITY	Temperature0 C Specific Conductance Dissolved Oxygen pH Turbidity WQ Instrument Used	Water Odors Normal/None Sewage Petroleum Chemical Fishy Other Water Surface Oils Slick Slick Sheen Globs Flecks None Other Turbidity (if not measured) Clear Slightly turbid Clear Slightly turbid Turbid Opaque Stained Other
SEDIMENT/ SUBSTRATE	Odors Petroleum Normal Sewage Petroleum Chemical Anaerobic None Other	Deposits Sludge Sawdust Paper fiber Sand Relict shells Other Lpoking at stones which are not deeply embedded, are the undersides black in color? Yes No

INORGANIC SUBSTRATE COMPONENTS (should add up to 100%)			ORGANIC SUBSTRATE COMPONENTS (does not necessarily add up to 100%)				
Substrate Type	Diameter	% Composition in Sampling Reach	Substrate Type	Characteristic	% Composition in Sampling Area		
Bedrock			Detritus	sticks, wood, coarse plant			
Boulder	> 256 mm (10")			materials (CPOM)			
Cobble	64-256 mm (2.5"-10")		Muck-Mud	black, very fine organic			
Gravel	2-64 mm (0.1"-2.5")			(FPOM)			
Sand	0.06-2mm (gritty)		Marl	grey, shell fragments			
Silt	0.004-0.06 mm						
Clay	< 0.004 mm (slick)						

HABITAT ASSESSMENT FIELD DATA SHEET - HG - USE ON ALL STREAMS (FRONT)

STREAM NAME	LOCATION		
STATION # RIVERMILE	STREAM CLASS		
LAT LONG	RIVER BASIN		
STORET #	AGENCY		
INVESTIGATORS			
FORM COMPLETED BY	DATE TIME AM PM	REASON FOR SURVEY	

	Habitat		Condition	ı Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are <u>not</u> new fall and <u>not</u> transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
n sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.
ted i	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow- deep, slow-shallow, fast- deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast- shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).
uram	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
P	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0

Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, Second Edition - Form 2

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

Habitat		Condition	1 Category	
Parameter	Optimal	Suboptimal	Marginal	Poor
6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.
SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
 SCORE 8. Bank Stability (score each bank) Note: determine left or right side by facing downstream. SCORE (LB) SCORE (RB) 9. Vegetative Protection (score each bank) 	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30- 60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.
SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0
9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well- represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
SCORE(LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
SCORE(RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0
10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.
SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0

Total Score _____

BENTHIC MACROINVERTEBRATE FIELD DATA SHEET

STREAM NAME		LOCATION	
STATION #	RIVERMILE	STREAM CLASS	
LAT	LONG	RIVER BASIN	
STORET #		AGENCY	
INVESTIGATORS			LOT NUMBER
FORM COMPLETED	BY	DATE TIME	REASON FOR SURVEY
HABITAT TYPES	Indicate the percentage of Cobble% Sn Submerged Macrophytes	ags% Vegetated B	anks% Sand%)%
SAMPLE COLLECTION	Indicate the number of jak	lected? wading fi ps/kicks taken in each habitat ty lags Vegetated B	anks Sand
GENERAL COMMENTS			

QUALITATIVE LISTING OF AQUATIC BIOTA

Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare, 2 = Common, 3= Abundant, 4 = Dominant

Periphyton	0	1	2	3	4	Slimes	0	1	2	3	4
Filamentous Algae	0	1	2	3	4	Macroinvertebrates	0	1	2	3	4
Macrophytes	0	1	2	3	4	Fish	0	1	2	3	4

FIELD OBSERVATIONS OF MACROBENTHOS

Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare (1-3 organisms), 2 = Common (3-9 organisms), 3= Abundant (>10 organisms), 4 = Dominant (>50 organisms)

Porifera	0	1	2	3	4	Anisoptera	0	1	2	3	4	Chironomidae	0	1	2	3	4
Hydrozoa	0	1	2	3	4	Zygoptera	0	1	2	3	4	Ephemeroptera	0	1	2	3	4
Platyhelminthes	0	1	2	3	4	Hemiptera	0	1	2	3	4	Trichoptera	0	1	2	3	4
Turbellaria	0	1	2	3	4	Coleoptera	0	1	2	3	4	Other	0	1	2	3	4
Hirudinea	0	1	2	3	4	Lepidoptera	0	1	2	3	4						
Oligochaeta	0	1	2	3	4	Sialidae	0	1	2	3	4						
Isopoda	0	1	2	3	4	Corydalidae	0	1	2	3	4						
Amphipoda	0	1	2	3	4	Tipulidae	0	1	2	3	4						
Decapoda	0	1	2	3	4	Empididae	0	1	2	3	4						
Gastropoda	0	1	2	3	4	Simuliidae	0	1	2	3	4						
Bivalvia	0	1	2	3	4	Tabinidae	0	1	2	3	4						
						Culcidae	0	1	2	3	4						

WOLMAN PEBBLE COUNT FORM

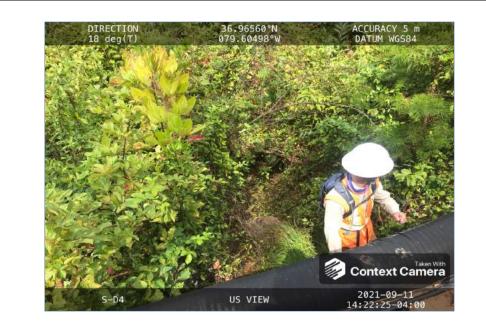
Basin:

County: Pittsylvania Stream Name: UNT to Jonnikin Creek HUC Code: 03010101 Survey Date: 8/24/2021 Surveyors: AJ/VM Type: Representative

Stream ID: S-D4

Upper Roanoke

T 1	DADTICI E	MC111		D	T-4-1#	T4 0/	0/ C
Inches	PARTICLE	Millimeters		Particle Count	Total #	Item %	% Cur
	Silt/Clay	< .062	S/C	\$		0.00	0.00
	Very Fine	.062125		.		0.00	0.00
	Fine	.12525		•		0.00	0.00
	Medium	.255	SAND	* *		0.00	0.00
	Coarse	.50-1.0		* *	2	2.00	2.00
.0408	Very Coarse	1.0-2		•		0.00	2.00
.0816	Very Fine	2 -4		\$		0.00	2.00
.1622	Fine	4 -5.7		* *		0.00	2.00
.2231	Fine	5.7 - 8		•		0.00	2.00
.3144	Medium	8 -11.3		•		0.00	2.00
.4463	Medium	11.3 - 16	GRAVEL	^		0.00	2.00
.6389	Coarse	16 -22.6		^		0.00	2.00
.89 - 1.26	Coarse	22.6 - 32		*	7	7.00	9.00
1.26 - 1.77	Vry Coarse	32 - 45		•	15	15.00	24.00
1.77 -2.5	Vry Coarse	45 - 64		^	13	13.00	37.00
2.5 - 3.5	Small	64 - 90		* *	15	15.00	52.00
3.5 - 5.0	Small	90 - 128	CODDIE	* *	23	23.00	75.00
5.0 - 7.1	Large	128 - 180	COBBLE	^	20	20.00	95.00
7.1 - 10.1	Large	180 - 256		* *		0.00	95.00
10.1 - 14.3	Small	256 - 362		^		0.00	95.00
14.3 - 20	Small	362 - 512	1	•		0.00	95.00
20 - 40	Medium	512 - 1024	BOULDER	^		0.00	95.00
40 - 80	Large	1024 -2048	1	•		0.00	95.00
80 - 160	Vry Large	2048 -4096	1	•		0.00	95.00
	Bedrock		BDRK	.	5	5.00	100.0
				Totals:	100		

