Baseline Assessment – Stream Attributes

Reach S-GG4 (Timber Mat Crossing) Ephemeral Spread I Franklin County, Virginia

Data	Included			
Photos	✓			
SWVM Form	✓			
FCI Calculator and HGM Form	✓			
RBP Physical Characteristics Form	✓			
Water Quality Data	N/A – No flow			
RBP Habitat Form	✓			
RBP Benthic Form	✓			
Benthic Identification Sheet	N/A – No flow			
Wolman Pebble Count	✓			
RiverMorph Data Sheet	✓			
USM Form (Virginia Only)	✓			
Longitudinal Profile and Cross Sections	✓			

No flow – No WQI or benthic samples.

Spread IStream S-GG4 (Timber Mat Crossing) Franklin County

Location, Orientation, Photographer Initials: Downstream at ROW/LOD looking SE upstream, RAH

Photo Type: DS COND

Location, Orientation, Photographer Initials: Downstream at ROW/LOD looking NE downstream, RAH

Spread IStream S-GG4 (Timber Mat Crossing) Franklin County

Photo Type: LB CL

Location, Orientation, Photographer Initials: On thalweg at pipe centerline looking E at right streambank, RAH

Photo Type: RB CL

Location, Orientation, Photographer Initials: On thalweg at pipe centerline looking SW at left streambank, RAH

Spread IStream S-GG4 (Timber Mat Crossing) Franklin County

Location, Orientation, Photographer Initials: Upstream at ROW/LOD looking SW upstream, RAH

Location, Orientation, Photographer Initials: Upstream at ROW/LOD looking NE downstream, RAH

West Virginia Stream and Wetland Valuation Metric (SWVM) Version 2.1, September 2017

## SECOND PROFESSION DATE OF THE PROFESSION	USACE FILE NO./ Project Name: (v2.1, Sept 2015)		Mountai	in Valley Pipeline		COORDINATES: cimal Degrees)	Lat.	37.042742 Lon.	-79.809015	WEATHER:	Sunny	DATE:	August 26, 2	2021
Mart				S-GG4	//41.05 ac					l:		Comments:		
Martin M	STREAM IMPACT LENGTH:	20		RESTORATION (Levels I-III)			Lat.	Lon.		PRECIPITATION PAST 48 HRS:		Mitigation Length:		
Parcent Stream Clasmed Style	Column No. 1- Impact Existin	ng Condition (Debit	t)	Column No. 2- Mitigation Existing (Condition - Base	line (Credit)			e Years			Column No. 5- Mitigation Projecte	d at Maturity (Credi	it)
Mode Control	Stream Classification:	Ephem	eral	Stream Classification:				Stream Classification:	0	Stream Classification:	0	Stream Classification:	0	
Marriage	Percent Stream Channel S	lope	4.57	Percent Stream Channel SI	оре			Percent Stream Channel Slope	0	Percent Stream Channel S	lope 0	Percent Stream Channel Sle	рре	0
Marchander Cycling 1.5	HGM Score (attach d	lata forms):		HGM Score (attach	data forms):			HGM Score (attach data forms):	:	HGM Score (attach d	ata forms):	HGM Score (attach da	ta forms):	
Report Part Payers Colorise Payers Payers Payers Payers Colorise Payers Payers Payers Payers Payers Payers Payers Payers			Average			Average			Average		Average			Average
PART - Physical, Chemical and Biological Indicators	Hydrology Biogeochemical Cycling	0.5	0.44	Biogeochemical Cycling		0		Biogeochemical Cycling	0	Biogeochemical Cycling	0	Biogeochemical Cycling		0
### PAT 8 - Index and Unit Score PAT 8 - Index and Unit Score PAT 8 - Index and Unit Sco	PART I - Physical, Chemical and		tors		nd Biological Inc	licators			Indicators		I Biological Indicators		Biological Indicator	rs
## ## ## ## ## ## ## ## ## ## ## ## ##		Points Scale Range	Site Score		Points Scale Range	Site Score		Points Scale Ran	ige Site Score		Points Scale Range Site Score		Points Scale Range	Site Score
Figure Control Figure Figure Control Figure	PHYSICAL INDICATOR (Applies to all stream:	s classifications)		PHYSICAL INDICATOR (Applies to all streams	classifications)			PHYSICAL INDICATOR (Applies to all streams classifications)	•	PHYSICAL INDICATOR (Applies to all stream	s classifications)	PHYSICAL INDICATOR (Applies to all streams	classifications)	
Freedoctional column														
			0											
Contract Procession			0		0-20									
Columner Alberdoon Columner Columner Alberdoon Columner Columner Alberdoon Column	Sediment Deposition	0-20	16		0-20			4. Sediment Deposition 0-20		Sediment Deposition	0-20	Sediment Deposition	0-20	
Froquercy of Reflics (or bands) 0.50 0			•						1					
Sent Stability (LB A RS)			17											
			9											
Total Files Score Subcified 10 10 10 10 10 10 10 1			16	Vegetative Protection (LB & RB)										
Sub-Total 0.7853333 Sub-Total 0.785333			16							 Riparian Vegetative Zone Width (LB & RB) 				
CHEMICAL NDICATOR (Applies to Intermittent and Percunial Streams) CHEM					Poor	0			0		Poor 0		Poor	0
Specific Conductivity 100-199-85 points					nt and Perennial St	reams)			Streams)		ent and Perennial Streams)		and Perennial Stream	ns)
Specific Conductivity 100-199-85 points	WVDEP Water Quality Indicators (General	n		WVDEP Water Quality Indicators (General)			WVDEP Water Quality Indicators (General)		WVDEP Water Quality Indicators (General	n	WVDEP Water Quality Indicators (General)		
## 10U-19V8-points						0					-,			
## 100-197-69 points	100 100 05 11	0-90			0-90			0-90			0-90		0-90	
Sub-Total Sub-	100-199 - 85 points			nH				nH		рН		рН		
DO D		0-1			5.00 0-1			5.00	1		5.00 0-1	**	5.00 0-1	
		1 0-00			3-30			3-30			3-30		3-30	
Sub-Total Sub-Total Sub-Tot	DO			DO				DO		DO		DO		
BIOLOGICAL INDICATOR (Applies to Intermittent and Perennial Streams) WV Stream Condition Index (WVSCI) O 0 0-100 0-1 0		10-30			10-30						10-30		10-30	
W Stream Condition Index (WVSCI)						0			0		0			0
O O O O O O O O O O	BIOLOGICAL INDICATOR (Applies to Intermi	ittent and Perennial St	treams)	BIOLOGICAL INDICATOR (Applies to Intermit	tent and Perennial	Streams)		BIOLOGICAL INDICATOR (Applies to Intermittent and Pere	nnial Streams)	BIOLOGICAL INDICATOR (Applies to Intern	nittent and Perennial Streams)	BIOLOGICAL INDICATOR (Applies to Intermi	tent and Perennial St	treams)
Sub-Total 0 Sub-To	WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)				WV Stream Condition Index (WVSCI)		WV Stream Condition Index (WVSCI)		WV Stream Condition Index (WVSCI)		
PART II - Index and Unit Score Index Index Linear Feet Unit Score Index Linear Feet Unit Score Index Unit Score Index Linear Feet Unit Score	0	0-100 0-1			0-100 0-1			0-100 0-	1		0-100 0-1		0-100 0-1	
PART II - Index and Unit Score Index Index Linear Feet Unit Score Index Linear Feet Unit Score Index Linear Feet Unit Score Index Index Linear Feet Unit Score Index Index Linear Feet Unit Score Index Inde	Sub-Total		0	Sub-Total	<u> </u>	0		Sub-Total	0	Sub-Total	0	Sub-Total		0
Index Linear Feet Unit Score Index Linear Feet Unit Score Index Linear Feet Unit Score U		•	"	ŭ.								<u> </u>	•	
	PART II - Index and U	Unit Score		PART II - Index and	Unit Score			PART II - Index and Unit Score		PART II - Index and L	Init Score	PART II - Index and Ui	nit Score	
0.610 20 12.1916667 0	Index	Linear Feet	Unit Score	Index	Linear Feet	Unit Score		Index Linear Fee	Unit Score	Index	Linear Feet Unit Score	Index	Linear Feet U	Init Score
	0.610	20	12.1916667	0	0	0		0 0	0	0	0 0	0	0	0

