Reach S-G13 (Timber Mat Crossing) Perennial Spread I Franklin County, Virginia

Data	Included
Photos	\checkmark
SWVM Form	\checkmark
FCI Calculator and HGM Form	N/A – Perennial stream (not shadeable, slope
	greater than 4%)
RBP Physical Characteristics Form	\checkmark
Water Quality Data	\checkmark
RBP Habitat Form	\checkmark
RBP Benthic Form	\checkmark
Benthic Identification Sheet	\checkmark
Wolman Pebble Count	\checkmark
RiverMorph Data Sheet	√
USM Form (Virginia Only)	√
Longitudinal Profile and Cross Sections	\checkmark

Spread I Stream S-G13 (Timber Mat) Franklin County

Photo Type: US VIEW Location, Orientation, Photographer Initials: Downstream at ROW looking NE upstream, RAH

Photo Type: DS VIEW Location, Orientation, Photographer Initials: Upstream at LOC looking S downstream, RAH

Spread I Stream S-G13 (Timber Mat) Franklin County



Photo Type: LB CL Location, Orientation, Photographer Initials: On thalweg at pipe centerline looking NW at left streambank, RAH

Photo Type: RB CL Location, Orientation, Photographer Initials: On thalweg at pipe centerline looking SE at right streambank, RAH

DEQ Permit #21-0416

Spread I Stream S-G13 (Timber Mat) Franklin County

Photo Type: DS COND Location, Orientation, Photographer Initials: Downstream at LOC looking SW downstream, RAH

West Virginia Stream and Wetland Valuation Metric (SWVM) Version 2.1, September 2017