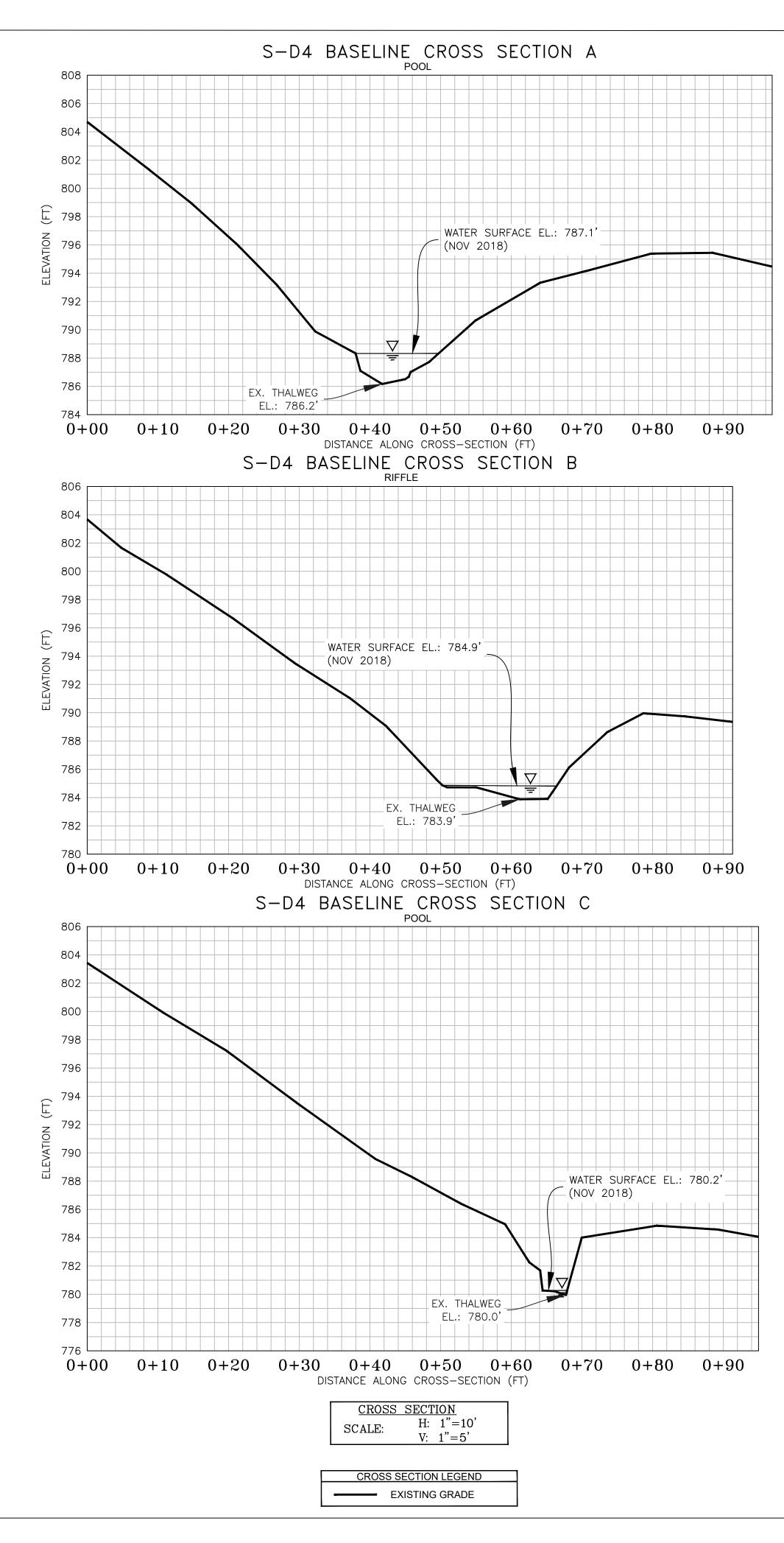

River Name: Reach Name: Sample Name: Survey Date:	UNT to Jonniki S-D4 Representative 08/24/2021		
Size (mm)	тот #	ITEM %	CUM %
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	0.00 0.00 0.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 15.00 13.00 15.00 23.00 20.00 0.00 0.00 0.00 0.00 5.00 0.00	0.00 0.00 0.00 2.00
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Cobble (%) Boulder (%) Bedrock (%)	38.07 61.08 86.53 151.4 180 Bedrock 0 2 35 58 0 5		

Total Particles = 100.