			High-G	radient Field D			ms in A _l alculato	-	a		
	Team:	RH, CL		1 1014 2	Juliu Ollo	ot and c			M Northing:	37.042742	
Pr	oject Name:		/alley Pipelir	ne						-79.809015	
		Franklin Co						-	npling Date:		
SA	AR Number:	S-GG4	Reach	Length (ft):	75	Stream T	ype: _{Ephe}	meral Stream			▼
	Top Strata:	Tre	e/Sapling St	rata	(determine	d from perc	ent calculate	ed in V _{CCANO}	_{PY})		
Site	and Timing:	Project Site				•	Before Proje	ct			•
Sampl	e Variables	1-4 in strea	am channel								
1	V _{CCANOPY}	equidistant 20%, enter	ercent cover points alono at least one	g the stream e value betw	n. Measure /een 0 and 1	only if tree/ 19 to trigger	sapling cove	er is at least			69.0 %
			measureme								ſ
	0	20	100	100	100	100	60	70	60	80	
		-									
2	V_{EMBED}	along the s	nbeddednes tream. Sele	ect a particle	from the be	ed. Before	moving it, de	etermine the	e percentage	e of the	2.5
			d area surro o the followi								
			e of 1. If the						iiio scaiiiic	71113, use a	
			ness rating						tts, Megahai	n, and	
		Minshall 19		o ,			,		, 0	,	
		Rating	Rating Des	cription							
		5		of surface o	covered, sur	rounded, or	buried by fi	ne sedimen	t (or bedroc	k)	
		4		cent of surfa							
		<u>3</u>		rcent of sur							
		1		rcent of sur it of surface						al surface)	
	List the rati	·	point below		covereu, se	irrouriaca, c	n buried by	inic scanne	iii (or artiiioi	ai suriacc)	
	2	3	5	4	4	1	1	4	1	3	
	1	1	1	5	4	3	4	4	1	1	
	3	3	2	1	1	1	4	1	3	4	
3	$V_{SUBSTRATE}$		eam channe tream; use t						ghly equidis	tant points	0.95 in
	-	-		=	-					<u>, . </u>	
			ches to the 0.0 in, sand				w (bearock s	snould be co	ounted as 9	9 in,	
							0.00	2.20	0.00	0.00	
	2.80	1.00	0.90	4.40	1.80	0.08	0.08	3.20	0.08	2.30	
	0.08	0.08	0.08	0.70	3.30	5.60	2.10	2.00	0.08	0.08	
	2.30	1.20	3.30	0.08	0.08	2.70	1.70	0.08	0.40	0.80	
4	\/	Total paras	nt of orodos	d atroom ob	annal bank	Enter the t	otal numbar	of foot of o	radad bank	on oooh	
4	V_{BERO}	•	ent of eroded e total perce								60 %
		may be up		inage wiii b	o dalodiato	a ii botii ba	TING GIC CIO	dod, total o	1031011 101 111	o stroum	00 70
		, ,	Left Bank:	20) ft		Right Bank:	25	5 ft		Ĭ

Sampl	e Variables	5-9 within t	he entire r	iparian/buf	fer zone ad	jacent to t	ne stream cl	hannel (25	feet from e	each bank).	
5	V_{LWD}		h. Enter th	e number fi	om the enti lated.	re 50'-wide	ter and 36 in buffer and w	ithin the ch	annel, and		0.0
							oody stems:		0		
6	V_{TDBH}	Average db inches (10 c	•		•	-	ng cover is a	it least 20%). Trees ar	e at least 4	4.3
		•	,				in) within the	huffer on e	ach side of		
		the stream l		ients of mai	viduai li ees	(at icast 4	iii) widiiii die	bullet off e	acii side di		
			Left Side								
	5.1	4.2	4.1	4	5	4.1	4.6	4			
	4.7	4	4	4.1	4.6						
	4.2										
7	V_{SNAG}						et of stream.	Enter num	ber of snag	s on each	0.0
		side of the s	stream, and	I the amoun	t per 100 fe	et will be ca	alculated.				0.0
			Left Side:		0		Right Side:		0		
8	V_{SSD}						hes dbh) per				
		if tree cover amount per	,		•	•	ubs on each	side of the	stream, and	I the	Not Used
		amount per	Left Side:	ream will be	calculated.		Right Side:				
9	V_{SRICH}						am reach. C				
							ive species p from these d		ll strata. Sp	ecies	0.00
			o 1 = 1.0	iliu ilie subi	ildex will be	calculateu	nom mese d		2 (-1.0)		
	Acer rubru	•		Magnolia ti	ripetala		Ailanthus a			Lonicera ja	ponica
	Acer sacc			Nyssa sylv	•		Albizia julib	rissin		Lonicera ta	•
	Aesculus			Oxydendrun			Alliaria peti			Lotus corni	
_	Asimina tr		_	Prunus ser			-			Lythrum sa	
	Betula alle			Quercus al			Alternanthe philoxeroide			Microstegiur	
	Betula len	-		Quercus co			Aster tatari	cus		Paulownia	
	Carya alba			Quercus in			Cerastium i			Polygonum	
	Carya glal			Quercus pi			Coronilla va			Pueraria m	-
	Carya ova			Quercus ru			Elaeagnus u	mbellata		Rosa multi	flora
	Carya ova	ta		Quercus ve	elutina		Lespedeza	bicolor		Sorghum h	alepense
	Cornus flo	rida		Sassafras	albidum		Lespedeza	cuneata		Verbena bi	rasiliensis
	Fagus gra	ndifolia		Tilia americ	cana	Ш	Ligustrum ob	tusifolium			
	Fraxinus a	americana		Tsuga can	adensis		Ligustrum s	sinense			
	Liriodendro	n tulipifera		Ulmus ame	ericana						
	Magnolia	acuminata									
		^	C===:-:	One 4						0 0	
		0	Species in	Group 1				1	Species in	Group 2	

		10-11 withi bplots shou	uld be place	ed roughly	equidistan	tly along ea	ach side of	the stream	•		om each	
10	V _{DETRITUS}					ner organic r ne detrital la			<4" diameto	er and <36"	46.25 %	
				Side				Side		•		
		50	10	100	100	85	20	0	5			
11	V_{HERB}	include woo	ody stems a percentages oplot.	t least 4" db s up through	h and 36" ta	etation (mea all. Because accepted. E	there may Enter the pe	be several la rcent cover	ayers of gro	und cover	Not Used	
			Left	Side	Right Side							
Sample	Variable 1	2 within the	e entire cat	chment of	the stream							
12	V _{WLUSE}	Weighted A	verage of F	Runoff Score	e for watersl	ned:					0.51	
	Land Use (Choose From Drop List)									Running Percent (not >100)		
	Forest and n	ative range (<	<50% ground	cover)				•	0.5	27	27	
	Forest and n	ative range (>	>75% ground	cover)				•	1	35	62	
	Impervious a	areas (parking	lots, roofs, d	riveways, etc)				•	0	16	78	
	Open space	(pasture, lawr	ns, parks, etc.)	, grass cover	<50%			•	0.1	22	100	
								•				
								•				
								•				
								•				
	S	-GG4					No	tes:				
Va	ariable	Value	VSI									
Vc	CANOPY	69 %	0.75									
VE	MBED	2.5	0.65									
V_{sl}	JBSTRATE	0.95 in	0.48									
V _{BI}	ERO	60 %	0.75									
VLV	WD	0.0	0.00									
V _{TE}	ОВН	4.3	0.16									
Vsi	NAG	0.0	0.10									
Vss		Not Used	Not Used									
	RICH	0.00	0.00									
	ETRITUS	46.3 %	0.56									
	ERB	Not Used	Not Used									
V_{w}	LUSE	0.51	0.54									

Ver. 10-20-17

FCI Calculator for the High-Gradient Headwater Streams in Appalachia

To ensure accurate calculations, the <u>UPPERMOST STRATUM</u> of the plant community is determined based on the calculated value for V_{CCANOPY} (≥20% cover is required for tree/sapling strata). Go to the SAR Data Entry tab and enter site characteristics and data in the yellow cells. For information on determining how to split a project into SARs, see Chapter 5 of the Operational Draft Regional Guidebook for the Functional Assessment of High-Gradient Headwater Streams and Low-Gradient Perennial Streams in Appalachia (Environmental Laboratory U.S. Army Corps of Engineers 2017).

Project Name: Mountain Valley Pipeline

Location: Franklin County

Sampling Date: 8/26/2021 Project Site Before Project

Subclass for this SAR:

Ephemeral Stream

Uppermost stratum present at this SAR: SAR number: S-GG4

Tree/Sapling Strata

Functional Results Summary: Enter Results in Section A of the Mitigation Sufficiency Calculator

Function	Functional Capacity Index
Hydrology	0.39
Biogeochemical Cycling	0.50
Habitat	0.43

Variable Measure and Subindex Summary:

Variable	Name	Average Measure	Subindex
V _{CCANOPY}	Percent canpoy over channel.	69.00	0.75
V_{EMBED}	Average embeddedness of channel.	2.53	0.65
V _{SUBSTRATE}	Median stream channel substrate particle size.	0.95	0.48
V _{BERO}	Total percent of eroded stream channel bank.	60.00	0.75
V_{LWD}	Number of down woody stems per 100 feet of stream.	0.00	0.00
V _{TDBH}	Average dbh of trees.	4.34	0.16
$V_{\sf SNAG}$	Number of snags per 100 feet of stream.	0.00	0.10
V _{SSD}	Number of saplings and shrubs per 100 feet of stream.	Not Used	Not Used
V _{SRICH}	Riparian vegetation species richness.	0.00	0.00
V _{DETRITUS}	Average percent cover of leaves, sticks, etc.	46.25	0.56
V_{HERB}	Average percent cover of herbaceous vegetation.	Not Used	Not Used
V _{WLUSE}	Weighted Average of Runoff Score for Catchment.	0.51	0.54

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

STREAM NAME		LOCATION		
STATION #	RIVERMILE	STREAM CLASS		
LAT	LONG	RIVER BASIN		
STORET#		AGENCY		
INVESTIGATORS				
FORM COMPLETED F	3Y	DATE	REASON FOR SURVEY	

WEATHER CONDITIONS SITE LOCATION/MAP	Now Past 24 hours Yes No storm (heavy rain) rain (steady rain) showers (intermittent) %cloud cover clear/sunny
	Grass Pipe Cl Vp Stream
	ROW/Bridge
STREAM CHARACTERIZATION	Stream Subsystem Perennial Intermittent Tidal Stream Type Coldwater Warmwater Stream Origin Glacial Spring-fed Non-glacial montane Swamp and bog Other

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

WATERS FEATURI		Fores Field/ Agric	Pasture Industria	rcial	Local Watershed NPS Pollution No evidence ☐ Some potential sources Obvious sources Local Watershed Erosion None Moderate Heavy		
RIPARIA VEGETA (18 meter	TION	Trees	SI SI	hrubs	Ominant species present Grasses Herbaceous		
INSTREA FEATURI		Estimat Estimat Samplin Area in Estimat	ed Reach Length ed Stream Width g Reach Area km² (m²x1000) ed Stream Depth Velocity m	m m m² km²	Canopy Cover Partly open Partly shaded Shaded High Water Markm Proportion of Reach Represented by Stream Morphology Types Riffle % Run% Pool% Channelized Yes No Dam Present Yes No		
LARGE V DEBRIS	VOODY		of LWDm	n ² /km ² (LWD/	reach area)		
AQUATION VEGETA		Indicate the dominant type and record the dominant species present Rooted emergent Rooted submergent Rooted floating Floating Algae Attached Algae Dominant species present Portion of the reach with aquatic vegetation Medicate the dominant type and record the dominant species present Rooted floating Free floating Free floating					
WATER (QUALITY	Specific Dissolve pH Turbidi	cature0 C Conductance ed Oxygen ty trument Used		Water Odors Normal/None Sewage Petroleum Chemical Fishy Other		
SEDIMEN SUBSTRA		Odors Norm Chem Other Oils Abser			Relict shells Other	_	
INC	ORGANIC SUBS		COMPONENTS 00%)		ORGANIC SUBSTRATE COMPONENTS (does not necessarily add up to 100%)		
Substrate Type	Diamete	er	% Composition in Sampling Reach	Substrate Type	Characteristic % Composition in Sampling Area		
Bedrock Boulder	> 256 mm (10")			Detritus	sticks, wood, coarse plant materials (CPOM)		
Cobble Gravel	64-256 mm (2.5 2-64 mm (0.1"-2			Muck-Mud	black, very fine organic (FPOM)		
Sand	0.06-2mm (gritt	` '		Marl	grey, shell fragments		

Silt

Clay

0.004-0.06 mm

< 0.004 mm (slick)

HABITAT ASSESSMENT FIELD DATA SHEET - HG - USE ON ALL STREAMS (FRONT)

STREAM NAME	LOCATION		
STATION # RIVERMILE	STREAM CLASS		
LAT LONG	RIVER BASIN		
STORET#	AGENCY		
INVESTIGATORS			
FORM COMPLETED BY	DATE AM PM	REASON FOR SURVEY	

	Habitat		Condition	ı Category		
	Parameter	Optimal	Suboptimal	Marginal	Poor	
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.	
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
n sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0-25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.	
ted in	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/depth regime (usually slow-deep).	
ıram	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
Ps	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.	
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.	
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

	Habitat	Condition Category												
	Parameter	Optimal	Suboptimal	Marginal	Poor									
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.									
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0									
ng reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.									
samp	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0									
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.									
e eva	SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0									
to be	SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0									
Parameters	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.									
	SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0									
	SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0									
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.									
	SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0									
ĺ	SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0									

Total	Caare	
i otai	Score	

BENTHIC MACROINVERTEBRATE FIELD DATA SHEET

STREAM NAME	LOCATION					
STATION # RIVERMILE	STREAM CLASS					
LAT LONG	RIVER BASIN					
STORET#	AGENCY					
INVESTIGATORS		LOT NUMBER				
FORM COMPLETED BY	DATETIME	REASON FOR SURVEY				
HADITAT TYPES Indicate the percentage of	and habitat type present					

HABITAT TYPES	Indicate the percentage of each habitat type present Cobble% Snags% Vegetated Banks% Sand% Submerged Macrophytes% Other ()%
SAMPLE COLLECTION	Gear used D-frame kick-net Other How were the samples collected? wading from bank from boat
	Indicate the number of jabs/kicks taken in each habitat type. Cobble Snags Vegetated Banks Sand Submerged Macrophytes Other ()
GENERAL COMMENTS	

QUALITATIVE LISTING OF AQUATIC BIOTA

Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare, 2 = Common, 3 = Abundant, 4 = Dominant

Periphyton	0	1	2	3	4	Slimes	0	1	2	3	4
Filamentous Algae	0	1	2	3	4	Macroinvertebrates	0	1	2	3	4
Macrophytes	0	1	2	3	4	Fish	0	1	2	3	4

FIELD OBSERVATIONS OF MACROBENTHOS

Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare (1-3 organisms), 2 = Common (3-9 organisms), 3 = Abundant (>10 organisms), 4 = Dominant (>50 organisms)

Porifera	0	1	2	3	4	Anisoptera	0	1	2	3	4	Chironomidae	0	1	2	3	4
Hydrozoa	0	1	2	3	4	Zygoptera	0	1	2	3	4	Ephemeroptera	0	1	2	3	4
Platyhelminthes	0	1	2	3	4	Hemiptera	0	1	2	3	4	Trichoptera	0	1	2	3	4
Turbellaria	0	1	2	3	4	Coleoptera	0	1	2	3	4	Other	0	1	2	3	4
Hirudinea	0	1	2	3	4	Lepidoptera	0	1	2	3	4						
Oligochaeta	0	1	2	3	4	Sialidae	0	1	2	3	4						
Isopoda	0	1	2	3	4	Corydalidae	0	1	2	3	4						
Amphipoda	0	1	2	3	4	Tipulidae	0	1	2	3	4						
Decapoda	0	1	2	3	4	Empididae	0	1	2	3	4						
Gastropoda	0	1	2	3	4	Simuliidae	0	1	2	3	4						
Bivalvia	0	1	2	3	4	Tabinidae	0	1	2	3	4						
						Culcidae	0	1	2	3	4						

WOLMAN PEBBLE COUNT FORM

County: Franklin County Stream ID: S-GG4

Stream Name: UNT to Blackwater River

HUC Code: 03010101 Basin: Upper Roanoke

Survey Date: 8/26/2021 Surveyors: RH, CL Type: Representative

,			LE COUNT			T	
Inches	PARTICLE	Millimeters		Particle Count	Total #	Item %	% Cun
	Silt/Clay	< .062	S/C	A	33	33.00	33.00
	Very Fine	.062125		-	7	7.00	40.00
	Fine	.12525	1	•	6	6.00	46.00
	Medium	.255	SAND	•	4	4.00	50.00
	Coarse	.50-1.0	1	A	5	5.00	55.00
.0408	Very Coarse	1.0-2	1	^	2	2.00	57.00
.0816	Very Fine	2 -4		^	6	6.00	63.00
.1622	Fine	4 -5.7	1	^	1	1.00	64.00
.2231	Fine	5.7 - 8	1	^	6	6.00	70.00
.3144	Medium	8 -11.3	1	^	3	3.00	73.00
.4463	Medium	11.3 - 16	GRAVEL	^	3	3.00	76.00
.6389	Coarse	16 -22.6		^	5	5.00	81.00
.89 - 1.26	Coarse	22.6 - 32		^	5	5.00	86.00
.26 - 1.77	Vry Coarse	32 - 45		^	4	4.00	90.00
1.77 -2.5	Vry Coarse	45 - 64	1	^		0.00	90.00
2.5 - 3.5	Small	64 - 90		^	3	3.00	93.00
3.5 - 5.0	Small	90 - 128	1	^	5	5.00	98.00
5.0 - 7.1	Large	128 - 180	COBBLE	^	1	1.00	99.00
7.1 - 10.1	Large	180 - 256	1	^		0.00	99.00
0.1 - 14.3	Small	256 - 362		A	1	1.00	100.0
14.3 - 20	Small	362 - 512	1	A	R	#########	######
20 - 40	Medium	512 - 1024	BOULDER	A		0.00	######
40 - 80	Large	1024 -2048	1	^		0.00	######
80 - 160	Vry Large	2048 -4096	1	A		0.00	######
	Bedrock		BDRK	^		0.00	######
				Totals:	100		

RIVERMORPH PARTICLE SUMMARY

UNT to Blackwater River

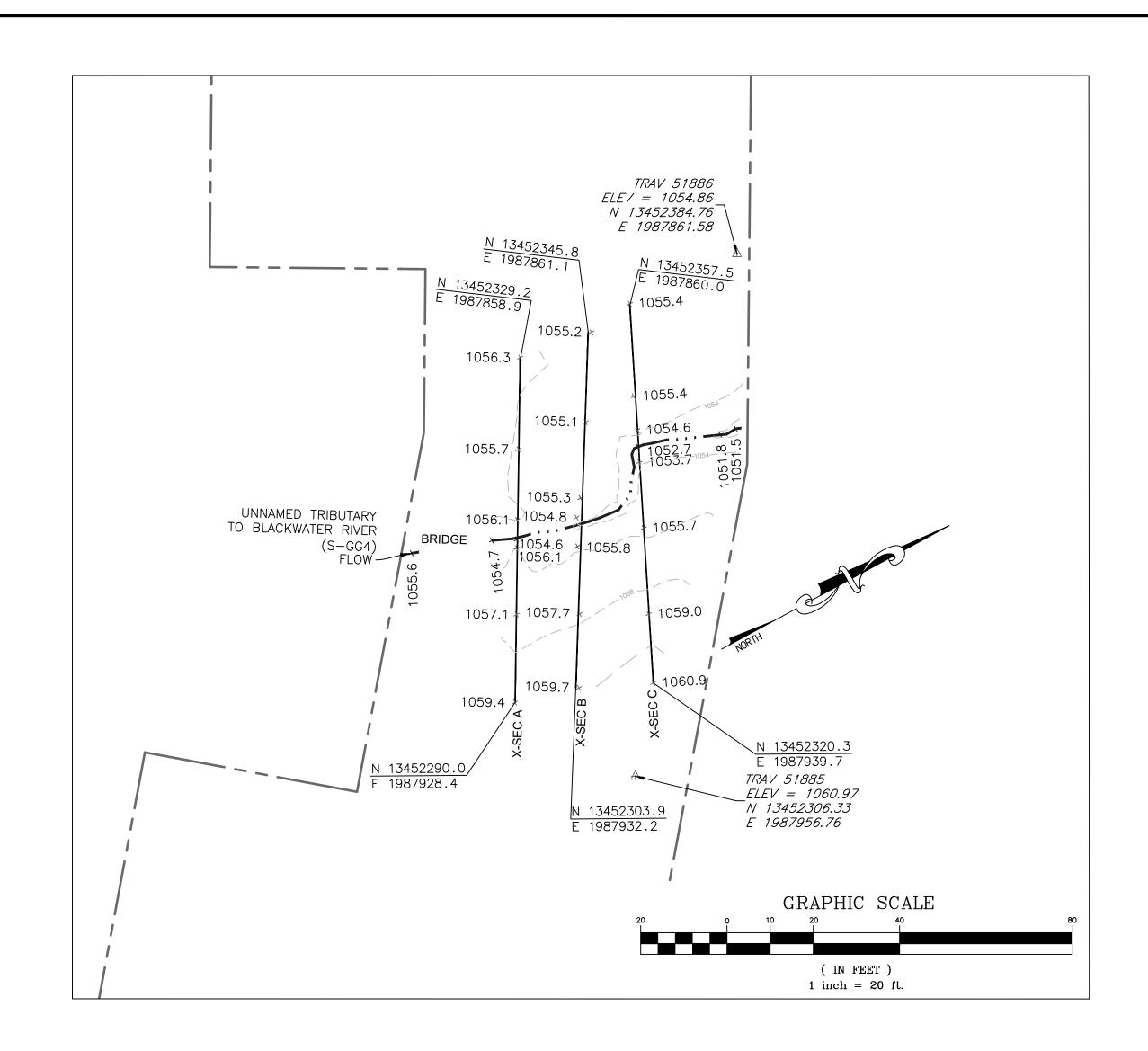
S-GG4

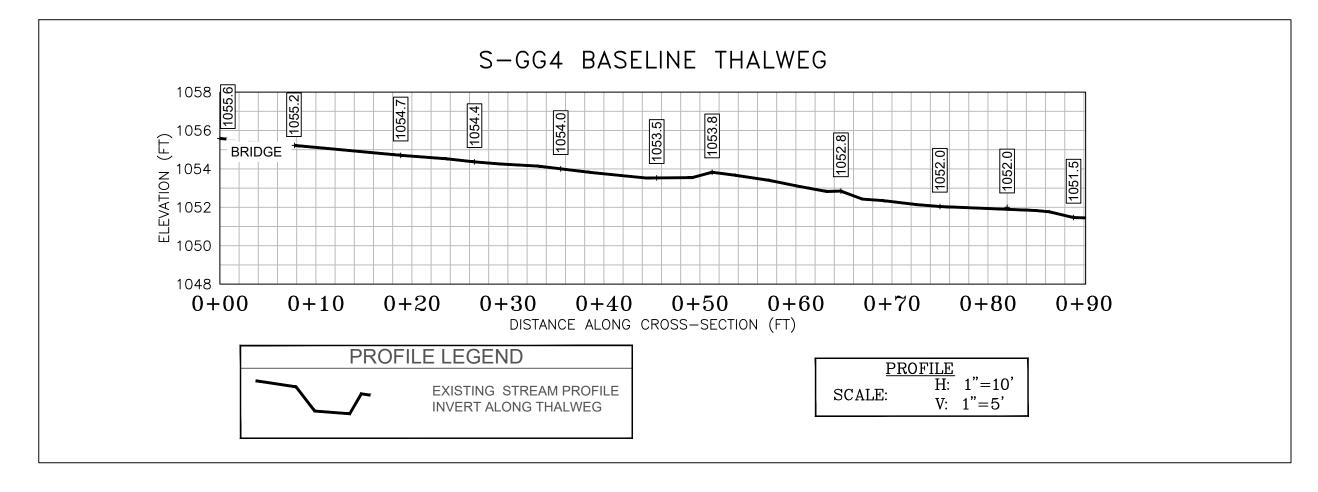
River Name: Reach Name: Sample Name: Representative 08/26/2021

Survey Date:

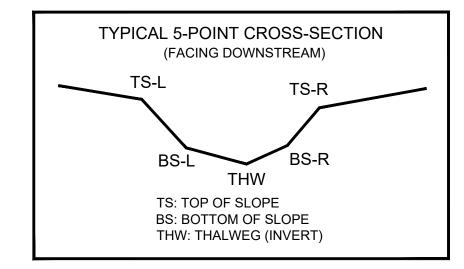
Size (mm)	TOT #	ITEM %	CUM %
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	33 7 6 4 5 2 6 1 6 3 3 5 5 4 0 0 0 0 0 0	33.00 7.00 6.00 4.00 5.00 2.00 6.00 1.00 6.00 3.00 5.00 5.00 4.00 0.00 3.00 1.00 0.00 0.00 0.00 0.00	33.00 40.00 46.00 50.00 55.00 57.00 63.00 64.00 70.00 73.00 76.00 81.00 86.00 90.00 90.00 90.00 99.00 99.00 100.00 100.00 100.00 100.00
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Cobble (%) Boulder (%) Bedrock (%)	0.03 0.08 0.5 28.24 105.2 361.99 33 24 33 9		

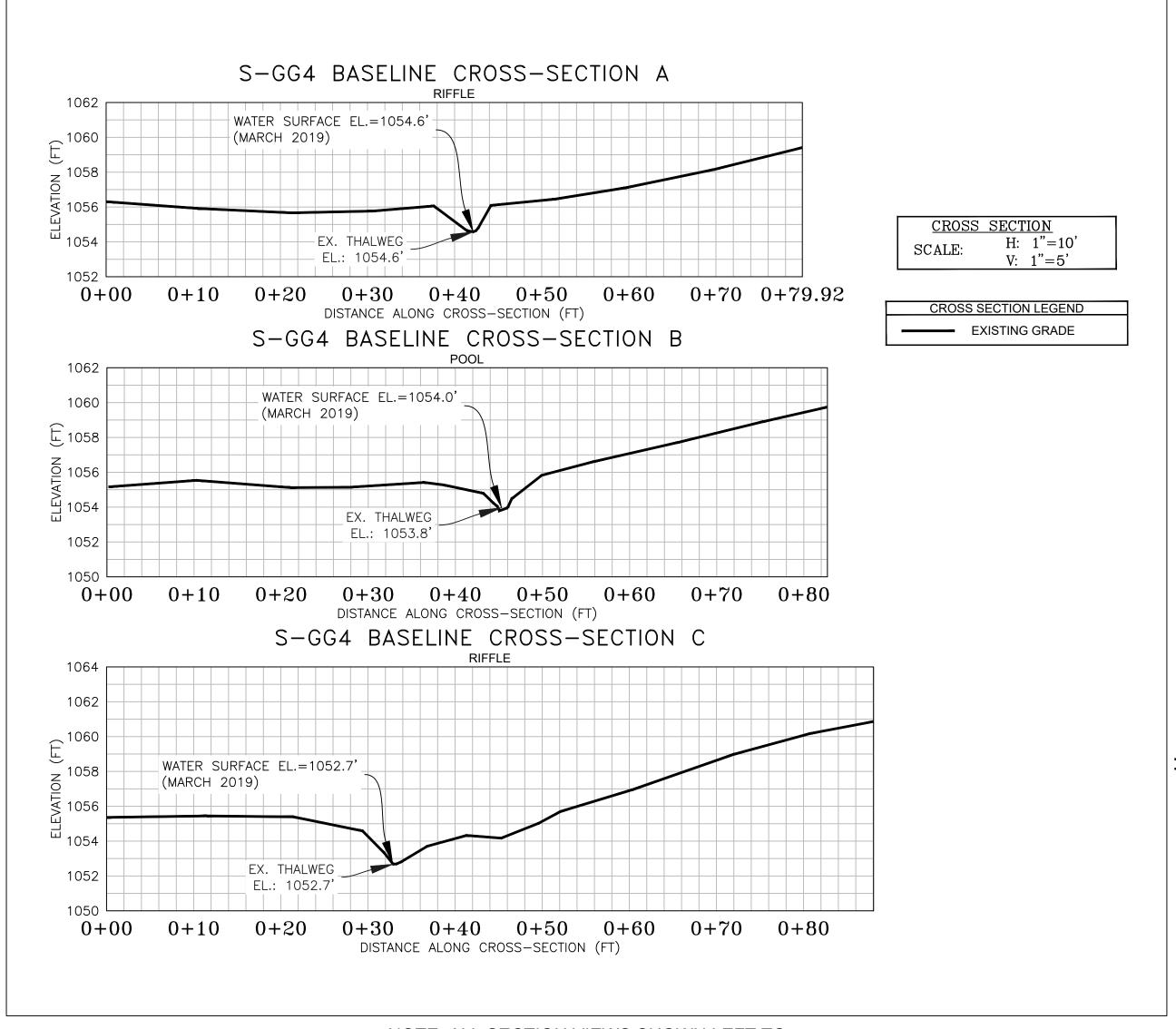
Total Particles = 100.


Ephemeral Stream Assessment Form (Form 1a) Unified Stream Methodology for use in Virginia For use in ephemeral streams Cowardin Impact/SAR Impact HUC SAR# Project # **Project Name** Locality Date Class length Factor Mountain Valley Pipeline (Mountain 22865.06 **Franklin County** 03010101 8/26/2021 S-GG4 20 1 Valley Pipeline, LLC) Name(s) of Evaluator(s) Stream Name and Information Stream Map RH, CL S-GG4; Spread I; Franklin County 4-716 2. RIPARIAN BUFFERS: Assess both bank's 100 foot riparian areas along the entire SAR. (rough measurements of length & width may be acceptable) **Conditional Category** NOTES>> Optimal Suboptimal Marginal Poor Low Marginal: High Poor: Lawn mowed, and maintained areas High Suboptimal High Marginal: dense herbaceou Low Poor: Low Suboptimal: Riparian areas with egetation, ripariar areas lacking shrut and tree stratum, Impervious urfaces, mine spoil lands, Non-maintained nurseries: no-till Riparian areas with tree stratum (dbh > 3 inches) ree stratum (dbh lense herbaceou cropland; actively 3 inches) present Tree stratum (dbh > 3 inches) present vegetation with grazed pasture, Riparian with 30% to 60% present, with >30% tree either a shrub layer or a tree layer (dbh > 3 inches) denuded surfaces, row crops, active feed lots, trails, or with > 60% tree canopy cover and an non-maintained understory. Wetlands hay production onds, open water parsely vegetate non-maintained tree canopy cover and containing bot canopy cover and a maintained understory. **Buffers** areas If present, tree area, recently herbaceous and Recent cutover (dense present, with <30% stratum (dbh >3 seeded and other comparable shrub layers or a non-maintained vegetation). tree canopy cover inches) present with <30% tree stabilized, or othe comparable conditions. understory. canopy cover with maintained understory. condition. High Low High Low High Low Condition 1.5 1.2 1.1 0.85 0.75 0.6 0.5 Scores . Delineate riparian areas along each stream bank into Condition Categories and Condition Scores using the descriptors. Ensure the sums of % Riparian Determine square footage for each by measuring or estimating length and width. Calculators are provided for you below. Enter the % Riparian Area and Score for each riparian category in the blocks below. Blocks equal 100 10% 90% 100% % Riparian Area> Right Bank Score > 0.6 0.75 CI= (Sum % RA * Scores*0.01)/2 10% 90% 100% CI % Riparian Area> Rt Bank CI > 0.74 Left Bank Score > 0.6 0.75 Lt Bank CI > 0.74 0.74 REACH CONDITION INDEX and STREAM CONDITION UNITS FOR THIS REACH NOTE: The CIs and RCI should be rounded to 2 decimal places. The CR should be rounded to a whole number. THE REACH CONDITION INDEX (RCI) >> 0.37 RCI= (Riparian CI)/2

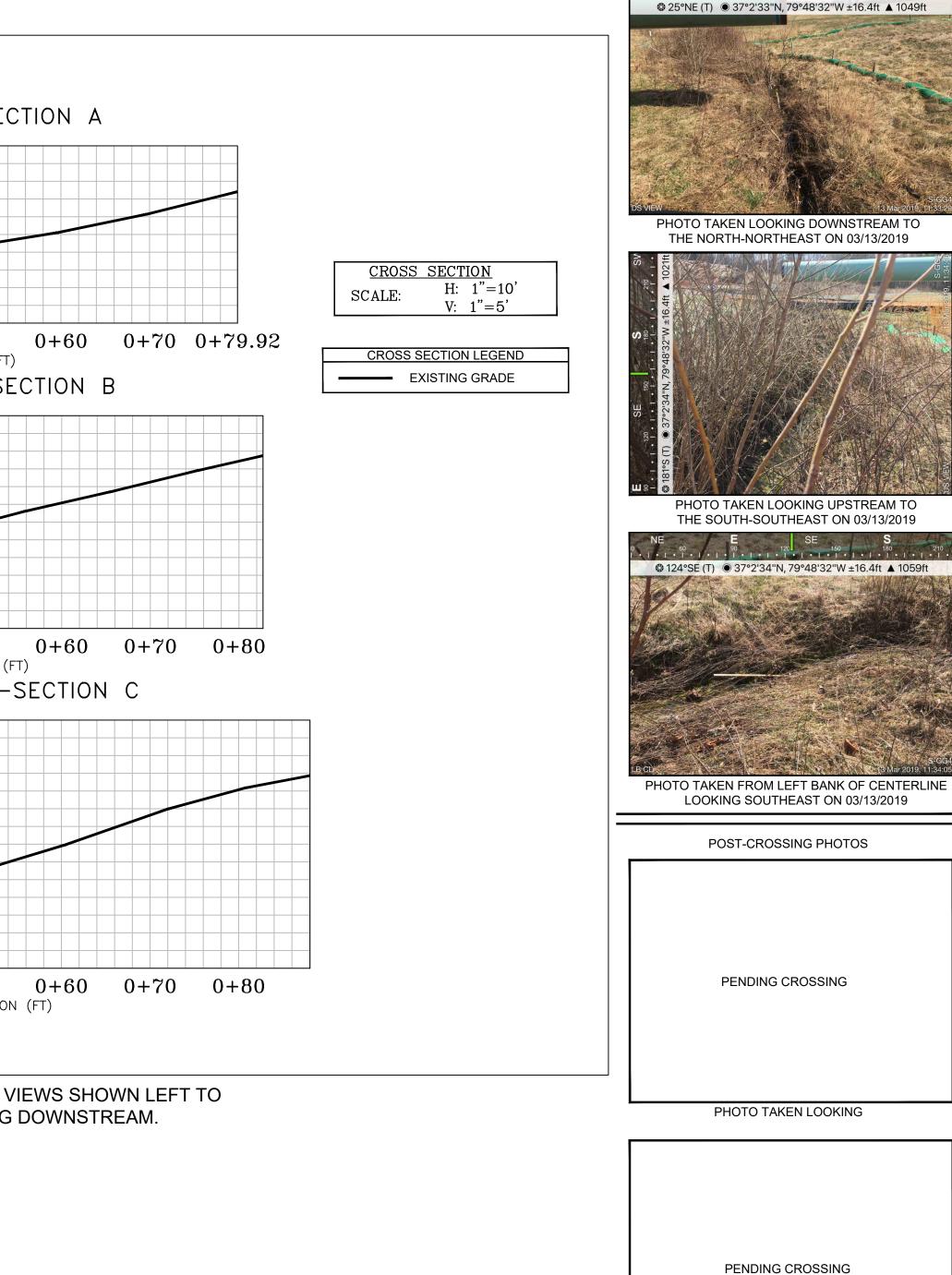

COMPENSATION REQUIREMENT (CR) >> 7

CR = RCI X LF X IF


INSERT PHOTOS: (WSSI Photo Location "L.122000s122800.22865.06.Admin105-ENVRIField Data!") DIRECTION 20 deg (T) 079.80904°W DATUM WGS84 Context Camera 2021-08-26 12:14:11-04:00


DESCRIBE PROPOSED IMPACT:
PROVIDED UNDER SEPARATE COVER

CL STAKEOUT POINTS: S-GG4 CROSS SECTION B (PIPE CL)											
	PR	POST-C	ROSSING								
DT LOC	NODTHING	FACTING		VERT.	HORZ.						
PT. LOC.	NORTHING	EASTING	ELEV	DIFF.	DIFF.						
TS-L	13452325.89	1987894.05	1055.27								
BS-L	13452322.27	1987898.51	1054.23								
THW	13452321.88	1987899.07	1053.79								
BS-R	13452321.28	1987900.36	1054.48								
TS-R	13452317.91	1987907.75	1056.45								



NOTE: ALL SECTION VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.

LEGEND STUDY AREA (EASEMENT) EXISTING SURVEY-LOCATED THALWEG EXISTING SURVEY-LOCATED EDGE OF WATER (AS NECESSARY) EXISTING CONTOUR LINE (MAJOR) EXISTING CONTOUR LINE (MINOR) EXISTING SURVEYED GROUND SHOT ELEVATION 1059.7 +BENCHMARK POINT (WSSI)

SURVEY NOTES:

- 1. This map has been oriented to NAD 1983 UTM ZONE 17N, and vertically to The North American Vertical Datum of 1988 (NAVD 88), using a Real Time Network (RTN) GPS. Field locations were completed on March 13, 2019.
- 2. Monumentation, including traverse stations and fly points, shown on this drawing should be used to orient any future boundary, topographic, or location survey.
- 3. Easement lines shown on plan view were provided by Mountain Valley Pipeline (MVP).
- 4. WSSI Contour Interval = 2.0'. Contours within the channel were interpolated using stream channel breaklines (i.e. top of slopes, toe of slopes, thalweg) and cross-sectional points. Contours outside the channel were interpolated using cross-sectional spot shots.
- 5. All section views shown are left to right facing downstream.
- 6. Cross-section B shot at location of pipe centerline (based on best professional judgement).

PRE-CROSSING PHOTOS

PHOTO TAKEN LOOKING

Horizontal Datum: NAD 1983 UTM ZONE 1

Draft

Sheet #

1 of 1

JSF

Approved

NAS

Vertical Datum: NAVD 88

Boundary and Topo Source:

WSSI 2' C.I. Topo

Computer File Name:

Survey\22000s\22800\22865.03\Spread I Work Dwgs 865_03 S-I MP 268-278 Sheets_2.dwg

EJC