Normal controls Normal controls <th< th=""><th>TE: August 24, 2021</th><th>DATE:</th><th>Sunny</th><th>WEATHER:</th><th colspan="4">Mountain Valley Pipeline IMPACT COORDINATES: Lat. 36.967025 Lon79.630747 (In Decimal Degrees)</th><th></th><th>USACE FILE NO./ Project Name: (v2.1, Sept 2015)</th></th<>	TE: August 24, 2021	DATE:	Sunny	WEATHER:	Mountain Valley Pipeline IMPACT COORDINATES: Lat. 36.967025 Lon79.630747 (In Decimal Degrees)					USACE FILE NO./ Project Name: (v2.1, Sept 2015)			
Number Number<	nents:	Comments:							10.32 ac	S-G13; 3			
During the support building During the support building to support to	n Length:	Mitigation Length:	No	PRECIPITATION PAST 48 HRS:		Lon.		Lat.		RESTORATION (Levels I-III)		20	STREAM IMPACT LENGTH:
Next Strain Change Stage Next Strain Cha	5- Mitigation Projected at Maturity (Credit)	Column No. 5- Mitigation P			e Years				ondition - Baseline (Credit)	Column No. 2- Mitigation Existing Co	it)	g Condition (Deb	Column No. 1- Impact Existin
NBM NBM <th>n: O</th> <th>Stream Classification:</th> <th>0</th> <th>Stream Classification:</th> <th>0</th> <th></th> <th>Stream Classification:</th> <th></th> <th></th> <th>Stream Classification:</th> <th>inial</th> <th>Perer</th> <th>Stream Classification:</th>	n: O	Stream Classification:	0	Stream Classification:	0		Stream Classification:			Stream Classification:	inial	Perer	Stream Classification:
Name Name Name <td>Stream Channel Slope 0</td> <td>Percent Stream Chan</td> <td>pe 0</td> <td>Percent Stream Channel Slo</td> <td>0</td> <td>Channel Slope</td> <td>Percent Stream C</td> <td></td> <td>pe</td> <td>Percent Stream Channel Slo</td> <td>4.18</td> <td>lope</td> <td>Percent Stream Channel S</td>	Stream Channel Slope 0	Percent Stream Chan	pe 0	Percent Stream Channel Slo	0	Channel Slope	Percent Stream C		pe	Percent Stream Channel Slo	4.18	lope	Percent Stream Channel S
methods main methods methods </td <td>GM Score (attach data forms):</td> <td>HGM Score (atta</td> <td>ta forms):</td> <td>HGM Score (attach dat</td> <td></td> <td>ore (attach data forms):</td> <td>HGM Sco</td> <td>1 </td> <td>ata forms):</td> <td>HGM Score (attach d</td> <td></td> <td>ata forms):</td> <td>HGM Score (attach o</td>	GM Score (attach data forms):	HGM Score (atta	ta forms):	HGM Score (attach dat		ore (attach data forms):	HGM Sco	1	ata forms):	HGM Score (attach d		ata forms):	HGM Score (attach o
Biggeochemical Cycling Description Description <thdescription<< td=""><td>Avera</td><td>L</td><td>Average</td><td></td><td>Average</td><td></td><td></td><td>1 </td><td>Average</td><td></td><td>Average</td><td></td><td></td></thdescription<<>	Avera	L	Average		Average			1	Average		Average		
Autor Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part			1										
PART I - Physical, Channical and Esolgical Indicators PART I - Physical, Channical Physical Indicators PART I - Physical,	ing 0		#VALUE!		0				0		0		
PMTSCAL RDCATCR (pgins that streams clasma/line) PMTSCAL RDCATCR (pgins	ysical, Chemical and Biological Indicators		liological Indicators		ndicators	Chemical and Biological In			Biological Indicators		ators	Biological Indica	
PMEP and used constant base for an additional base for	Points Scale Range Site Sc		Points Scale Range Site Score		ge Site Score	Points Scale Range			Points Scale Range Site Score		Site Score	Points Scale Range	
Liphand Skottahovalaka Corr 20	R (Applies to all streams classifications)	PHYSICAL INDICATOR (Applies to all s	classifications)	PHYSICAL INDICATOR (Applies to all streams c		to all streams classifications)	PHYSICAL INDICATOR (Applies t		assifications)	PHYSICAL INDICATOR (Applies to all streams c		s classifications)	PHYSICAL INDICATOR (Applies to all stream
2. microsoftees 0. microso	adient Data Sheet)	USEPA RBP (High Gradient Data She		USEPA RBP (High Gradient Data Sheet)		ita Sheet)	USEPA RBP (High Gradient Dat	1 1		USEPA RBP (Low Gradient Data Sheet)			USEPA RBP (High Gradient Data Sheet)
1 websyches <t< td=""><td>/Available Cover 0-20 0-20</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	/Available Cover 0-20 0-20												
4. Sedimet Decestion 0. Sol 0. Schward Procestion 0. Sol 0. Charred Martinon 0. Sol 0. Sol 0. Sol													
Debrace Absended Commend Secondary Commend Sec											16		
7. Program of Profiles (r bends) 0.0 1. Program of Profiles (r bends) 0.0 1. Bonds Subbit (LS & BS) 0.0 1. Bonds Subbit				5. Channel Flow Status	1		5. Channel Flow Status						
8. Bank Stability (18.8 RB) 0.00 9. Upguitue Protection (18.6 RB) 0.00 9. Upguitue Protection (18.4 RB) 0.00 9. Upguitue Protection (18.4 RB) 0.00 9. Upguitue Protection (18.4 RB) 0.00 0. Upguitue Protect													
0. vogetide Protection (1.8.4.80) 0.00 0. vogetide Protection (1.8.4.80) 0.00 0. Repair Vogetide Prot													
10. Repaire Meditive Science Work (10.8. Rep 0.20 16 Sub_rotati 150 Sub_rotati 0.20 Sub_rotati													
Total RBP Score Poor 0 Sub-Total Code Sub-Total Poor 0 Sub-Total Code Sub-Total Code Sub-Total Poor Code Code <td></td> <td>16</td> <td></td> <td></td>											16		
Sub-Total 0 Sub-Total 0 CHEMICAL MDICATOR (Applies to Intermittent and Perevnal Stream) 0 WDCPP Weter Cuality Indicators (General) Sub-Total 0 Specific Conductivity 0 c=69.9.0 points 0 0 0 0 0 0 0 0 0 0 0<	Poor 0				0			i			158		
WDEP Water Quality indicators (General) Specific Conductivity sequence	0				0			1					
Specific Conductivity Specific Conducti	DR (Applies to Intermittent and Perennial Streams)	CHEMICAL INDICATOR (Applies to Inte	and Perennial Streams)	CHEMICAL INDICATOR (Applies to Intermittent	Streams)	to Intermittent and Perennial S	CHEMICAL INDICATOR (Applies	1	and Perennial Streams)	CHEMICAL INDICATOR (Applies to Intermittent	ams)	nt and Perennial Stre	CHEMICAL INDICATOR (Applies to Intermitte
Specific Conductivity	y Indicators (General)	WVDEP Water Quality Indicators (Ge		WVDEP Water Quality Indicators (General)		rs (General)	WVDEP Water Quality Indicator			WVDEP Water Quality Indicators (General)		ŋ	WVDEP Water Quality Indicators (General
- < - - - - - - - - - 		Specific Conductivity		Specific Conductivity			Specific Conductivity			Specific Conductivity			Specific Conductivity
ph	0-90		0-90			0-90			0-90		53.3	0-90	<=00 - 00 points
6.0.2.0 = 20 points 0.0		pH		pH			pH	1		pH			pH
0 0	5-90 0-1		5-90 0-1		1	5-90 0-1			5-90 0-1		7.55	0-80 0-1	
>S.0. = 30 points 10-30 Sub_Total 0 Sub_Total		20		20			20			20			
Sub_rotal Image: Sub_rotal Image: Sub_rotal Image: Sub_rotal Sub_rot	10-30	00		bo			00	1		50	7.00		00
BIOLOGICAL INDICATOR (Applies to Intermittent and Perennial Stream) BIOLOGICAL INDICATOR (A	10-30		10-30			10-30			10-30		7.02	10-30	
W Stream Condition Index (WVSC) W St	0		0		0				0		1		
Good 0.100 0.1 74.2 0.100 0.1	TOR (Applies to Intermittent and Perennial Streams	BIOLOGICAL INDICATOR (Applies to	ttent and Perennial Streams)	BIOLOGICAL INDICATOR (Applies to Intermit	nnial Streams)	lies to Intermittent and Peren	BIOLOGICAL INDICATOR (Appli		nt and Perennial Streams)	BIOLOGICAL INDICATOR (Applies to Intermitter	treams)	ttent and Perennial S	BIOLOGICAL INDICATOR (Applies to Interm
Good Good Image: Constrained of the second		WV Stream Condition Index (WVSCI)		WV Stream Condition Index (WVSCI)			WV Stream Condition Index (W	1 1		WV Stream Condition Index (WVSCI)		1 1 1	WV Stream Condition Index (WVSCI)
PART II - Index and Unit Score	0-100 0-1		0-100 0-1		1	0-100 0-1			0-100 0-1		74.2	0-100 0-1	Good
	0	Sub-Total	0	Sub-Total	0		Sub-Total	j l	0	Sub-Total	0.742		Sub-Total
	PART II - Index and Unit Score	PART II - Index	it Score	PART II - Index and Un		- Index and Unit Score	PARTI	1	Jnit Score	PART II - Index and U		Jnit Score	PART II - Index and
Index Linear Feet Unit Score Index Linear Feet Unit Score Index Linear Feet Unit Score	dex Linear Feet Unit S	Index	Linear Feet Unit Score	Index	t Unit Score	Linear Feet	Index		Linear Feet Unit Score	Index	Unit Score	Linear Feet	Index
0.844 20 16.88 0 0 0 0 0 0 <i>w</i> VALUE! 0 #VALUE! 0	0 0 0	0	0 #VALUE!	#VALUE!	0	0	0	1	0 0	0	16.88	20	0.844

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

STREAM NAME S-G13	LOCATION Franklin County					
STATION # RIVERMILE	STREAM CLASS Perennial					
LAT <u>36.967025</u> LONG <u>-79.630747</u>	RIVER BASIN Upper Roano	RIVER BASIN Upper Roanoke				
STORET #	AGENCY VADEQ					
INVESTIGATORS RH CL						
FORM COMPLETED BY RH CL	DATE 8/24/2021 TIME 13:41	REASON FOR SURVEY Baseline Assessment				

WEATHER CONDITIONS	Now Past 24 hours Has there been a heavy rain in the last 7 days?
SITE LOCATION/MAP	Draw a map of the site and indicate the areas sampled (or attach a photograph)
	S-GIB
	Coming In Going Dut
	R & W/Bridge
STREAM	Stream Subsystem Stream Type ☑ Perennial ☐ Intermittent ☐ Tidal ☐ Coldwater
CHARACTERIZATION	☑ Perennial ☐ Intermittent ☐ Tidal ☐ Coldwater ☑ Warmwater Stream Origin ☐ Glacial ☐ Spring-fed ☑ Mixture of origins ☑ Catchment Areakm² ☐ Swamp and bog ☑ Mixture of origins ☑ Other ☑ Mixture of origins ☑ Mixture of origins

