Reach S-G9 (Pipeline ROW) Intermittent Spread I Pittsylvania County, Virginia

Data	Included
Photos	\checkmark
SWVM Form	\checkmark
FCI Calculator and HGM Form	N/A –slope less than 4%
RBP Physical Characteristics Form	\checkmark
Water Quality Data	\checkmark
RBP Habitat Form	\checkmark
RBP Benthic Form	\checkmark
Benthic Identification Sheet	N/A – Lack of habitat
Wolman Pebble Count	\checkmark
RiverMorph Data Sheet	\checkmark
USM Form (Virginia Only)	\checkmark
Longitudinal Profile and Cross Sections	\checkmark

Spread I

Stream S-G9 (Pipeline Row) Pittsylvania County

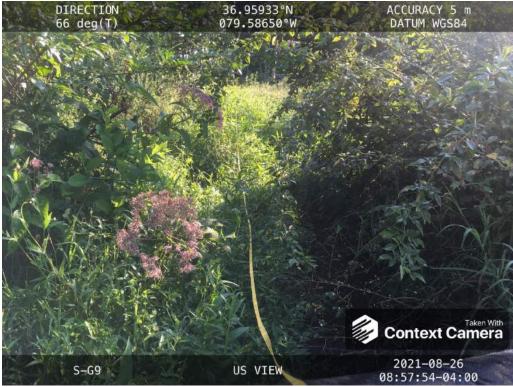


Photo Type: US VIEW

Location, Orientation, Photographer Initials: Downstream at ROW/LOD looking NE upstream, BH

Photo Type: DS COND Location, Orientation, Photographer Initials: Downstream at ROW/LOD looking SW downstream, BH

DEQ Permit #21-0416

Stream S-G9 (Pipeline Row) Pittsylvania County

Photo Type: LB CL

Location, Orientation, Photographer Initials: On thalweg at pipe centerline looking NW at right streambank, BH

Photo Type: RB CL Location, Orientation, Photographer Initials: On thalweg at pipe centerline looking SE at left streambank, BH

DEQ Permit #21-0416

Spread I

Stream S-G9 (Pipeline Row) Pittsylvania County

Photo Type: US COND Location, Orientation, Photographer Initials: Upstream at ROW/LOD looking NE upstream, BH

Photo Type: DS VIEW Location, Orientation, Photographer Initials: Upstream at ROW/LOD looking SW downstream, BH

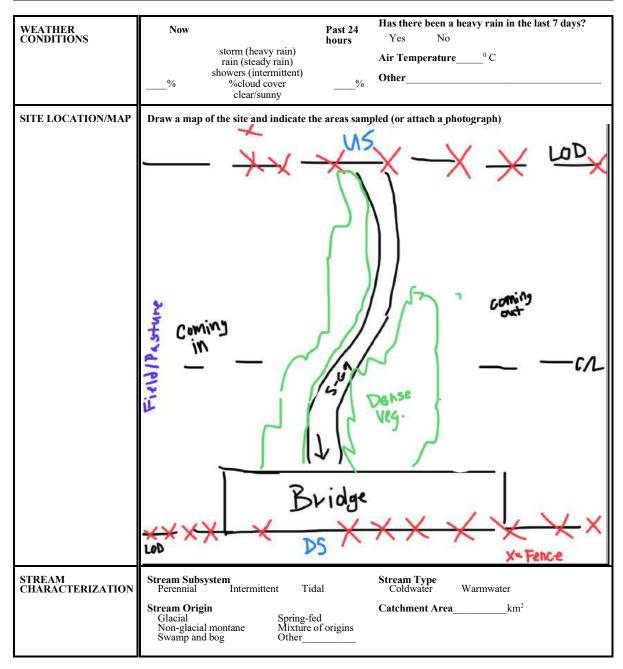
DEQ Permit #21-0416

West Virginia Stream and Wetland Valuation Metric (SWVM) Version 2.1, September 2017

