Reach S-GH3 (Timber Mat Crossing) Perennial Spread I Franklin County, Virginia

Data	Included
Photos	\checkmark
SWVM Form	\checkmark
FCI Calculator and HGM Form	N/A – Perennial stream (not shadeable)
RBP Physical Characteristics Form	\checkmark
Water Quality Data	\checkmark
RBP Habitat Form	\checkmark
RBP Benthic Form	\checkmark
Benthic Identification Sheet	\checkmark
Wolman Pebble Count	\checkmark
RiverMorph Data Sheet	\checkmark
USM Form (Virginia Only)	\checkmark
Longitudinal Profile and Cross Sections	\checkmark

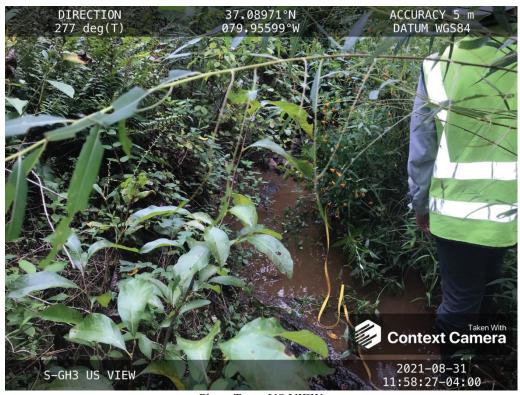


Photo Type: US VIEW Location, Orientation, Photographer Initials: Downstream at ROW/LOD looking NW upstream, RAH

Photo Type: DS COND Location, Orientation, Photographer Initials: Downstream at ROW/LOD looking SE downstream, RAH

Photo Type: LB CL

Location, Orientation, Photographer Initials: On thalweg at pipe centerline looking SW at right streambank, RAH

Photo Type: RB CL Location, Orientation, Photographer Initials: On thalweg at pipe centerline looking NE at left streambank, RAH

DEQ Permit #21-0416



Photo Type: US COND Location, Orientation, Photographer Initials: Upstream at ROW/LOD looking NW upstream, RAH

Photo Type: DS VIEW Location, Orientation, Photographer Initials: Upstream at ROW/LOD looking SE downstream, RAH

West Virginia Stream and Wetland Valuation Metric (SWVM) Version 2.1, September 2017

USACE FILE NO./ Project Name: (v2.1, Sept 2015)		Mountain Valley Pipeline		IMPACT COORDINATES: (in Decimal Degrees)	Lat.	37.089745 Lor	n79.956042	WEATHER:	99% Cloud Cover	DATE:	08/31/21
IMPACT STREAM/SITE ID (watershed size (acreage),			S-GH3 / 1	111.18 ac		MITIGATION STREAM CLASS./SITE (watershed size (acreage), unat				Comments:	
STREAM IMPACT LENGTH:	20	FORM OF MITIGATION:	RESTORATION (Levels I-III)	MIT COORDINATES: (in Decimal Degrees)	Lat.	Lor	n.	PRECIPITATION PAST 48 HRS:		Mitigation Length:	
Column No. 1- Impact Existing	g Condition (De	bit)	Column No. 2- Mitigation Existing Co	ondition - Baseline (Credit)		Column No. 3- Mitigation Projecte Post Completion (Cre	ed at Five Years edit)	Column No. 4- Mitigation Proj Post Completion (Column No. 5- Mitigation Project	ed at Maturity (Credit)
Stream Classification:	Pere	ennial	Stream Classification:			Stream Classification:	0	Stream Classification:	0	Stream Classification:	0
Percent Stream Channel SI	lope	2.76	Percent Stream Channel Slo	pe		Percent Stream Channel Slope	0	Percent Stream Channel SI	ope 0	Percent Stream Channel S	lope 0
HGM Score (attach d	ata forms):		HGM Score (attach d	lata forms):		HGM Score (attach data	forms):	HGM Score (attach da	ata forms):	HGM Score (attach d	ata forms):
		Average		Average			Average		Average		Average
Hydrology Biogeochemical Cycling		0	Hydrology Biogeochemical Cycling	0		Hydrology Biogeochemical Cycling	0	Hydrology Biogeochemical Cycling	0	Hydrology Biogeochemical Cycling	0
Habitat PART I - Physical, Chemical and	Riological In dis	ators	Habitat PART I - Physical, Chemical and			Habitat PART I - Physical, Chemical and Bio		Habitat PART I - Physical, Chemical and	Rielegical Indicators	Habitat PART I - Physical, Chemical and	Rielogical Indicators
PART I - Physical, Gremical and			PART I - Physical, onemical and	-			-	PART I - Physical, Chemical and	-	PART I - Physical, onemical and	-
	Points Scale Range	Site Score		Points Scale Range Site Score		Point	s Scale Range Site Score		Points Scale Range Site Score		Points Scale Range Site Score
PHYSICAL INDICATOR (Applies to all streams	s classifications)		PHYSICAL INDICATOR (Applies to all streams of	lassifications)		PHYSICAL INDICATOR (Applies to all streams classif	fications)	PHYSICAL INDICATOR (Applies to all streams	classifications)	PHYSICAL INDICATOR (Applies to all streams	classifications)
USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover		49	USEPA RBP (Low Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover			USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover 0-	20	USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover	0-20	USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover	0-20
2. Embeddedness	0-20	13	2. Pool Substrate Characterization	0-20			-20	2. Embeddedness	0-20	2. Embeddedness	0-20
3. Velocity/ Depth Regime	0-20	18	3. Pool Variability	0-20			-20	3. Velocity/ Depth Regime	0-20	3. Velocity/ Depth Regime	0-20
4. Sediment Deposition	0-20	9	4. Sediment Deposition	0-20			-20	4. Sediment Deposition	0-20	4. Sediment Deposition	0-20
5. Channel Flow Status	0-20 0-1	16	5. Channel Flow Status	0-20 0-1		5. Channel Flow Status 0-	-20 0.1	5. Channel Flow Status	0-20 0.1	5. Channel Flow Status	0-20 0-1
6. Channel Alteration	0-20	19	6. Channel Alteration	0-20			-20	6. Channel Alteration	0-20	6. Channel Alteration	0-20
7. Frequency of Riffles (or bends)	0-20	18	7. Channel Sinuosity	0-20		7. Frequency of Riffles (or bends) 0-	-20	7. Frequency of Riffles (or bends)	0-20	7. Frequency of Riffles (or bends)	0-20
8. Bank Stability (LB & RB)	0-20	15	8. Bank Stability (LB & RB)	0-20			-20	8. Bank Stability (LB & RB)	0-20	8. Bank Stability (LB & RB)	0-20
9. Vegetative Protection (LB & RB)	0-20	18	9. Vegetative Protection (LB & RB)	0-20			-20	9. Vegetative Protection (LB & RB)	0-20	9. Vegetative Protection (LB & RB)	0-20
10. Riparian Vegetative Zone Width (LB & RB)	0-20	17	10. Riparian Vegetative Zone Width (LB & RB)	0-20			-20	 Riparian Vegetative Zone Width (LB & RB) 	0-20	 Riparian Vegetative Zone Width (LB & RB) 	0-20
Total RBP Score	Suboptimal	161	Total RBP Score	Poor 0			Poor 0	Total RBP Score	Poor 0	Total RBP Score	Poor 0
Sub-Total CHEMICAL INDICATOR (Applies to Intermitter	nt and Perennial Str	0.805	Sub-Total CHEMICAL INDICATOR (Applies to Intermittent a	0 and Perennial Streams)		Sub-Total CHEMICAL INDICATOR (Applies to Intermittent and F	0 Perennial Streams)	Sub-Total CHEMICAL INDICATOR (Applies to Intermitter	t and Perennial Streams)	Sub-Total CHEMICAL INDICATOR (Applies to Intermitter	0
WVDEP Water Quality Indicators (General			WVDEP Water Quality Indicators (General)	,		WVDEP Water Quality Indicators (General)	,	WVDEP Water Quality Indicators (General		WVDEP Water Quality Indicators (General	
Specific Conductivity			Specific Conductivity			Specific Conductivity		Specific Conductivity	· · · · · · · · · · · · · · · · · · ·	Specific Conductivity	
	0-90	89.8		0-90		0-	-90		0-90		0-90
<=99 - 90 points	1		-11			-11		-11		- 11	
pn	0-80 0-1	0.00	pn	5-90 0-1		ph .	.90 0-1	рл	5-90 0-1	ph	5-90 0-1
6.0-8.0 = 80 points	0-00	6.92				5-	~~				~~~
DO	1		DO			DO		DO		DO	
>5.0 = 30 points	10-30	5.58		10-30		10	-30		10-30		10-30
Sub-Total	- I	1	Sub-Total	0		Sub-Total	0	Sub-Total	0	Sub-Total	0
BIOLOGICAL INDICATOR (Applies to Intermit	tent and Perennial	Streams)	BIOLOGICAL INDICATOR (Applies to Intermitter	nt and Perennial Streams)		BIOLOGICAL INDICATOR (Applies to Intermittent	and Perennial Streams)	BIOLOGICAL INDICATOR (Applies to Interm	ittent and Perennial Streams)	BIOLOGICAL INDICATOR (Applies to Intern	nittent and Perennial Streams)
WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)		WV Stream Condition Index (WVSCI)		WV Stream Condition Index (WVSCI)	
	0-100 0-1	64.2		0-100 0-1			100 0-1		0-100 0-1		0-100 0-1
Grey Zone				0.00							0.00
Sub-Total		0.642	Sub-Total	0		Sub-Total	0	Sub-Total	0	Sub-Total	0
PART II - Index and U	Jnit Score		PART II - Index and L	Jnit Score		PART II - Index and Unit	Score	PART II - Index and U	nit Score	PART II - Index and L	Jnit Score
Index	Linear Feet	Unit Score	Index	Linear Feet Unit Score		Index Li	near Feet Unit Score	Index	Linear Feet Unit Score	Index	Linear Feet Unit Score
0.816	20	16.3133333	0	0 0		0	0 0	0	0 0	0	0 0
μ	1	I	L		ļ	μ		L		μ	1 1

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

STREAM NAME S-GH3	LOCATION Franklin County	LOCATION Franklin County					
STATION # RIVERMILE 258.5	STREAM CLASS Perennial						
LAT <u>37.089745</u> LONG <u>-79.956042</u>	RIVER BASIN Upper Roano	ke					
STORET #	AGENCY VADEQ						
INVESTIGATORS RH, RC							
FORM COMPLETED BY RH	DATE 8/31/21 TIME 11:38	REASON FOR SURVEY Baseline Assessment					

WEATHER CONDITIONS	Now Past 24 hours Has there been a heavy rain in the last 7 days? 99 % storm (heavy rain) rain (steady rain) showers (intermittent) %cloud cover clear/sunny Air Temperature 28.3 ° C
SITE LOCATION/MAP	Dense Veg. Veg. Veg. Veg. Veg. Veg. Veg. Veg
STREAM CHARACTERIZATION	Stream Subsystem Stream Type Perennial Intermittent Tidal Stream Origin Coldwater Warmwater Glacial Spring-fed Catchment Area Non-glacial montane Mixture of origins Mixture of origins

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

WATERSHED FEATURES RIPARIAN VEGETATION (18 meter buffer)	Predominant Surrounding Landuse Forest Commercial Field/Pasture Industrial Agricultural Other Residential Other Indicate the dominant type and record the domined th	Local Watershed NPS Pollution ☑ No evidence □ Some potential sources □ Obvious sources Local Watershed Erosion ☑ None □ Moderate □ Heavy tant species present □ Grasses
INSTREAM FEATURES	Estimated Reach Length17.98mEstimated Stream Width0.91mSampling Reach Area53.95m²Area in km² (m²x1000)0.05km²Estimated Stream Depth0.08mSurface Velocity0.25m/sec(at thalweg)0.25m/sec	Canopy Cover □Partly shaded □Shaded □Partly open □Partly shaded □Shaded High Water Mark 0.30 m Proportion of Reach Represented by Stream Morphology Types Riffle 40 % Run 30 Pool 30 % Channelized Yes Dam Present Yes
LARGE WOODY DEBRIS	LWDm ² Density of LWDm ² /km ² (LWD/ read	ch area)
AQUATIC VEGETATION	Indicate the dominant type and record the domin Rooted emergent Floating Algae Dominant species present Portion of the reach with aquatic vegetation 4	☐Rooted floating ☐Free floating
WATER QUALITY	Temperature 21.9 D 0 C Specific Conductance 89.8 D ms/cm Dissolved Oxygen 5.58 D mg/L pH 6.92 D su Turbidity N/A WQ Instrument Used YSI	Water Odors Normal/None Sewage Petroleum Chemical Fishy Other Water Surface Oils Slick Slick Sheen Globs Vone Other Turbidity (if not measured) Turbid Clear Slightly turbid Turbid Opaque Stained Other
SEDIMENT/ SUBSTRATE	Odors Sewage Petroleum Chemical Anaerobic None Other Oils Profuse	Deposits □Sludge □Sawdust □Paper fiber □Sand □Relict shells □Other □ Epoking at stones which are not deeply embedded, are the undersides black in color? □ Yes ☑ No

INC	ORGANIC SUBSTRATE (should add up to			ORGANIC SUBSTRATE C (does not necessarily add					
Substrate Type	Diameter	% Composition in Sampling Reach	Substrate Type	Characteristic	% Composition in Sampling Area				
Bedrock	10		Detritus	sticks, wood, coarse plant	Б				
Boulder	> 256 mm (10")			materials (CPOM)	C				
Cobble	64-256 mm (2.5"-10") 30		Muck-Mud	black, very fine organic					
Gravel	2-64 mm (0.1"-2.5")	20		(FPOM)					
Sand	0.06-2mm (gritty)	25	Marl	grey, shell fragments					
Silt	0.004-0.06 mm	15]						
Clay	< 0.004 mm (slick)]						

HABITAT ASSESSMENT FIELD DATA SHEET - HG - USE ON ALL STREAMS (FRONT)

STREAM NAME S-GH3	LOCATION Franklin County					
STATION # RIVERMILE 258.5	STREAM CLASS Perennial					
LAT <u>37.089745</u> LONG <u>-79.956042</u>	RIVER BASIN Upper Roanoke					
STORET #	AGENCY VADEQ					
INVESTIGATORS RH, RC						
FORM COMPLETED BY RH	DATE 8/31/21 REASON FOR SURVEY Baseline Assessment					

	Habitat		Condition	Category					
	Parameter	Optimal	Suboptimal	Marginal	Poor				
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are <u>not</u> new fall and <u>not</u> transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.				
	_{SCORE} 18▼	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0				
ı sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.				
ed ir	score 13 ▼	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0				
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow- deep, slow-shallow, fast- deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast- shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).				
Iram	_{SCORE} 18 ▼	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0				
P	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.				
	score 9	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0				
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.				
	SCORE 16	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0				

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

	Habitat		Condition	Category					
	Parameter	Optimal	Suboptimal	Marginal	Poor				
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.				
	SCORE 19▼	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0				
ling reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.				
samp	_{SCORE} 18▼	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0				
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing deurostant.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30- 60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.				
e ev	SCORE 8	Left Bank 10 9	8 7 6	5 4 3	2 1 0				
s to b	SCORE /	Right Bank 10 9	8 7 6	5 4 3	2 1 0				
Parameter	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well- represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.				
	SCORE 9	Left Bank 10 9	8 7 6	5 4 3	2 1 0				
	SCORE 9	Right Bank 10 9	8 7 6	5 4 3	2 1 0				
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.				
	SCORE 8	Left Bank 10 9	8 7 6	5 4 3	2 1 0				
	SCORE 9	Right Bank 10 9	8 7 6	5 4 3	2 1 0				

Total Score 161

BENTHIC MACROINVERTEBRATE FIELD DATA SHEET

STREAM NAME S-G	iH3	LOCATION Franklin County								
STATION #	RIVERMILE	STREAM CLASS Perennial								
LAT37.089745	LONG79.956042	RIVER BASIN None	RIVER BASIN None							
STORET #		AGENCY VADEQ								
INVESTIGATORS SE	B, KD		LOT NUMBER							
FORM COMPLETED	^{BY} SB	DATE 9/2/2021 TIME 8:00 AM	REASON FOR SURVEY Baseline Assessment							
HABITAT TYPES	✓Cobble 100 [°] % Sn	Indicate the percentage of each habitat type present Cobble 100 % Snags % Vegetated Banks % Sand % Submerged Macrophytes % Other (
SAMPLE COLLECTION		lected? ☑ wading ☐ fi ps/kicks taken in each habitat ty lags ☐ Vegetated B.	rom bank							
GENERAL COMMENTS	4 kicks in cobble. vegetation.	Stream shaded by	overhanging scrub/shrub							

QUALITATIVE LISTING OF AQUATIC BIOTA

Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare, 2 = Common, 3= Abundant, 4 = Dominant

Periphyton	0	1	2	3	4	Slimes	0	1	2	3	4
Filamentous Algae	0	1	2	3	4	Macroinvertebrates	0	1	2	3	4
Macrophytes	0	1	2	3	4	Fish	0	1	2	3	4

FIELD OBSERVATIONS OF MACROBENTHOS

Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare (1-3 organisms), 2 = Common (3-9 organisms), 3= Abundant (>10 organisms), 4 = Dominant (>50 organisms)

Porifera	0	1	2	3	4	Anisoptera	0	1	2	3	4	Chironomidae	0	1	2	3	4
Hydrozoa	0	1	2	3	4	Zygoptera	0	1	2	3	4	Ephemeroptera	0	1	2	3	4
Platyhelminthes	0	1	2	3	4	Hemiptera	0	1	2	3	4	Trichoptera	0	1	2	3	4
Turbellaria	0	1	2	3	4	Coleoptera	0	1	2	3	4	Other	0	1	2	3	4
Hirudinea	0	1	2	3	4	Lepidoptera	0	1	2	3	4						
Oligochaeta	0	1	2	3	4	Sialidae	0	1	2	3	4						
Isopoda	0	1	2	3	4	Corydalidae	0	1	2	3	4						
Amphipoda	0	1	2	3	4	Tipulidae	0	1	2	3	4						
Decapoda	0	1	2	3	4	Empididae	0	1	2	3	4						
Gastropoda	0	1	2	3	4	Simuliidae	0	1	2	3	4						
Bivalvia	0	1	2	3	4	Tabinidae	0	1	2	3	4						
						Culcidae	0	1	2	3	4						

Mountain Valley Pipeline Data are not adjusted for subsampling

ECO ANALYSTS, INC.

	Sample ID Collection Date	S-GH3 09-02-2021
	Concerten Date	00 02 2021
ORDER	GENUS/SPECIES	COUNT
Ephemeroptera	Baetis sp.	1
Ephemeroptera	Caenis sp.	1
Ephemeroptera		3
	Maccaffertium sp.	21
Ephemeroptera		4
	Leuctra sp.	3
	Cheumatopsyche sp.	9
	Chimarra sp.	4
	Diplectrona sp.	1
	Hydropsyche sp.	4
	Neophylax sp.	2
	Calopteryx sp.	2
	Gomphidae	1
	Stylogomphus sp.	1
•	Anchytarsus bicolor	1
	Ectopria sp.	1
	Helichus sp.	6
	Macronychus glabratus	1
	Optioservus sp.	1
	Oulimnius sp. Stenelmis sp.	3 7
Megaloptera		2
Diptera-Chironomidae		1
•		
Diptera-Chironomidae		1
Diptera-Chironomidae		1
Diptera-Chironomidae		2
Diptera-Chironomidae		4
Diptera-Chironomidae	Parametriocnemus sp.	2
Diptera-Chironomidae	Paraphaenocladius sp.	3
Diptera-Chironomidae	Paratendipes sp.	1
Diptera-Chironomidae	Polypedilum sp.	14
Diptera-Chironomidae		9
Diptera-Chironomidae		1
Diptera-Chironomidae	5	4
	Thienemannimyia gr. sp.	47
Diptera	Hemerodromia sp.	1
Diptera	Tabanidae	2
Annelida	Enchytraeidae	1
Annelida	Lumbriculidae	1
Annelida	Naididae	23
	tubificoid Naididae w/o cap setae	1
	Sphaeriidae	3
	Ferrissia sp.	20
	Lymnaeidae	1
Acari	Hygrobates sp.	1
Other Organisms		1
	TOTAL	224

Mountain Valley Pipeline WV SCI Metrics

ECO ANALYSTS, INC.

Sample ID Collection Date	
WVSCI Metric Values Total taxa EPT taxa % EPT % Chironomidae % 2 Dominant HBI	26 8 23.7 40.2 51.3 5.62
WVSCI Metric Scores Total taxa EPT taxa % EPT % Chironomidae % 2 Dominant HBI	123.8 61.5 25.7 60.4 76.0 61.7
WVSCI Metric Scores Total taxa EPT taxa % EPT % Chironomidae % 2 Dominant HBI	100.0 61.5 25.7 60.4 76.0 61.7
WVSCI Total Score	64.2

WVSCI Thresholds

Unimpaired = > 68.00 Gray Zone = 60.61 to 68.00

Impaired = <60.61

WOLMAN PEBBLE COUNT FORM

Basin:

County: Franklin County Stream Name: UNT to Teels Creek HUC Code: 03010101 Survey Date: 8/31/2021 Surveyors: RH, RC Type: Representative

Inches

Stream ID:

Upper Roanoke

% Cum

S-GH3

PEBBLE COUNT PARTICLE Millimeters Particle Total # Item % Count < .062 S/C ٠ I 15 15.00

	Silt/Clay	< .062	S/C	• •	15	15.00	15.00
	Very Fine	.062125		÷	1	1.00	16.00
	Fine	.12525	1	÷	5	5.00	21.00
	Medium	.255	SAND	^	3	3.00	24.00
	Coarse	.50-1.0	-		2	2.00	26.00
.0408	Very Coarse	1.0-2	1		4	4.00	30.00
.0816	Very Fine	2 -4			1	1.00	31.00
.1622	Fine	4 -5.7	1	^	2	2.00	33.00
.2231	Fine	5.7 - 8	1	÷	6	6.00	39.00
.3144	Medium	8 -11.3	1		6	6.00	45.00
.4463	Medium	11.3 - 16	GRAVEL	÷		0.00	45.00
.6389	Coarse	16 -22.6	1	÷	1	1.00	46.00
.89 - 1.26	Coarse	22.6 - 32	1	▲ ▼	2	2.00	48.00
1.26 - 1.77	Vry Coarse	32 - 45	1		4	4.00	52.00
1.77 -2.5	Vry Coarse	45 - 64	1	÷	8	8.00	60.00
2.5 - 3.5	Small	64 - 90			4	4.00	64.00
3.5 - 5.0	Small	90 - 128	1	÷	14	14.00	78.00
5.0 - 7.1	Large	128 - 180	COBBLE	÷	3	3.00	81.00
7.1 - 10.1	Large	180 - 256	1	÷	5	5.00	86.00
10.1 - 14.3	Small	256 - 362		÷		0.00	86.00
14.3 - 20	Small	362 - 512	1	÷		0.00	86.00
20 - 40	Medium	512 - 1024	BOULDER	 ▼		0.00	86.00
40 - 80	Large	1024 -2048	1	 ↓		0.00	86.00
80 - 160	Vry Large	2048 -4096	1	▲ ▼		0.00	86.00
	Bedrock		BDRK		14	14.00	100.00
			1	Totals:	100		

River Name: Reach Name: Sample Name: Survey Date:	Representative			
Size (mm)	TOT #	ITEM %	CUM %	
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	15 1 5 3 2 4 1 2 6 6 0 1 2 4 8 4 14 3 5 0 0 0 0 14	$\begin{array}{c} 15.00\\ 1.00\\ 5.00\\ 3.00\\ 2.00\\ 4.00\\ 1.00\\ 2.00\\ 6.00\\ 0.00\\ 1.00\\ 2.00\\ 4.00\\ 1.00\\ 2.00\\ 4.00\\ 1.00\\ 3.00\\ 5.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 14.00\\ 14.00\end{array}$	$ \begin{array}{c} 16.00\\ 21.00\\ 24.00\\ 26.00\\ 30.00\\ 31.00\\ 33.00\\ 39.00\\ 45.00\\ 45.00\\ 45.00\\ 45.00\\ 45.00\\ 45.00\\ 60.00\\ 64.00\\ 52.00\\ 60.00\\ 86.00\\ 8$	
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Gravel (%) Boulder (%) Bedrock (%) Total Particles = 100	0.13 6.47 38.5 225.6 Bedrock 15 15 30 26 0 14			

			F	For use in wadea	able channels cla	ssified as interm	nittent or perenni	al			
Project #	Project Nan	me (Applicant		Locality	Cowardin Class.	HUC	Date	SAR #	Impact Length	Impact Factor	
22865.06	Mountain Valley Valley Pip	v Pipeline (Mo ipeline, LLC)		Franklin County	R3	03010101	8/31/21	S-GH3	20	1	
Nam	e(s) of Evaluator(s)			and Informa	tion	•		•	SAR Length		
	RH, RC	Spre	ead I; UNI	۲ to Teels Cre	ek				74		
Channel C	ondition: Assess the c	cross-section of th	the stream ar	nd prevailing cond	dition (erosion, ago	gradation)					
	1				Conditional Catego	ory			Sov	<u></u>	
	Optimal		Subop		IVIAI	ginal		Dor	Seve		
	Very little incision or active e			w areas of active	· · ·	less than Severe or		cised. Vertically /	Deeply incised (
Channel Condition	 100% stable banks. Vegetar protection or natural rock, (80-100%). AND/OR Stable bankfull benches are presen to their original floodplain developed wide bankfull ben channel bars and transverse Transient sediment deposit less than 10% of both 	prominent of e point bars / Vege ent. Access p in or fully Dep enches. Mid- se bars few. ition covers has ottom. new	of banks are sta etative protecti prominent (60- positional featu bility. The ban nels are well de s access to ban wly developed f	ted banks. Majority able (60-80%). ion or natural rock 80%) AND/OR ures contribute to kfull and low flow fined. Stream likely nkfull benches,or floodplains along each. Transient	or Poor due to lo Erosion may be pro both banks. Veget 40-60% of banks. S vertical or unde 40-60% Sediment transient, contr Deposition that co	stable than Severe ower bank slopes. esent on 40-60% of tative protection on Streambanks may be ercut. AND/OR may be temporary / fibute instability. ntribute to stability, resent. AND/OR V-	further. Majority of vertical. Erosion pro- banks. Vegetative on 20-40% of bank to prevent erosion. the stream is cov Sediment is temp nature, and contri		vertical/lateral ins incision, flow containe Streambed below ave majority of banks v Vegetative protection than 20% of banks, erosion. Obvious present. Erosion/raw AND/OR Aggrading than 80% of stream	ed within the banks. erage rooting depth, vertical/undercut. on present on less , is not preventing bank sloughing banks on 80-100%. g channel. Greater	
		sedime	ent covers 10 botto)-40% of the stream	l '	s have vegetative % of the banks and	40% of the banks a	tion is present on > and stable sediment	deposition, contribu Multiple thread c		
						es which contribute ability.	· ·	n is absent.	subterrane	ean flow.	С
Scores NOTES>>	BLIEFERS: Access is	both bonk's 100 f	2.		to sta	ability. 2	1	.6	subterrane 1	ean flow.	
NOTES>>	3 BUFFERS: Assess b Optimal	both bank's 100 fc	2.	areas along the er ditional Cate	ntire SAR. (rough	ability. 2 measurements o ginal Low Marginal:	f length & width ma Po High Poor: Lawns,	.6 ay be acceptable)	subterrane 1	ean flow.	
NOTES>>		nes) present, by cover. the riparian tree ca and cou herba shrub non-r	foot riparian a Con Suboptimal: ian areas with stratum (dbh > hes) present, 30% to 60% canopy cover ontaining both	areas along the er ditional Cate	to stand to stand tire SAR. (rough gory Marg Marg Marg Marg vegetation with either a shrub layer or a tree layer (dbh > 3 inches)	ability. 2 measurements o ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum,	f length & width ma f length & width ma Point A stabilized, or other comparable	A be acceptable) Dor Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable	1	ean flow.	C 2.4
NOTES>>	Optimal Tree stratum (dbh > 3 inche with > 60% tree canopy Wetlands located within th	nes) present, by cover. the riparian tree ca and cou herba shrub non-r und	foot riparian a Con Suboptimal: ian areas with stratum (dbh > hes) present, 30% to 60% canopy cover ontaining both baceous and b layers or a -maintained	areas along the er ditional Categotimal Dimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense	to sta to sta tire SAR. (rough gory Marg Marg Marg vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30%	ability. 2 measurements o ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained	f length & width ma f length & width ma Point A stabilized, or other comparable	A be acceptable) Dor Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable	1	ean flow.	
NOTES>>	Optimal Tree stratum (dbh > 3 inche with > 60% tree canopy Wetlands located within th	nes) present, by cover. the riparian tree ca and cou herba shrub non-r und	foot riparian a Con Suboptimal: ian areas with stratum (dbh > hes) present, 30% to 60% canopy cover ontaining both baceous and b layers or a -maintained nderstory.	areas along the er ditional Categotimal Dimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation).	to sta to sta to sta tire SAR. (rough gory Marg Marg Marg Marg sta sta sta sta sta sta sta sta sta sta	ability. 2 measurements o ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory.	f length & width ma f length & width ma Particular High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition.	ay be acceptable) Dor Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions.	1	ean flow.	
NOTES>> RIPARIAN Riparian Buffers Scores Delineate ripa Determine squ	Optimal Tree stratum (dbh > 3 inche with > 60% tree canopy Wetlands located within th areas. Wetlands located within th areas. 1.5 trian areas along each stree uare footage for each by mare footage	hes) present, by cover. the riparian tree str 3 inch with 3 tree ca and cou herba shrub non-r und ream bank into Co measuring or estir for each riparian ca 20%	foot riparian a Con Suboptimal: ian areas with stratum (dbh > hes) present, 30% to 60% canopy cover ontaining both baceous and b layers or a -maintained nderstory. High 1.2 ondition Cate imating lengt asom	areas along the er ditional Categotimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1	to sta to sta to sta to sta to sta to sta to sta to sta to sta sta sta titon Scores using	ability. 2 measurements o ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75	f length & width ma f length & width ma Provide the second of the seco	ay be acceptable) Dor Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions.	1	ean flow.	
NOTES>> RIPARIAN Riparian Buffers Scores Delineate ripa Determine squ Enter the % R	Optimal Tree stratum (dbh > 3 inche with > 60% tree canopy Wetlands located within th areas. Wetlands located within th areas. 1.5 trian areas along each stree uare footage for each by mare footage	hes) present, by cover. the riparian tree str 3 inch with 3 tree ca and cou herba shrub non-r und ream bank into Co measuring or estir for each riparian ca 20%	foot riparian a Con Suboptimal: ian areas with stratum (dbh > hes) present, 30% to 60% canopy cover ontaining both baceous and b layers or a -maintained nderstory. High 1.2 ondition Cate	areas along the er ditional Categotimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1	to sta to sta to sta to sta to sta to sta to sta to sta to sta sta sta titon Scores using	ability. 2 measurements o ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75	f length & width ma f length & width ma Provide the second of the seco	.6 ay be acceptable) Cor Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 100%	NOTES>>		
NOTES>> RIPARIAN Riparian Buffers Scores Delineate ripa Determine squ Enter the % R	Optimal Tree stratum (dbh > 3 inche with > 60% tree canopy Wetlands located within th areas. Wetlands located within th areas. 1.5 trian areas along each stree uare footage for each by mare footage	hes) present, by cover. the riparian the riparian tree str 3 inch with 3 tree ca and cor herba shrub non-r und ream bank into Cor measuring or estir for each riparian ca 20% 0.5	foot riparian a Con Suboptimal: ian areas with stratum (dbh > hes) present, 30% to 60% canopy cover ontaining both baceous and b layers or a -maintained nderstory. High 1.2 ondition Cate imating lengt asom	areas along the er ditional Categotimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1	to sta to sta to sta to sta to sta to sta to sta to sta to sta sta sta titon Scores using	ability. 2 measurements o ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75	f length & width ma f length & width ma Provide the second of the seco	.6 ay be acceptable) Cor Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 100%	1		

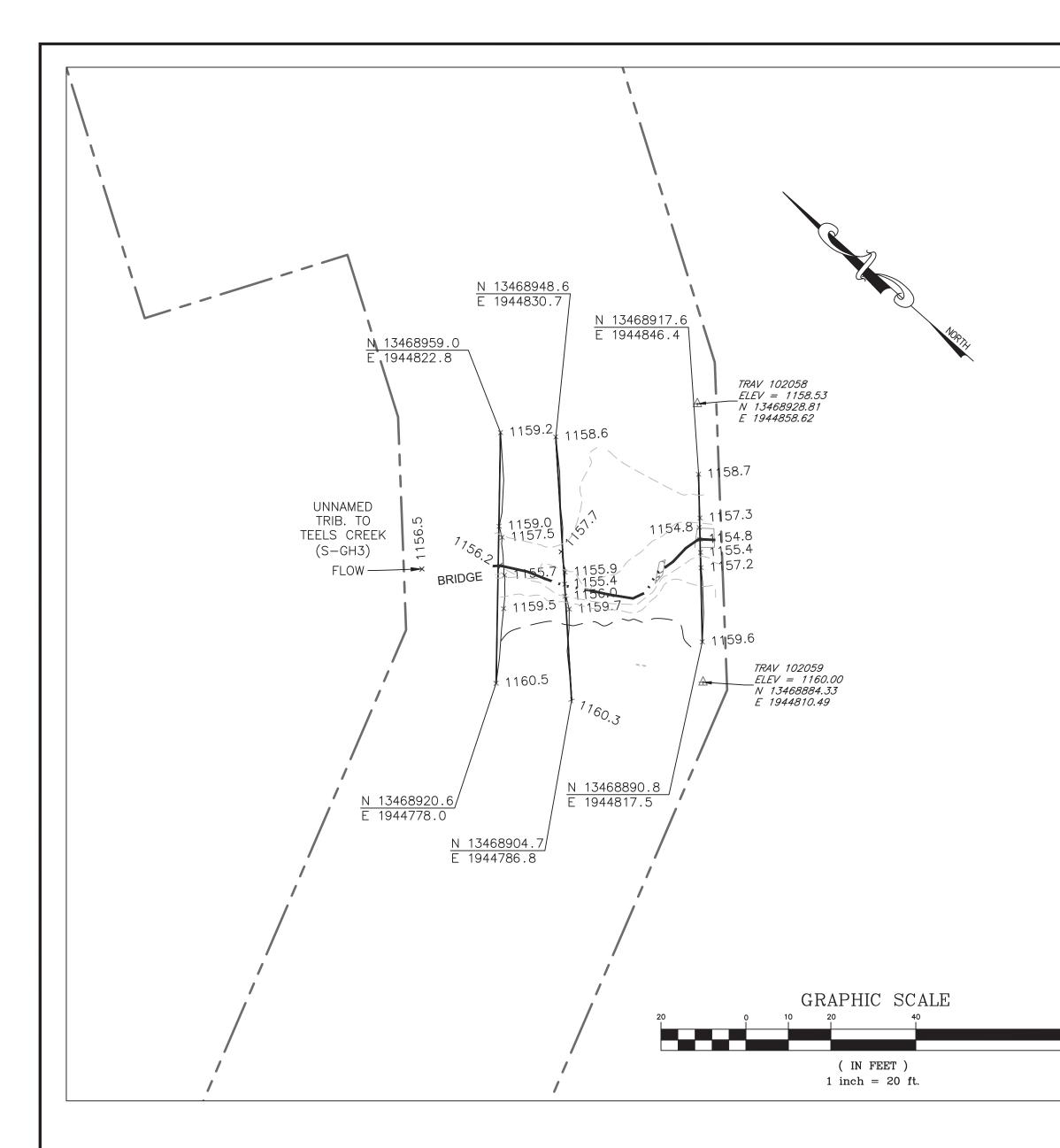
		Conditional Category								
Instream	Optimal Suboptimal Marginal Poor									
Habitat/ Available Cover	Habitat elements are typically present in greater than 50% of the reach.	Stable habitat elements are typically present in 30-50% of the reach and are adequate for maintenance of populations.	Stable habitat elements are typically present in 10-30% of the reach and are adequate for maintenance of populations.	Habitat elements listed above are lacking or are unstable. Habitat elements are typically present in less than 10% of the reach.	Stream Gradient	CI				
Scores	1.5	1.2	0.9	0.5	High / Low	1.50				

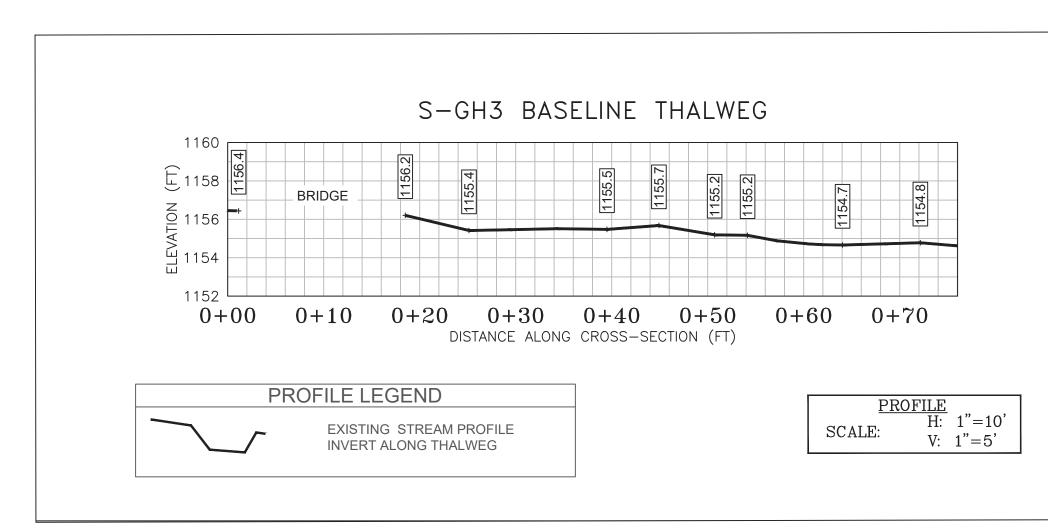
Reach R3-R4

File: https://tetratechinc.sharepoint.com/teams/MVPStreamWetlandAssessment/Shared Documents/General/01. Virginia Field Data Management/03. Preliminary QAQC (working files)/S-GH3_20211006SS/9. S-GH3_USM_20211006SS.xlsx

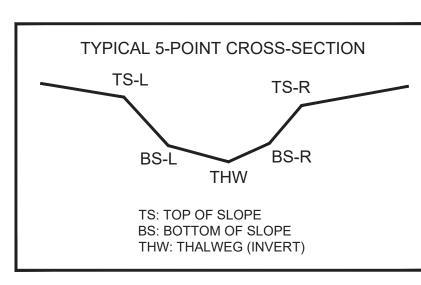
Project #	Project Name (App	licant)	Locality	Cowardin Class.	HUC	Date	SAR #	Impact Length	Impact Factor	
22865.06	Mountain Valley Pipeline (MountainFranklinValley Pipeline, LLC)County			R3	03010101	8/31/21	S-GH3	20	1	
. CHANNEI	ALTERATION: Stream crossin	igs, riprap, concret	e, gabions, or con	ncrete blocks, strai	ghtening of chann	el, channelization		•	ons, livestock	
			Conditiona	al Category				NOTES>>		
	Negligible	Mir	nor		erate	Sev	/ere			
Channel Alteration	Channelization, dredging, alteration, or hardening absent. Stream has an unaltered pattern or has naturalized.	the channel alterations listed in the parameter guidelines.	the channel alterations listed in the parameter guidelines.	is disrupted by any of the channel alterations listed in the parameter guidelines. If stream has been channelized, normal stable stream meander pattern has not recovered.	the parameter guidelines. If stream has been channelized, normal stable stream meander pattern has not recovered.	by any of the chanr in the parameter g 80% of banks sh riprap, or	of reach is disrupted nel alterations listed uidelines AND/OR ored with gabion, cement.			CI
Scores	1.5	1.3	1.1	0.9	0.7	0	.5			1.10
	REACH	CONDITION	INDEX and S	STREAM CO	NDITION UN	ITS FOR THI	S REACH			
OTE: The Cls a	nd RCI should be rounded to 2 decir	mal places. The Cl	R should be round	led to a whole nun	nber.		THE REACH	H CONDITION IN	DEX (RCI) >>	1.16
						RCI= (Sum of	all CI's)/5, exce	ept if stream is ep	hemeral RCI = (F	≀iparian C
							COMPENSA	TION REQUIRE	MENT (CR) >>	23
							CR = RC	CI X L _I X IF		

37.08968°N


CAPTION. Assessment is limited to areas within the temporary ROW.


DESCRIBE PROPOSED IMPACT:

PROVIDED UNDER SEPARATE COVER

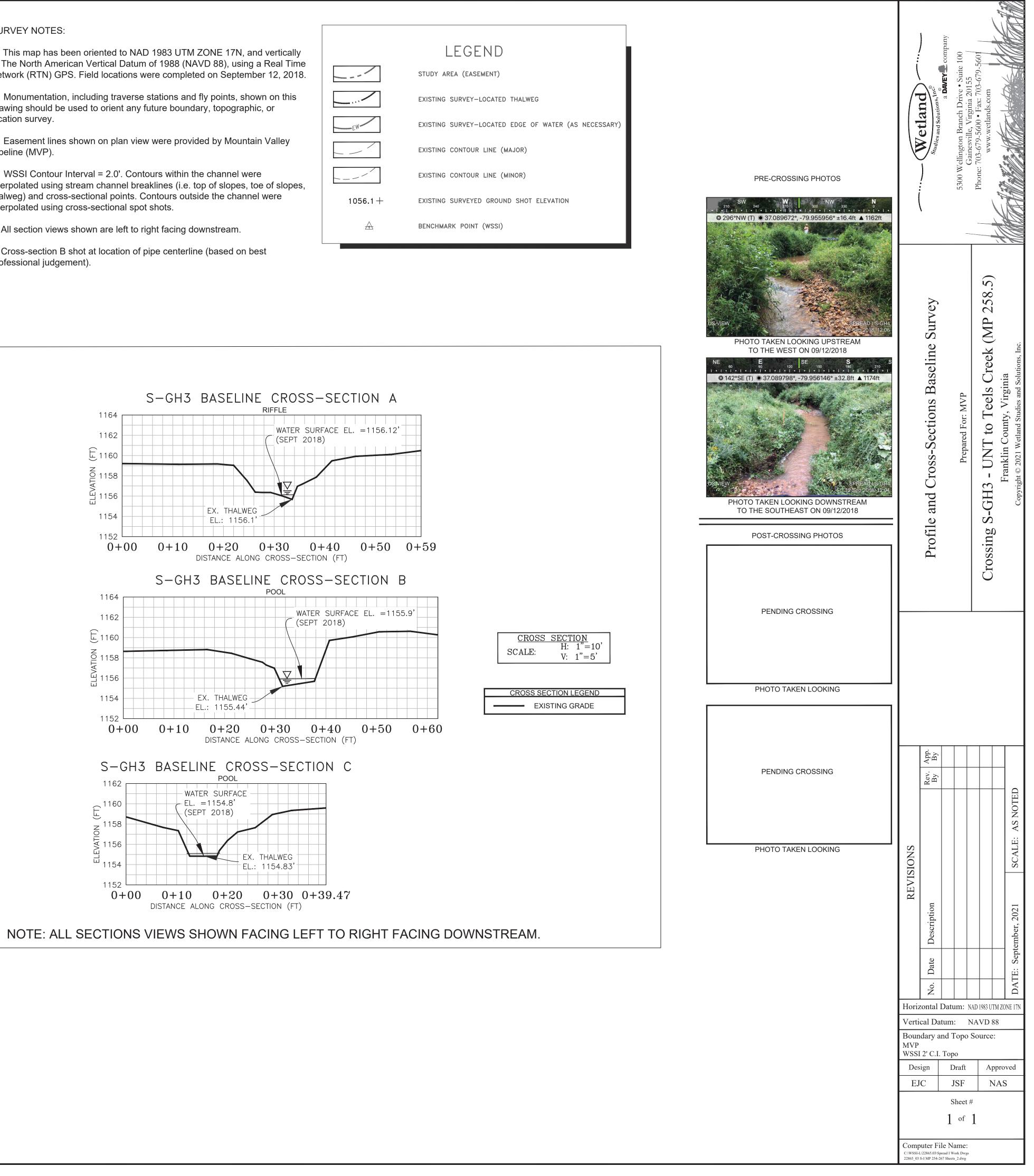

Reach R3-R4

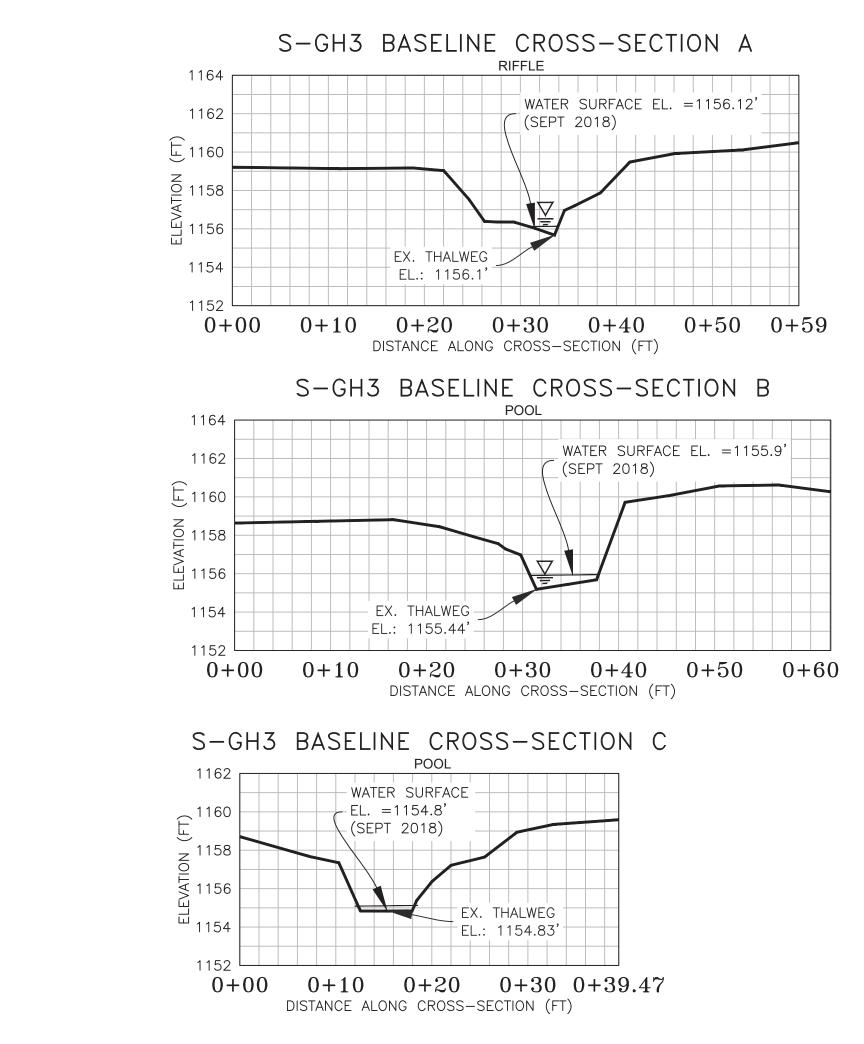
File: https://tetratechinc.sharepoint.com/teams/MVPStreamWetlandAssessment/Shared Documents/General/01. Virginia Field Data Management/03. Preliminary QAQC (working files)/S-GH3_20211006SS/9. S-GH3_USM_20211006SS.xlsx

CL STAKEOUT POINTS: S-GH3 CROSS SECTION B (PIPE CL)									
	PRE	POST-CF	ROSSING						
	NODTUINC	FACTINIC		VERT.	HORZ.				
PT. LOC.	NORTHING	EASTING	ELEV	DIFF.	DIFF.				
TS-L	13468929.23	1944811.21	1157.56						
BS-L	13468925.82	1944808.30	1155.90						
THW	13468924.02	1944806.17	1155.44						
BS-R	13468922.09	1944804.05	1155.96						
TS-R	13468919.30	1944802.45	1159.72						

SURVEY NOTES:

1. This map has been oriented to NAD 1983 UTM ZONE 17N, and vertically to The North American Vertical Datum of 1988 (NAVD 88), using a Real Time Network (RTN) GPS. Field locations were completed on September 12, 2018.


2. Monumentation, including traverse stations and fly points, shown on this drawing should be used to orient any future boundary, topographic, or location survey.


3. Easement lines shown on plan view were provided by Mountain Valley Pipeline (MVP).

4. WSSI Contour Interval = 2.0'. Contours within the channel were interpolated using stream channel breaklines (i.e. top of slopes, toe of slopes, thalweg) and cross-sectional points. Contours outside the channel were interpolated using cross-sectional spot shots.

5. All section views shown are left to right facing downstream.

6. Cross-section B shot at location of pipe centerline (based on best professional judgement).