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

WATERSHED FEATURES RIPARIAN VEGETATION (18 meter buffer)	Predominant Surrounding Landuse Forest Commercial Field/Pasture Industrial Agricultural Other Residential Indicate the dominant type and record the domin Trees Shrubs Dominant species present Solidago Rugosa	Local Watershed NPS Pollution No evidence Some potential sources Obvious sources Local Watershed Erosion None Moderate Heavy tant species present Grasses
INSTREAM FEATURES	Estimated Reach Length13.7 mEstimated Stream Width0.9 mSampling Reach Area125 m²Area in km² (m²x1000)km²Estimated Stream Depth0.1 mSurface Velocity0.2 m/sec(at thalweg)0.2 m/sec	Canopy Cover □Partly shaded □Shaded I Partly open □Partly shaded □Shaded High Water Mark 0.2 m Proportion of Reach Represented by Stream Morphology Types Riffle 50 % Run 10 % Pool 40 % Yes No Dam Present Yes No
LARGE WOODY DEBRIS	LWDm ² Density of LWDm ² /km ² (LWD/ read	ch area)
AQUATIC VEGETATION	Indicate the dominant type and record the domin Rooted emergent Floating Algae Dominant species present Portion of the reach with aquatic vegetation 5	☐Rooted floating ☐Free floating
WATER QUALITY	Temperature 25.7 D 0 C Specific Conductance 53.3 D ms/cm Dissolved Oxygen 7.82 D mg/L pH 7.55 D su Turbidity NA	Water Odors Petroleum Chemical Petroleum Other Fishy Other Water Surface Oils Slick Slick Sheen Globs Vone Other Turbidity (if not measured)
SEDIMENT/ SUBSTRATE	Odors Sewage Petroleum Chemical Anaerobic None Other Oils Profuse	Deposits □Sludge □Sawdust □Paper fiber □Sand □Relict shells □Other □ Epoking at stones which are not deeply embedded, are the undersides black in color? □ Yes ☑ No

INC	ORGANIC SUBSTRATE (should add up to 1			ORGANIC SUBSTRATE COMPONENTS (does not necessarily add up to 100%)							
Substrate Type	Diameter	% Composition in Sampling Reach	Substrate Type	Characteristic	% Composition in Sampling Area						
Bedrock	30		Detritus	sticks, wood, coarse plant							
Boulder	> 256 mm (10")			materials (CPOM)							
Cobble	64-256 mm (2.5"-10") 20		Muck-Mud	black, very fine organic							
Gravel	2-64 mm (0.1"-2.5")	15		(FPOM)							
Sand	0.06-2mm (gritty)	20	Marl	grey, shell fragments							
Silt	0.004-0.06 mm	15									
Clay	< 0.004 mm (slick)										

HABITAT ASSESSMENT FIELD DATA SHEET - HG - USE ON ALL STREAMS (FRONT)

STREAM NAME S-G13	LOCATION Franklin County					
STATION # RIVERMILE	STREAM CLASS Perennial					
LAT <u>36.967025</u> LONG <u>-79.630747</u>	RIVER BASIN Upper Roanoke					
STORET #	AGENCY VADEQ					
INVESTIGATORS RH CL						
FORM COMPLETED BY RH CL	DATE 8/24/2021 TIME 13:41 AM PM REASON FOR SURVEY Baseline Assessment					

	Habitat		Condition	Category					
	Parameter	Optimal	Suboptimal	Marginal	Poor				
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are <u>not</u> new fall and <u>not</u> transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.				
	_{SCORE} 14	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0				
n sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.				
ted i	score 18	20 19 18 17 16	10 9 8 7 6	5 4 3 2 1 0					
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow- deep, slow-shallow, fast- deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast- shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).				
Iram	_{SCORE} 17	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0				
Ps	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.				
	_{score} 16	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0				
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.				
	_{SCORE} 8	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0				

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

	Habitat		Condition	1 Category					
	Parameter	Optimal	Suboptimal	Marginal	Poor				
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.				
	_{score} 19	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0				
ling reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.				
amp	_{score} 16	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0				
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30- 60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.				
e ev	SCORE 8	Left Bank 10 9	8 7 6	5 4 3	2 1 0				
i to b	SCORE 10	Right Bank 10 9	8 7 6	5 4 3	2 1 0				
Parameter	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well- represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.				
	SCORE 8	Left Bank 10 9	8 7 6	5 4 3	2 1 0				
	SCORE 8	Right Bank 10 9	8 7 6	5 4 3	2 1 0				
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.				
	SCORE 8	Left Bank 10 9	8 7 6	5 4 3	2 1 0				
	SCORE 8	Right Bank 10 9	8 7 6	5 4 3	2 1 0				

Total Score 158

BENTHIC MACROINVERTEBRATE FIELD DATA SHEET

STREAM NAME S-G	613	LOCATION Franklin County	,							
STATION #	RIVERMILE	STREAM CLASS Perennial	STREAM CLASS Perennial							
LAT36.967025	LONG79.630747	RIVER BASIN Upper Roanoke								
STORET #		AGENCY VADEQ								
INVESTIGATORS K	3, TC		LOT NUMBER							
FORM COMPLETED	^{BY} KB	DATE 9/08/2021 TIME 2:30 pm	REASON FOR SURVEY Baseline Assessment							
HABITAT TYPES	Cobble% Sn	Indicate the percentage of each habitat type present Cobble% Snags% Vegetated Banks% Sand% Submerged Macrophytes% Other ()%								
SAMPLE COLLECTION		lected? ☑ wading ☐ f s/kicks taken in each habitat ty lags □Vegetated B	rom bank							
GENERAL COMMENTS	Four kicks taken	in riffle/cobble habit	at.							