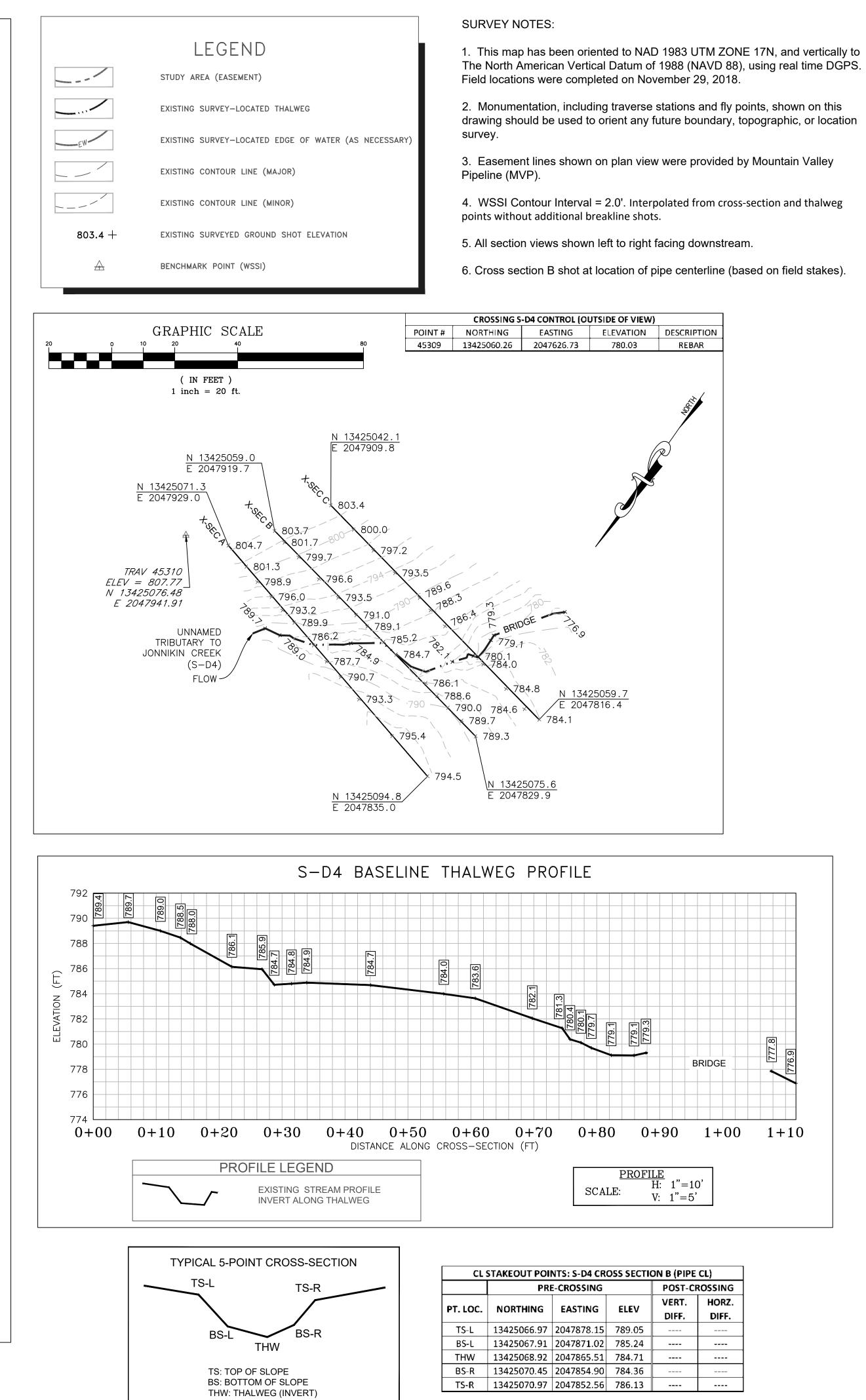
Condition premiered (0) 000%), AbUCR States monogram 500g/abu (b), AbUCR States				Unified St	ream Method	dology for us			1)		
Project Nume (a) project Ame (applican) Locality Class. Prov Date (b) SAY (B) Linght Eador 22866.0 Municip Collabor() Strame (c) of Collabor()									Impact	Impact	
Calebox Value (c) for (c) value (c) (c) value (c) (c) value (c) value (c) (c) value (c) (c) value (c) (c) value (c)	Project #		•	,		HUC	Date	SAR #	•	-	
Name(a) of Evaluation(a) Stream Name and Information SAR Length AJVM UNIT to Jonnikin Creek 105 Channel Condition: Assess the conservation of the stream and percentage cradition (mexicus, segmetation) Conditional Changer Poor Severe Unit of States that Conservation of the stream and percentage cradition (mexicus, segmetation) Conditional Changer Descriptional	22865.06		Pittslyvania	R3 or R4	03010101	8/24/21	S-D4	105	1		
Channel Condition: Optimal Suboptimal Marginal Por Severe Unit in the severe in the construction of the stream and prevaling condition (creation angle data) Port Severe Severe Unit in the severe in the construction of the stream and prevaling condition (creation angle data) Port Severe Severe Unit in the severe in the construction of the stream and prevalence in the severe in the s	Nam			e and Information	ation	•			SAR Length		
Optimal Subplicing Marginal Poor Severe Very HER Displane a feature data of the severe data of		AJ/VM	UNT to Jonn	ikin Creek					10)5	
Optimal Suboptimal Marginal Poor Severe Very time relation or active means, the Drive states areas, vegetaxe, instates means, vegetaxe, instates means, vegetaxe, instates means, vegetaxe, instates means, vegetaxe, insthe means, vegetaxe, instates means, vegetaxe, instates means, v	Channel C	Condition: Assess the cross-see	ction of the stream								
Channel Instructure Cha		Optimal	Subo				P	oor	Sev	vere	
Scores 3 2.4 2 1.6 1 2 NOTES> RipARIAN BUFFERS: Assess both bank's 100 foot riparian areas along the entire SAR. (rough measurements of length & width may be acceptable) Image: Comparison of the standing measurements of length & width may be acceptable) NOTES> RipArian Optimal Studoptimal (robs - 3 robs) present, with see statum (robs - 50, robs) present, strong or over with comparison of the riparian areas within the riparian strong or over with comparison of the riparian areas within the riparian strong or over with comparison of the riparian areas within the riparian strong or over with comparison of the riparian areas within the riparian strong or over with comparison of the riparian areas within the comparison of the riparian areas within the compariant areas and core for each rip	Channel Condition	Very little incision or active erosion; 80 100% stable banks. Vegetative prominent (80-100%). AND/OR Stable bankfull benches are present. Access to their original floodplain or fully developed wide bankfull benches. Mid channel bars and transverse bars few. Transient sediment deposition covers less than 10% of bottom.		incised, few areas of active unprotected banks. Majority has are stable (60-80%). ree protection or natural rock inent (60-80%) AND/OR ional features contribute to The bankfull and low flow is are well defined. Stream has access to bankfull hes, or newly developed is of the reach. Transient in covers 10-40% of the			laterally unstab further. Majority near vertical. Ero banks. Vegetativ on 20-40% of bank to prevent erosion the stream is cov Sediment is tem nature, and contr AND/OR V-sha vegetative protec	e. Likely to widen of both banks are sion present on 60- protection present is, and is insufficient . AND/OR 60-80% ered by sediment. borary / transient in ibuting to instability, bed channels have tion is present on >	vertical/lateral instability. Severe incision, flow contained within the banks. Streambed below average majority of banks vertical/undercut. Vegetative protection present on less than 20% of banks, is not preventing erosion. Obvious bank sloughing present. Erosion/raw banks on 80- 100%. AND/OR Aggrading channel. than 80% of stream bed is covered by deposition, contributing to instability.		
NOTES>> RipARIAN BUFFERS: Assess both banks: 100 foot riparian areas along the entire SAR. (rough measurements of length & width may be acceptable) NOTES>> Conditional Category NOTES>> Riparian Notestain areas along the entire SAR. (rough measurements of length & width may be acceptable) Notestain areas Notestain areas Notestain areas					depositional featu	res which contribute				CI	
Riparian BufFERS: Assess both bank's 100 foot rigorian areas along the entire SAR. (rough measurements of length & width may be acceptable) NOTES> Riparian Terms mining doh > 3 inches) prosent. Win 30% in the antianing dram, both the entange provide areas. Not Suboptimal Marginal Marginal Poor: NOTES> Riparian Terms mining doh > 3 inches) prosent. Win 30% in the antianing dram, both the entange provide areas. Not Suboptimal Category Not Suboptima	Scores	3	2	.4		2	1	.6	1		2.40
Scores 1.5 1.2 1.1 0.85 0.75 0.6 0.5 Delineate riparian areas along each stream bank into Condition Categories and Condition Scores using the descriptors. Determine square footage for each by measuring or estimating length and width. Calculators are provided for you low. Ensure the sums of % Riparian Ensure the sums of % Riparian Enter the % Riparian Areaa 100% 100% 100% 100% Right Bank % Riparian Areaa 100% 100% 100% Value % Riparian Areaa 100% 100% Rt Bank Cl > 0.85 % Riparian Areaa 100% 100% Rt Bank Cl > 0.85 0.85 Verter Bank % Riparian Areaa 100% Rt Bank Cl > 0.85 0.85 INSTREAM HABITAT: Varied substrate sizes, water velocity and depths; woody and leafy debris; stable substrate; low embededness; shade; undercut banks; root mats; SAV; le/pool complexes, stable features. NOTES>> Instream Habitat/ Cover Optimal Suboptimal Marginal Poor Habitat elements are typically present in 30-50% of the reach, or propulations. Stable habitat elements are typically present in 0.50% of the reach an are adequate for maintenance of populations. Stable habitat elements are typically present in optical present in less than 10% of the reach. Habitat elemen		Optimal			<u> </u>	ginal	-		-		
