Baseline Assessment – Stream Attributes

Reach S-G3 (Timber Mat Crossing) Perennial Spread I Pittsylvania County, Virginia

Data	Included
Photos	✓
SWVM Form	✓
FCI Calculator and HGM Form	N/A – Perennial stream (not shadeable, slope less than 4%)
RBP Physical Characteristics Form	✓
Water Quality Data	✓
RBP Habitat Form	✓
RBP Benthic Form	✓
Benthic Identification Sheet	✓
Wolman Pebble Count	✓
RiverMorph Data Sheet	✓
USM Form (Virginia Only)	✓
Longitudinal Profile and Cross Sections	√

Photo Type: DS VIEW Location, Orientation, Photographer Initials: Downstream view of ROW looking NE, CB/BH

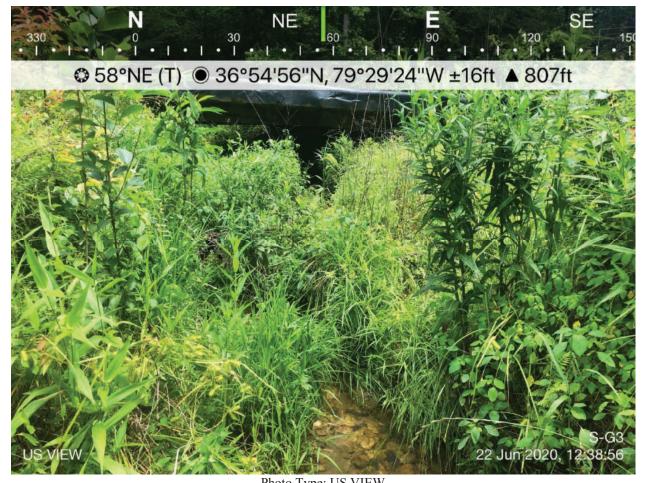


Photo Type: US VIEW Location, Orientation, Photographer Initials: Upstream view of ROW looking SW, CB/BH

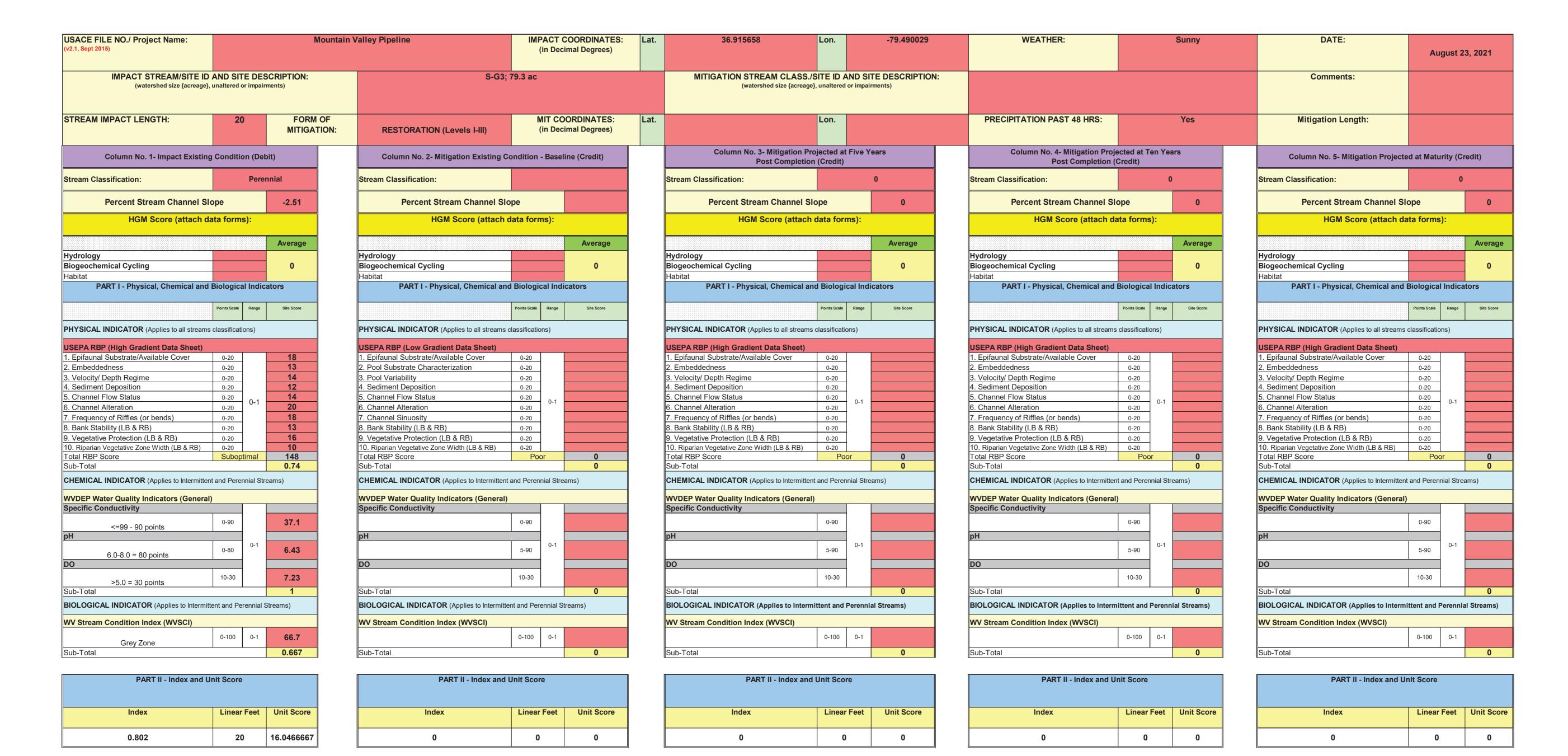

Location, Orientation, Photographer Initials: Standing on LB looking at RB along pipe centerline looking N, CB/BH

Photo Type: RB CL Location, Orientation, Photographer Initials: Standing on RB looking at LB along pipe centerline looking S, CB/BH

Photo Type: DS COND Location, Orientation, Photographer Initials: Downstream conditions outside of ROW looking NE, CB/BH