QUALITATIVE LISTING OF AQUATIC BIOTA

Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare, 2 = Common, 3= Abundant, 4 = Dominant

Periphyton	0	1	2	3	4	Slimes	0	1	2	3	4
Filamentous Algae	0	1	2	3	4	Macroinvertebrates	0	1	2	3	4
Macrophytes	0	1	2	3	4	Fish	0	1	2	3	4

FIELD OBSERVATIONS OF MACROBENTHOS

Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare (1-3 organisms), 2 = Common (3-9 organisms), 3= Abundant (>10 organisms), 4 = Dominant (>50 organisms)

Porifera	0	1	2	3	4	Anisoptera	0	1	2	3	4	Chironomidae	0	1	2	3	4
Hydrozoa	0	1	2	3	4	Zygoptera	0	1	2	3	4	Ephemeroptera	0	1	2	3	4
Platyhelminthes	0	1	2	3	4	Hemiptera	0	1	2	3	4	Trichoptera	0	1	2	3	4
Turbellaria	0	1	2	3	4	Coleoptera	0	1	2	3	4	Other	0	1	2	3	4
Hirudinea	0	1	2	3	4	Lepidoptera	0	1	2	3	4						
Oligochaeta	0	1	2	3	4	Sialidae	0	1	2	3	4						
Isopoda	0	1	2	3	4	Corydalidae	0	1	2	3	4						
Amphipoda	0	1	2	3	4	Tipulidae	0	1	2	3	4						
Decapoda	0	1	2	3	4	Empididae	0	1	2	3	4						
Gastropoda	0	1	2	3	4	Simuliidae	0	1	2	3	4						
Bivalvia	0	1	2	3	4	Tabinidae	0	1	2	3	4						
						Culcidae	0	1	2	3	4						

Mountain Valley Pipeline Data are not adjusted for subsampling

ECO ANALYSTS, INC.

	Sample ID Collection Date	S-G13 09-08-2021
ORDER	GENUS/SPECIES	COUNT
Ephemeroptera		3
Ephemeroptera		2
Ephemeroptera		1
Ephemeroptera		1
Ephemeroptera Ephemeroptera		1
	Maccaffertium sp.	12
	Eccoptura xanthenes	1
Plecoptera		2
	Cheumatopsyche sp.	8
	Chimarra sp.	2
	Hydropsyche sp.	- 1
	Polycentropodidae	1
	Gomphidae	6
Odonata	Ophiogomphus sp.	1
Coleoptera	Anchytarsus bicolor	1
Coleoptera	Helichus sp.	3
Coleoptera	Optioservus sp.	10
Coleoptera	Oulimnius sp.	9
Coleoptera	Psephenus sp.	42
Megaloptera		2
Diptera-Chironomidae		13
Diptera-Chironomidae	Microtendipes sp.	1
Diptera-Chironomidae	Parachaetocladius sp.	2
Diptera-Chironomidae	Parametriocnemus sp.	3
Diptera-Chironomidae	Polypedilum sp.	2
Diptera-Chironomidae	Stempellinella sp.	2
Diptera-Chironomidae	Thienemannimyia gr. sp.	4
Diptera-Chironomidae		1
Diptera-Chironomidae	Zavrelimvia sp.	1
•	Atylotus/Tabanus sp.	1
-	Dolichopodidae	1
· · · · · ·	Empididae	1
•	Hexatoma sp.	6
-	Lumbricina	2
Gastropoda		54
	TOTAL	204

Mountain Valley Pipeline WV SCI Metrics

ECO ANALYSTS, INC.

Sample ID Collection Date	
WVSCI Metric Values Total taxa EPT taxa % EPT % Chironomidae % 2 Dominant HBI	23 10 17.6 14.2 47.1 4.33
WVSCI Metric Scores Total taxa EPT taxa % EPT % Chironomidae % 2 Dominant HBI	109.5 76.9 19.2 86.6 82.7 79.8
WVSCI Metric Scores Total taxa EPT taxa % EPT % Chironomidae % 2 Dominant HBI	100.0 76.9 19.2 86.6 82.7 79.8
WVSCI Total Score	74.2

WVSCI Thresholds

Unimpaired = > 68.00 Gray Zone = 60.61 to 68.00

Impaired = <60.61

WOLMAN PEBBLE COUNT FORM

Basin:

County:Franklin CountyStream Name:Parrot BranchHUC Code:03010101Survey Date:8/24/2021Surveyors:RH CLType:Representative

Stream ID: S-G13

Upper Roanoke

PEBBLE COUNT PARTICLE % Cum Inches Millimeters Particle Total # Item % Count Silt/Clay <.062 . S/C 14 14.00 14.00 • .062-.125 Very Fine 4 4.00 18.00 -.125-.25 Fine ۸ 6 6.00 24.00 -.25-.5 Medium ۲ SAND 29.00 5 5.00 -Coarse .50-1.0 ۸ 5 5.00 34.00 • .04-.08 Very Coarse 1.0-2 ۸ 4 4.00 38.00 • .08 -.16 Very Fine 2 - 4 ٠ 4 4.00 42.00 • .16 - .22 Fine 4 - 5.7 ۸ 3 3.00 45.00 • .22 - .31 Fine 5.7 - 8 ۸ 5 5.00 50.00 -8 - 11.3 .31 - .44 Medium ۸ 2 52.00 2.00 -.44 - .63 Medium 11.3 - 16 ۸ GRAVEL 8.00 60.00 8 • .63 - .89 16 - 22.6 Coarse 2 2.00 62.00 -.89 - 1.26 22.6 - 32 Coarse ۲ 3 3.00 65.00 • 1.26 - 1.77 32 - 45 Vry Coarse ۲ 1 1.00 66.00 -1.77 -2.5 Vry Coarse 45 - 64 ۸ 3 3.00 69.00 -2.5 - 3.5 Small 64 - 90 ٠ 3.00 72.00 3 • 3.5 - 5.0 Small 90 - 128 2 2.00 74.00 • COBBLE 5.0 - 7.1 128 - 180 Large ۸ 3 3.00 77.00 • 180 - 256 7.1 - 10.1 Large ۸ 2 2.00 79.00 -10.1 - 14.3 Small 256 - 362 ۸ 0.00 79.00 • 14.3 - 20 Small 362 - 512 ۸ 0.00 79.00 • 20 - 40 Medium 512 - 1024 ٠ BOULDER 0.00 79.00 • 40 - 80 1024 - 2048 Large 0.00 79.00 -80 - 160 Vry Large 2048 - 4096 0.00 79.00 -۸ Bedrock **BDRK** 100.00 21 21.00 . Totals: 100 Total Tally:

RIVERMORPH PARTICLE SUMMARY

River Name: Reach Name: Sample Name: Survey Date:	S-G13 Representative		
Size (mm)	тот #	ITEM %	CUM %
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	14 4 6 5 5 4 4 3 5 2 8 2 3 1 3 2 3 2 0 0 0 0 0 2 1	$ \begin{array}{r} 14.00\\ 4.00\\ 6.00\\ 5.00\\ 5.00\\ 4.00\\ 4.00\\ 3.00\\ 5.00\\ 2.00\\ 3.00\\ 2.00\\ 3.00\\ 2.00\\ 3.00\\ 2.00\\ 3.00\\ 2.00\\ 3.00\\ 2.00\\ 3.00\\ 2.00\\ 0.00\\ 0.00\\ 0.00\\ 21.00\\ \end{array} $	$ \begin{array}{r} 18.00\\ 24.00\\ 29.00\\ 34.00\\ 38.00\\ 42.00\\ 45.00\\ 50.00\\ 52.00\\ 60.00\\ 62.00\\ 65.00\\ 66.00\\ 69.00\\ 72.00\\ 74.00\\ 77.00\\ 79.00\\ 70.00\\ 7$
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Gravel (%) Boulder (%) Bedrock (%)	0.09 1.25 8 Bedrock Bedrock 14 24 31 10 0 21		

