Reach S-G23 (Pipeline ROW) Intermittent Spread I Franklin County, Virginia

Data	Included
Photos	\checkmark
SWVM Form	\checkmark
FCI Calculator and HGM Form	\checkmark
RBP Physical Characteristics Form	\checkmark
Water Quality Data	N/A – Low flow
RBP Habitat Form	\checkmark
RBP Benthic Form	\checkmark
Benthic Identification Sheet	N/A – Low flow
Wolman Pebble Count	\checkmark
RiverMorph Data Sheet	\checkmark
USM Form (Virginia Only)	\checkmark
Longitudinal Profile and Cross Sections	\checkmark

Spread I Stream S-G23 (ROW) Franklin County

Note: No "LB CL" or "RB CL" photos because stream runs parallel to pipeline

Photo Type: US VIEW Location, Orientation, Photographer Initials: Downstream at ROW/LOD looking SE upstream, RAH

Photo Type: DS COND Location, Orientation, Photographer Initials: Downstream at ROW/LOD looking N downstream, RAH

DEQ Permit #21-0416

Spread I Stream S-G23 (ROW) Franklin County

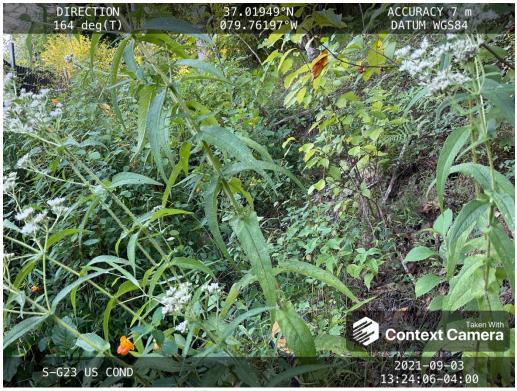


Photo Type: US COND Location, Orientation, Photographer Initials: Upstream at ROW/LOD looking SE upstream, RAH

Photo Type: DS VIEW Location, Orientation, Photographer Initials: Upstream at ROW/LOD looking NW downstream, RAH

42 29.505

0.703

USACE FILE NO./ Project Name: (v2.1, Sept 2015)	Mountain	Mountain Valley Pipeline		Lat.	37.019526	Lon.	-79.762002	WEATHER:	Sunny	DATE:	8/15/2015
IMPACT STREAM/SITE ID A (watershed size (acreage), un		S-0	523		MITIGATION STREAM CLAS (watershed size {acrea				1	Comments:	
STREAM IMPACT LENGTH:	42 FORM OF MITIGATION:	RESTORATION (Levels I-III)	MIT COORDINATES: (in Decimal Degrees)	Lat.		Lon.		PRECIPITATION PAST 48 HRS:		Mitigation Length:	
Column No. 1- Impact Existing C	Condition (Debit)	Column No. 2- Mitigation Existing Co	ondition - Baseline (Credit)		Column No. 3- Mitigation Post Complet		Years	Column No. 4- Mitigation Proje Post Completion (6		Column No. 5- Mitigation Project	ed at Maturity (Credit)
Stream Classification:	Intermittent	Stream Classification:			Stream Classification:		0	Stream Classification:	0	Stream Classification:	0
Percent Stream Channel Slop	pe 0.42	Percent Stream Channel Slo	pe		Percent Stream Channel	Slope	0	Percent Stream Channel Sl	ope 0	Percent Stream Channel S	lope 0
HGM Score (attach dat	ta forms):	HGM Score (attach d	lata forms):		HGM Score (atta	ch data forms):		HGM Score (attach da	ata forms):	HGM Score (attach d	ata forms):
	Average		Average				Average		Average		Avera
Hydrology Biogeochemical Cycling Habitat	0	Hydrology Biogeochemical Cycling Habitat	0		Hydrology Biogeochemical Cycling Habitat		0	Hydrology Biogeochemical Cycling Habitat	0	Hydrology Biogeochemical Cycling Habitat	0
PART I - Physical, Chemical and B	Biological Indicators	PART I - Physical, Chemical and	Biological Indicators		PART I - Physical, Chemica	l and Biological In	dicators	PART I - Physical, Chemical and	Biological Indicators	PART I - Physical, Chemical and	Biological Indicators
1	Points Scale Range Site Score		Points Scale Range Site Score			Points Scale Range	Site Score		Points Scale Range Site Score		Points Scale Range Site Sco
PHYSICAL INDICATOR (Applies to all streams cl	classifications)	PHYSICAL INDICATOR (Applies to all streams of	classifications)		PHYSICAL INDICATOR (Applies to all stress	ams classifications)		PHYSICAL INDICATOR (Applies to all streams	classifications)	PHYSICAL INDICATOR (Applies to all streams	classifications)
JSEPA RBP (High Gradient Data Sheet) . Epifaunal Substrate/Available Cover		USEPA RBP (Low Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover			USEPA RBP (High Gradient Data Sheet 1. Epifaunal Substrate/Available Cover			USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover		USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover	
	0-20 5	2. Pool Substrate Characterization	0-20		2. Embeddedness	0-20		2. Embeddedness	0-20	2. Embeddedness	0-20
 Velocity/ Depth Regime 	0-20 2	3. Pool Variability	0-20		Velocity/ Depth Regime	0-20		Velocity/ Depth Regime	0-20	Velocity/ Depth Regime	0-20
	0-20 16	4. Sediment Deposition	0-20		4. Sediment Deposition	0-20		4. Sediment Deposition	0-20	4. Sediment Deposition	0-20
	0-20 0-1 2	5. Channel Flow Status	0-20 0-1		5. Channel Flow Status	0-20 0-1		5. Channel Flow Status	0-20 0-1	5. Channel Flow Status	0-20 0-1
. Channel Alteration	0-20 19	6. Channel Alteration	0-20		6. Channel Alteration	0-20		6. Channel Alteration	0-20	6. Channel Alteration	0-20
	0-20 4	7. Channel Sinuosity	0-20		Frequency of Riffles (or bends)	0-20		Frequency of Riffles (or bends)	0-20	Frequency of Riffles (or bends)	0-20
. Bank Stability (LB & RB)	0-20 19	8. Bank Stability (LB & RB)	0-20		8. Bank Stability (LB & RB)	0-20		8. Bank Stability (LB & RB)	0-20	Bank Stability (LB & RB)	0-20
	0-20 17	9. Vegetative Protection (LB & RB)	0-20		9. Vegetative Protection (LB & RB)	0-20		9. Vegetative Protection (LB & RB)	0-20	9. Vegetative Protection (LB & RB)	0-20
		10. Riparian Vegetative Zone Width (LB & RB) Total RBP Score	0-20 Poor 0		10. Riparian Vegetative Zone Width (LB & RB) Total RBP Score) 0-20 Poor		10. Riparian Vegetative Zone Width (LB & RB) Total RBP Score	0-20 0	10. Riparian Vegetative Zone Width (LB & RB) Total RBP Score	0-20 Poor 0
ub-Total	Suboptimal 121 0.605	Sub-Total	Poor		Sub-Total	POOL	0	Sub-Total	Pool	Sub-Total	Poor
CHEMICAL INDICATOR (Applies to Intermittent a		CHEMICAL INDICATOR (Applies to Intermittent	and Perennial Streams)		CHEMICAL INDICATOR (Applies to Intermi	ttent and Perennial S	treams)	CHEMICAL INDICATOR (Applies to Intermitter	nt and Perennial Streams)	CHEMICAL INDICATOR (Applies to Intermittee	nt and Perennial Streams)
VDEP Water Quality Indicators (General)		WVDEP Water Quality Indicators (General)			WVDEP Water Quality Indicators (Gene	ral)		WVDEP Water Quality Indicators (General)	WVDEP Water Quality Indicators (General	1)
Specific Conductivity		Specific Conductivity			Specific Conductivity			Specific Conductivity		Specific Conductivity	
100-199 - 85 points	0-90		0-90			0-90			0-90		0-90
H		pH			oH			оH		oH	
	0-1	20	0-1		20	0-1		20	0-1	20	0-1
5.6-5.9 = 45 points	0-80		5-90			5-90			5-90		5-90
0		DO			DO			DO		DO	
	10-30		10-30			10-30			10-30		10-30
		0.1.7.1.1			0 I T I I			0.1.7.1.1			
ub-Total IOLOGICAL INDICATOR(Applies to Intermitter	nt and Perennial Streams)	Sub-Total BIOLOGICAL INDICATOR (Applies to Intermitter	nt and Perennial Streams)		Sub-Total BIOLOGICAL INDICATOR(Applies to Inte	ermittent and Perenr	ial Streams)	Sub-Total BIOLOGICAL INDICATOR (Applies to Interm	ittent and Perennial Streams)	Sub-Total BIOLOGICAL INDICATOR (Applies to Interm	littent and Perennial Streams
V Stream Condition Index (WVSCI)		WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)		WV Stream Condition Index (WVSCI)	
0	0-100 0-1		0-100 0-1			0-100 0-1			0-100 0-1		0-100 0-1
U Sub-Total	0	Sub-Total	0		Sub-Total		0	Sub-Total		Sub-Total	
PART II - Index and Uni	it Score	PART II - Index and L	Unit Score		PART II - Index a	and Unit Score	1	PART II - Index and U	nit Score	PART II - Index and L	Jnit Score
Index	Linear Feet Unit Score	Index	Linear Feet Unit Score		Index	Linear Feet	Unit Score	Index	Linear Feet Unit Score	Index	Linear Feet Unit Sc

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

STREAM NAME	LOCATION						
STATION # RIVERMILE	STREAM CLASS						
LAT LONG	RIVER BASIN	RIVER BASIN					
STORET #	AGENCY						
INVESTIGATORS							
FORM COMPLETED BY	DATE TIME	REASON FOR SURVEY					

WEATHER CONDITIONS	Now Past 24 hours Has there been a heavy rain in the last 7 days? Storm (heavy rain) rain (steady rain) showers (intermittent) Yes No % %cloud cover clear/sunny % Air Temperature0 C
SITE LOCATION/MAP	Draw a map of the site and indicate the areas sampled (or attach a photograph)
て く し し	Timber Mut * Pipe CL S-G23 < Forest
	S-6-1L
(TDD AM	
STREAM CHARACTERIZATION	Stream Subsystem Perennial Stream Type Coldwater Warmwater Stream Origin Catchment Area km ²
	Glacial Spring-fed Non-glacial montane Mixture of origins Swamp and bog Other

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

WATERSHED FEATURES	Predominant Surrounding Landuse ✓ Forest Commercial ➡ Field/Pasture Industrial ➡ Agricultural Other ■ Residential Uther	Local Watershed NPS Pollution No evidence Some potential sources Obvious sources Local Watershed Erosion None Moderate Heavy
RIPARIAN VEGETATION (18 meter buffer)	Indicate the dominant type and record the domin Trees Dominant species present Japanese silt grass	Grasses Herbaceous
INSTREAM FEATURES	Estimated Reach Length14.9 mEstimated Stream Width0.6 mSampling Reach Area9.1 m²Area in km² (m²x1000)km²Estimated Stream Depth0.006 mSurface Velocity1 m/sec(at thalweg)1 m/sec	Canopy Cover Partly shaded □Shaded Partly open ☑Partly shaded □Shaded High Water Mark ①.76_m Proportion of Reach Represented by Stream Morphology Types Riffle % Pool % Channelized Yes Dam Present Yes
LARGE WOODY DEBRIS	LWD 0 m² Density of LWD m²/km² (LWD/ reac	h area)
AQUATIC VEGETATION	Indicate the dominant type and record the dominant type and record the dominant species present ■ Rooted submergent ■ Rooted emergent ■ Rooted submergent ■ Floating Algae ▶ Attached Algae ■ Dominant species present □ Delicate fern moss ■ Portion of the reach with aquatic vegetation 10	
WATER QUALITY NO YSI/not Deep Enough	Temperature ⁰ C Specific Conductance Dissolved Oxygen pH Turbidity WQ Instrument Used	Water Odors Normal/None Sewage Petroleum Chemical Fishy Other Slick Sheen Other Other None Other Turbidity (if not measured) Turbid Clear Slightly turbid Opaque Stained
SEDIMENT/ SUBSTRATE	Odors Normal Chemical Other Oils Absent Slight	Deposits □Paper fiber □Sand □Sludge □Sawdust □Paper fiber □Sand □Relict shells ☑Other Sitt □ □poking at stones which are not deeply embedded, are the undersides black in color? □Yes □No

INC	DRGANIC SUBSTRATE (should add up to 1			ORGANIC SUBSTRATE COMPONENTS (does not necessarily add up to 100%)						
Substrate Type	Diameter % Composition in Sampling Reach		Substrate Type	Characteristic	% Composition in Sampling Area					
Bedrock			Detritus	sticks, wood, coarse plant	F					
Boulder	> 256 mm (10")			materials (CPOM)	5					
Cobble	64-256 mm (2.5"-10")	20	Muck-Mud	black, very fine organic						
Gravel	2-64 mm (0.1"-2.5")	10		(FPOM)						
Sand	0.06-2mm (gritty)	20	Marl	grey, shell fragments						
Silt	0.004-0.06 mm	50]							
Clay	< 0.004 mm (slick)									

HABITAT ASSESSMENT FIELD DATA SHEET - HG - USE ON ALL STREAMS (FRONT)

STREAM NAME	LOCATION					
STATION # RIVERMILE	STREAM CLASS					
LAT LONG	RIVER BASIN					
STORET #	AGENCY					
INVESTIGATORS						
FORM COMPLETED BY	DATE TIME AM PM	REASON FOR SURVEY				

	Habitat		Condition	1 Category					
	Parameter	Optimal	Suboptimal	Marginal	Poor				
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are <u>not</u> new fall and <u>not</u> transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.				
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0				
n sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.				
ted i	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0				
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow- deep, slow-shallow, fast- deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast- shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).				
Iram	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0				
P	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.				
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0				
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.				
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0				

Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, Second Edition - Form 2

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

Habitat		Condition	ı Category				
Parameter	Optimal	Suboptimal	Marginal	Poor			
6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.			
SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.			
SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
 SCORE 8. Bank Stability (score each bank) Note: determine left or right side by facing downstream. SCORE (LB) SCORE (RB) 9. Vegetative Protection (score each bank) 	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30- 60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.			
SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0			
SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0			
9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well- represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.			
SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0			
SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0			
10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.			
SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0			
SCORE(RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0			

Total Score _____

BENTHIC MACROINVERTEBRATE FIELD DATA SHEET

STREAM NAME		LOCATION	
STATION #	_ RIVERMILE	STREAM CLASS	
LAT	LONG	RIVER BASIN	
STORET #		AGENCY	
INVESTIGATORS			LOT NUMBER
FORM COMPLETED	BY	DATE TIME	REASON FOR SURVEY
HABITAT TYPES	Indicate the percentage of Cobble% Sn Submerged Macrophytes	anks% Sand%)%	
SAMPLE COLLECTION	Indicate the number of jab	lected? wading fi ps/kicks taken in each habitat ty lags Vegetated B	anks Sand
GENERAL COMMENTS			

QUALITATIVE LISTING OF AQUATIC BIOTA

Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare, 2 = Common, 3= Abundant, 4 = Dominant

Periphyton	0	1	2	3	4	Slimes	0	1	2	3	4
Filamentous Algae	0	1	2	3	4	Macroinvertebrates	0	1	2	3	4
Macrophytes	0	1	2	3	4	Fish	0	1	2	3	4

FIELD OBSERVATIONS OF MACROBENTHOS

Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare (1-3 organisms), 2 = Common (3-9 organisms), 3= Abundant (>10 organisms), 4 = Dominant (>50 organisms)

Porifera	0	1	2	3	4	Anisoptera	0	1	2	3	4	Chironomidae	0	1	2	3	4
Hydrozoa	0	1	2	3	4	Zygoptera	0	1	2	3	4	Ephemeroptera	0	1	2	3	4
Platyhelminthes	0	1	2	3	4	Hemiptera	0	1	2	3	4	Trichoptera	0	1	2	3	4
Turbellaria	0	1	2	3	4	Coleoptera	0	1	2	3	4	Other	0	1	2	3	4
Hirudinea	0	1	2	3	4	Lepidoptera	0	1	2	3	4						
Oligochaeta	0	1	2	3	4	Sialidae	0	1	2	3	4						
Isopoda	0	1	2	3	4	Corydalidae	0	1	2	3	4						
Amphipoda	0	1	2	3	4	Tipulidae	0	1	2	3	4						
Decapoda	0	1	2	3	4	Empididae	0	1	2	3	4						
Gastropoda	0	1	2	3	4	Simuliidae	0	1	2	3	4						
Bivalvia	0	1	2	3	4	Tabinidae	0	1	2	3	4						
						Culcidae	0	1	2	3	4						

WOLMAN PEBBLE COUNT FORM

County:	Franklin County	Stream ID:	S-G23
Stream Name:	UNT to Poplar Camp Creek		
HUC Code:	03010101	Basin:	Upper Roanoke
Survey Date:	9/3/2021		
Surveyors:	Reed H, Rebecca C, Dan W		

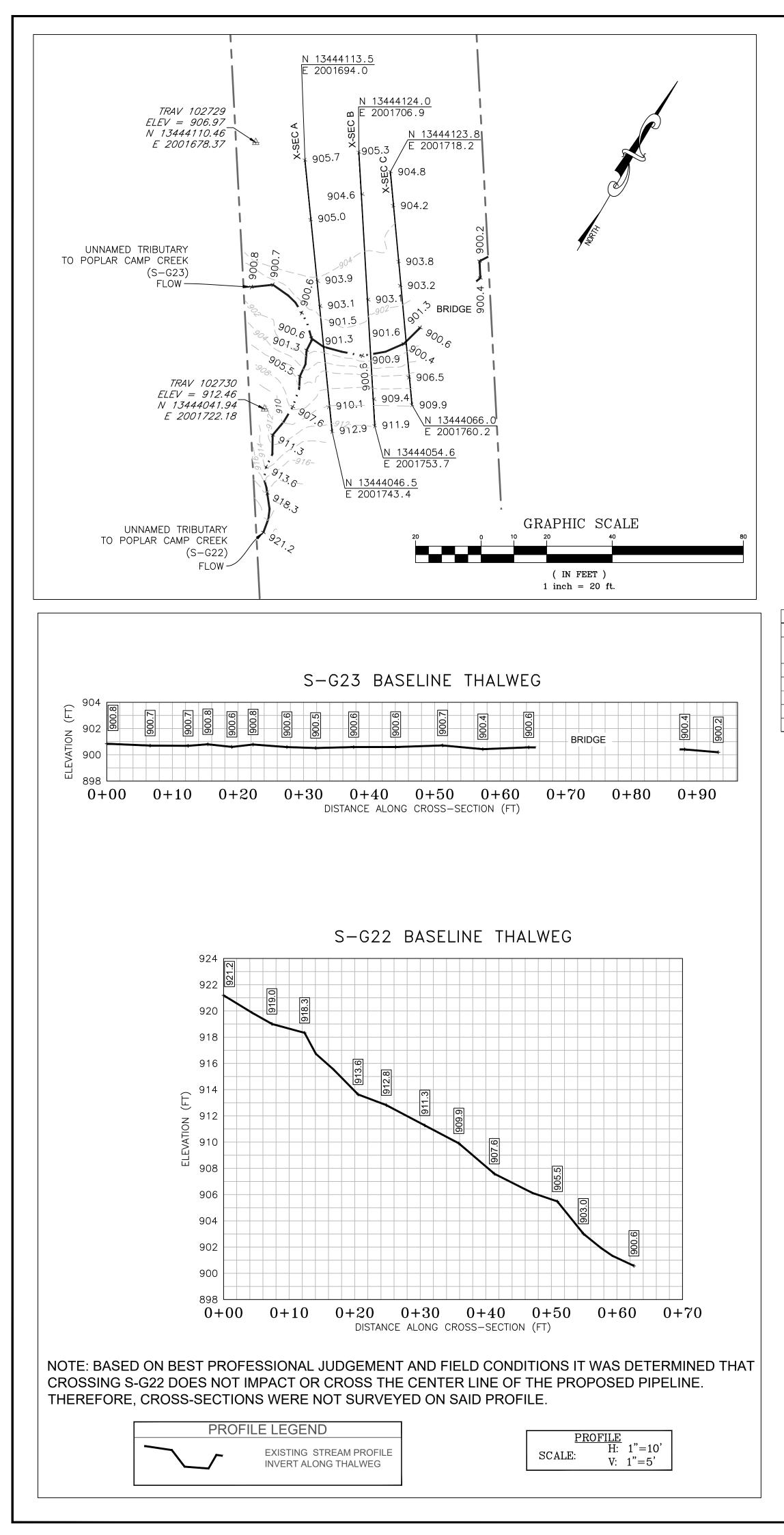
Type: Representative / Riffle

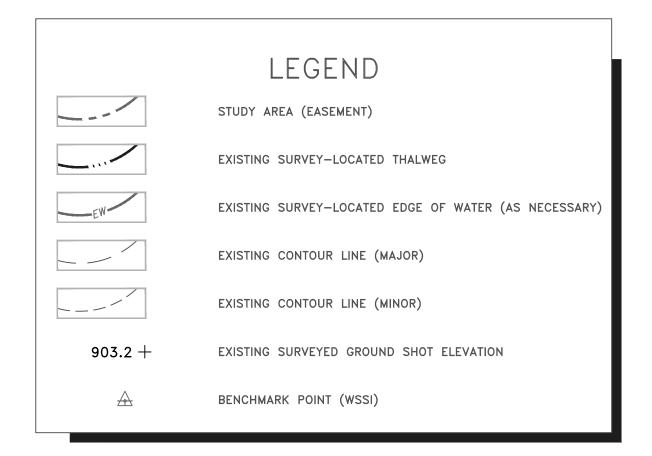
		PEBB	LE COUNT				
Inches	PARTICLE	Millimeters		Particle Count	Total #	Item %	% Cur
	Silt/Clay	< .062	S/C	▲ ▼	49	49.00	49.00
	Very Fine	.062125		▲ ▼	8	8.00	57.00
	Fine	.12525		▲ ▼	5	5.00	62.00
	Medium	.255	SAND	▲ ▼	2	2.00	64.00
	Coarse	.50-1.0		▲ ▼	3	3.00	67.00
.0408	Very Coarse	1.0-2		▲ ▼		0.00	67.00
.0816	Very Fine	2 -4		▲ ▼		0.00	67.00
.1622	Fine	4 -5.7	_	▲ ▼	1	1.00	68.00
.2231	Fine	5.7 - 8	_	▲ ▼		0.00	68.00
.3144	Medium	8 -11.3	-	• •		0.00	68.00
.4463	Medium	11.3 - 16	GRAVEL	▲ ▼	1	1.00	69.00
.6389	Coarse	16 -22.6		▲ ▼		0.00	69.00
.89 - 1.26	Coarse	22.6 - 32	-	▲ ▼		0.00	69.00
1.26 - 1.77	Vry Coarse	32 - 45	-	▲ ▼	3	3.00	72.00
1.77 -2.5	Vry Coarse	45 - 64	_	▲ ▼	7	7.00	79.00
2.5 - 3.5	Small	64 - 90		▲ ▼	7	7.00	86.00
3.5 - 5.0	Small	90 - 128	-	▲ ▼	6	6.00	92.00
5.0 - 7.1	Large	128 - 180	COBBLE	▲ ▼	4	4.00	96.00
7.1 - 10.1	Large	180 - 256	-	▲ ▼	4	4.00	100.0
10.1 - 14.3	Small	256 - 362		▲ ▼		0.00	100.0
14.3 - 20	Small	362 - 512	1	▲ ▼		0.00	100.0
20 - 40	Medium	512 - 1024	BOULDER	▲ ▼		0.00	100.0
40 - 80	Large	1024 -2048	1	▲ ▼		0.00	100.0
80 - 160	Vry Large	2048 -4096	1	▲ ▼		0.00	100.0
	Bedrock		BDRK	▲ ▼		0.00	100.0
			1	Totals:	100		

Reach Name: Sample Name:	UNT to Poplar S-G23 Representative 09/03/2021	-	<
Size (mm)	TOT #	ITEM %	CUM %
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	49 8 5 2 3 0 0 1 0 0 1 0 0 1 0 0 3 7 7 6 4 4 0 0 0 0 0 0	$\begin{array}{c} 49.00\\ 8.00\\ 5.00\\ 2.00\\ 3.00\\ 0.00\\ 1.00\\ 0.00\\ 1.00\\ 0.00\\ 1.00\\ 0.00\\ 1.00\\ 0.00\\ 1.00\\ 0.00\\ 1.00\\ 0.00\\ 0.00\\ 0.00\\ 4.00\\ 4.00\\ 0.00$	$\begin{array}{r} 49.00\\ 57.00\\ 62.00\\ 64.00\\ 67.00\\ 67.00\\ 67.00\\ 68.00\\ 68.00\\ 68.00\\ 69.00\\ 69.00\\ 69.00\\ 69.00\\ 72.00\\ 79.00\\ 86.00\\ 92.00\\ 96.00\\ 100.00\\ 10$
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Gravel (%) Boulder (%) Bedrock (%)	0.02 0.04 0.07 82.57 167 256 49 18 12 21 0 0		

Total Particles = 100.

		S	Strean		essm ream Method		•	-0111	• /		
				For use in wadea	ble channels cla Cowardin				Impact	Impact	
Project #	•	t Name (App	,	Locality	Class.	HUC	Date	SAR #	Length	Factor	
22865.06		alley Pipeline ey Pipeline, L		Franklin County	R3 or R4	03010101	9/3/21	S-G23	42	1	
Name				e and Information	ation	•	•		SAR Length		
F	RC, RH, DW		UNT to Popla	ar Creek, Frai	nklin County,	Spread I			42		
Channel C	ondition: Asse	ess the cross-sec	tion of the stream								
	Opti	imal	Subo	ptimal	Conditional Catego	ginal	P	oor	Sev	ere	
Channel Condition	Very little incision or 100% stable bar surface protectior prominent (80-100% bankfull benches ar to their original fi developed wide ban channel bars and tr Transient sediment less than 109	hks. Vegetative n or natural rock, %). AND/OR Stable re present. Access loodplain or fully hkfull benches. Mid ansverse bars few. t deposition covers	erosion or unproted of banks are s Vegetative protec prominent (60 Depositional feat stability. The benches, channels are wel likely has acc benches, or ne portions of the r sediment covers	ew areas of active cted banks. Majority table (60-80%). tion or natural rock -80%) AND/OR tures contribute to hkfull and low flow flow flow developed reach. Transient s 10-40% of the bottom.	Poor. Banks more or Poor due to lo Erosion may be pr both banks. Vege 40-60% of banks. be vertical or un 40-60% Sediment transient, contr Deposition that co may be forming/pr shaped channel protection on > 400 depositional featur	ibute instability. ntribute to stability, resent. AND/OR V- s have vegetative % of the banks and res which contribute	laterally unstab further. Majority near vertical. Ero banks. Vegetativ on 20-40% of bah to prevent erosior the stream is cov Sediment is tem nature, and contr AND/OR V-sha vegetative protec 40% of the banks	cised. Vertically/ le. Likely to widen of both banks are sion present on 60- e protection present s, and is insufficient . AND/OR 60-80% rered by sediment. bouting to instability. bed channels have tion is present on > and stable sediment n is absent.	present. Erosion/ 100%. AND/OR A	stability. Severe tained within the do below average vertical/undercut. on present on less is not preventing s bank sloughing raw banks on 80- ggrading channel. b ed is covered by uting to instability. channels and/or	CI
Scores	3	2	2	.4	to sta	ability. 2	1	.6		1	1.60
300165	, , , , , , , , , , , , , , , , , , ,	,	2			2		.0		1	1.00
RIPARIAN	I BUFFERS: A	Assess both bank		n areas along the ditional Cate		gh measurements	of length & width	may be acceptab	ie) NOTES>>		
RIPARIAN	I BUFFERS: A		Con Subo High Suboptimal: Riparian areas	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum	gory Mary High Marginal: Non-maintained,	ginal Low Marginal: Non-maintained, dense herbaceous vegetation,	P High Poor: Lawns mowed, and maintained areas,	DOOT Low Poor:	-		
RIPARIAN Riparian Buffers	1	mal 3 inches) present, c canopy cover. within the riparian	Con Subo High Suboptimal:	ditional Cate ptimal Low Suboptimal: Riparian areas	gory Mary High Marginal:	ginal Low Marginal: Non-maintained, dense herbaccous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh > 3 inches) present, with <30% tree canopy cover with maintained	P High Poor: Lawns mowed, and	Low Poor: Impervious surfaces, mine spoil lands,	-		
Riparian	Opti Tree stratum (dbh > with > 60% tree Wetlands located \	mal 3 inches) present, c canopy cover. within the riparian	Con Subo High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense	High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with ~30% tree canopy cover with	P High Poor: Lawns mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or othei comparable	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable	-		
Riparian	Opti Tree stratum (dbh > with > 60% tree Wetlands located \	mal · 3 inches) present, · canopy cover. within the riparian as.	Con Subo High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory.	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cultover (dense vegetation).	High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover.	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory	P High Poor: Lawns mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetate non-maintained area, recently seeded and stabilized, or other comparable condition.	COOR Impervious surfaces, mine spoil lands, id denuded surfaces, row crops, active feed lots, trails, or other comparable conditions.	-		
Riparian Buffers Scores Delineate ripa Determine squ	Opti	mal 3 inches) present, canopy cover. within the riparian as. 5 ach stream bank ach by measuring	Con Subo High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Ca or estimating lenge	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Cono gth and width. Ca	High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85	ginal Low Marginal: Non-maintained, dense herbaccous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory Low 0.75 g the descriptors.	P High Poor: Lawns mowed, and maintained areas, sparsely vegetater non-maintained area, recently seeded and stabilized, or othei comparable comparable condition. High 0.6	COOF Low Poor: Impervious surfaces, mine denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian	-		
Riparian Buffers Scores Delineate ripa Determine squ ow. Enter the % R	Opti Tree stratum (dbh > with > 60% tree Wetlands located v area wetlands located v area ian areas along ex uare footage for ea iparian Area and S	mal a inches) present, canopy cover, within the riparian as. 5 ach stream bank ach by measuring Score for each rip	Con Subo High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Ca or estimating lenge	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Cono gth and width. Ca	High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85	ginal Low Marginal: Non-maintained, dense herbaccous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory Low 0.75 g the descriptors.	P High Poor: Lawns mowed, and maintained areas, sparsely vegetater non-maintained area, recently seeded and stabilized, or othei comparable comparable condition. High 0.6	COOP Low Poor: Impervious surfaces, mine spoil lands, id denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100	-		
Riparian Buffers Scores Delineate ripa Determine squ ow. Enter the % R	Opti	mal 3 inches) present, canopy cover. within the riparian as. 5 ach stream bank ach by measuring	Con Subo High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Ca or estimating lenge	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Cono gth and width. Ca	High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85	ginal Low Marginal: Non-maintained, dense herbaccous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory Low 0.75 g the descriptors.	P High Poor: Lawns mowed, and maintained areas, sparsely vegetater non-maintained area, recently seeded and stabilized, or othei comparable comparable condition. High 0.6	COOF Low Poor: Impervious surfaces, mine denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian	-		
Riparian Buffers Scores Delineate ripa Determine squ low. Enter the % R	Opti Tree stratum (dbh > with > 60% tree Wetlands located w area Wetlands located w area Wetlands located w area Wetlands located w area Wetlands located w area Netlands located w area Score >	imal 3 inches) present, canopy cover. within the riparian as. 5 5 ach stream bank ach by measuring Score for each rip 100% 0.85	Con Subo High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Ca or estimating lenge	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Cono gth and width. Ca	High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85	ginal Low Marginal: Non-maintained, dense herbaccous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory Low 0.75 g the descriptors.	P High Poor: Lawns mowed, and maintained areas, sparsely vegetater non-maintained area, recently seeded and stabilized, or othei comparable comparable condition. High 0.6	COOP Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100 100%	NOTES>>		
Riparian Buffers Scores Delineate ripa Determine squ ow. Enter the % R Right Bank	Opti Tree stratum (dbh > with > 60% tree Wetlands located w area Wetlands located w area Wetlands located w area Methands located w area Methands located w area Methands located w area Network and S % Riparian Area % Riparian Area>	mal ainches) present, canopy cover. within the riparian as. 5 5 ach stream bank ach by measuring Score for each rip 100% 0.85 95%	Con Subo High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Ca or estimating lenges arian category in	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Cono gth and width. Ca	High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85	ginal Low Marginal: Non-maintained, dense herbaccous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory Low 0.75 g the descriptors.	P High Poor: Lawns mowed, and maintained areas, sparsely vegetater non-maintained area, recently seeded and stabilized, or othei comparable comparable condition. High 0.6	COOF Low Poor: Impervious surfaces, mine spoil lands, id denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100	NOTES>> Cl= (Sum % RA * Sc Rt Bank Cl >	0.85	
Riparian Buffers Scores Delineate ripa Determine squ low. Enter the % R Right Bank Left Bank	Opti Tree stratum (dbh > with > 60% tree Wetlands located w area Wetlands located w area Wetlands located w area Methands located w area Methands located w area Methands located w area Network and S % Riparian Area Score >	imal a inches) present, canopy cover. within the riparian as. 5 5 ach stream bank ach by measuring Score for each rip 100% 0.85 95% 1.5 aried substrate siz	Con Subo High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) ro 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Ca or estimating lenge arian category in 5% 0.85	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Cono gth and width. Ca the blocks below.	gory Marg High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory LOW 0.75 g the descriptors. ided for you	P High Poor: Lawns mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetate non-maintained area, recently seeded and stabilized, or othe comparable condition. High 0.6 Ensure of % Blocks	COOP Low Poor: Impervious surfaces, mine spoil lands, id denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100 100%	NOTES>>	0.85 1.47	<u>CI</u> 1.16
Riparian Buffers Scores Delineate ripa Determine squ low. Enter the % R Right Bank Left Bank INSTREAM	Opti Tree stratum (dbh > with > 60% tree Wetlands located v area vetlands located v area tiparian areas along ev uare footage for ea tiparian Area and S % Riparian Area Score > % Riparian Area Score > % Riparian Area Score > % Riparian Area Score > % Riparian Area Score >	imal a inches) present, canopy cover. within the riparian as. 5 ach stream bank ach by measuring Score for each rip 100% 0.85 95% 1.5 aried substrate sizes.	Con Subo High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Ca or estimating leng arian category in 5% 0.85 zes, water velocity	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Cono gth and width. Ca the blocks below.	gory High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer or a tree layer or a tree layer (dbh > 3 inches) present, with <30% tree	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory Low 0.75 g the descriptors. ided for you	P High Poor: Lawns mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or othet comparable condition. High 0.6 Ensure of % Blocks of e; low embededn	Coor Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lost, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100 100% 100% ess; shade; under	NOTES>> Cl= (Sum % RA * Sc Rt Bank Cl > Lt Bank Cl >	0.85 1.47	
Riparian Buffers Scores Delineate ripa Determine squ low. Enter the % R Right Bank Left Bank INSTREAN INSTREAM	Opti Tree stratum (dbh > with > 60% tree Wetlands located w area vetlands located w area 1. Trian areas along ex- uare footage for ea vetlarian Area and S % Riparian Area Score > % Riparian Area> Score > M HABITAT: va	imal a inches) present, canopy cover. within the riparian as. 5 ach stream bank ach by measuring Score for each rip 100% 0.85 95% 1.5 aried substrate sizes.	Con Subo High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Ca or estimating leng arian category in 5% 0.85 zes, water velocity	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Cono gth and width. Ca the blocks below.	gory High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer or a tree layer or a tree layer (dbh > 3 inches) present, with <30% tree	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory LOW 0.75 g the descriptors. ided for you	P High Poor: Lawns mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or othet comparable condition. High 0.6 Ensure of % Blocks of e; low embededn	COOP Low Poor: Impervious surfaces, mine spoil lands, id denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100 100%	NOTES>> CI= (Sum % RA * Sc Rt Bank CI > Lt Bank CI > cut banks; root ma	0.85 1.47	
Riparian Buffers Scores Delineate ripa Determine squ low. Enter the % R Right Bank Left Bank	Opti Tree stratum (dbh > with > 60% tree Wetlands located v area vetlands located v area tiparian areas along ev uare footage for ea tiparian Area and S % Riparian Area Score > % Riparian Area Score > % Riparian Area Score > % Riparian Area Score > % Riparian Area Score >	mal a inches) present, canopy cover, within the riparian as. 5 ach stream bank ach by measuring Score for each rip 100% 0.85 95% 1.5 aried substrate sizes. mal re typically present	Con Subo High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Ca or estimating lenge arian category in 5% 0.85 zees, water velocity Stable habitat ele present in 30-509 are adequate fo	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Cono gth and width. Ca the blocks below.	gory Marg Marg High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85 dition Scores using louded and leafy debri louded and leafy debri al Category Marg Stable habitat ele present in 10-30% are adequate fo	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory Low 0.75 g the descriptors. ided for you	P High Poor: Lawns mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetatec non-maintained area, recently seeded and stabilized, or othet comparable condition. High 0.6 Ensure of % Blocks of Blocks of P Habitat element lacking or are typi	Coor Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lost, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100 100% 100% ess; shade; under	NOTES>> CI= (Sum % RA * Sc Rt Bank CI > Lt Bank CI > cut banks; root ma	0.85 1.47 Is; SAV;	


Reach R3-R4 File: C:\Users\dan.weidenhof\Documents\Documents\VA Stream Sampling\0 QAQC SUBMITTALS\QAQC working 2nd submittal\Needs LP\S-G23_20210915KEH\9. S-G23_USM_MVP_20210915KEH.xlsx

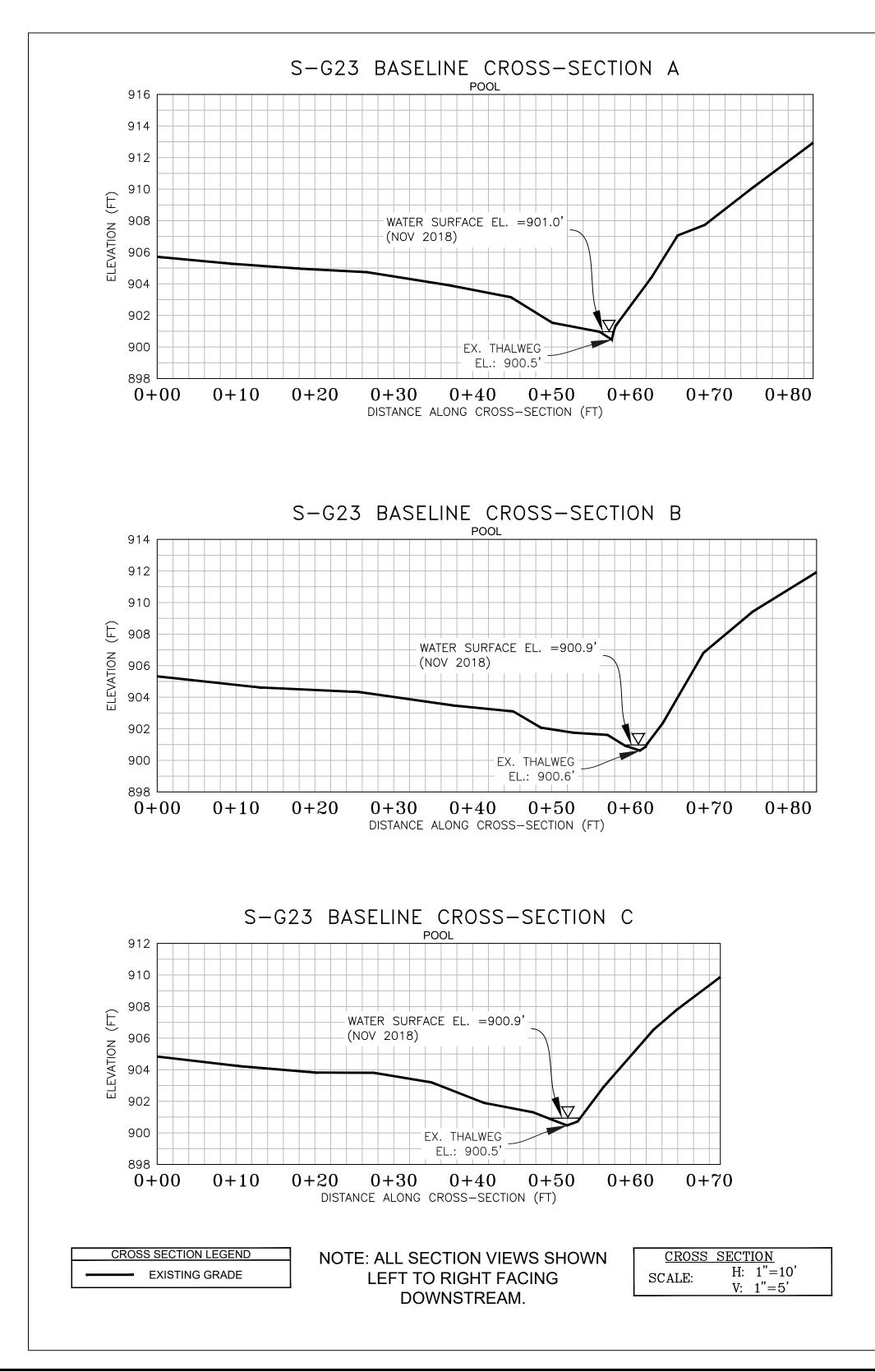

Project #	Project Name (App	Locality	Cowardin Class.	HUC	Date	SAR #	Impact length	Impact Factor		
22865.06	Mountain Valley Pipeline Valley Pipeline, L	•	Franklin County	R3 or R4	03010101	9/3/21	S-G23	42	1	
. CHANNE	LALTERATION: Stream cross	ings, riprap, concr			raightening of cha	annel, channelizat	ion, embankments	, spoil piles, const	rictions, livestock	
			Conditiona			-		NOTES>>		
	Negligible	Mir	nor	Mode	erate	Sev	vere			
Channel Alteration	Channelization, dredging, alteration, or hardening absent. Stream has an unaltered pattern or has naturalized.	of the channel alterations listed in the parameter guidelines.	the channel alterations listed in the parameter guidelines.	of the channel alterations listed in the parameter guidelines. If stream has been channelized, normal stable stream meander pattern has not recovered	the parameter guidelines. If stream has been channelized, normal stable stream meander pattern has not recovered	by any of the chan in the parameter g 80% of banks sh riprap, o	of reach is disrupted nel alterations listed guidelines AND/OR iored with gabion, r cement.		_	
Scores	1.5	1.3	1.1	0.9	0.7	0	.5			1
	REACH C	ONDITION I	NDEX and S	STREAM CO	NDITION UN	IITS FOR TH	IIS REACH			
IOTE: The Cls a	and RCI should be rounded to 2 dec	imal places. The C	CR should be rour	nded to a whole n	umber.		THE REACH	CONDITION INI	DEX (RCI) >>	0.
						RCI= (Sum of	all Cl's)/5, exce	pt if stream is ep	ohemeral RCI = (I	Ripari
							COMPENSAT	ION REQUIREM	/IENT (CR) >>	4
							CR = RC	X L X IF		

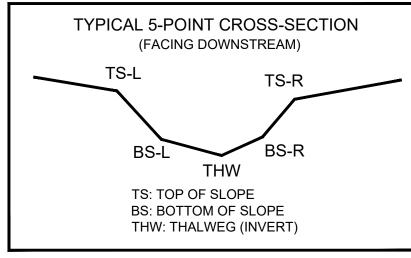
DESCRIBE PROPOSED IMPACT:

PROVIDED UNDER SEPARATE COVER

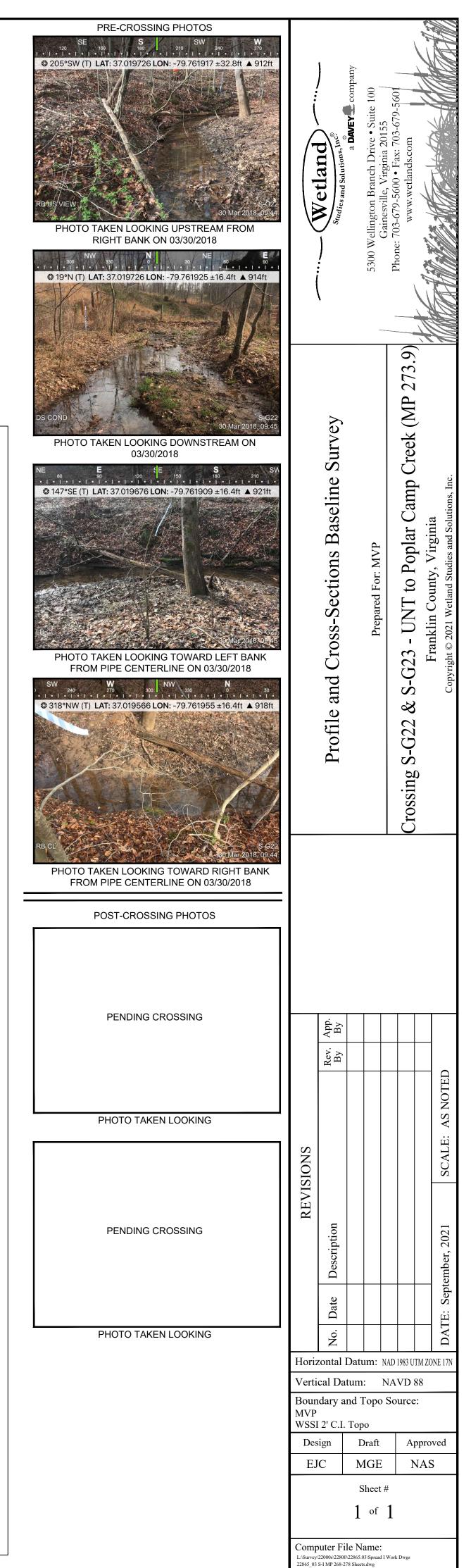
SURVEY NOTES:

1. This map has been oriented to NAD 1983 UTM ZONE 17N, and vertically to The North American Vertical Datum of 1988 (NAVD 88), using a Real Time Network (RTN) GPS. Field locations were completed on November 29, 2018.


2. Monumentation, including traverse stations and fly points, shown on this drawing should be used to orient any future boundary, topographic, or location survey.


3. Easement lines shown on plan view were provided by Mountain Valley Pipeline (MVP).

4. WSSI Contour Interval = 2.0'. Contours within the channel were interpolated using stream channel breaklines (i.e. top of slopes, toe of slopes, thalweg) and cross-sectional points. Contours outside the channel were interpolated using cross-sectional spot shots.


5. All section views shown are left to right facing downstream.

6. Cross-section B shot at location of pipe centerline (based on best professional judgement).

CL STAKEOUT POINTS: S-G23 CROSS SECTION B (PIPE CL)									
	PR	E-CROSSING		POST-CF	ROSSING				
PT. LOC.	NORTHING	THING EASTING		VERT.	HORZ.				
P1. LUC.	NORTHING	EASTING	ELEV	DIFF.	DIFF.				
TS-L	13444086.65	2001732.40	903.10						
BS-L	13444076.79	2001739.12	901.61						
THW	13444073.23	2001741.19	900.62						
BS-R	13444072.54	2001741.47	900.86						
TS-R	13444066.51	2001745.67	906.82						