Delineate riparian areas along each stream bank into Condition Categories and Condition Scores using the descriptors. Ensure the sums of % Riparian Determine square footage for each by measuring or estimating length and width. Calculators are provided for you low. of % Riparian Enter the % Riparian Area and Score for each riparian category in the blocks below. Blocks equal 100 Right Bank % Riparian Area> 100% % Riparian Area> 100% Score > 0.85 Left Bank % Riparian Area> 100% % Riparian Area> 100% Score > 0.85 INSTREEAM HABITAT: Varied substrate sizes, water velocity and depths; woody and leafy debris; stable substrate; low embededness; shade; undercut banks; root mats; SAV; le/pool complexes, stable features. Conditional Category Instream Habitat/ Available Cover Stable habitat elements are typically present in 0:50% of the reach and are adequate for maintenance of populations. Stable habitat elements are typically present in 0:50% of the reach.	Riparian Buffers	Tree stratum (dbh > 3 inches) present with > 60% tree canopy cover. Wetlands located within the riparian	Subo High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory.	ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation).	Mar High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover.	Low Marginal: Non-maintained, dense herbaceous vegetation, iparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understry	P High Poor: Lawns mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetate non-maintained area, recently seeded and stabilized, or other comparable condition.	COOR Impervious surfaces, mine spoil lands, id denuded surfaces, row crops, active feed lots, trails, or other comparable conditions.	NOTES>> Assessment areas wi	ithin the	
Determine square footage for each by measuring or estimating length and width. Calculators are provided for you low. of % Riparian Enter the % Riparian Area and Score for each riparian category in the blocks below. Blocks equal 100 Right Bank % Riparian Area 100% Score > 0.85 0 V V 100% Right Bank % Riparian Area 100% % Riparian Area 100% Score > 0.85 V Notes 0.85 V Notes 0.85 Instream 100% Rt Bank Cl > 0.85 Instream Optimal Suboptimal Marginal Poor Notes Stable habitat elements are typically present in 30-50% of the reach and are adequate for maintenance of coopulations. Stable habitat elements are typically present in less than 50% of the reach. Stable habitat elements are typically present in less topolations.	Buffers	Tree stratum (dbh > 3 inches) present with > 60% tree canopy cover. Wetlands located within the riparian areas.	Subop High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a understory. High	ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory, Recent cutover (dense vegetation).	Mar High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High	Low Marginal: Non-maintained, dense herbaceous vegetation, inparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory Low	P High Poor: Lawns mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition.	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions.	NOTES>> Assessment areas wi	ithin the	
Score > 0.85 Cl= (Sum % RA * Scores*0.01)/2 Left Bank % Riparian Area> 100% Rt Bank Cl> 0.85 Score > 0.85 0.85 0.85 0.85 INSTREAM HABITAT: Varied substrate sizes, water velocity and depths; woody and leafy debris; stable substrate; low embededness; shade; undercut banks; root mats; SAV; le/pool complexes, stable features. NOTES>> Instream Habitat/ Available Cover Optimal Suboptimal Marginal Poor Habitat elements are typically present in 30-50% of the reach and in greater than 50% of the reach. Stable habitat elements are typically present in 10-30% of the reach and are adequate for maintenance of populations. Stable habitat elements are typically present in 10-30% of the reach.	Buffers	Tree stratum (dbh > 3 inches) present with > 60% tree canopy cover. Wetlands located within the riparian areas.	Subop High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a understory. High	ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory, Recent cutover (dense vegetation).	Mar High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High	Low Marginal: Non-maintained, dense herbaceous vegetation, inparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory Low	P High Poor: Lawns mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition.	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions.	NOTES>> Assessment areas wi	ithin the	
Left Bank % Riparian Area> 100% Rt Bank Cl> 0.85 Score > 0.85 Lt Bank Cl> 0.85 Lt Bank Cl> 0.85 INSTREAM HABITAT: Varied substrate sizes, water velocity and depths; woody and leafy debris; stable substrate; low embededness; shade; undercut banks; root mats; SAV; 0.85 0 Ippool complexes, stable features. Conditional Category NOTES>> Instream Habitat/ Available Cover Stable habitat elements are typically present in greater than 50% of the reach. Stable habitat elements are typically present in 10-30% of the reach and are adequate for maintenance of populations. Notes	Buffers Scores Delineate ripe Determine square low. Enter the % F	Tree stratum (dbh > 3 inches) present with > 60% tree canopy cover. Wetlands located within the riparian areas. 1.5 arian areas along each stream bank uare footage for each by measuring Riparian Area and Score for each ri	Subo High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Ca g or estimating leng	ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Cong gth and width. Ca	Mar High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree	Low Marginat: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory Low 0.75 g the descriptors.	P High Poor: Lawns mowed, and maintained areas, sparsely vegetater non-maintained area, recently seeded and stabilized, or othei comparable comparable condition. High 0.6	COOP Low Poor: Impervious surfaces, mine spoil lands, id denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100	NOTES>> Assessment areas wi	ithin the	
Left Bank Score > 0.85 Lt Bank Cl > 0.85 C INSTREAM HABITAT: Varied substrate sizes, water velocity and depths; woody and leafy debris; stable substrate; low embededness; shade; undercut banks; root mats; SAV; le/pool complexes, stable features. Conditional Category NOTES>> Instream Habitat/ Available Cover Stable habitat elements are typically present in greater than 50% of the reach. Stable habitat elements are typically present in 30-50% of the reach and are adequate for maintenance of populations. Notes V	Buffers Scores Delineate ripe Determine square low. Enter the % F	Tree stratum (dbh > 3 inches) present with > 60% tree canopy cover. Wetlands located within the riparian areas. 1.5 arian areas along each stream bank uare footage for each by measuring Riparian Area and Score for each ri % Riparian Area> 100%	Subo High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Ca g or estimating leng	ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Cong gth and width. Ca	Mar High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree	Low Marginat: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory Low 0.75 g the descriptors.	P High Poor: Lawns mowed, and maintained areas, sparsely vegetater non-maintained area, recently seeded and stabilized, or othei comparable comparable condition. High 0.6	COOP Low Poor: Impervious surfaces, mine spoil lands, id denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100	Assessment areas wi tempora	ithin the ry ROW.	
INSTREAM HABITAT: Varied substrate sizes, water velocity and depths; woody and leafy debris; stable substrate; low embededness; shade; undercut banks; root mats; SAV; le/pool complexes, stable features. Instream Habitat/ Available Cover Habitat elements are typically present in greater than 50% of the reach. Stable habitat elements are typically present in 30-50% of the reach and are adequate for maintenance of populations. NOTES>	Buffers Scores Delineate ripa Determine sq low. Enter the % F Right Bank	Tree stratum (dbh > 3 inches) present with > 60% tree canopy cover. Wetlands located within the riparian areas. 1.5 1.5 arian areas along each stream bank uare footage for each by measuring Riparian Area and Score for each ri % Riparian Area > 100% Score > 0.85	Subo High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Ca g or estimating leng	ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Cong gth and width. Ca	Mar High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree	Low Marginat: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory Low 0.75 g the descriptors.	P High Poor: Lawns mowed, and maintained areas, sparsely vegetater non-maintained area, recently seeded and stabilized, or othei comparable comparable condition. High 0.6	COOP Low Poor: Impervious surfaces, mine spoil lands, id denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100	Assessment areas wi tempora	thin the ry ROW.	CI
Motional Category NOTES>> Instream Optimal Notes>> Habitat/ Available Stable habitat elements are typically present in 30-50% of the reach and in greater than 50% of the reach. Stable habitat elements are typically present in 10-30% of the reach and are adequate for maintenance of populations. Stable habitat elements are typically present in 10-30% of the reach and are adequate for maintenance of populations. Notes>	Scores Delineate ripe Determine sq low. Enter the % F Right Bank	Tree stratum (dbh > 3 inches) present with > 60% tree canopy cover. Wetlands located within the riparian areas. 1.5 arian areas along each stream bank uare footage for each by measuring Riparian Area and Score for each ri % Riparian Area> 100% Score > 0.85 % Riparian Area> 100%	Subo High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Ca g or estimating leng	ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Cong gth and width. Ca	Mar High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree	Low Marginat: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory Low 0.75 g the descriptors.	P High Poor: Lawns mowed, and maintained areas, sparsely vegetater non-maintained area, recently seeded and stabilized, or othei comparable comparable condition. High 0.6	COOP Low Poor: Impervious surfaces, mine spoil lands, id denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100	Assessment areas wi tempora	orres*0.01/2 0.85	<u>CI</u> 0.85
Instream Habitat/ Available Cover	Scores Delineate ripa Determine sq low. Enter the % F Right Bank	Tree stratum (dbh > 3 inches) present with > 60% tree canopy cover. Wetlands located within the riparian areas. 1.5 1.5 Arian areas along each stream bank uare footage for each by measuring Riparian Area and Score for each ri % Riparian Area> 100% Score > 0.85 % Riparian Area> 100% Score > 0.85	Subo High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 tinto Condition Ca gor estimating lenge parian category in	ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Cond gth and width. Ca the blocks below.	Mar High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85 dition Scores usin alculators are prov	Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understry Low 0.75	P High Poor: Lawns mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetate non-maintained area, recently seeded and stabilized, or othe comparable condition. High 0.6 Ensure of % Blocks	COOP Low Poor: Impervious surfaces, mine spoil lands, id denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100 100%	Assessment areas wi tempora CI= (Sum % RA * Sc Rt Bank CI > Lt Bank CI >	orres*0.01)/2 0.85 0.85	
Habitat/ Available Cover Habitat elements are typically present in 30-50% of the reach and in greater than 50% of the reach. Stable habitat elements are typically present in 30-50% of the reach and are adequate for maintenance of populations. Stable habitat elements are typically present in 10-30% of the reach and are adequate for maintenance of populations. Habitat elements isted above are lacking or are unstable. Habitat elements isted above are lacking or are unstable.	Buffers Scores Delineate ripa Determine sq low. Enter the % F Right Bank Left Bank	Tree stratum (dbh > 3 inches) present with > 60% tree canopy cover. Wetlands located within the riparian areas. 1.5 1.5 arian areas along each stream bank uare footage for each by measuring Riparian Area and Score for each ri % Riparian Area> 100% Score > 0.85 % Riparian Area> 100% Score > 0.85 W HABITAT: Varied substrate s	Subo High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 tinto Condition Ca gor estimating lenge parian category in	ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Cond gth and width. Ca the blocks below.	Mar High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85 dition Scores usin alculators are prov	Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understry Low 0.75	P High Poor: Lawns mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetate non-maintained area, recently seeded and stabilized, or othe comparable condition. High 0.6 Ensure of % Blocks	COOP Low Poor: Impervious surfaces, mine spoil lands, id denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100 100%	Assessment areas wi tempora CI= (Sum % RA * Sc Rt Bank CI > Lt Bank CI >	orres*0.01)/2 0.85 0.85	
Available Cover Habitat elements are typically present in greater than 50% of the reach. Stable habitat elements are typically present in 30-50% of the reach and are adequate for maintenance of opoulations. Stable habitat elements are typically present in 10-30% of the reach and are adequate for maintenance of opoulations. Habitat elements listed above are lacking or are unstable.	Scores Delineate ripa Determine so Jow. Enter the % f Right Bank Left Bank	Tree stratum (dbh > 3 inches) present with > 60% tree canopy cover. Wetlands located within the riparian areas. 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.6 1.6 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 	Subo High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Ca g or estimating leng parian category in category in category in	ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Conv gth and width. Ca the blocks below. y and depths; woo Conditiona	Mar High Marginal: Non-maintained, dense herbaceous vegetation with either a shub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85 dition Scores usin alculators are prov	Low Marginat: Non-maintained, dense herbaceous vegetation, iparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory Low 0.75 g the descriptors. vided for you	P High Poor: Lawns mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or othei comparable condition. High 0.6 Ensure of % Blocks of Blocks of	Coor Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lost, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100 100% 100% ess; shade; under	Assessment areas wi tempora	orres*0.01)/2 0.85 0.85	
Stream Gradient	Scores Delineate ripa Determine sq jow. Enter the % F Right Bank Left Bank INSTREAI file/pool comple	Tree stratum (dbh > 3 inches) present with > 60% tree canopy cover. Wetlands located within the riparian areas. 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.6 1.6 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 	Subo High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Ca g or estimating leng parian category in category in category in	ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Conv gth and width. Ca the blocks below. y and depths; woo Conditiona	Mar High Marginal: Non-maintained, dense herbaceous vegetation with either a shub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85 dition Scores usin alculators are prov	Low Marginal: Non-maintained, dense herbaceous vegetation, irparian areas lacking shrub and tree stratum, hay production, ponds. porduction, ponds. production, ponds.	P High Poor: Lawns mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or othei comparable condition. High 0.6 Ensure of % Blocks of Blocks of	Coor Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lost, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100 100% 100% ess; shade; under	Assessment areas wi tempora	orres*0.01)/2 0.85 0.85	
Scores 1.5 1.2 0.9 0.5 High / Low 1	Scores Delineate rips Determine sq elow. Enter the % F Right Bank Left Bank . INSTREAI ffle/pool comple Instream Habitat/ Available	Tree stratum (dbh > 3 inches) present with > 60% tree canopy cover. Wetlands located within the riparian areas. 1.5 1.5 1.5 1.6 1.5 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 	Subo High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 tinto Condition Ca g or estimating lenge parian category in category in catego	ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Cong gth and width. Ca the blocks below. Conditiona ptimal ments are typically % of the reach and r mainteane of	Mar High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85 dition Scores usin alculators are prov dition Scores usin alculators are prov Mar Stable habitat ele present in 10-30° are adequate fo	Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory Low 0.75 g the descriptors. vided for you	P High Poor: Lawns mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetatec non-maintained area, recently seeded and stabilized, or othet comparable condition. High 0.6 Ensure of % Blocks of Blocks of P Habitat element lacking or are typi	Coor Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lost, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100 100% 100% 5 Isisted above are instable. Habitat cally present in less	NOTES>> Assessment areas wi tempora CI= (Sum % RA * Sc Rt Bank CI > Lt Bank CI > rcut banks; root mat	thin the ry ROW. 0.85 0.85 ts; SAV;	

Reach R3-R4 File: C:\Users\dan.weidenhof\Documents\Documents\VA Stream Sampling\0 QAQC SUBMITTALS\QAQC working 2nd submittal\S-D4_20210922MAS\9. S-D4_USM_MVP_20210922MAS.xlsx

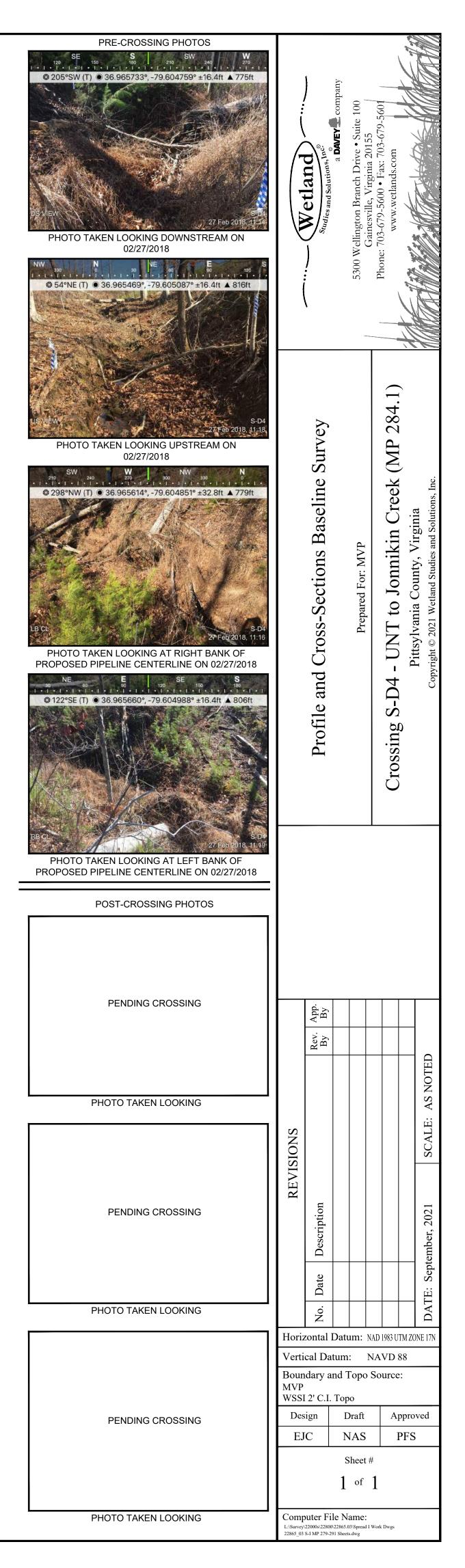
Project #	Project Name (Applicant)		Project Name (Applicant)		Locality	Cowardin Class.	HUC	Date	SAR #	Impact length	Impact Factor	
22865.06	Mountain Valley Pipeline Valley Pipeline, L	Pittslyvania	R3 or R4	03010101	8/24/21	S-D4	105	1				
. CHANNE	LALTERATION: Stream cross	ings, riprap, concr	ete, gabions, or co	oncrete blocks, st	raightening of cha	nnel, channelizati	ion, embankments	s, spoil piles, consti	rictions, livestock			
			Conditiona	I Category				NOTES>>				
	Negligible	Mir	nor		erate	Sev	/ere					
Channel Alteration	Channelization, dredging, alteration, or hardening absent. Stream has an unaltered pattern or has naturalized.	of the channel alterations listed in the parameter guidelines.	the channel alterations listed in the parameter guidelines.	of the channel alterations listed in the parameter guidelines. If stream has been channelized, normal stable stream meander pattern has not recovered	the parameter guidelines. If stream has been channelized, normal stable stream meander pattern has not recovered	by any of the chanr in the parameter g 80% of banks sh riprap, or	uidelines AND/OR ored with gabion, r cement.			CI		
Scores	1.5	1.3	1.1	0.9	0.7	0		<u> </u> ,		1.50		
	REACH C	ONDITION I	NDEX and S	TREAM CO	NDITION UN	IITS FOR TH	IIS REACH					
OTE: The CIs a	and RCI should be rounded to 2 dec	imal places. The (CR should be rour	nded to a whole n	umber.		THE REACH	CONDITION IND	DEX (RCI) >>	1.25		
						RCI= (Sum of	all Cl's)/5, exce	pt if stream is ep	ohemeral RCI = (Riparian		
							COMPENSAT	ION REQUIREM	/IENT (CR) >>	131		
							CR = RC	X L _I X IF				



DESCRIBE PROPOSED IMPACT:


PROVIDED UNDER SEPARATE COVER

Reach R3-R4


File: C:/Users\dan.weidenhof\Documents\Documents\Documents\VA Stream Sampling\0 QAQC SUBMITTALS\QAQC working 2nd submittal\S-D4_20210922MAS\9. S-D4_USM_MVP_20210922MAS.xlsx

NOTE: ALL SECTION VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.

PIPE CL)						
ST-CROSSING						
λ Τ.	HORZ.					
F.	DIFF.					