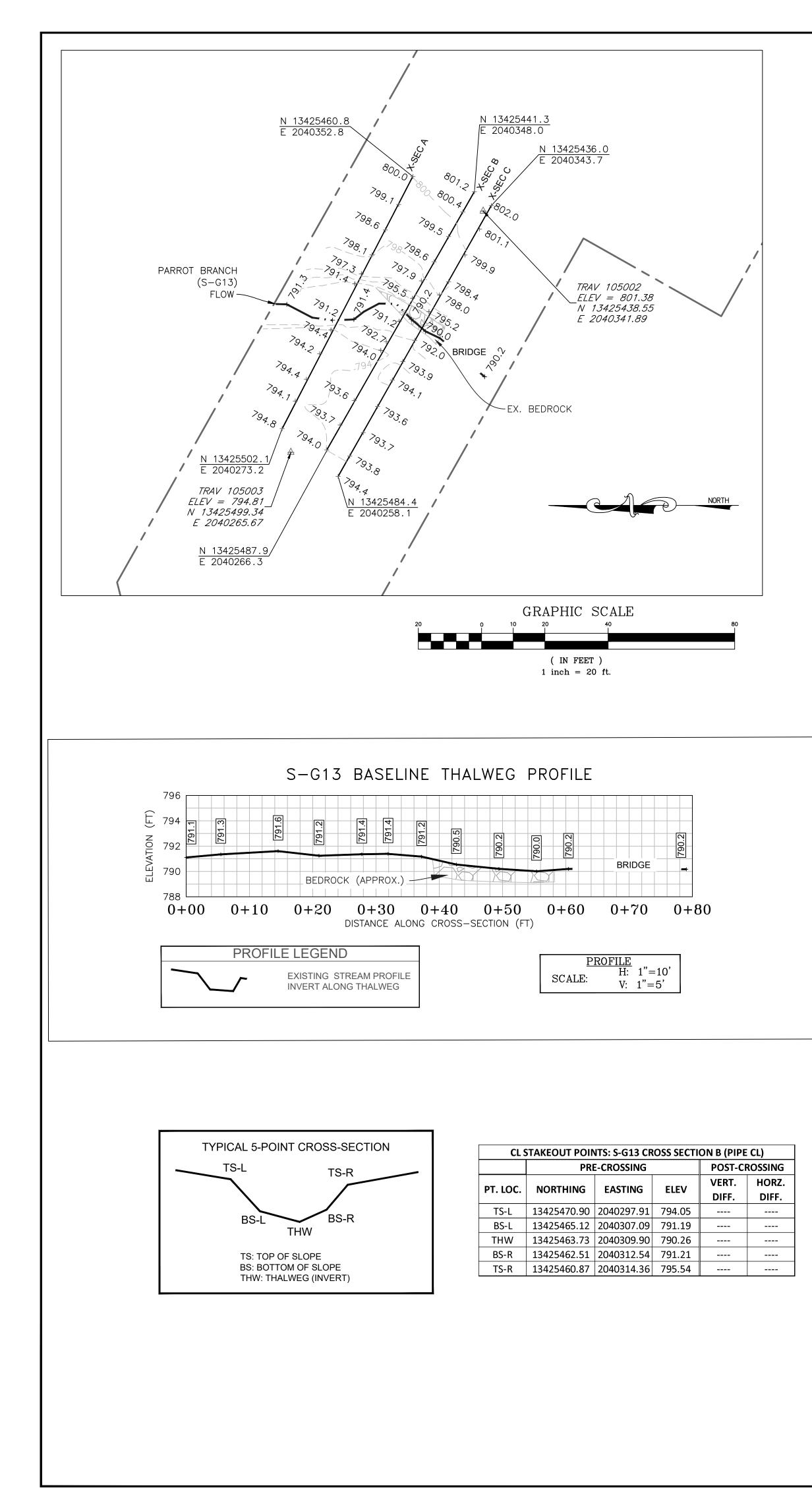
Total Particles = 100.