JSACE FILE NO./ Project Name: v2.1, Sept 2015)		Mountain	Valley Pipeline		COORDINATES: cimal Degrees)	Lat.	36.959361	Lon.	-79.586437	WEATHER:		Sı
IMPACT STREAM/SITE ID , (watershed size {acreage}, u			S-G9 /	78.14 ac			MITIGATION STREAM CLASS (watershed size {acrea					
STREAM IMPACT LENGTH:	79	FORM OF MITIGATION:	RESTORATION (Levels I-III)		DORDINATES: cimal Degrees)	Lat.		Lon.		PRECIPITATION PAST 48 HRS:		
Column No. 1- Impact Existing	Condition (Del	bit)	Column No. 2- Mitigation Existing C	ondition - Basel	line (Credit)		Column No. 3- Mitigation F Post Completi		Five Years	Column No. 4- Mitigation Proje Post Completion (ars
Stream Classification:	Intern	nittent	Stream Classification:				Stream Classification:		0	Stream Classification:	0	,
Percent Stream Channel Sic	ope	1.87%	Percent Stream Channel Si	оре			Percent Stream Channel	Slope	0	Percent Stream Channel SI	оре	
HGM Score (attach da	ata forms):		HGM Score (attach	data forms):			HGM Score (attac	h data form	ns):	HGM Score (attach da	ata forms):	
		Average			Average				Average			Π
łydrology			Hydrology				Hydrology			Hydrology		
Biogeochemical Cycling		0	Biogeochemical Cycling		0		Biogeochemical Cycling		0	Biogeochemical Cycling		
Habitat			Habitat				Habitat			Habitat		L
PART I - Physical, Chemical and I	Biological Indic	cators	PART I - Physical, Chemical ar	d Biological Indi	licators		PART I - Physical, Chemical	and Biologic	cal Indicators	PART I - Physical, Chemical and		ato
	Points Scale Range	Site Score		Points Scale Range	Site Score			Points Scale	Range Site Score		Points Scale Range	
PHYSICAL INDICATOR (Applies to all streams	classifications)		PHYSICAL INDICATOR (Applies to all streams	classifications)			PHYSICAL INDICATOR (Applies to all stream	ms classificatio	ons)	PHYSICAL INDICATOR (Applies to all streams	s classifications)	
JSEPA RBP (High Gradient Data Sheet)			USEPA RBP (Low Gradient Data Sheet)				USEPA RBP (High Gradient Data Sheet)			USEPA RBP (High Gradient Data Sheet)		
I. Epifaunal Substrate/Available Cover	0-20	8	1. Epifaunal Substrate/Available Cover	0-20			1. Epifaunal Substrate/Available Cover	0-20		1. Epifaunal Substrate/Available Cover	0-20	
2. Embeddedness 3. Velocity/ Depth Regime	0-20 0-20	7	2. Pool Substrate Characterization 3. Pool Variability	0-20 0-20			2. Embeddedness 3. Velocity/ Depth Regime	0-20		2. Embeddedness 3. Velocity/ Depth Regime	0-20 0-20	_
4. Sediment Deposition	0-20	12	4. Sediment Deposition	0-20			4. Sediment Deposition	0-20		4. Sediment Deposition	0-20	-
5. Channel Flow Status	0-20	18	5. Channel Flow Status	0-20			5. Channel Flow Status	0-20		5. Channel Flow Status	0-20	
6. Channel Alteration	0-20 0-1	16	6. Channel Alteration	0-20 0-1			6. Channel Alteration	0-20	0-1	6. Channel Alteration	0-20 0-1	ſ
7. Frequency of Riffles (or bends)	0-20	1	7. Channel Sinuosity	0-20			7. Frequency of Riffles (or bends)	0-20		7. Frequency of Riffles (or bends)	0-20	
3. Bank Stability (LB & RB)	0-20	18	8. Bank Stability (LB & RB)	0-20			8. Bank Stability (LB & RB)	0-20		8. Bank Stability (LB & RB)	0-20	ſ
Vegetative Protection (LB & RB)	0-20	12	9. Vegetative Protection (LB & RB)	0-20			9. Vegetative Protection (LB & RB)	0-20		Vegetative Protection (LB & RB)	0-20	
10. Riparian Vegetative Zone Width (LB & RB)	0-20	5	10. Riparian Vegetative Zone Width (LB & RB)	0-20			10. Riparian Vegetative Zone Width (LB & RB)	0-20		10. Riparian Vegetative Zone Width (LB & RB)	0-20	_
Fotal RBP Score	Marginal	99 0,495	Total RBP Score	Poor	0		Total RBP Score	Poo	or O	Total RBP Score	Poor	-
Sub-Total CHEMICAL INDICATOR (Applies to Intermitten	t and Perennial St		Sub-Total CHEMICAL INDICATOR (Applies to Intermitter	nt and Perennial Str			Sub-Total CHEMICAL INDICATOR (Applies to Intermit	tent and Peren	<u> </u>	Sub-Total CHEMICAL INDICATOR (Applies to Intermitter	nt and Perennial Sf	trea
NVDEP Water Quality Indicators (General) Specific Conductivity			WVDEP Water Quality Indicators (General Specific Conductivity	<u>) </u>			WVDEP Water Quality Indicators (Gener Specific Conductivity	al)		WVDEP Water Quality Indicators (General Specific Conductivity	<u>.)</u>	—
<=99 - 90 points	0-90	69.7	Specific Conductivity	0-90				0-90		Specific Conductivity	0-90	
oH			рН		0		pH			рН		
6.0-8.0 = 80 points	0-80	7		5-90 0-1				5-90	0-1		5-90 0-1	
50.40.54	10-30	4.08	DO	10-30			DO	10-30		DO	10-30	
<5.0 = 10 points Sub-Total		0.9	Sub-Total		0		Sub-Total		0	Sub-Total	<u> </u>	+
BIOLOGICAL INDICATOR (Applies to Intermitte	ent and Perennial	Streams)	BIOLOGICAL INDICATOR (Applies to Intermit	tent and Perennial	Streams)		BIOLOGICAL INDICATOR (Applies to Inter	rmittent and P	Perennial Streams)	BIOLOGICAL INDICATOR (Applies to Intern	nittent and Perenr	nial
WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)				WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)		
0	0-100 0-1			0-100 0-1				0-100	0-1		0-100 0-1	
Sub-Total		0	Sub-Total		0		Sub-Total		0	Sub-Total		
			n						n			_
PART II - Index and U	nit Score		PART II - Index and	Unit Score			PART II - Index ar	nd Unit Scor	e	PART II - Index and U	nit Score	
Index	Linear Feet	Unit Score	Index	Linear Feet	Unit Score		Index	Linear	Feet Unit Score	Index	Linear Feet	
												Ĩ

0.698

55.1025


y	DATE:								
		Au	gust 2	6, 2021					
	Comments:								
	Mitigation Length:								
	Column No. 5- Mitigation Project	ed at Matu	ırity (Cı	edit)					
	Stream Classification:		0						
	Percent Stream Channel Sl	оре		0					
	HGM Score (attach da	ata forms	s):						
rage				Average					
	Hydrology								
)	Biogeochemical Cycling			0					
	Habitat								
	PART I - Physical, Chemical and	Biologica	I Indica	tors					
Score		Points Scale	Range	Site Score					
	PHYSICAL INDICATOR (Applies to all streams classifications)								
	PHYSICAL INDICATOR (Applies to all streams	classificatio	ons)						
	USEPA RBP (High Gradient Data Sheet)	classificatio	ons)						
	USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover	0-20	ons)						
	USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover 2. Embeddedness	0-20 0-20	ons)						
	USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover 2. Embeddedness 3. Velocity/ Depth Regime	0-20 0-20 0-20	ons)						
	USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover 2. Embeddedness 3. Velocity/ Depth Regime 4. Sediment Deposition	0-20 0-20 0-20 0-20	ons)						
	USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover 2. Embeddedness 3. Velocity/ Depth Regime 4. Sediment Deposition 5. Channel Flow Status	0-20 0-20 0-20 0-20 0-20	ons)						
	USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover 2. Embeddedness 3. Velocity/ Depth Regime 4. Sediment Deposition 5. Channel Flow Status 6. Channel Alteration	0-20 0-20 0-20 0-20 0-20 0-20 0-20							
	USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover 2. Embeddedness 3. Velocity/ Depth Regime 4. Sediment Deposition 5. Channel Flow Status 6. Channel Alteration 7. Frequency of Riffles (or bends)	0-20 0-20 0-20 0-20 0-20 0-20 0-20 0-20							
	USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover 2. Embeddedness 3. Velocity/ Depth Regime 4. Sediment Deposition 5. Channel Flow Status 6. Channel Alteration 7. Frequency of Riffles (or bends) 8. Bank Stability (LB & RB)	0-20 0-20 0-20 0-20 0-20 0-20 0-20 0-20							
	USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover 2. Embeddedness 3. Velocity/ Depth Regime 4. Sediment Deposition 5. Channel Flow Status 6. Channel Alteration 7. Frequency of Riffles (or bends) 8. Bank Stability (LB & RB) 9. Vegetative Protection (LB & RB)	0-20 0-20 0-20 0-20 0-20 0-20 0-20 0-20							
	USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover 2. Embeddedness 3. Velocity/ Depth Regime 4. Sediment Deposition 5. Channel Flow Status 6. Channel Alteration 7. Frequency of Riffles (or bends) 8. Bank Stability (LB & RB) 9. Vegetative Protection (LB & RB) 10. Riparian Vegetative Zone Width (LB & RB)	0-20 0-20 0-20 0-20 0-20 0-20 0-20 0-20	0-1						
	USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover 2. Embeddedness 3. Velocity/ Depth Regime 4. Sediment Deposition 5. Channel Flow Status 6. Channel Alteration 7. Frequency of Riffles (or bends) 8. Bank Stability (LB & RB) 9. Vegetative Protection (LB & RB) 10. Riparian Vegetative Zone Width (LB & RB) Total RBP Score	0-20 0-20 0-20 0-20 0-20 0-20 0-20 0-20	0-1	0					
	USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover 2. Embeddedness 3. Velocity/ Depth Regime 4. Sediment Deposition 5. Channel Flow Status 6. Channel Alteration 7. Frequency of Riffles (or bends) 8. Bank Stability (LB & RB) 9. Vegetative Protection (LB & RB) 10. Riparian Vegetative Zone Width (LB & RB)	0-20 0-20 0-20 0-20 0-20 0-20 0-20 0-20	0-1 Dr	0					
	USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover 2. Embeddedness 3. Velocity/ Depth Regime 4. Sediment Deposition 5. Channel Flow Status 6. Channel Alteration 7. Frequency of Riffles (or bends) 8. Bank Stability (LB & RB) 9. Vegetative Protection (LB & RB) 10. Riparian Vegetative Zone Width (LB & RB) Total RBP Score Sub-Total CHEMICAL INDICATOR (Applies to Intermitter WVDEP Water Quality Indicators (General	0-20 0-20 0-20 0-20 0-20 0-20 0-20 0-20	0-1 Dr	0					
	USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover 2. Embeddedness 3. Velocity/ Depth Regime 4. Sediment Deposition 5. Channel Flow Status 6. Channel Alteration 7. Frequency of Riffles (or bends) 8. Bank Stability (LB & RB) 9. Vegetative Protection (LB & RB) 10. Riparian Vegetative Zone Width (LB & RB) 10. Riparian Vegetative Zone Width (LB & RB) 10. Total RBP Score Sub-Total CHEMICAL INDICATOR (Applies to Intermitter	0-20 0-20 0-20 0-20 0-20 0-20 0-20 0-20	0-1 Dr	0					
	USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover 2. Embeddedness 3. Velocity/ Depth Regime 4. Sediment Deposition 5. Channel Flow Status 6. Channel Alteration 7. Frequency of Riffles (or bends) 8. Bank Stability (LB & RB) 9. Vegetative Protection (LB & RB) 10. Riparian Vegetative Zone Width (LB & RB) Total RBP Score Sub-Total CHEMICAL INDICATOR (Applies to Intermitter WVDEP Water Quality Indicators (General	0-20 0-20 0-20 0-20 0-20 0-20 0-20 0-20	0-1 Dr	0					
	USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover 2. Embeddedness 3. Velocity/ Depth Regime 4. Sediment Deposition 5. Channel Flow Status 6. Channel Alteration 7. Frequency of Riffles (or bends) 8. Bank Stability (LB & RB) 9. Vegetative Protection (LB & RB) 10. Riparian Vegetative Zone Width (LB & RB) 10. Rip	0-20 0-20 0-20 0-20 0-20 0-20 0-20 0-20	0-1 Dr	0					
	USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover 2. Embeddedness 3. Velocity/ Depth Regime 4. Sediment Deposition 5. Channel Flow Status 6. Channel Alteration 7. Frequency of Riffles (or bends) 8. Bank Stability (LB & RB) 9. Vegetative Protection (LB & RB) 10. Riparian Vegetative Zone Width (LB & RB) Total RBP Score Sub-Total CHEMICAL INDICATOR (Applies to Intermitter WVDEP Water Quality Indicators (General	0-20 0-20 0-20 0-20 0-20 0-20 0-20 0-20	0-1 Dr	0					
	USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover 2. Embeddedness 3. Velocity/ Depth Regime 4. Sediment Deposition 5. Channel Flow Status 6. Channel Alteration 7. Frequency of Riffles (or bends) 8. Bank Stability (LB & RB) 9. Vegetative Protection (LB & RB) 10. Riparian Vegetative Zone Width (LB & RB) 10. Rip	0-20 0-20 0-20 0-20 0-20 0-20 0-20 0-20	0-1 Dr	0					
	USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover 2. Embeddedness 3. Velocity/ Depth Regime 4. Sediment Deposition 5. Channel Flow Status 6. Channel Alteration 7. Frequency of Riffles (or bends) 8. Bank Stability (LB & RB) 9. Vegetative Protection (LB & RB) 10. Riparian Vegetative Zone Width (LB & RB) 10. Rip	0-20 0-20 0-20 0-20 0-20 0-20 0-20 0-20	0-1 Dr	0					
	USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover 2. Embeddedness 3. Velocity/ Depth Regime 4. Sediment Deposition 5. Channel Flow Status 6. Channel Alteration 7. Frequency of Riffles (or bends) 8. Bank Stability (LB & RB) 9. Vegetative Protection (LB & RB) 10. Riparian Vegetative Zone Width (LB & RB) 10. Riparian Vegetative Zone Vegetativ	0-20 0-20 0-20 0-20 0-20 0-20 0-20 0-20	0-1 Dr	0					
	USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover 2. Embeddedness 3. Velocity/ Depth Regime 4. Sediment Deposition 5. Channel Flow Status 6. Channel Alteration 7. Frequency of Riffles (or bends) 8. Bank Stability (LB & RB) 9. Vegetative Protection (LB & RB) 10. Riparian Vegetative Zone Width (LB & RB) 10. Riparian Vegetative Zone Vege	0-20 0-20 0-20 0-20 0-20 0-20 0-20 0-20	0-1 Dr	0 exams)					
	USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover 2. Embeddedness 3. Velocity/ Depth Regime 4. Sediment Deposition 5. Channel Flow Status 6. Channel Alteration 7. Frequency of Riffles (or bends) 8. Bank Stability (LB & RB) 9. Vegetative Protection (LB & RB) 10. Riparian Vegetative Zone Width (LB & RB) 10. Riparian Vegetative Zone Vegetativ	0-20 0-20 0-20 0-20 0-20 0-20 0-20 0-20	0-1 Dr	0					
	USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover 2. Embeddedness 3. Velocity/ Depth Regime 4. Sediment Deposition 5. Channel Flow Status 6. Channel Alteration 7. Frequency of Riffles (or bends) 8. Bank Stability (LB & RB) 9. Vegetative Protection (LB & RB) 10. Riparian Vegetative Zone Width (LB & RB) 10. Riparian Vegetative Zone Vege	0-20 0-20 0-20 0-20 0-20 0-20 0-20 0-20	0-1 or 0-1	0 sams)					
	USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover 2. Embeddedness 3. Velocity/ Depth Regime 4. Sediment Deposition 5. Channel Flow Status 6. Channel Alteration 7. Frequency of Riffles (or bends) 8. Bank Stability (LB & RB) 9. Vegetative Protection (LB & RB) 10. Riparian Vegetative Zone Width (LB & RB) 10. Riparian Vegetative Zone V	0-20 0-20 0-20 0-20 0-20 0-20 0-20 0-20	0-1 or 0-1	0 sams)					
ns)	USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover 2. Embeddedness 3. Velocity/ Depth Regime 4. Sediment Deposition 5. Channel Flow Status 6. Channel Alteration 7. Frequency of Riffles (or bends) 8. Bank Stability (LB & RB) 9. Vegetative Protection (LB & RB) 10. Riparian Vegetative Zone Width (LB & RB) 10. Total RBP Score Sub-Total DO Sub-Total BIOLOGICAL INDICATOR (Applies to Intermitter	0-20 0-20 0-20 0-20 0-20 0-20 0-20 0-20	0-1 or 0-1	0 sams)					

PART II - Index and Unit Score						
Index	Linear Feet	Unit Score				
0	0	0				

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

STREAM NAME	LOCATION			
STATION # RIVERMILE	STREAM CLASS			
LAT LONG	RIVER BASIN			
STORET #	AGENCY			
INVESTIGATORS				
FORM COMPLETED BY	DATE TIME	REASON FOR SURVEY		

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

WATERSHED FEATURES RIPARIAN VEGETATION (18 meter buffer)	Predominant Surrounding Landuse Forest Commercial Field/Pasture Industrial Agricultural Other Residential Indicate the dominant type and record the domin Trees Shrubs Dominant species present	Grasses Herbaceous
INSTREAM FEATURES	Estimated Reach Length m Estimated Stream Width m Sampling Reach Area ² Area in km² (m²x1000) km² Estimated Stream Depth m Surface Velocity m/sec (at thalweg) m/sec	Canopy Cover Partly open Partly shaded Shaded High Water Mark m Proportion of Reach Represented by Stream Morphology Types Riffle% Run% Riffle % Root % Root % No No Dam Present Yes
LARGE WOODY DEBRIS AQUATIC VEGETATION	LWDm² Density of LWDm²/km² (LWD/ reac Indicate the dominant type and record the domin Rooted emergent Rooted submergent Floating Algae Attached Algae Dominant species present	ant species present Rooted floating Free floating
WATER QUALITY	Temperature0 C Specific Conductance Dissolved Oxygen pH Turbidity WQ Instrument Used	Water Odors Normal/None Sewage Petroleum Chemical Fishy Other Water Surface Oils Slick Slick Sheen Globs Flecks None Other Turbidity (if not measured) Clear Slightly turbid Clear Slightly turbid Turbid Opaque Stained Other
SEDIMENT/ SUBSTRATE	Odors Petroleum Normal Sewage Petroleum Chemical Anaerobic None Other	Deposits Sludge Sawdust Paper fiber Sand Relict shells Other Lpoking at stones which are not deeply embedded, are the undersides black in color? Yes No

INORGANIC SUBSTRATE COMPONENTS (should add up to 100%)				ORGANIC SUBSTRATE COMPONENTS (does not necessarily add up to 100%)					
Substrate Type	Diameter	% Composition in Sampling Reach	Substrate Type	Characteristic	% Composition in Sampling Area				
Bedrock			Detritus	sticks, wood, coarse plant					
Boulder	> 256 mm (10")			materials (CPOM)					
Cobble	64-256 mm (2.5"-10")		Muck-Mud	black, very fine organic					
Gravel	2-64 mm (0.1"-2.5")			(FPOM)					
Sand	0.06-2mm (gritty)		Marl	grey, shell fragments					
Silt	0.004-0.06 mm								
Clay	< 0.004 mm (slick)								

HABITAT ASSESSMENT FIELD DATA SHEET - HG - USE ON ALL STREAMS (FRONT)

STREAM NAME	LOCATION	
STATION # RIVERMILE	STREAM CLASS	
LAT LONG	RIVER BASIN	
STORET #	AGENCY	
INVESTIGATORS		
FORM COMPLETED BY	DATE TIME AM PM	REASON FOR SURVEY

	Habitat		Condition	1 Category				
	Parameter	Optimal	Suboptimal	Marginal	Poor			
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are <u>not</u> new fall and <u>not</u> transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.			
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
n sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.			
ted i	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow- deep, slow-shallow, fast- deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast- shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).			
Iram	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
P	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.			
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	channel and mostly			
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

Habitat		Condition	ı Category			
Parameter	Optimal	Suboptimal	Marginal	Poor		
6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.		
SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.		
SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
 SCORE 8. Bank Stability (score each bank) Note: determine left or right side by facing downstream. SCORE (LB) SCORE (RB) 9. Vegetative Protection (score each bank) 	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30- 60% of bank in reach has areas of erosion; high erosion potential during floods. Unstable; many erod areas; "raw" areas frequent along straig sections and bends; obvious bank slough 60-100% of bank ha erosional scars.			
SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0		
SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0		
9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well- represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.		
SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0		
SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0		
10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.		
SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0		
SCORE(RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0		

Total Score _____

BENTHIC MACROINVERTEBRATE FIELD DATA SHEET

STREAM NAME		LOCATION	
STATION #	_ RIVERMILE	STREAM CLASS	
LAT	LONG	RIVER BASIN	
STORET #		AGENCY	
INVESTIGATORS			LOT NUMBER
FORM COMPLETED BY		DATE TIME	REASON FOR SURVEY
HABITAT TYPES	Indicate the percentage of Cobble% Sn Submerged Macrophytes	ags% Vegetated B	anks% Sand%)%
SAMPLE COLLECTION	Indicate the number of jab	lected? wading fi ps/kicks taken in each habitat ty lags Vegetated B	anks Sand
GENERAL COMMENTS			

QUALITATIVE LISTING OF AQUATIC BIOTA

Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare, 2 = Common, 3= Abundant, 4 = Dominant

Periphyton	0	1	2	3	4	Slimes	0	1	2	3	4
Filamentous Algae	0	1	2	3	4	Macroinvertebrates	0	1	2	3	4
Macrophytes	0	1	2	3	4	Fish	0	1	2	3	4

FIELD OBSERVATIONS OF MACROBENTHOS

Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare (1-3 organisms), 2 = Common (3-9 organisms), 3= Abundant (>10 organisms), 4 = Dominant (>50 organisms)

Porifera	0	1	2	3	4	Anisoptera	0	1	2	3	4	Chironomidae	0	1	2	3	4
Hydrozoa	0	1	2	3	4	Zygoptera	0	1	2	3	4	Ephemeroptera	0	1	2	3	4
Platyhelminthes	0	1	2	3	4	Hemiptera	0	1	2	3	4	Trichoptera	0	1	2	3	4
Turbellaria	0	1	2	3	4	Coleoptera	0	1	2	3	4	Other	0	1	2	3	4
Hirudinea	0	1	2	3	4	Lepidoptera	0	1	2	3	4						
Oligochaeta	0	1	2	3	4	Sialidae	0	1	2	3	4						
Isopoda	0	1	2	3	4	Corydalidae	0	1	2	3	4						
Amphipoda	0	1	2	3	4	Tipulidae	0	1	2	3	4						
Decapoda	0	1	2	3	4	Empididae	0	1	2	3	4						
Gastropoda	0	1	2	3	4	Simuliidae	0	1	2	3	4						
Bivalvia	0	1	2	3	4	Tabinidae	0	1	2	3	4						
						Culcidae	0	1	2	3	4						

WOLMAN PEBBLE COUNT FORM

County:PittsylvaniaStream ID:Stream Name:UNT to Jonnikin CreekHUC Code:03010101Basin:Survey Date:8/26/2021Basin:EMBHSurvey:CB/BHFiffleFiffle

S-G9

Upper Roanoke

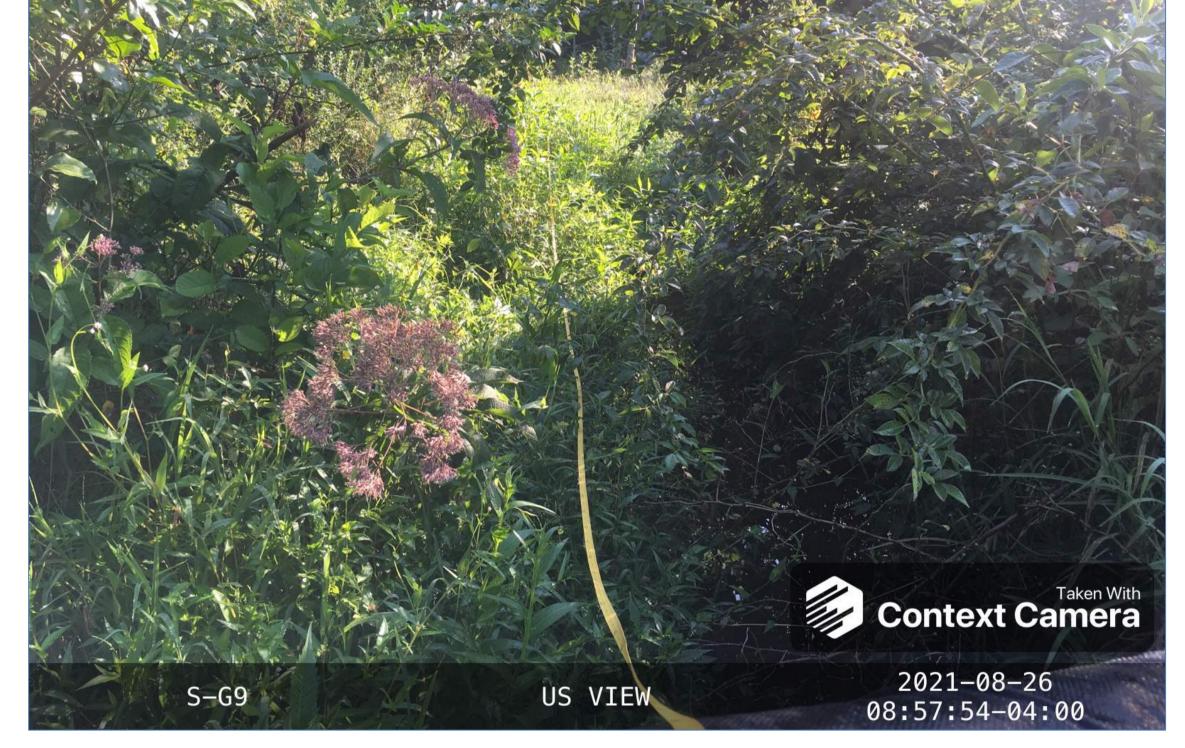
PEBBLE COUNT PARTICLE % Cum Inches Millimeters Particle Total # Item % Count Silt/Clay < .062 S/C ٠ 48 48.00 48.00 • .062-.125 ٠ Very Fine 0.00 48.00 . .125-.25 Fine ٠ 3 3.00 51.00 . .25-.5 Medium ٠ SAND 0.00 51.00 . Coarse .50-1.0 ٠ 53.00 2 2.00• .04-.08 Very Coarse 1.0-2 ٠ 2 2.00 55.00 . .08 -.16 Very Fine 2 - 4 ٠ 4 4.00 59.00 . .16 - .22 Fine 4 - 5.7 ٠ 2 2.00 61.00 . .22 - .31 Fine 5.7 - 8 ٠ 2 2.00 63.00 . 8 - 11.3 .31 - .44 Medium ٠ 4 67.00 4.00 . .44 - .63 Medium 11.3 - 16 ٠ GRAVEL 0.00 67.00 Ŧ .63 - .89 16 - 22.6 ٠ Coarse 0.0067.00 • .89 - 1.26 22.6 - 32 Coarse ٠ 0.00 67.00 . 1.26 - 1.77 32 - 45 Vry Coarse ٠ 67.00 0.00 . 1.77 -2.5 Vry Coarse 45 - 64 ٠ 3 3.00 70.00 . 2.5 - 3.5 Small 64 - 90 ٠ 5 5.00 75.00 Ŧ Small 3.5 - 5.0 90 - 128 ٠ 10 10.00 85.00 . COBBLE 5.0 - 7.1 128 - 180 Large ٠ 11.00 96.00 11 . 180 - 256 7.1 - 10.1 Large ٠ 3 3.00 99.00 . 10.1 - 14.3 Small 256 - 362 ٠ 1 1.00 100.00 . 14.3 - 20 Small 362 - 512 ٠ 0.00100.00 • 20 - 40 Medium 512 - 1024 ٠ BOULDER 0.00 100.00 Ŧ 40 - 80 1024 - 2048 ٠ Large 0.00 100.00 . 80 - 160 Vry Large 2048 - 4096 ٠ 0.00 100.00 . ٠ Bedrock **BDRK** 100.00 0.00. Totals: 100 Total Tally:

River Name: Reach Name: Sample Name: Survey Date:	UNT to Jonniki S-G9 Representative 08/26/2021	n Creek	
Size (mm)	тот #	ITEM %	CUM %
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	48 0 3 0 2 2 4 2 4 2 2 4 0 0 0 0 3 5 10 11 3 1 0 0 0 0 0	$\begin{array}{c} 48.00\\ 0.00\\ 3.00\\ 0.00\\ 2.00\\ 2.00\\ 2.00\\ 4.00\\ 2.00\\ 4.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 11.00\\ 3.00\\ 1.00\\ 0.0$	$\begin{array}{r} 48.00\\ 48.00\\ 51.00\\ 51.00\\ 53.00\\ 55.00\\ 59.00\\ 61.00\\ 63.00\\ 67.00\\ 67.00\\ 67.00\\ 67.00\\ 67.00\\ 67.00\\ 70.00\\ 75.00\\ 85.00\\ 99.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\end{array}$
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Boulder (%) Boulder (%)	0.02 0.05 0.21 124.2 175.27 361.99 48 7 15 29 1 0		

Total Particles = 100.

			For use in wadea	ble channels cla	ssified as intern	nittent or perennia	l			
Project #	Project Name (App	licant)	Locality	Cowardin Class.	HUC	Date	SAR #	Impact Length	Impact Factor	
22865.06	Mountain Valley Pipeline Valley Pipeline, L	•	Pittsylvania	R4	03010101	08/26/2021	S-G9	79	1	
Nam	e(s) of Evaluator(s)	Stream Name	e and Informa	tion				SAR Length		
	CB/BH	UNT to Jonn	inkin Creek, S	pread I				79	Э	
. Channel C	condition: Assess the cross-section	on of the stream a			,					
	Optimal	Subo	ptimal	Conditional Catego	ory ginal	Po	or	Sev	oro	
Channel Condition	Very little incision or active erosion; 80- 100% stable banks. Vegetative surface protection or natural rock, prominent (80-100%). AND/OR Stable point bars / bankfull benches are present. Access to their original floodplain or fully developed wide bankfull benches. Mid- channel bars and transverse bars few. Transient sediment deposition covers less than 10% of bottom.	erosion or unprotect of banks are s Vegetative protect prominent (60 Depositional feat stability. The ban channels are well d has access to ban newly developed portions of the s sediment covers 1	ew areas of active cted banks. Majority table (60-80%). tion or natural rock 0-80%) AND/OR tures contribute to nkfull and low flow efined. Stream likely ankfull benches,or I floodplains along reach. Transient 0-40% of the stream tom.	Poor. Banks more or Poor due to lo Erosion may be pre- both banks. Veget 40-60% of banks. S vertical or unde 40-60% Sediment r transient, contri- Deposition that con may be forming/pr shaped channels protection on > 40% depositional feature	esent on 40-60% of tative protection on treambanks may be ercut. AND/OR	Overwidened/inci laterally unstable further. Majority of k vertical. Erosion pre- banks. Vegetative on 20-40% of banks to prevent erosion. A the stream is cove Sediment is tempor nature, and contrib AND/OR V-shape vegetative protection 40% of the banks and deposition	Likely to widen both banks are near esent on 60-80% of protection present , and is insufficient AND/OR 60-80% of red by sediment. orary / transient in uting to instability. ed channels have on is present on > nd stable sediment	Deeply incised (vertical/lateral ins incision, flow contained Streambed below ave majority of banks v Vegetative protection than 20% of banks, erosion. Obvious present. Erosion/raw AND/OR Aggrading than 80% of stream deposition, contribut Multiple thread consubterrance	stability. Severe ed within the banks. erage rooting depth, vertical/undercut. on present on less , is not preventing s bank sloughing banks on 80-100%. g channel. Greater bed is covered by uting to instability. channels and/or	
Scores	3	2			2	1.	6	1		

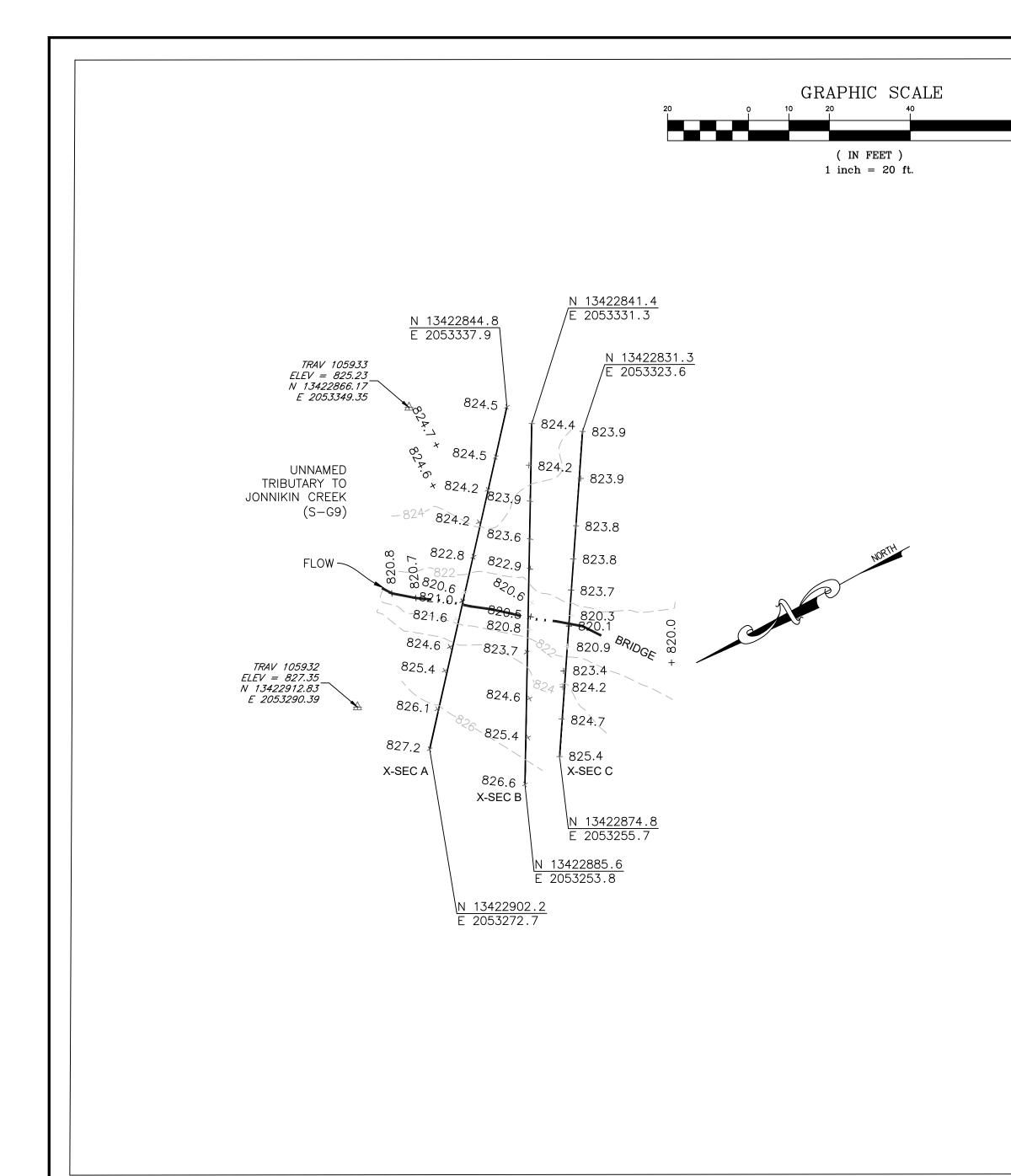
2. RIPARIAN BUFFERS: Assess both bank's 100 foot riparian areas along the entire SAR. (rough measurements of length & width may be acceptable)

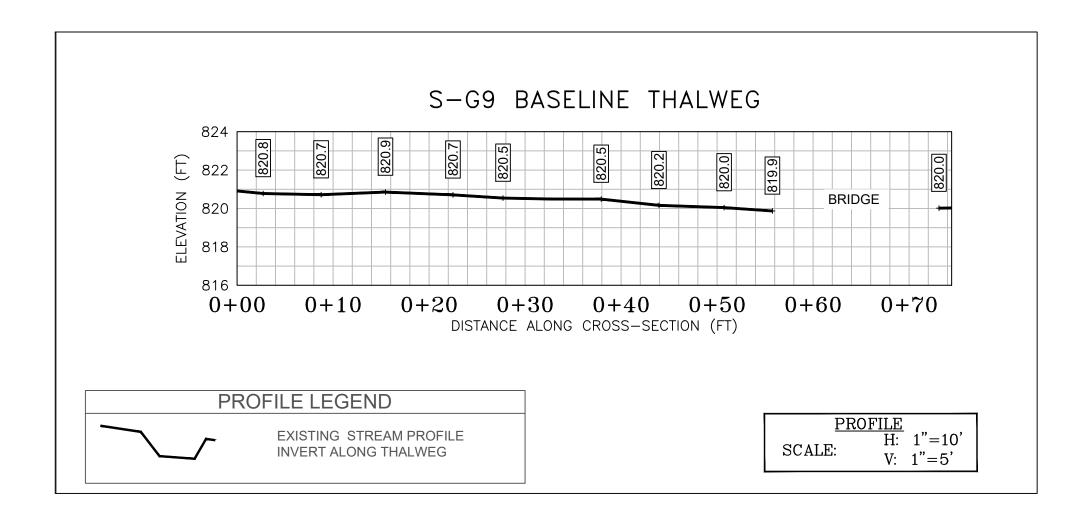

			Con	ditional Cate	gory				NOTES>>		
	Optir	nal	Subo	ptimal	Mar	ginal	Po	or			
Riparian Buffers	Tree stratum (dbh > with > 60% tree o Wetlands located w area	canopy cover. vithin the riparian	High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory.	Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover	dense herbaceous vegetation with either a shrub layer or a tree layer (dbh	Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree	nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable	Low Poor: Impervious surfaces, mine spoil lands,			
			High	Low	High	Low	High	Low	-		
Scores	1.5	5	1.2	1.1	0.85	0.75	0.6	0.5			
	arian areas along ea uare footage for eac							the sums Riparian			
Enter the % F	Riparian Area and So	ore for each ripa	arian category in th	ne blocks below.			Blocks e	qual 100			
Right Bank	% Riparian Area>	40%	20%	40%				100%			
	Score >	0.5	0.75	0.6							
									CI= (Sum % RA * Scor	es*0.01)/2	1
Left Bank	% Riparian Area>	30%	40%	30%				100%	Rt Bank CI >	0.59	
Lone Bullik	Score >	0.5	0.75	0.6					Lt Bank CI >	0.63	(
. INSTREAM		ed substrate size	es, water velocity a	and depths; woody	/ and leafy debris;	stable substrate;	low embededness	; shade; undercut	t banks; root mats; SA	V; riffle/pool	
omployed stab	le lealures.								NOTES>>		
omplexes, stab				Condition	al Catedory						
omplexes, stab	Optir	nal	Subo	Conditiona ptimal		ginal	Po	or	NOTES		

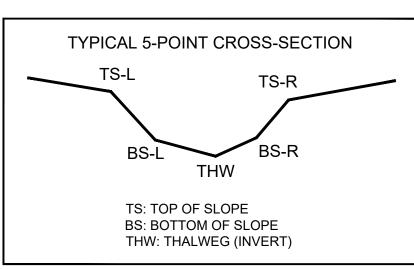
Scores	1.5	1.2	0.9	0.5	High / Low	0.90
					Stream Gradient	CI
		populations.	populations.	than 10% of the reach.		
Cover	in greater than 50% of the reach.	adequate for maintenance of	adequate for maintenance of	elements are typically present in less		
Available	Habitat elements are typically present	present in 30-50% of the reach and are	present in 10-30% of the reach and are	lacking or are unstable. Habitat		
		Stable habitat elements are typically	Stable habitat elements are typically	Habitat elements listed above ale		

Reach R3-R4 File: C:\Users\KATELYN.HOISINGTON\Downloads\OneDrive_2_10-11-2021\S-G9_20211004MAS\9. S-G9_USM_MVP_20211004MAS.xlsx

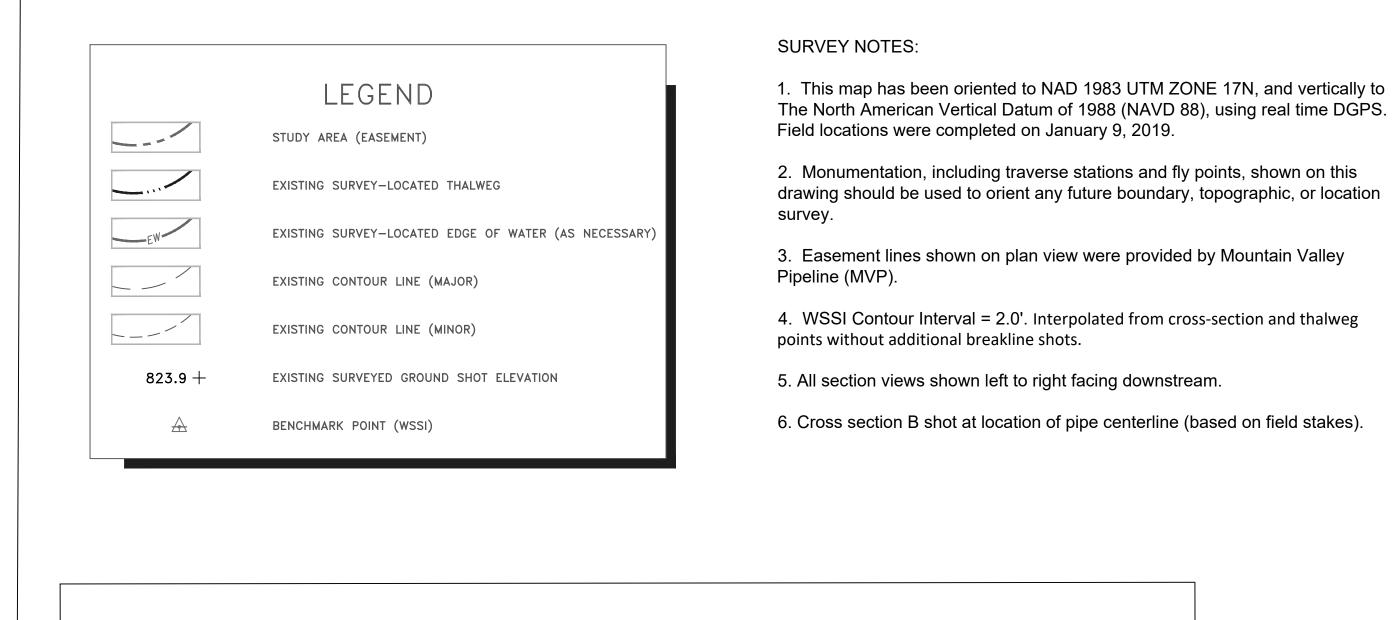
Project #	Project Name (App	Locality	Cowardin Class.	HUC	Date	SAR #	Impact Length	Impact Factor		
22865.06	Mountain Valley Pipeline Valley Pipeline, L	•	Pittsylvania	R4	03010101	08/26/2021	S-G9	79	1	
. CHANNEL	_ ALTERATION: Stream crossin	ngs, riprap, concre	te, gabions, or con	ocrete blocks, strai	ghtening of chann	nel, channelization,	, embankments, s	spoil piles, constrictio	ons, livestock	
			Conditiona	al Category				NOTES>>		
	Negligible	Mi	nor	Mod 40 - 60% of reach	erate	Sev	vere			
Channel Alteration	Channelization, dredging, alteration, or hardening absent. Stream has an unaltered pattern or has naturalized.	the channel alterations listed in the parameter guidelines.	disrupted by any of the channel alterations listed in the parameter guidelines.	is disrupted by any of the channel alterations listed in the parameter guidelines. If stream has been channelized, normal stable stream meander pattern has not recovered.	of the channel alterations listed in the parameter guidelines. If stream has been channelized, normal stable stream meander pattern has not recovered.	Greater than 80% of reach is disrupted by any of the channel alterations listed in the parameter guidelines AND/OR 80% of banks shored with gabion, riprap, or cement.				CI
Scores	1.5	1.3	1.1	0.9	0.7	0.	.5			1.10
	REACH	CONDITION	INDEX and S	STREAM CO	NDITION UN	ITS FOR THI	S REACH			
OTE: The Cls a	nd RCI should be rounded to 2 decir	mal places. The C	R should be round	ed to a whole nun	nber.		THE REAC	H CONDITION IN	DEX (RCI) >>	1.00
						RCI= (Sum of	all CI's)/5, exc	ept if stream is ep	hemeral RCI = (F	Riparian C
							COMPENS	ATION REQUIRE	MENT (CR) >>	79
							CR = R	CI X L _I X IF		

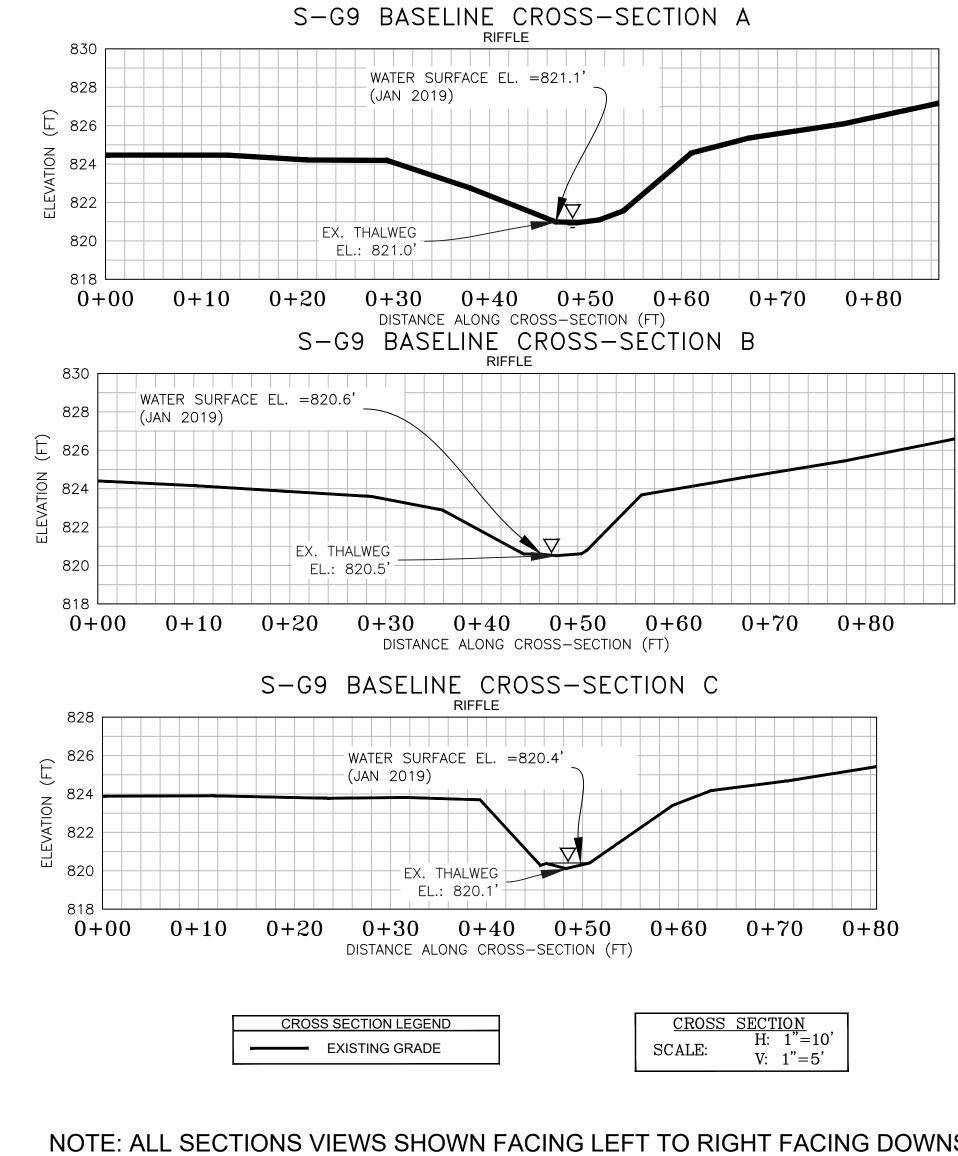

DIRECTION 66 deg(T) 36.95933°N 079.58650°W DATUM WGS84

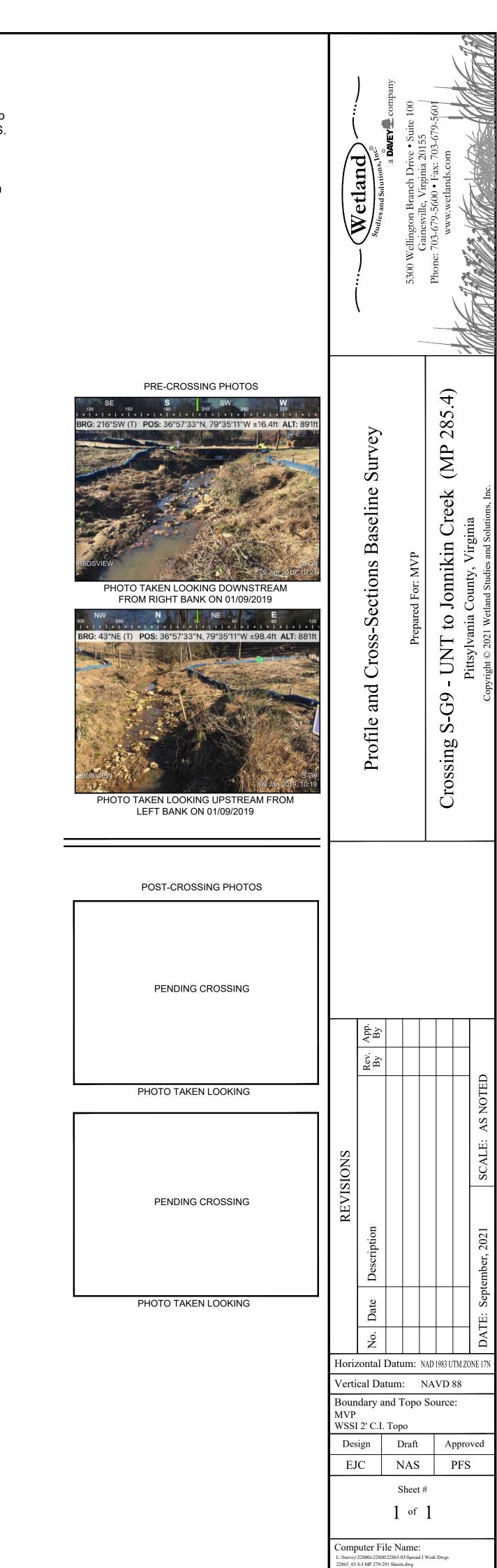



DESCRIBE PROPOSED IMPACT:

PROVIDED UNDER SEPARATE COVER


Reach R3-R4 File: C:\Users\KATELYN.HOISINGTON\Downloads\OneDrive_2_10-11-2021\S-G9_20211004MAS\9. S-G9_USM_MVP_20211004MAS.xlsx





CL STAKEOUT POINTS: S-G9 CROSS SECTION B (PIPE CL)										
	PR	PRE-CROSSING								
PT. LOC.	NORTHING	EASTING	ELEV	VERT.	HORZ.					
P1. LUC.	NORTHING	EASTING	CLEV	DIFF.	DIFF.					
TS-L	13422859.00	2053299.99	822.89							
BS-L	13422862.64	2053292.39	820.60							
THW	13422864.52	2053289.54	820.51							
BS-R	13422866.21	2053286.82	820.79							
TS-R	13422869.64	2053282.21	823.68							

NOTE: ALL SECTIONS VIEWS SHOWN FACING LEFT TO RIGHT FACING DOWNSTREAM.