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

STREAM NAME S-G3		LOCATION Pittsylvania Co	unty
STATION # F	RIVERMILE	STREAM CLASS Perennial	
LAT 36.915658 L	ONG79.490029	RIVER BASIN Upper Roan	oke
STORET#		AGENCY VADEQ	
INVESTIGATORS CB BI	+		
FORM COMPLETED BY	ВН	DATE 8/23/2021 TIME 1030	REASON FOR SURVEY Baseline Assessment
WEATHER CONDITIONS	rain (shower %	(heavy rain) (steady rain)	Has there been a heavy rain in the last 7 days? Yes No Air Temperature C Other
SITE LOCATION/MAP	Draw a map of the sit	te and indicate the areas sampl	ed (or attach a photograph)
		5-63	Pipe CL
	LIA	Timber	
STREAM CHARACTERIZATION	Stream Subsystem Perennial Into Stream Origin Glacial Non-glacial montand Swamn and bog	☐Spring-fed	Stream Type ☐Coldwater

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

WATERS FEATURI		Fores	Pasture Industria Ultural ✓ Other R	rcial al	Local Watershed NPS No evidence ✓ Son Obvious sources Local Watershed Erosi None ✓ Moderate	ne potential sources
RIPARIA VEGETA (18 meter	TION	Trees		hrubs	minant species present He	rbaceous
INSTREA FEATURI		Estimat Samplin Area in Estimat	red Stream Depth 02 Velocity 0.3 m	m m² km²	Canopy Cover ☐ Partly open	
LARGE V DEBRIS	VOODY	LWD Density	m²	n²/km² (LWD / 1	reach area)	
AQUATIC VEGETA		✓ Roote Floati	e the dominant type and demergent RAgae RAturn species present Unknow of the reach with aquat	ooted submerge tached Algae	nt Rooted floating	Free floating
WATER (QUALITY	Specific Dissolve pH 643 D Turbidi				Chemical Other Globs Flecks red
SEDIMEN SUBSTRA		Odors Norm Chem Other Oils	ical Anaerobic	Petroleum None	— Εροking at stones whic are the undersides blac	☐Paper fiber ☐Sand ☐Other ☐ Sand h are not deeply embedded, k in color?
INC	ORGANIC SUBS (should a		COMPONENTS 00%)		ORGANIC SUBSTRATE C (does not necessarily add	
Substrate Type	Diamete	er	% Composition in Sampling Reach	Substrate Type	Characteristic	% Composition in Sampling Area
Bedrock Boulder	> 256 mm (10")			Detritus	sticks, wood, coarse plant materials (CPOM)	15
Cobble Gravel	64-256 mm (2.5 2-64 mm (0.1"-2		8 55	Muck-Mud	black, very fine organic (FPOM)	
Sand Silt Clay	0.06-2mm (gritty 0.004-0.06 mm < 0.004 mm (sli		22 15	Marl	grey, shell fragments	

HABITAT ASSESSMENT FIELD DATA SHEET - HG - USE ON ALL STREAMS (FRONT)

STREAM NAME S-G3	LOCATION Pittsylvania County
STATION # RIVERMILE	STREAM CLASS Perennial
LAT <u>36.915658</u> LONG <u>-79.490029</u>	RIVER BASIN Upper Roanoke
STORET#	AGENCY VADEQ
INVESTIGATORS CB BH	
FORM COMPLETED BY BH	DATE 8/23/2021 REASON FOR SURVEY Baseline Assessment

	Habitat		Condition	Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
	SCORE 18	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
n sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.
ted in	SCORE 13	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).
ıram	SCORE 14	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
P ₂	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
	SCORE 12	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
	SCORE 14	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

	Habitat		Condition	ı Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
	SCORE 20	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
ding reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.
amp	SCORE 18	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing dewastream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.
eva	SCORE 6	Left Bank 10 9	8 7 6	5 4 3	2 1 0
to be	SCORE 7	Right Bank 10 9	8 7 6	5 4 3	2 1 0
Parameters	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
	SCORE 8	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE 8	Right Bank 10 9	8 7 6	5 4 3	2 1 0
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.
	SCORE 5	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE 5	Right Bank 10 9	8 7 6	5 4 3	2 1 0

Total Score 148

BENTHIC MACROINVERTEBRATE FIELD DATA SHEET

STREAM NAME S-G	20										/						
STATION #	R	IVE	RMI	LE_		STREAM (CLASS F	ere	nial								
LAT <u>36.915658</u>	_ L(ONC	-79.	490029)	RIVER BA	SIN Upp	er J	ame	s							
STORET#						AGENCY \	VADEQ										
INVESTIGATORS K	ВТС									Ι	TO.	NUMBER					
FORM COMPLETED) BY	K	В			DATE _	/2021 30 PM			F	REAS	SON FOR SURVEY E	aseli	ne /	\sse	ess,e	ent
HABITAT TYPES		Cob	ble	-	%	tage of each habitat	ŬV	esen eget	ated !			%	%				
SAMPLE	G	ear ı	used		D-fr	ame 🗸 kick-net		П о	ther								
COLLECTION	ш	0.887 83	uono.	tho c	amn	oles collected?	✓wadin	~	П	from	ı ban	k 🛮 from bo	- -				
								_					11				
	\checkmark	Cob	ble 4			r of jabs/kicks taker Snags phytes	\square V	hab egeta O	ated :	Banl	• cs	Sand)					
GENERAL		l/i/	oko	. d	nne	in riffle hah	itat o	rav	/fic	hr	om	loved from sa	mnl	_			
COMMENTS	4	KI	UNS	u	או וכ	in mile mad	ııaı, c	ıay	/113	111	CII	ioved iloili sa	прі	ᠸ.			
QUALITATIVE I												2.41					
Indicate estimated Dominant Periphyton	d abu				0			Slir	nes			ommon, 3= Abun	0	1	2	3 3	
Indicate estimated Dominant	d abu				0 0	1 2 3 4		Slir	nes croi				0	1	2 2		4
Periphyton Filamentous Algae Macrophytes FIELD OBSERVA Indicate estimated	d abu	ONS	S OI	F M.	0 0 0 0 ACI $0 = 1$	1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 ROBENTHOS	erved,	Slir Ma Fisl	nes eroin	nvei	tebr	ates	0 0 0	1 1 1	2 2 2	3	4
Periphyton Filamentous Algae Macrophytes FIELD OBSERVA Indicate estimated	ATI(d abu	ONS und	S OI ance	F M. 3	0 0 0 0 ACI 0 orga	1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 ROBENTHOS Absent/Not Obseranisms), 3= Abur	erved, and and (x	Slin Ma Fisl 1 = 1	mes croin	nver e (1 anis	-3 or ms)	rganisms), 2 = Co , 4 = Dominant (>	0 0 0 0 mmo 50 o	1 1 1 m (3	2 2 2 2 -9 nism	3 3 3	4
Periphyton Filamentous Algae Macrophytes FIELD OBSERVA Indicate estimated Porifera Hydrozoa	AATIO O O	ONS Inda	2 2	3 3	0 0 0 0 ACI 0 0 4 4	1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 ROBENTHOS Absent/Not Obseanisms), 3= Abur Anisoptera Zygoptera	erved, and ant (x	Slin Ma Fisl 1 = 1 >10	Rarcorgs	e (1 anis	-3 or ms)	rganisms), 2 = Co , 4 = Dominant (> Chironomidae Ephemeroptera	0 0 0 0 mmo 50 o	1 1 1 1 m (3 rgan	2 2 2 -9 nism	3 3 3 3	4 4 4
Periphyton Filamentous Algae Macrophytes FIELD OBSERVA Indicate estimated Porifera Hydrozoa Platyhelminthes	AATIOO O O O	DNS 1 1 1	S OI ance	3 3 3 3	0 0 0 0 ACI 0 = corga	1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 ROBENTHOS Absent/Not Obse anisms), 3= Abur Anisoptera Zygoptera Hemiptera	erved, and ant (and ant (and ant (and ant (and ant (and and and and and and and and and and	Slin Ma Fisl 1 = 1 1 1 1	Rarcorga	3 3 3	-3 or ms)	rganisms), 2 = Co, 4 = Dominant (> Chironomidae Ephemeroptera Trichoptera	0 0 0 0 50 o	1 1 1 m (3 rgan	2 2 2 2 nism	3 3 3 3 3	4 4 4 4
Periphyton Filamentous Algae Macrophytes FIELD OBSERVA Indicate estimated Porifera Hydrozoa Platyhelminthes Turbellaria	O O O	DNS ind:	2 2 2 2	3 3 3 3	0 0 0 0 0 0 0 0 0 4 4 4 4 4	1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 ROBENTHOS Absent/Not Obse anisms), 3= Abur Anisoptera Zygoptera Hemiptera Coleoptera	erved, and ant (and ant (and ant (and ant (and ant (and and (and and and and and and and and and and	Slir Ma Fisl 1 = 1 1 1 1 1 1	Rare orga	3 3 3 3	-3 on ms)	rganisms), 2 = Co , 4 = Dominant (> Chironomidae Ephemeroptera	0 0 0 0 mmo 50 o	1 1 1 1 m (3 rgan	2 2 2 -9 nism	3 3 3 3	4 4 4
Periphyton Filamentous Algae Macrophytes FIELD OBSERVA Indicate estimated Porifera Hydrozoa Platyhelminthes Turbellaria Hirudinea	0 0 0 0	DNS ind: 1 1 1 1 1	2 2 2 2 2 2	3 3 3 3 3	0 0 0 0 ACIO = orga 4 4 4 4 4	1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 ROBENTHOS Absent/Not Observations, 3= Abur Anisoptera Zygoptera Hemiptera Coleoptera Lepidoptera	0 0 0 0 0	Slin Ma Fisl 1 = 1 1 1 1 1 1	Rarcorgs	3 3 3 3 3	-3 or ms)	rganisms), 2 = Co, 4 = Dominant (> Chironomidae Ephemeroptera Trichoptera	0 0 0 0 50 o	1 1 1 m (3 rgan	2 2 2 2 nism	3 3 3 3 3	4 4 4 4
Periphyton Filamentous Algae Macrophytes FIELD OBSERVA Indicate estimated Porifera Hydrozoa Platyhelminthes Turbellaria Hirudinea Oligochaeta	0 0 0 0 0	DNS ind: 1 1 1 1 1 1	2 2 2 2 2 2 2	3 3 3 3 3 3	0 0 0 0 ACI 0 0 0 4 4 4 4 4 4 4	1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 COBENTHOS Absent/Not Observations, 3= Abur Anisoptera Zygoptera Hemiptera Coleoptera Lepidoptera Sialidae	0 0 0 0 0	Slim Ma Fisl 1 = 1 1 1 1 1 1 1	Rare 2 2 2 2 2 2 2 2	3 3 3 3 3 3	-3 on ms) 4 4 4 4 4 4	rganisms), 2 = Co, 4 = Dominant (> Chironomidae Ephemeroptera Trichoptera	0 0 0 0 50 o	1 1 1 m (3 rgan	2 2 2 2 nism	3 3 3 3 3	4 4 4 4
Periphyton Filamentous Algae Macrophytes FIELD OBSERVA Indicate estimated Porifera Hydrozoa Platyhelminthes Turbellaria Hirudinea Oligochaeta Isopoda	0 0 0 0 0 0	DNS 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 2	3 3 3 3 3 3 3	0 0 0 0 ACI 0 e orga 4 4 4 4 4 4 4 4 4 4	1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 ROBENTHOS Absent/Not Obseanisms), 3= Abur Anisoptera Zygoptera Hemiptera Coleoptera Lepidoptera Sialidae Corydalidae	0 0 0 0 0 0	Slin Ma Fisl 1 = 1 1 1 1 1 1 1 1 1	Rarcorga 2 2 2 2 2 2 2 2	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	-3 on ms) 4 4 4 4 4 4 4	rganisms), 2 = Co, 4 = Dominant (> Chironomidae Ephemeroptera Trichoptera	0 0 0 0 50 o	1 1 1 m (3 rgan	2 2 2 2 nism	3 3 3 3 3	4 4 4 4
Periphyton Filamentous Algae Macrophytes FIELD OBSERVA Indicate estimated Porifera Hydrozoa Platyhelminthes Turbellaria Hirudinea Oligochaeta Isopoda Amphipoda	0 0 0 0 0 0	DNS 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 2 2	3 3 3 3 3 3 3 3	0 0 0 0 ACI a b c o r g s d d d d d d d d d d	1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 ROBENTHOS Absent/Not Observations, 3= Abura Anisoptera Zygoptera Hemiptera Coleoptera Lepidoptera Sialidae Corydalidae Tipulidae	0 0 0 0 0 0 0	Slin Ma Fisl 1 = 1 1 1 1 1 1 1 1 1 1 1	Rarrorga 2 2 2 2 2 2 2 2 2 2	3 3 3 3 3 3 3	-3 or ms) 4 4 4 4 4 4 4 4	rganisms), 2 = Co, 4 = Dominant (> Chironomidae Ephemeroptera Trichoptera	0 0 0 0 50 o	1 1 1 m (3 rgan	2 2 2 2 nism	3 3 3 3 3	4 4 4 4
Periphyton Filamentous Algae Macrophytes FIELD OBSERVA Indicate estimated Porifera Hydrozoa Platyhelminthes Turbellaria Hirudinea Oligochaeta Isopoda Amphipoda Decapoda	0 0 0 0 0 0 0	DNS 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 2 2 2 2	3 3 3 3 3 3 3 3 3	0 0 0 0 0 ACI 0 = 0 orga	1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 ROBENTHOS Absent/Not Observations, 3= Abura Anisoptera Zygoptera Hemiptera Coleoptera Lepidoptera Sialidae Corydalidae Tipulidae Empididae	0 0 0 0 0 0 0	Slin Ma Fisl 1 = 1 1 1 1 1 1 1 1 1	mes croin 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	-3 or ms) 4 4 4 4 4 4 4 4 4	rganisms), 2 = Co, 4 = Dominant (> Chironomidae Ephemeroptera Trichoptera	0 0 0 0 50 o	1 1 1 m (3 rgan	2 2 2 2 nism	3 3 3 3 3	4 4 4
Periphyton Filamentous Algae Macrophytes FIELD OBSERVA Indicate estimated Porifera Hydrozoa Platyhelminthes Turbellaria Hirudinea Oligochaeta Isopoda Amphipoda	0 0 0 0 0 0	DNS ind: 1	2 2 2 2 2 2 2 2 2	3 3 3 3 3 3 3 3	0 0 0 0 ACI a b c o r g s d d d d d d d d d d	1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 ROBENTHOS Absent/Not Observations, 3= Abura Anisoptera Zygoptera Hemiptera Coleoptera Lepidoptera Sialidae Corydalidae Tipulidae	0 0 0 0 0 0 0	Slin Ma Fisl 1 = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Rarrorga 2 2 2 2 2 2 2 2 2 2	3 3 3 3 3 3 3	-3 or ms) 4 4 4 4 4 4 4 4	rganisms), 2 = Co, 4 = Dominant (> Chironomidae Ephemeroptera Trichoptera	0 0 0 0 50 o	1 1 1 m (3 rgan	2 2 2 2 nism	3 3 3 3 3	4 4 4 4

Mountain Valley Pipeline Data are not adjusted for subsampling

	Sample ID	
	Collection Date	09-09-2021
ORDER	GENUS/SPECIES	COUNT
Ephemeroptera	Diphetor hageni	1
Ephemeroptera	Leptophlebiidae	5
	Maccaffertium sp.	6
Ephemeroptera		1
	Eccoptura xanthenes	2
	Leuctra sp.	10
-	Cheumatopsyche sp.	2
•	Chimarra sp.	1
	Diplectrona sp.	44
	Hydropsyche sp. Calopterygidae	2 9
	Anchytarsus bicolor	7
	Ectopria sp.	7
	Helichus sp.	
	Oulimnius sp.	2 4
Coleoptera	Stenelmis sp.	7
Diptera-Chironomidae	Cladotanytarsus sp.	1
Diptera-Chironomidae		6
Diptera-Chironomidae	Cryptochironomus sp.	1
Diptera-Chironomidae		1
Diptera-Chironomidae		1
Diptera-Chironomidae		1
Diptera-Chironomidae	·	3
Diptera-Chironomidae	•	1 8
Diptera-Chironomidae	'	8
Diptera-Chironomidae	·	1
Diptera-Chironomidae	* '	31
Diptera-Chironomidae	,	4
· ·	Thienemannimyia gr. sp.	5
Diptera-Chironomidae		1
-	Ceratopogoninae	5
Diptera	Dicranota sp.	7
Diptera	Dixa sp.	3
Diptera	Simulium sp.	1
Diptera	Tabanidae	2
Annelida	Lumbriculidae	1
Annelida	Naididae	2
Annelida	tubificoid Naididae w/o cap setae	1
Bivalvia	Sphaeriidae	3
Gastropoda	Pleuroceridae	3 2
Other Organisms		1
Other Organisms		3
	TOTAL	200

Mountain Valley Pipeline WV SCI Metrics

Sample ID Collection Date	
WVSCI Metric Values Total taxa EPT taxa EPT w Chironomidae 2 Dominant HBI	24 7 37.0 32.5 56.5 5.05
WVSCI Metric Scores Total taxa EPT taxa % EPT % Chironomidae % 2 Dominant HBI	114.3 53.8 40.3 68.2 68.0 69.7
WVSCI Metric Scores Total taxa EPT taxa % EPT % Chironomidae % 2 Dominant HBI	100.0 53.8 40.3 68.2 68.0 69.7
WVSCI Total Score	66.7

WVSCI Thresholds

Unimpaired = > 68.00 Gray Zone = 60.61 to 68.00 Impaired = <60.61

WOLMAN PEBBLE COUNT FORM

County: Pittsylvania Stream ID: S-G3

Stream Name: UNT to Harpen Creek

HUC Code: 03010101 Basin: Upper Roanoke

Survey Date: 8/23/2021 Surveyors: CB BH Type: Representative

			LE COUNT				
Inches	PARTICLE	Millimeters		Particle Count	Total #	Item %	% Cur
	Silt/Clay	< .062	S/C	^	15	15.00	15.00
	Very Fine	.062125		^	10	10.00	25.00
	Fine	.12525	1	^	4	4.00	29.00
	Medium	.255	SAND	•		0.00	29.00
	Coarse	.50-1.0	1	^	3	3.00	32.00
.0408	Very Coarse	1.0-2	1	A	5	5.00	37.00
.0816	Very Fine	2 -4	1	^	14	14.00	51.00
.1622	Fine	4 -5.7	1	^	3	3.00	54.00
.2231	Fine	5.7 - 8	1	*	9	9.00	63.00
.3144	Medium	8 -11.3	1	^	8	8.00	71.00
.4463	Medium	11.3 - 16	GRAVEL	A	5	5.00	76.00
.6389	Coarse	16 -22.6	1	^	3	3.00	79.00
.89 - 1.26	Coarse	22.6 - 32	1	A	2	2.00	81.00
.26 - 1.77	Vry Coarse	32 - 45	1	^	6	6.00	87.00
1.77 -2.5	Vry Coarse	45 - 64	1	^	5	5.00	92.00
2.5 - 3.5	Small	64 - 90		^	2	2.00	94.00
3.5 - 5.0	Small	90 - 128	1	A	1	1.00	95.00
5.0 - 7.1	Large	128 - 180	COBBLE	^	5	5.00	100.0
7.1 - 10.1	Large	180 - 256	1	^		0.00	100.0
0.1 - 14.3	Small	256 - 362		^		0.00	100.0
14.3 - 20	Small	362 - 512	1	^		0.00	100.0
20 - 40	Medium	512 - 1024	BOULDER	<u> </u>		0.00	100.0
40 - 80	Large	1024 -2048	1	A		0.00	100.0
80 - 160	Vry Large	2048 -4096	1	^		0.00	100.0
	Bedrock		BDRK	<u> </u>		0.00	100.0
			+	Totals:	100		

RIVERMORPH PARTICLE SUMMARY

River Name: UNT to Harpen Creek Reach Name: S-G3 Representative 08/23/2021

Size (mm)	TOT #	ITEM %	CUM %
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	15 10 4 0 3 5 14 3 9 8 5 3 2 6 5 2 1 5 0 0 0 0	15.00 10.00 4.00 0.00 3.00 5.00 14.00 3.00 9.00 8.00 5.00 3.00 2.00 6.00 5.00 2.00 1.00 5.00 0.00 0.00 0.00 0.00 0.00	15.00 25.00 29.00 29.00 32.00 37.00 51.00 54.00 63.00 71.00 76.00 79.00 81.00 87.00 92.00 94.00 95.00 100.00 100.00 100.00 100.00 100.00
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Cobble (%) Boulder (%) Bedrock (%)	0.07 1.6 3.86 38.5 128 180 15 22 55 8		

Total Particles = 100.

Stream Assessment Form (Form 1) Unified Stream Methodology for use in Virginia For use in wadeable channels classified as intermittent or perennial Cowardin **Impact Impact** Project # t Name (Applicant) Locality HUC Date SAR# Class Length **Factor** Mountain Valley Pipeline (Mountain 22865.06 Pittsylvania R4 03010101 8/23/21 S-G3 20 1 Valley Pipeline, LLC) Stream Name and Information Name(s) of Evaluator(s) Stream Map **UNT to Harpen Creek** 82 **CB BH** 1. Channel Condition: Assess the cross-section of the stream and prevailing condition (erosion, aggradation) Optimal Suboptimal Marginal Poor Severe Very little incision or active erosion; 80-Slightly incised, few areas of active Often incised, but less than Severe or Overwidened/incised. Vertically / Deeply incised (or excavated) 100% stable banks. Vegetative surface protection or natural rock, prominent (80-100%). AND/OR Stable point bars oor. Banks more stable than Severe of oor due to lower bank slopes. Erosion may be present on 40-60% of sion or unprotected banks. Majority of banks are stable (60-80%). vertical/lateral instability. Severe sion, flow contained within the bank laterally unstable. Likely to wide Majority of both banks are ne Channel Vegetative protection or natural rock vertical. Erosion present on 60-80% of Streambed below average rooting depth Condition panks. Vegetative protection present or 20-40% of banks, and is insufficient to prevent erosion. AND/OR 60-80% of bankfull benches are present. Access to their original floodplain or fully prominent (60-80%) AND/OR Depositional features contribute to both banks. Vegetative protection on 40-60% of banks. Streambanks may be majority of banks vertical/undercut. Vegetative protection present on less developed wide bankfull benches. Midstability. The bankfull and low flow vertical or undercut. AND/OR than 20% of banks, is not preventing channel bars and transverse bars few. Transient sediment deposition covers channels are well defined. Stream like has access to bankfull benches,or new 40-60% Sediment may be temporary transient, contribute instability. the stream is covered by sediment. Sediment is temporary / transient in erosion. Obvious bank sloughing sent. Erosion/raw banks on 80-100% less than 10% of bottom developed floodplains along Deposition that contribute to stability nature, and contributing to instability AND/OR Aggrading channel. Greater portions of the reach. Transient diment covers 10-40% of the stream may be forming/present. AND/OR V-shaped channels have vegetative AND/OR V-shaped channels have vegetative protection is present on > than 80% of stream bed is covered by deposition, contributing to instability. bottom protection on > 40% of the banks and 40% of the banks and stable sediment Multiple thread channels and/or epositional features which contribute to stability. deposition is absent subterranean flow CI 2.4 2.00 Scores 3 1.6 1 NOTES>> Some erosion 2. RIPARIAN BUFFERS: Assess both bank's 100 foot riparian areas along the entire SAR. (rough measurements of length & width may be acceptable) **Conditional Category** NOTES>> Optimal Suboptimal Marginal Poor Low Marginal: Non-maintained, High Poor: Lawn mowed, and High Suboptimal Low Suboptimal Low Poor High Marginal dense herbaceous maintained areas Riparian areas with Riparian areas with Impervious surfaces, mine Non-maintained egetation, riparia nurseries: no-till ee stratum (dbh > ree stratum (dbh > eas lacking shrub ense herbaceou cropland; actively 3 inches) present 3 inches) present Tree stratum (dbh > 3 inches) present, vegetation with and tree stratum grazed pasture, spoil lands, Riparian with 30% to 60% with 30% to 60% either a shrub laye or a tree layer (dbl hay production, onds, open wate parsely vegetate non-maintained with > 60% tree canopy cover. denuded surfaces tree canopy cover and containing bot tree canopy cover and a maintained **Buffers** Wetlands located within the riparian row crops, active areas 3 inches) present If present, tree area, recently feed lots, trails, or herbaceous and inderstory. Recent cutover (dense with <30% tree stratum (dbh >3 seeded and other comparable shrub layers or a non-maintained canopy cover. inches) present, with <30% tree stabilized, or other conditions vegetation). comparable understory. canopy cover with maintained condition. understory. High Low High Low High Low 1.5 0.85 0.6 0.5 Scores 1.2 1.1 0.75 1. Delineate riparian areas along each stream bank into Condition Categories and Condition Scores using the descriptors Ensure the sums Determine square footage for each by measuring or estimating length and width. Calculators are provided for you below of % Riparian 3. Enter the % Riparian Area and Score for each riparian category in the blocks below Blocks equal 100 % Riparian Area> 100% 100% Right Bank 0.85 Score > CI= (Sum % RA * Scores*0.01)/2 % Riparian Area> 100% 100% Rt Bank CI > CI Left Bank 0.85 0.85 3. INSTREAM HABITAT: Varied substrate sizes, water velocity and depths; woody and leafy debris; stable substrate; low embededness; shade; undercut banks; root mats; SAV; riffle/pool complexes, stable features **Conditional Category** NOTES>> Instream Optimal Suboptimal Marginal Poor Habitat/ Stable habitat elements are typically Habitat elements listed above are Available Habitat elements are typically present i present in 30-50% of the reach and are esent in 10-30% of the reach and are lacking or are unstable. Habitat greater than 50% of the reach adequate for maintenance of adequate for maintenance of elements are typically present in less than 10% of the reach. Cover populations. populations Stream Gradient CI

Scores

1.5

1.2

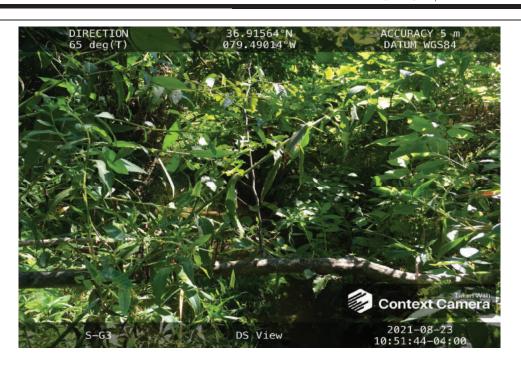
0.9

0.5

High / Low

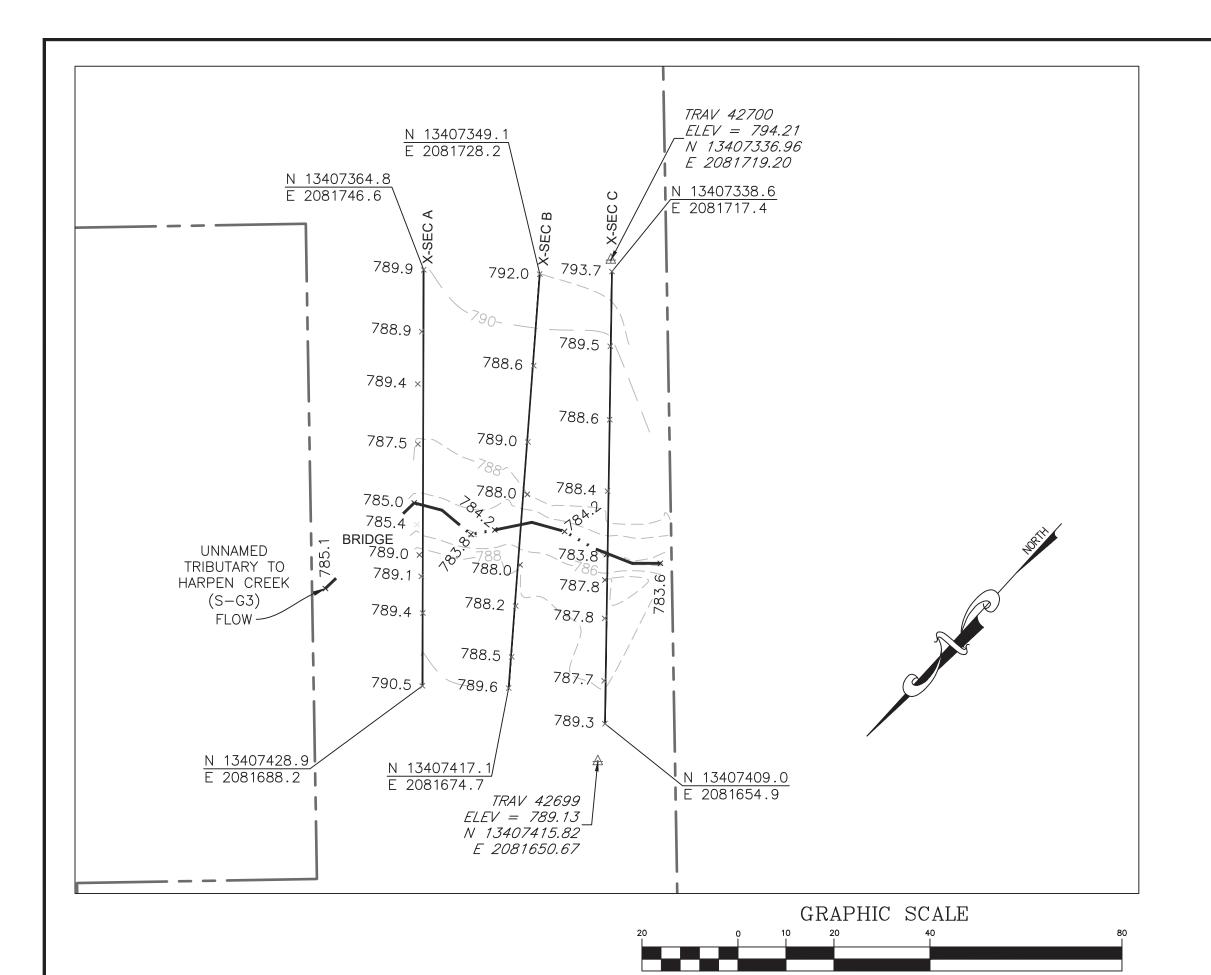
1 50

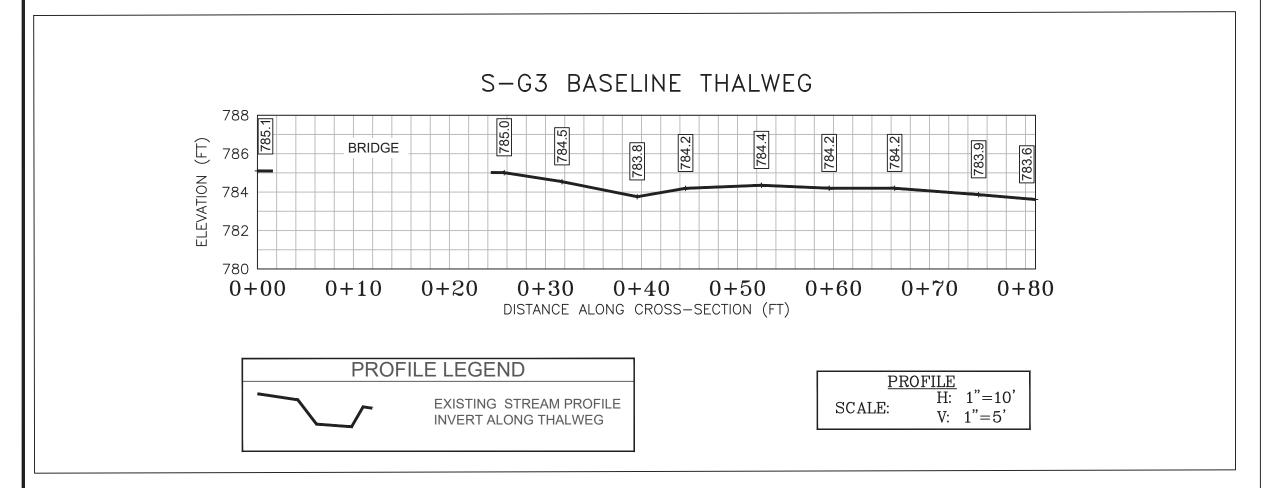
	S	tream li	mpact A	ssessn	nent For	m Page	e 2		
Project #	Project Name (App	Project Name (Applicant)		Cowardin Class.	нис	Date	SAR # / Data Point	Impact / SAR length	Impact Factor
22865.06	Mountain Valley Pipeline Valley Pipeline, I	•	Pittsylvania	R4	03010101	8/23/21	S-G3	20	1
. CHANNEL	. ALTERATION: Stream crossin	gs, riprap, concret			ghtening of channe	el, channelization			, livestock
	Negligible	Mi	nor	al Category Mod	erate	Se	vere	NOTES>>	
Channel Alteration	Channelization, dredging, alteration, or hardening absent. Stream has an unaltered pattern or has naturalized.	Less than 20% of the stream reach is disrupted by any of the channel alterations listed in the parameter guidelines.	20-40% of the stream reach is disrupted by any of the channel alterations listed in the parameter guidelines.	40 - 60% of reach is disrupted by any of the channel alterations listed in the parameter guidelines. If stream has been channelized, normal stable stream meander pattern has not recovered.		by any of the char in the parameter 80% of banks s	of reach is disrupted nnel alterations listed guidelines AND/OR hored with gabion, or cement.		
Scores	1.5	1.3	1.1	0.9	0.7	(0.5		
	REACH	CONDITION	INDEX and S	STREAM CO	NDITION UN	ITS FOR TH	IS REACH		

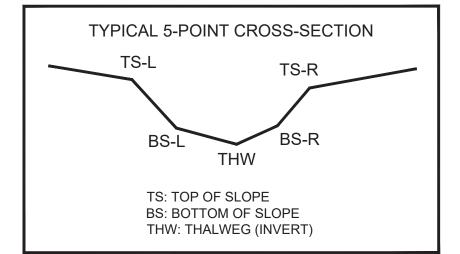

THE REACH CONDITION INDEX (RCI) >> 0.87

RCI= (Sum of all Cl's)/5, except if stream is ephemeral RCI = (Riparian Cl/2)

COMPENSATION REQUIREMENT (CR) >> 17


CR = RCI X L_I X IF


INSERT PHOTOS:



DESCRIBE PROPOSED IMPACT:

PROVIDED UNDER SEPARATE COVER

CL STAKEOUT POINTS: S-G3 CROSS SECTION B (PIPE CL)					
	PRE-CROSSING			POST-CROSSING	
PT. LOC.	NORTHING	EASTING	ELEV	VERT.	HORZ.
				DIFF.	DIFF.
TS-L	13407384.72	2081699.08	788.00		
BS-L	13407388.70	2081696.07	784.84		
THW	13407389.35	2081695.88	784.37		
BS-R	13407391.96	2081693.66	784.91		
TS-R	13407396.55	2081690.26	787.97		

(IN FEET) 1 inch = 20 ft.

LEGEND STUDY AREA (EASEMENT) EXISTING SURVEY-LOCATED THALWEG EXISTING SURVEY-LOCATED EDGE OF WATER (AS NECESSARY) EXISTING CONTOUR LINE (MAJOR) EXISTING CONTOUR LINE (MINOR) EXISTING SURVEYED GROUND SHOT ELEVATION 787.4 +BENCHMARK POINT (WSSI)

SURVEY NOTES:

- 1. This map has been oriented to NAD 1983 UTM ZONE 17N, and vertically to The North American Vertical Datum of 1988 (NAVD 88), using a Real Time Network (RTN) GPS. Field locations were completed on October 30, 2018.
- 2. Monumentation, including traverse stations and fly points, shown on this drawing should be used to orient any future boundary, topographic, or location survey.
- 3. Easement lines shown on plan view were provided by Mountain Valley Pipeline (MVP).
- 4. WSSI Contour Interval = 2.0'. Contours within the channel were interpolated using stream channel breaklines (i.e. top of slopes, toe of slopes, thalweg) and cross-sectional points. Contours outside the channel were interpolated using cross-sectional spot shots.
- 5. All section views shown are left to right facing downstream.
- 6. Cross-section B shot at location of pipe centerline (based on best professional judgement).

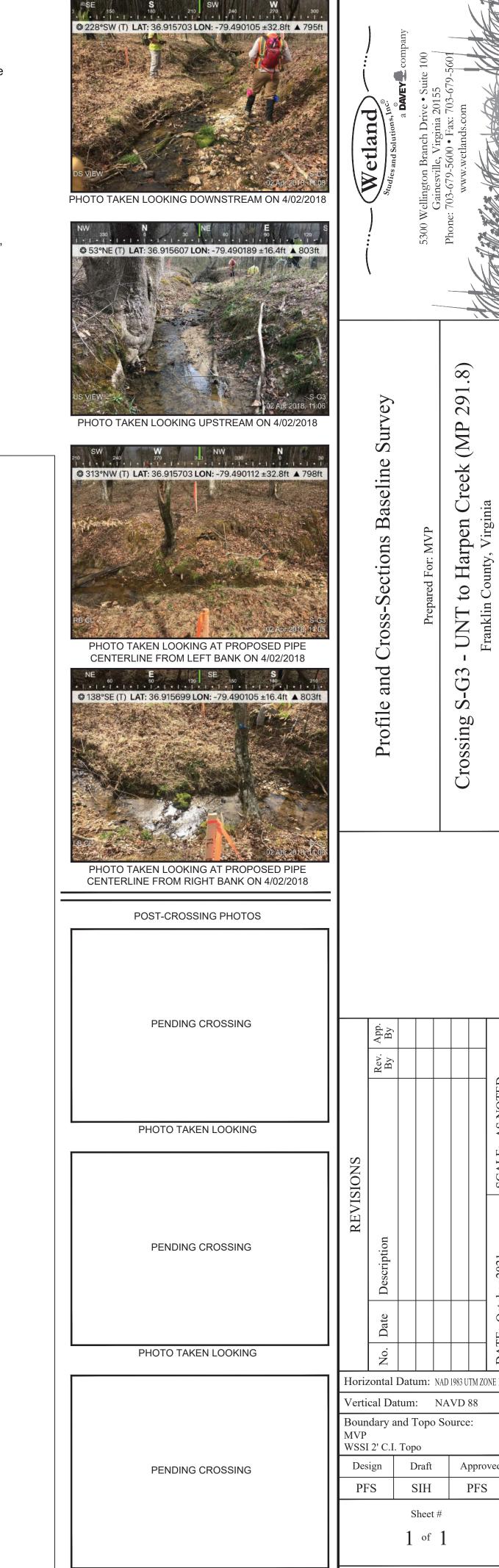
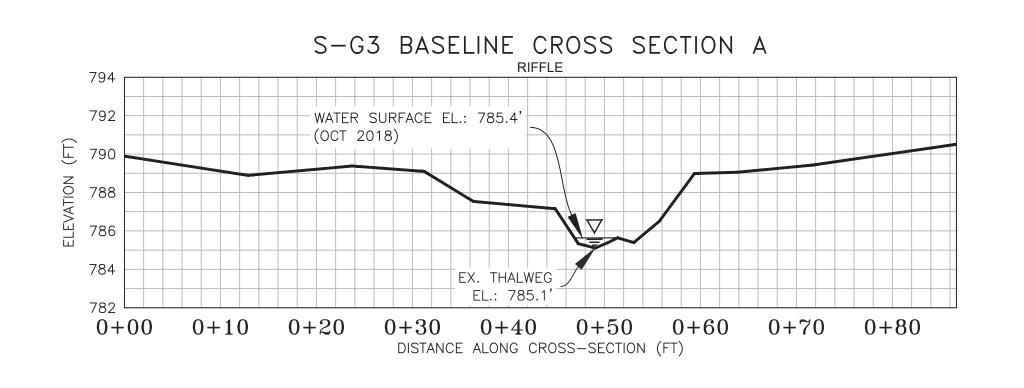
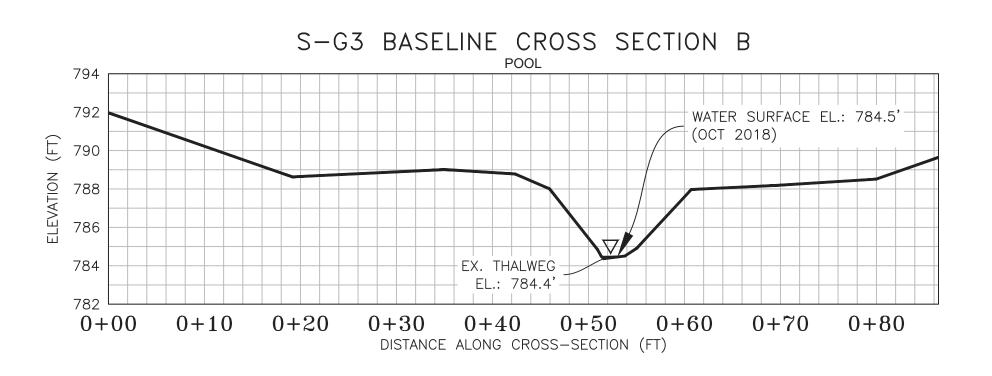


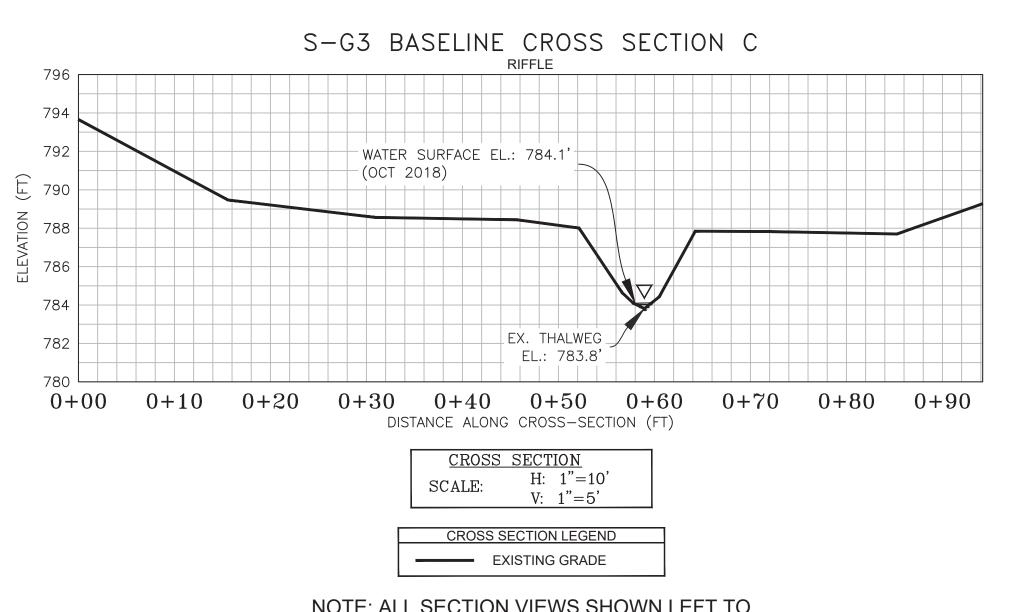
PHOTO TAKEN LOOKING

291.8)

Approved


PFS


Computer File Name:


2865_03 S-I MP 279-291 Sheets.dwg

:\Survey\22000s\22800\22865.03\Spread I Work Dwgs

PRE-CROSSING PHOTOS

NOTE: ALL SECTION VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.