		Strear	Unined S	tream method	101099 101 400	e in Virginia				
			For use in wade	able channels cla Cowardin	ssified as interm	nittent or perenni		Impact	Impact	
Project #	Project Name (Ap		Locality	Class.	HUC	Date	SAR #	Length	Factor	
22865.06	Mountain Valley Pipeli Valley Pipeline	•	Franklin County	R3	03010101	8/24/2021	S-G13	20	1	
Name	Name(s) of Evaluator(s) Stream Nar			ition						
	RH CL Parrot Bra							79		
Channel C	ondition: Assess the cross-se	tion of the stream a	and prevailing cond	dition (erosion, ago	gradation)					
	1	-	Conditional Category			. D.		0		
Channel Condition	el 100% stable banks. Vegetative surface are protection or natural rock, prominent (80-100%). AND/OR Stable point bars / V bankfull benches are present. Access to their original floodplain or fully I developed wide bankfull benches. Mid- channel bars and transverse bars few. cha Transient sediment deposition covers less than 10% of bottom.		 erosion or unprotected banks. Majority of banks are stable (60-80%). / Vegetative protection or natural rock prominent (60-80%) AND/OR Depositional features contribute to 		Marginal Often incised, but less than Severe or Poor due to lower bank slopes. Erosion may be present on 40-60% of both banks. Vegetative protection on 40-60% softment may be temporary / transient, contribute instability. Deposition that contribute instability. Deposition that contribute to stability, may be forming/present. AND/OR V- shaped channels have vegetative protection on > 40% of the banks and depositional features which contribute		Poor Overwidened/incised. Vertically / laterally unstable. Likely to widen further. Majority of both banks are near vertical. Erosion present on 60-80% of banks. Vegetative protection present on 20-40% of banks, and is insufficient to prevent erosion. AND/OR 60-80% of the stream is covered by sediment. Sediment is temporary / transient in nature, and contributing to instability. AND/OR V-shaped channels have vegetative protection is present on > 40% of the banks and stable sediment deposition is absent.		Streambed below average rooting depth, majority of banks vertical/undercut. Vegetative protection present on less ft an 20% of banks, is not preventing erosion. Obvious bank sloughing present. Erosion/raw banks on 80-100%. AND/OR Aggrading channel. Greater than 80% of stream bed is covered by deposition, contributing to instability.	
		-		. to sta	ability.		.6			CI
Scores	3	2	2.4		2	1			1	3.00
	BUFFERS: Assess both ban	Cor	nditional Cate	gory	measurements of	-	ay be acceptable)	NOTES>>		
	BUFFERS: Assess both ban Optimal Tree stratum (dbh > 3 inches) preser with > 60% tree canopy cover. Wetlands located within the ripariar areas.	Cor Subo High Suboptimal: Riparian areas with tree stratum (dbh >	titional Cate	gory High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh ~ 3 inches)	measurements of ginal Low Marginal: Non-maintained, dense herbaceous vegetation, ripariar areas lacking shrut and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained	-		NOTES>>		
RIPARIAN	Optimal Tree stratum (dbh > 3 inches) preser with > 60% tree canopy cover. Wetlands located within the ripariar	Cor Subo High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory.	Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation).	High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30%	measurements of ginal Low Marginal: Non-maintained, dense herbaceous vegetation, ripariar areas lacking shrut and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory.	Pet High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition.	boor Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions.	NOTES>>		
RIPARIAN	Optimal Tree stratum (dbh > 3 inches) preser with > 60% tree canopy cover. Wetlands located within the ripariar	Cor Subo High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained	Low Suboptimal: Riparian areas with tree stratum (dbh si 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense	Gory High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30%	measurements of ginal Low Marginal: Non-maintained, dense herbaceous vegetation, ripariar areas lacking shrut and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained	Pigh Poor: Lawns, mowed, and maintained areas, no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable	boor Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable	NOTES>>		
Riparian Buffers Scores Delineate ripar Determine squ	Optimal Tree stratum (dbh > 3 inches) preser with > 60% tree canopy cover. Wetlands located within the ripariar areas.	Cor Subo High Suboptimal: Riparian areas with tree stratum (dhb - 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 struct Condition Cat	Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy course and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Cond	gory High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30%	measurements of ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrut and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75 the descriptors.	Prime	bor Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions.	NOTES>>		
RIPARIAN Riparian Buffers Scores Delineate ripar Determine squ Enter the % R	Optimal Tree stratum (dbh > 3 inches) preser with > 60% tree canopy cover. Wetlands located within the ripariar areas. 1.5 trian areas along each stream ban are footage for each by measurin parian Area and Score for each r % Riparian Area>	Cor Subo Subo High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 High 1.2 cor estimating leng barian category in th 90%	Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy course and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Cond	gory High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30%	measurements of ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrut and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75 the descriptors.	Prime	ay be acceptable) Dor Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian	NOTES>>		
RIPARIAN Riparian Buffers Scores Delineate ripar Determine squ Enter the % R	Optimal Tree stratum (dbh > 3 inches) preser with > 60% tree canopy cover. Wetlands located within the ripariar areas. 1.5 Tian areas along each stream ban are footage for each by measurin parian Area and score for each r	Cor Subo High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 witho Condition Cat g or estimating leng parian category in th	Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy course and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Cond	gory High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30%	measurements of ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrut and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75 the descriptors.	Prime	ay be acceptable) Dor Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100			
RIPARIAN Riparian Buffers Scores Delineate ripar Determine squ Enter the % Ri Right Bank	Optimal Tree stratum (dbh > 3 inches) preser with > 60% tree canopy cover. Wetlands located within the ripariar areas. 1.5 rian areas along each stream ban uare footage for each by measurin iparian Area and Score for each r 10% % Riparian Area> 10% Score > 0.6	Cor Subo Subo High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 High 1.2 cor estimating leng parian category in th 90% 0.85	Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy course and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Cond	gory High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30%	measurements of ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrut and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75 the descriptors.	Prime	ay be acceptable) Cor Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100 100%	NOTES>> CI= (Sum % RA * Sc Rt Bank CI >	cores*0.01/2 0.83	
RIPARIAN Riparian Buffers Scores Delineate ripar Determine squ Enter the % Ri Right Bank	Optimal Tree stratum (dbh > 3 inches) preser with > 60% tree canopy cover. Wetlands located within the ripariar areas. 1.5 tian areas along each stream ban uare footage for each by measurin iparian Area and Score for each r % Riparian Area> 10% Score > 0.6	Cor Subo Subo High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 High 1.2 cor estimating leng barian category in th 90%	Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy course and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Cond	gory High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30%	measurements of ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrut and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75 the descriptors.	Prime	ay be acceptable) Dor Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100	CI= (Sum % RA * Sc		<u>CI</u> 0.83
RIPARIAN Riparian Buffers Scores Delineate ripar Determine squ Enter the % Ri Right Bank Left Bank	Optimal Tree stratum (dbh > 3 inches) preser with > 60% tree canopy cover. Wetlands located within the ripariar areas. 1.5 trian areas along each stream ban uare footage for each by measurin iparian Area and Score for each r % Riparian Area> 10% Score > 0.6 % Riparian Area> 10% Score > 0.6 HABITAT: Varied substrate s	Cor Subo Subo High Suboptimal: Riparian areas with tree stratum (db > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 High 1.2 Condition Cat g or estimating leng barian category in th 90% 0.85	Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Cond th and width. Calk he blocks below.	y and leafy debris;	measurements of ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shruti and tree stratum, hay production, ponds, open water, If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75 the descriptors. led for you below.	Provide a second and maintained areas, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure of % f Blocks e	ay be acceptable) Cor Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lost, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100 100% 100%	CI= (Sum % RA * Sc Rt Bank CI > Lt Bank CI > banks; root mats; S	0.83 0.83	CI
RIPARIAN Riparian Buffers Scores Delineate ripar Determine squ Enter the % Ri Right Bank Left Bank INSTREAM	Optimal Tree stratum (dbh > 3 inches) preserwith > 60% tree canopy cover. Wetlands located within the ripariar areas. 1.5 Tian areas along each stream ban area footage for each by measuring parian Area and Score for each regarian Area and Score for each regarian Area and Score for each stream ban score > 0.6 % Riparian Area> 10% Score > 0.6 HABITAT: Varied substrate se features.	Cor Subo	Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understoy. Recent cutover (dense vegetation). Low 1.1 tegories and Cond th and width. Calk he blocks below. and depths; woody Conditions	gory High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85 ition Scores using culators are provid	measurements of ginal Low Marginal: Non-maintained, dense herbaccous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75 the descriptors. led for you below. stable substrate;	Prime	ay be acceptable) Dor Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lost, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100 100% 100% States undercut	Cl= (Sum % RA * Sc Rt Bank Cl > Lt Bank Cl >	0.83 0.83	CI
RIPARIAN Riparian Buffers Scores Delineate ripan Determine squ Enter the % Ri Right Bank Left Bank	Optimal Tree stratum (dbh > 3 inches) preser with > 60% tree canopy cover. Wetlands located within the ripariar areas. 1.5 trian areas along each stream ban uare footage for each by measurin iparian Area and Score for each r % Riparian Area> 10% Score > 0.6 % Riparian Area> 10% Score > 0.6 HABITAT: Varied substrate s	Cor Subo	Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Cond th and width. Calk he blocks below.	gory High Marginal: Non-maintained, dense herbaccous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85 ition Scores using culators are provid culators are provid add the shift at ele present in 10-30% add the shift at ele present in 10-30%	measurements of ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shruti and tree stratum, hay production, ponds, open water, If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75 the descriptors. led for you below.	Prime	ay be acceptable) Cor Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lost, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100 100% 100%	CI= (Sum % RA * Sc Rt Bank CI > Lt Bank CI > banks; root mats; S NOTES>>	0.83 0.83	CI

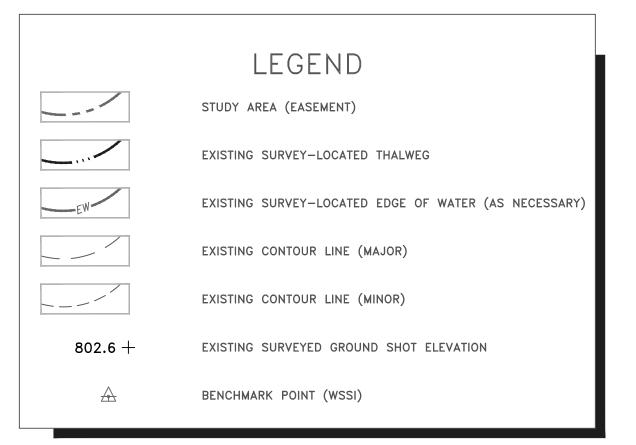
Reach R3-R4 File: C:\Users\dan.weidenhof\Documents\Documents\VA Stream Sampling\0 QAQC SUBMITTALS\QAQC working 1st submittal\S-G13_20211004KEH\9. S-G13_USM_MVP_20211004KEH.xlsx

Project #	Project Name (App	licant)	Locality	Cowardin Class.	нис	Date	SAR #	Impact Length	Impact Factor	
22865.06	Mountain Valley Pipeline (Mountain Valley Pipeline, LLC)		Franklin County	R3	03010101	8/24/2021	S-G13	20	1	
. CHANNEL	ALTERATION: Stream crossin	gs, riprap, concret	e, gabions, or con	icrete blocks, strai	ghtening of chanr	nel, channelization,	embankments, sp	poil piles, constriction	ons, livestock	
				al Category				NOTES>>		
	Negligible	Mir	nor Moderate 40 - 60% of reach 60 - 80% of reach		Sev	vere				
Channel Alteration	Channelization, dredging, alteration, or hardening absent. Stream has an unaltered pattern or has naturalized.	Less than 20% of the stream reach is disrupted by any of the channel alterations listed in the parameter guidelines.	20-40% of the stream reach is disrupted by any of the channel alterations listed in the parameter guidelines.	is disrupted by any of the channel alterations listed in the parameter guidelines. If stream has been channelized, normal stable stream meander pattern has not recovered.	is disrupted by any of the channel alterations listed in the parameter guidelines. If stream has been channelized, normal stable stream meander pattern has not recovered.	Greater than 80% o by any of the chann in the parameter g 80% of banks sho riprap, or	nel alterations listed uidelines AND/OR ored with gabion,			CI
Scores	1.5	1.3	1.1	0.9	0.7	0.	.5			1.3
	REACH	CONDITION	INDEX and S	STREAM CO	NDITION UN	ITS FOR THI	S REACH			
IOTE: The CIs a	nd RCI should be rounded to 2 decir	nal places. The CF	R should be round	ed to a whole num	iber.			I CONDITION IN		1.3
						RCI= (Sum of			hemeral RCI = (F	· · · · · · · · · · · · · · · · · · ·
								TION REQUIRE	MENT (CR) >>	27
							CR = RC	CI X L _I X IF		
		DIRECTION 212 deg(T)		36.966 079.63			CURACY 5 n ATUM WGS84			

DESCRIBE PROPOSED IMPACT:


S-G13 ds cond

PROVIDED UNDER SEPARATE COVER

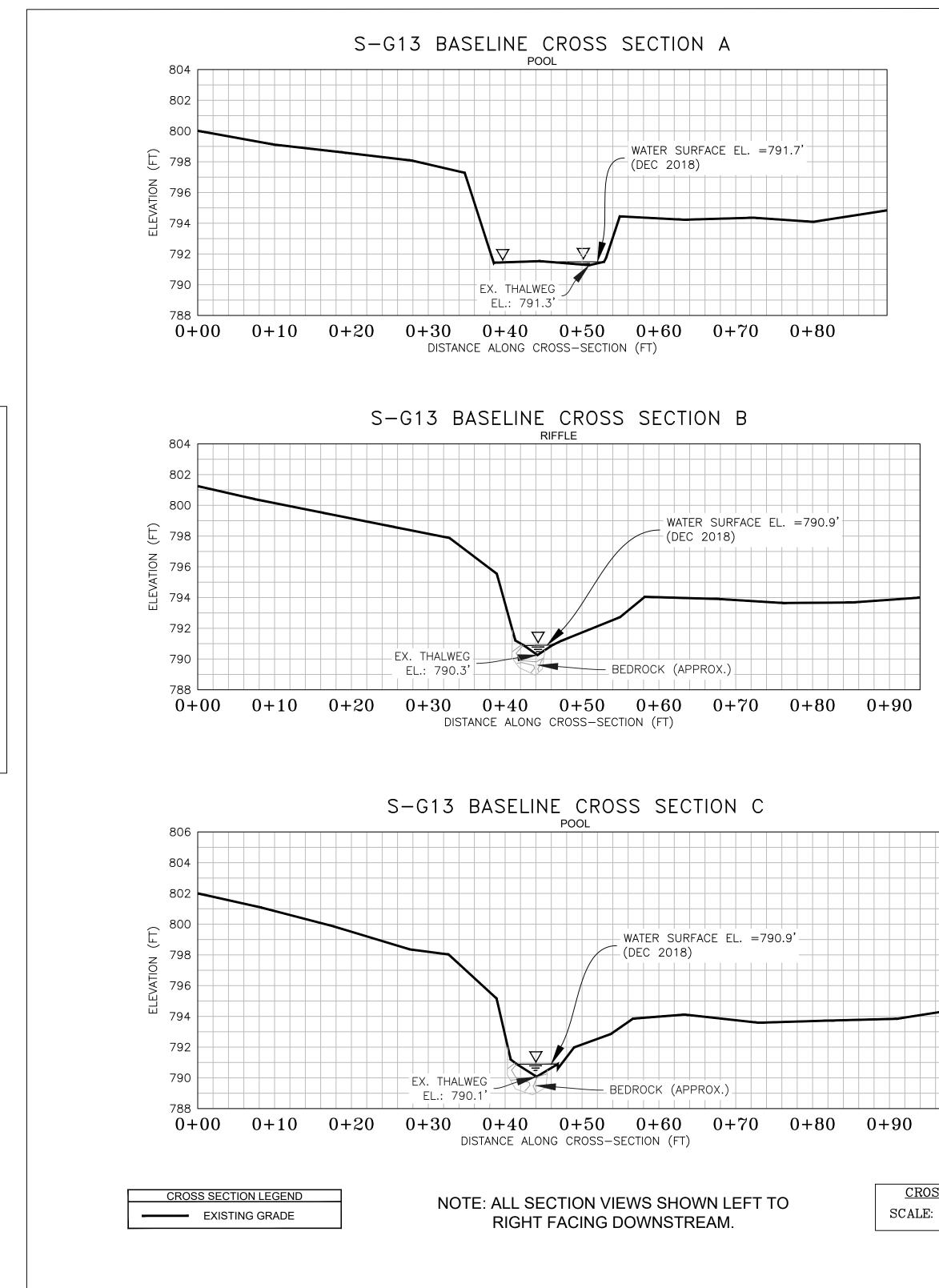

Context Camera

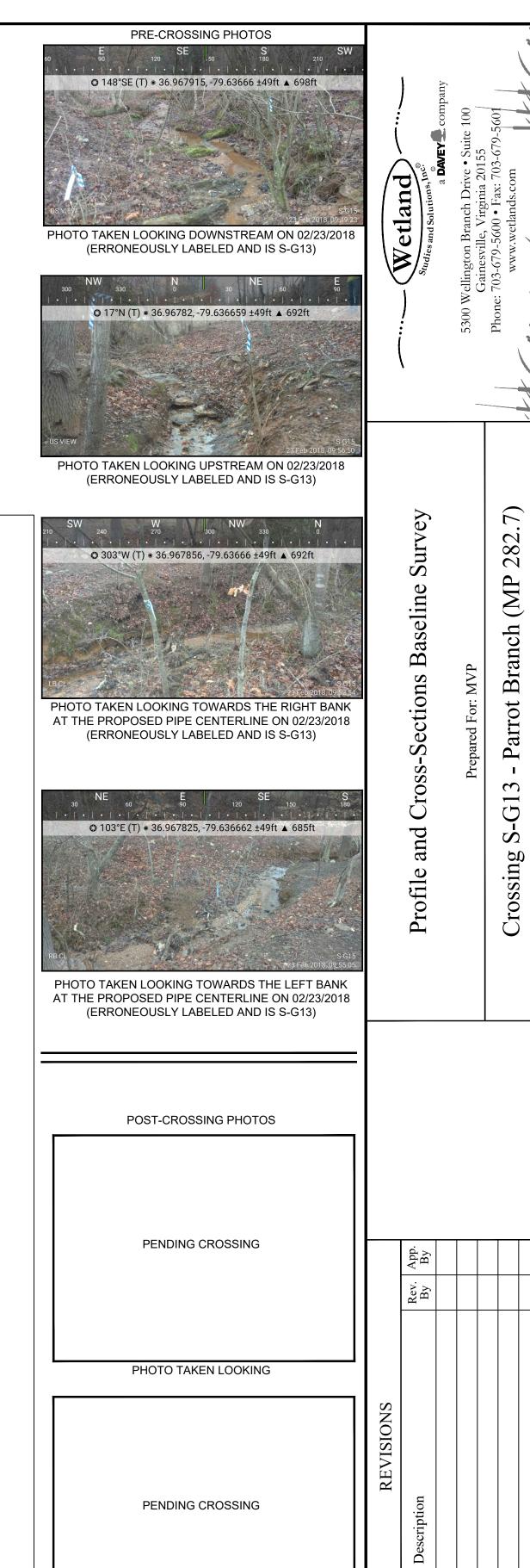
2021-08-24 14:10:52-04:00

Reach R3-R4 File: C:\Users\dan.weidenhof\Documents\Documents\VA Stream Sampling\0 QAQC SUBMITTALS\QAQC working 1st submittal\S-G13_20211004KEH\9. S-G13_USM_MVP_20211004KEH.xlsx

SURVEY NOTES:

1. This map has been oriented to NAD 1983 UTM ZONE 17N, and vertically to The North American Vertical Datum of 1988 (NAVD 88), using a Real Time Network (RTN) GPS. Field locations were completed on December 4, 2018.

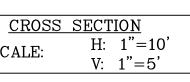

2. Monumentation, including traverse stations and fly points, shown on this drawing should be used to orient any future boundary, topographic, or location survey.


3. Easement lines shown on plan view were provided by Mountain Valley Pipeline (MVP).

4. WSSI Contour Interval = 2.0'. Contours within the channel were interpolated using stream channel breaklines (i.e. top of slopes, toe of slopes, thalweg) and cross-sectional points. Contours outside the channel were interpolated using cross-sectional spot shots.

5. All section views shown are left to right facing downstream.

6. Cross-section B shot at location of pipe centerline (based on best professional judgement).



 \geq

ţ

 \mathbf{O}

⊻ =10' =5'

PHOTO TAKEN LOOKING

PHOTO TAKEN LOOKING

PENDING CROSSING

No.

WSSI 2' C.I. Topo

Computer File Name: L:\Survey\22000\22800\22865.03\Spread I Work Dwgs 22865_03 S-1 MP 279-291 Sheets.dwg

Design

EJC

MVP

Horizontal Datum: NAD 1983 UTM ZONE 1

Draft

SIH

Sheet #

1 of 1

Approved

NAS

Vertical Datum: NAVD 88

Boundary and Topo Source: