Reach S-GH44 (Timber Mat Crossing) Perennial Spread I Franklin County, Virginia

Data	Included
Photos	\checkmark
SWVM Form	\checkmark
FCI Calculator and HGM Form	N/A – Perennial stream (not shadeable, slope
	<4%)
RBP Physical Characteristics Form	\checkmark
Water Quality Data	\checkmark
RBP Habitat Form	\checkmark
RBP Benthic Form	\checkmark
Benthic Identification Sheet	\checkmark
Wolman Pebble Count	\checkmark
RiverMorph Data Sheet	\checkmark
USM Form (Virginia Only)	\checkmark
Longitudinal Profile and Cross Sections	\checkmark

Spread I Stream S-GH44 (Timber Mat Crossing) Franklin County

Photo Type: US VIEW Location, Orientation, Photographer Initials: Downstream at ROW/LOC looking SW upstream, VM

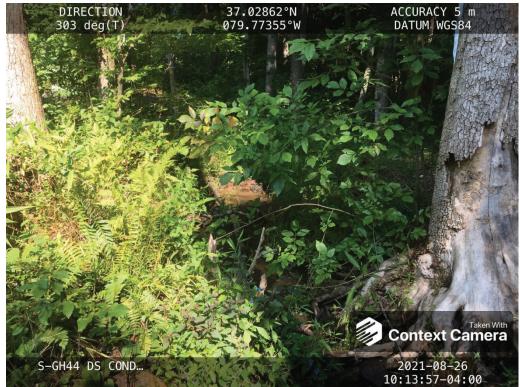


Photo Type: DS COND DS Location, Orientation, Photographer Initials: Downstream at ROW/LOC looking NW downstream, VM

Spread I Stream S-GH44 (Timber Mat Crossing) Franklin County

Photo Type: LB CL Location, Orientation, Photographer Initials: On thalweg at pipe centerline looking SE at left streambank, VM

Photo Type: RB CL Location, Orientation, Photographer Initials: On thalweg at pipe centerline looking SW at right streambank, VM

DEQ Permit #21-0416

Spread I Stream S-GH44 (Timber Mat Crossing) Franklin County

Photo Type: US COND Location, Orientation, Photographer Initials: Upstream at ROW/LOC looking SE upstream, VM

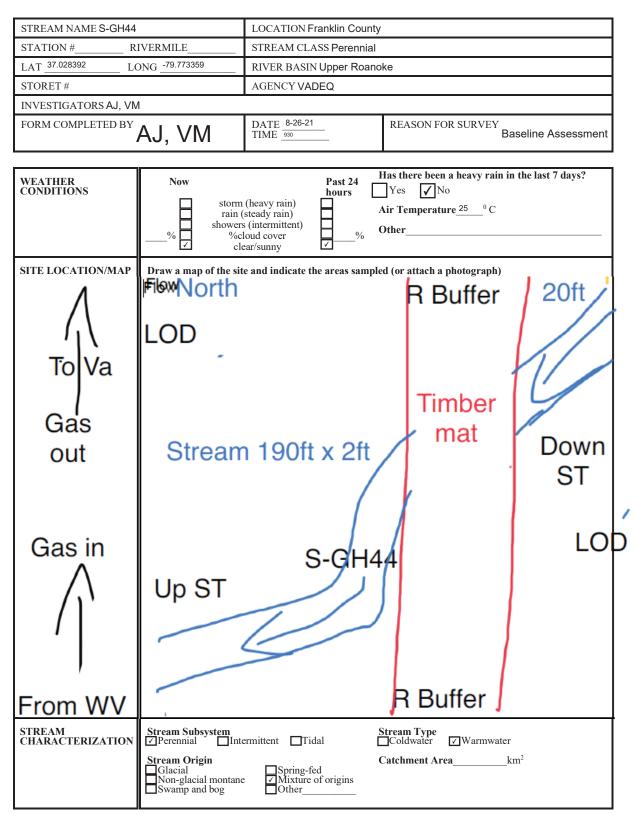


Photo Type: DS VIEW Location, Orientation, Photographer Initials: Upstream at ROW/LOC looking NW downstream, VM

West Virginia Stream and Wetland Valuation Metric (SWVM) Version 2.1, September 2017

	USACE FILE NO./ Project Name: (v2.1, Sept 2015)	Mountain	Valley Pipeline	IMPACT COORDINATES: (in Decimal Degrees)	Lat.	37.028392	Lon.	-79.773359	WEATHER:	Sunny	DATE:	August 26, 2021
Image: Description of the strength of t			S-GH44;	; 56.67 ac							Comments:	
	STREAM IMPACT LENGTH:		RESTORATION (Levels I-III)		Lat.		Lon.		PRECIPITATION PAST 48 HRS:	No	Mitigation Length:	
	Column No. 1- Impact Existing	g Condition (Debit)	Column No. 2- Mitigation Existing Co	ondition - Baseline (Credit)				Years			Column No. 5- Mitigation Project	ted at Maturity (Credit)
	Stream Classification:	Perennial	Stream Classification:			Stream Classification:		0	Stream Classification:	0	Stream Classification:	0
	Percent Stream Channel SI	ope 2.76	Percent Stream Channel Slo	ope		Percent Stream Channel S	lope	0	Percent Stream Channel St	ope 0	Percent Stream Channel S	Slope 0
	HGM Score (attach da	ata forms):	HGM Score (attach o	data forms):		HGM Score (attach	data forms):		HGM Score (attach d	ata forms):	HGM Score (attach o	lata forms):
		Average		Average				Average		Average		Average
	Habitat	0	Habitat	0		Habitat			Habitat	0	Habitat	0
	PART I - Physical, Chemical and		PART I - Physical, Chemical and	-		PART I - Physical, Chemical a	-		PART I - Physical, Chemical and	-	PART I - Physical, Chemical and	
								Site Score				
	PHYSICAL INDICATOR (Applies to all streams	s classifications)	PHYSICAL INDICATOR (Applies to all streams of	classifications)		PHYSICAL INDICATOR (Applies to all streams	classifications)		PHYSICAL INDICATOR (Applies to all streams	s classifications)	PHYSICAL INDICATOR (Applies to all stream	s classifications)
			USEPA RBP (Low Gradient Data Sheet)				1					T T
		0.20 11										
			8. Bank Stability (LB & RB)									
Total RBP Score Por 0 Sub-Total Total RBP Score 0<												
								0				
WDEP Water Quality indicators (General) WDEP Water Quality indicator	Total Ttbi Oobio			Poor U			POOT	0		Poor 0		Poor U
Specific Conductivity	CHEMICAL INDICATOR (Applies to Intermitten		CHEMICAL INDICATOR (Applies to Intermittent	and Perennial Streams)		CHEMICAL INDICATOR (Applies to Intermittee	nt and Perennial S	treams)	CHEMICAL INDICATOR (Applies to Intermitter	nt and Perennial Streams)	CHEMICAL INDICATOR (Applies to Intermitte	nt and Perennial Streams)
	WVDEP Water Quality Indicators (General)	WVDEP Water Quality Indicators (General)			WVDEP Water Quality Indicators (General)		WVDEP Water Quality Indicators (General	1)	WVDEP Water Quality Indicators (General	I)
pic pic <td>Specific Conductivity</td> <td></td> <td>Specific Conductivity</td> <td></td> <td></td> <td>Specific Conductivity</td> <td></td> <td></td> <td>Specific Conductivity</td> <td></td> <td>Specific Conductivity</td> <td></td>	Specific Conductivity		Specific Conductivity			Specific Conductivity			Specific Conductivity		Specific Conductivity	
pH <		0-90 67.1		0-90		1	0-90			0-90		0-90
b. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	<=99 - 90 points		-			nH						
b. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	pri	0-1	pri	0-1		pri	0-1		pri	0-1	pri l	0.1
DO Set Total DO Set Total DO DO <th< td=""><td>6 0-8 0 = 80 points</td><td>0-80 6.5</td><td></td><td>5-90</td><td></td><td>1</td><td>5-90</td><td></td><td></td><td>5-90</td><td></td><td>5-90</td></th<>	6 0-8 0 = 80 points	0-80 6.5		5-90		1	5-90			5-90		5-90
10-30 0.8.8 6.8.9 Sub_Total 0.10 0.00 <td></td> <td></td> <td>DO</td> <td></td> <td></td> <td>DO</td> <td>•</td> <td></td> <td>DO</td> <td></td> <td>DO</td> <td></td>			DO			DO	•		DO		DO	
×6.0 = 3D points ✓ </td <td></td> <td>10.30 6.95</td> <td></td> <td>10-30</td> <td></td> <td></td> <td>10-30</td> <td></td> <td></td> <td>10-30</td> <td></td> <td>10.30</td>		10.30 6.95		10-30			10-30			10-30		10.30
BIOLOGICAL INDICATOR (Applies to Intermittent and Permital Stream) BIOLOGICAL INDICATOR (Applies to Intermittent a							10-50					
W Stream Condition Index (WVSC) W Stream Conditindex (WVSC) W Stream				0						0		0
Good 0-10 0-1 0-10 0-1 0-10 0-1 0-10 0-1 0-100 0-1 0-100 0-1 0-100 0-1 0-100 0-1 0-100 0-1 0-100 0-1 0-100 0-1 0-100 0-1 0-100 0-1 0-100 0-1 0-100 <td></td> <td>tent and Perennial Streams)</td> <td></td> <td>ent and Perennial Streams)</td> <td></td> <td></td> <td>nittent and Peren</td> <td>nial Streams)</td> <td></td> <td>nittent and Perennial Streams)</td> <td></td> <td>nittent and Perennial Streams)</td>		tent and Perennial Streams)		ent and Perennial Streams)			nittent and Peren	nial Streams)		nittent and Perennial Streams)		nittent and Perennial Streams)
Good	WV Stream Condition Index (WVSCI)	0,100 0,1 70 7	WV Stream Condition Index (WVSCI)	0.100 0.1		WV Stream Condition Index (WVSCI)	0.100 0.1		WV Stream Condition Index (WVSCI)	0.100 0.1	WV Stream Condition Index (WVSCI)	0-100 0-1
							2.20 0.1					
PART II - Index and Unit Score	Sub-Total	0.707	Sub-Total	0		Sub-Total		0	Sub-Total	0	Sub-Total	0
	PART II - Index and U	Jnit Score	PART II - Index and	Unit Score		PART II - Index and	I Unit Score		PART II - Index and L	Init Score	PART II - Index and	Unit Score
Index Linear Feet Unit Score Index Linear Feet Unit Score Index Linear Feet Unit Score	Index	Linear Feet Unit Score	Index	Linear Feet Unit Score		Index	Linear Feel	Unit Score	Index	Linear Feet Unit Score	Index	Linear Feet Unit Score
0.804 103 82.812 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.804	103 82.812	0	0 0		0	0	0	0	0 0	0	0 0

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

WATERSHED FEATURES RIPARIAN VEGETATION (18 meter buffer)	Predominant Surrounding Landuse Forest Commercial Field/Pasture Industrial Agricultural Other Residential Other Indicate the dominant type and record the domin Indicate the dominant type and record the domin Trees Dominant species present Sycamore, American beech, rose, jewely	✓ Grasses ✓ Herbaceous
INSTREAM FEATURES	Estimated Reach Length 57.9 m Estimated Stream Width 0.6 m Sampling Reach Area m² Area in km² (m²x1000) km² Estimated Stream Depth 0.1 m Surface Velocity (at thalweg) 1.2 m/sec	Canopy Cover □ Partly shaded □ Shaded □ Partly open □ Partly shaded □ Shaded High Water Mark 0.2 m Proportion of Reach Represented by Stream Morphology Types Riffle ±0 % Pool % Channelized Yes Dam Present Yes
LARGE WOODY DEBRIS	LWDm ² Density of LWDm ² /km ² (LWD/ reac	ch area)
AQUATIC VEGETATION	Indicate the dominant type and record the domin Rooted emergent Floating Algae Dominant species present None Portion of the reach with aquatic vegetation	☐Rooted floating ☐Free floating
WATER QUALITY	Temperature 19.5 0 C Specific Conductance 67.1 D ms/cm Dissolved Oxygen 6.95 D mg/L pH 6.5 D su Turbidity N/A WQ Instrument Used YSI	Water Odors Normal/None Sewage Petroleum Chemical Fishy Other Water Surface Oils Slick Slick Sheen None Other Turbidity (if not measured) Turbid Clear Slightly turbid Opaque Stained
SEDIMENT/ SUBSTRATE	Odors Normal Chemical Other Oils Absent Slight	Deposits □Sludge □Sawdust □Paper fiber □Sand □Relict shells □Other □Lpoking at stones which are not deeply embedded, are the undersides black in color? □Yes ☑No

INC	ORGANIC SUBSTRATE (should add up to			ORGANIC SUBSTRATE COMPONENTS (does not necessarily add up to 100%)							
Substrate Type			Substrate Type	Characteristic	% Composition in Sampling Area						
Bedrock			Detritus	sticks, wood, coarse plant	F						
Boulder	> 256 mm (10")			materials (CPOM)	5						
Cobble	64-256 mm (2.5"-10")	40	Muck-Mud	black, very fine organic (FPOM)	10						
Gravel	2-64 mm (0.1"-2.5")	30		(FPOM)	10						
Sand	0.06-2mm (gritty)	10	Marl	grey, shell fragments							
Silt	0.004-0.06 mm	20]								
Clay	< 0.004 mm (slick)										

HABITAT ASSESSMENT FIELD DATA SHEET - HG - USE ON ALL STREAMS (FRONT)

STREAM NAME S-GH44	LOCATION Franklin County				
STATION # RIVERMILE	STREAM CLASS Perennial				
LAT <u>37.028392</u> LONG <u>-79.773359</u>	RIVER BASIN Upper Roanoke				
STORET #	AGENCY VADEQ				
INVESTIGATORS AJ, VM					
FORM COMPLETED BY AJ, VM	DATE 8-26-21 TIME 930 AM PM REASON FOR SURVEY Baseline Assessment				

	Habitat		Condition	a Category			
	Parameter	Optimal	Suboptimal	Marginal	Poor		
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are <u>not</u> new fall and <u>not</u> transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.		
	_{score} 11	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
ı sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.		
ted ir	score 9	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow- deep, slow-shallow, fast- deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast- shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).		
Iram	score 11	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
P	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.		
	_{SCORE} 16	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.		
	_{score} 13	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		

Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, Second Edition - Form 2

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

	Habitat		Condition	n Category			
	Parameter	Optimal	Suboptimal	Marginal	Poor		
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.		
	_{score} 16	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
ling reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.		
amp	score 15	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30- 60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.		
e ev	SCORE 9	Left Bank 10 9	8 7 6	5 4 3	2 1 0		
top	SCORE 9	Right Bank 10 9	8 7 6	5 4 3	2 1 0		
Parameters	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well- represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.		
	SCORE 7	Left Bank 10 9	8 7 6	5 4 3	2 1 0		
	SCORE 7	Right Bank 10 9	8 7 6	5 4 3	2 1 0		
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.		
	SCORE 9	Left Bank 10 9	8 7 6	5 4 3	2 1 0		
	SCORE 9	Right Bank 10 9	8 7 6	5 4 3	2 1 0		

Total Score 141

BENTHIC MACROINVERTEBRATE FIELD DATA SHEET

STREAM NAMES-GH44		LOCATION Franklin County	,						
STATION #	RIVERMILE 258.5	STREAM CLASS Perennial	STREAM CLASS Perennial						
LAT	LONG79.773359	RIVER BASIN Upper Roano	ke						
STORET #		AGENCY VADEQ							
INVESTIGATORS A	J, VM		LOT NUMBER						
FORM COMPLETED	^{BY} AJ	DATE <u>9/09/21</u> TIME <u>8:30</u>	REASON FOR SURVEY Baseline Assessmnet						
HABITAT TYPES	S Indicate the percentage of each habitat type present □ Cobble% □Snags% □Vegetated Banks% □Sand% □ Submerged Macrophytes% □Other ()%								
SAMPLE COLLECTION	Gear used D-frame		rom bank 🗌 from boat						
	Indicate the number of jabs/kicks taken in each habitat type. ✓ Cobble 4 □Snags □Vegetated Banks □Sand □ Submerged Macrophytes □Other ()								
GENERAL COMMENTS	Yes, benthics sampled 9/9/2021.								

QUALITATIVE LISTING OF AQUATIC BIOTA

Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare, 2 = Common, 3= Abundant, 4 = Dominant

Periphyton	0	1	2	3	4	Slimes	0	1	2	3	4
Filamentous Algae	0	1	2	3	4	Macroinvertebrates	0	1	2	3	4
Macrophytes	0	1	2	3	4	Fish	0	1	2	3	4

FIELD OBSERVATIONS OF MACROBENTHOS

Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare (1-3 organisms), 2 = Common (3-9 organisms), 3= Abundant (>10 organisms), 4 = Dominant (>50 organisms)

Porifera	0	1	2	3	4	Anisoptera	0	1	2	3	4	Chironomidae	0	1	2	3	4
Hydrozoa	0	1	2	3	4	Zygoptera	0	1	2	3	4	Ephemeroptera	0	1	2	3	4
Platyhelminthes	0	1	2	3	4	Hemiptera	0	1	2	3	4	Trichoptera	0	1	2	3	4
Turbellaria	0	1	2	3	4	Coleoptera	0	1	2	3	4	Other	0	1	2	3	4
Hirudinea	0	1	2	3	4	Lepidoptera	0	1	2	3	4						
Oligochaeta	0	1	2	3	4	Sialidae	0	1	2	3	4						
Isopoda	0	1	2	3	4	Corydalidae	0	1	2	3	4						
Amphipoda	0	1	2	3	4	Tipulidae	0	1	2	3	4						
Decapoda	0	1	2	3	4	Empididae	0	1	2	3	4						
Gastropoda	0	1	2	3	4	Simuliidae	0	1	2	3	4						
Bivalvia	0	1	2	3	4	Tabinidae	0	1	2	3	4						
						Culcidae	0	1	2	3	4						

Mountain Valley Pipeline Data are not adjusted for subsampling

ECO ANALYSTS, INC.

	Sample ID Collection Date	S-GH44 09-09-2021
ORDER	GENUS/SPECIES	COUNT
Ephemeroptera		1
Ephemeroptera		2
Ephemeroptera		1
	Eccoptura xanthenes	5 5
Plecoptera		5
	Cheumatopsyche sp. Chimarra sp.	2
	Diplectrona sp.	11
Trichoptera		1
	Hydropsyche sp.	4
	Rhyacophila sp.	6
	Anchytarsus bicolor	1
Coleoptera	Ectopria sp.	11
Coleoptera	Helichus sp.	2
Coleoptera	Optioservus sp.	1
Coleoptera	Oulimnius sp.	1
Coleoptera	Psephenus sp.	95
Coleoptera	Stenelmis sp.	1
Diptera-Chironomidae	Micropsectra sp.	8
Diptera-Chironomidae		1
Diptera-Chironomidae		5
Diptera-Chironomidae		3
Diptera-Chironomidae		1
•	Thienemannimyia gr. sp.	2
Diptera	Antocha sp.	2
Diptera	Ceratopogoninae	3
Diptera	Dixa sp.	1
Diptera	Simulium sp.	1
Diptera	Tabanidae	2
Annelida	tubificoid Naididae w/ cap setae	2
Bivalvia	Pisidium sp.	1
Gastropoda	Elimia sp.	18
Gastropoda	Ferrissia sp.	2
Gastropoda	Lymnaeidae	2
Other Organisms	-	2
	TOTAL	209

Mountain Valley Pipeline WV SCI Metrics

Sample ID Collection Date	
WVSCI Metric Values Total taxa EPT taxa % EPT % Chironomidae % 2 Dominant HBI	25 9 19.6 9.6 60.3 4.31
WVSCI Metric Scores Total taxa EPT taxa % EPT % Chironomidae % 2 Dominant HBI	119.0 69.2 21.3 91.3 62.1 80.1
WVSCI Metric Scores Total taxa EPT taxa % EPT % Chironomidae % 2 Dominant HBI	100.0 69.2 21.3 91.3 62.1 80.1
WVSCI Total Score	70.7

WVSCI Thresholds

Unimpaired = > 68.00 Gray Zone = 60.61 to 68.00 Impaired = <60.61

WOLMAN PEBBLE COUNT FORM

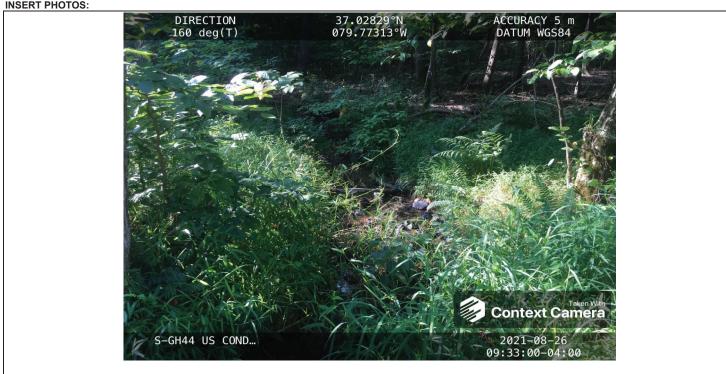
Basin:

County:Franklin CountyStream Name:UNT to Foul Ground CreekHUC Code:03010101Survey Date:8/26/2021Surveyors:AJ,VMType:Representative

Stream ID: S-GH44

Upper Roanoke

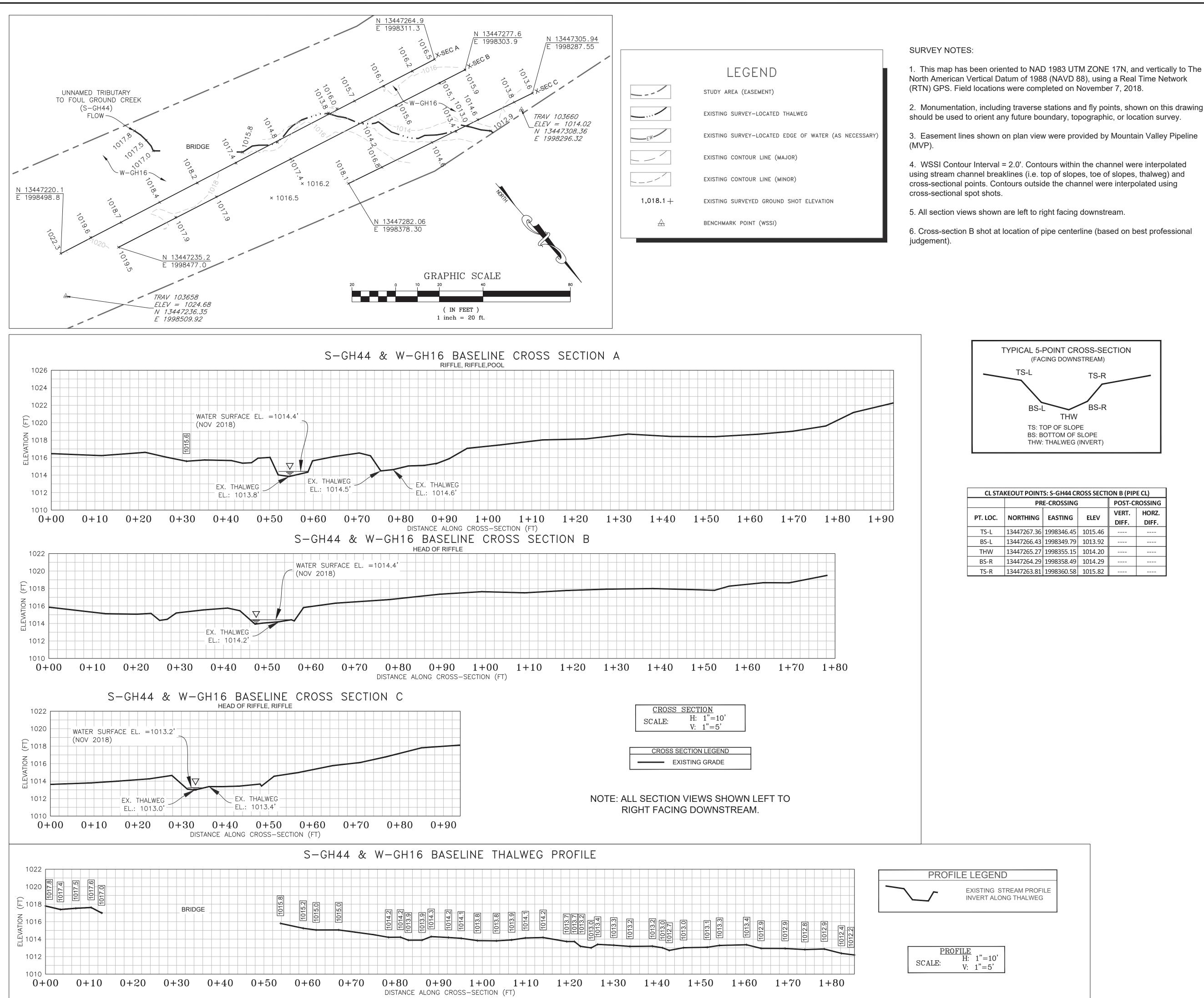
			LE COUNT	· · ·			
Inches	PARTICLE	Millimeters		Particle Count	Total #	Item %	% Cun
	Silt/Clay	< .062	S/C	* *	20	20.00	20.00
	Very Fine	.062125		÷		0.00	20.00
	Fine	.12525		•		0.00	20.00
	Medium	.255	SAND	÷	7	7.00	27.00
	Coarse	.50-1.0		▲ ▼		0.00	27.00
.0408	Very Coarse	1.0-2		* *	3	3.00	30.00
.0816	Very Fine	2 -4		-		0.00	30.00
.1622	Fine	4 -5.7		* *		0.00	30.00
.2231	Fine	5.7 - 8		* *		0.00	30.00
.3144	Medium	8 -11.3		-	8	8.00	38.00
.4463	Medium	11.3 - 16	G R A V E L	* *	5	5.00	43.00
.6389	Coarse	16 -22.6		* *	12	12.00	55.00
.89 - 1.26	Coarse	22.6 - 32		* *		0.00	55.00
1.26 - 1.77	Vry Coarse	32 - 45			5	5.00	60.00
1.77 -2.5	Vry Coarse	45 - 64		* *		0.00	60.00
2.5 - 3.5	Small	64 - 90		* *	5	5.00	65.00
3.5 - 5.0	Small	90 - 128	COBBLE		25	25.00	90.00
5.0 - 7.1	Large	128 - 180	COBBLE	÷	7	7.00	97.00
7.1 - 10.1	Large	180 - 256		* *	3	3.00	100.00
10.1 - 14.3	Small	256 - 362		* *		0.00	100.00
14.3 - 20	Small	362 - 512		* *		0.00	100.00
20 - 40	Medium	512 - 1024	BOULDER	* *		0.00	100.00
40 - 80	Large	1024 -2048		÷		0.00	100.00
80 - 160	Vry Large	2048 -4096]	* *		0.00	100.00
	Bedrock		BDRK	* *		0.00	100.00
				Totals:	100		


River Name: U Reach Name: S Sample Name: R Survey Date: 0	Representative						
Size (mm)	тот #	ITEM %	CUM %				
	20		20.00 20.00 27.00 27.00 30.00 30.00 30.00 30.00 30.00 35.00 55.00 60.00 60.00 65.00 90.00 97.00 100.00 100.00 100.00 100.00				
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Gravel (%) Boulder (%) Bedrock (%)	$\begin{array}{c} 0.05 \\ 10.06 \\ 19.85 \\ 118.88 \\ 165.14 \\ 256 \\ 20 \\ 10 \\ 30 \\ 40 \\ 0 \\ 0 \\ \end{array}$						

Total Particles = 100.

	S	Strean								
				tream Method able channels cla		•				
Ducie of #	Droiget Norme (Ann			Cowardin				Impact	Impact	
Project #	Project Name (App	,	Locality	Class.	HUC	Date	SAR #	Length	Factor	
22865.06	Mountain Valley Pipeline Valley Pipeline, I		Franklin	R3	03010101	8/26/2021	S-GH44	103	1	
Nam	e(s) of Evaluator(s)		County e and Inform	ation				SAR Length		
	AJ, VM	S-GH44						190		
	·							150		
Channel C	Condition: Assess the cross-sec	tion of the stream								
	Optimal	Subo	ptimal	Conditional Catego	ginal	Po	or	Sev	vere	
Channel Condition	Very little incision or active erosion; 80 100% stable banks. Vegetative surface protection or natural rock, prominent (80-100%). AND/OR Stable bankfull benches are present. Access to their original floodpilain or fully developed wide bankfull benches. Mid channel bars and transverse bars few. Transient sediment deposition covers less than 10% of bottom.	erosion or unprotec of banks are s Vegetative protec prominent (60 Depositional feat stability. The bar channels are wel likely has acc benches,or ne	ew areas of active ted banks. Majority table (60-80%). tion or natural rock -80%) AND/OR ures contribute to htfull and low flow I defined. Stream ess to bankfull wby developed each. Transient	Poor. Banks more or Poor due to lo Erosion may be pro- both banks. Vege 40-60% of banks. be vertical or un 40-60% Sediment transient, contr	ibute instability. ntribute to stability,	laterally unstable further. Majority near vertical. Eros banks. Vegetative on 20-40% of bank to prevent erosion the stream is cov Sediment is temp nature, and contri	cised. Vertically / e. Likely to widen of both banks are sion present on 60- protection present , AND/OR 60-80% ered by sediment. orary / transient in buting to instability. Ved channels have	present. Erosion/ 100%. AND/OR A	stability. Severe tained within the ed below average vertical/undercut. on present on less s, is not preventing s bank sloughing 'raw banks on 80-	
		sediment covers stream	s 10-40% of the bottom.	shaped channels protection on > 40 depositional featur to sta	s have vegetative % of the banks and es which contribute ability.	vegetative protect 40% of the banks a deposition	ion is present on > and stable sediment n is absent.	deposition, contrib Multiple thread o subterran	uting to instability. channels and/or ean flow.	CI
Scores	3	2	.4		2	1	.6	1	1	2.40
RIPARIAN	N BUFFERS: Assess both bank				gh measurements	of length & width	may be acceptab			
. RIPARIAN	N BUFFERS: Assess both bank	Con Subo High Suboptimal: Riparian areas	n areas along the ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum	gory	ginal Low Marginal: Non-maintained, dense herbaceous	Pc High Poor: Lawns, mowed, and maintained areas,	Low Poor:	ie) NOTES>>		
. RIPARIAN Riparian Buffers	1	Con Subo High Suboptimal:	ditional Cate ptimal Low Suboptimal: Riparian areas	High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub	ginal Low Marginal: Non-maintained,	Pc High Poor: Lawns, mowed, and	por			
Riparian	Optimal Tree stratum (dbh > 3 inches) present, with > 60% tree canopy cover. Wetlands located within the riparian areas.	Con Subo High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory.	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation).	High Marginal: Non-maintained, dense herbaccous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover.	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understoy Low	Pc High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition.	Dor Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low			
Riparian	Optimal Tree stratum (dbh > 3 inches) present, with > 60% tree canopy cover. Wetlands located within the riparian	Con Subo High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory.	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation).	High Marginal: Non-maintained, dense herbaccous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover.	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory	Pc High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition.	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions.			
Riparian Buffers Scores Delineate ripa Determine sq low.	Optimal Tree stratum (dbh > 3 inches) present, with > 60% free canopy cover. Wetlands located within the riparian areas. 1.5 arian areas along each stream bank uare footage for each by measuring	Con Subo High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Ca or estimating lenge	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Con- ogth and width. Ca	High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85 dition Scores using	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory Low 0.75 g the descriptors.	Pc High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition. High 0.6	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian	NOTES>>		
Riparian Buffers Scores Delineate ripa Determine sq ow. Enter the % F	Optimal Tree stratum (dbh > 3 inches) present, with > 60% free canopy cover. Wetlands located within the riparian areas. 1.5 arian areas along each stream bank uare footage for each by measuring Riparian Area and Score for each rip	Con Subo High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Ca or estimating lenge	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Con- ogth and width. Ca	High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85 dition Scores using	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory Low 0.75 g the descriptors.	Pc High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition. High 0.6	Dor Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100	NOTES>>	is limited to	
Riparian Buffers Scores Delineate ripa Determine sq ow. Enter the % F	Optimal Tree stratum (dbh > 3 inches) present, with > 60% tree canopy cover. Wetlands located within the riparian areas. 1.5 arian areas along each stream bank uare footage for each by measuring	Con Subo High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Ca or estimating lenge	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Con- ogth and width. Ca	High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85 dition Scores using	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory Low 0.75 g the descriptors.	Pc High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition. High 0.6	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian	NOTES>> Assessment areas wi	ithin the	
Riparian Buffers Scores Delineate ripa Determine sq ow. Enter the % F	Optimal Tree stratum (dbh > 3 inches) present, with > 60% free canopy cover. Wetlands located within the riparian areas. 1.5 arian areas along each stream bank uare footage for each by measuring Riparian Area and Score for each rip % Riparian Area>	Con Subo High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Ca or estimating lenge	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Con- ogth and width. Ca	High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85 dition Scores using	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory Low 0.75 g the descriptors.	Pc High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition. High 0.6	Dor Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100	NOTES>>	ithin the ry ROW.	
Riparian Buffers Scores Delineate ripa Determine sq ow. Enter the % F Right Bank	Optimal Tree stratum (dbh > 3 inches) present, with > 60% free canopy cover. Wetlands located within the riparian areas. 1.5 arian areas along each stream bank uare footage for each by measuring Riparian Area and Score for each rip % Riparian Area>	Con Subo High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Ca or estimating lenge	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Con- ogth and width. Ca	High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85 dition Scores using	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory Low 0.75 g the descriptors.	Pc High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition. High 0.6	Dor Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100	NOTES>> Assessment areas wi tempora	ithin the ry ROW.	CI
Riparian Buffers Scores Delineate ripa Determine sq ow. Enter the % F Light Bank	Optimal Tree stratum (dbh > 3 inches) present, with > 60% free canopy cover. Wetlands located within the riparian areas. 1.5 arian areas along each stream bank uare footage for each by measuring Riparian Area and Score for each rip % Riparian Area> 100% Score > 0.85	Con Subo High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Ca or estimating lenge	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Con- ogth and width. Ca	High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85 dition Scores using	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory Low 0.75 g the descriptors.	Pc High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure of % F	Door Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100	NOTES>> Assessment areas wi tempora CI= (Sum % RA * Sc	thin the ry ROW. cores*0.01)/2	
Riparian Buffers Scores Delineate ripe Determine sq ow. Enter the % F Right Bank Left Bank	Optimal Tree stratum (dbh > 3 inches) present, with > 60% free canopy cover. Wetlands located within the riparian areas. 1.5 arian areas along each stream bank uare footage for each by measuring Riparian Area and Score for each rip % Riparian Area> 100% Score > 0.85 % Riparian Area> 100%	Con Subo High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) ro 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Ca or estimating lenge arian category in	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Com gth and width. Cat the blocks below.	High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85 dition Scores using alculators are prov	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory Low 0.75 g the descriptors. ided for you	High Poor: Lawns, mowed, and maintained areas, nurseries, no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure of % F Blocks e	Dor Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100 100%	NOTES>> Assessment areas wi tempora CI= (Sum % RA * So Rt Bank CI > Lt Bank CI >	thin the ry ROW. pores*0.01)/2 0.85 0.85	CI 0.85
Riparian Buffers Scores Delineate ripa Determine sq ow. Enter the % F Right Bank Left Bank INSTREAI	Optimal Tree stratum (dbh > 3 inches) present, with > 60% tree canopy cover. Wetlands located within the riparian areas. 1.5 Train areas along each stream bank uare footage for each by measuring Riparian Area and Score for each rip % Riparian Area> 100% Score > 0.85 % Riparian Area> 100% Score > 0.85 % Riparian Area> 100% Score > 0.85 % HABITAT: Varied substrate sizexes, stable features.	Con Subo High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Ca or estimating leng arian category in	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Con- gth and width. Ca the blocks below.	High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85 dition Scores using alculators are prov	ginal Low Marginal: Non-maintained, dense herbaccous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory Low 0.75 g the descriptors. ided for you s; stable substrat	Pc High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure of % F Blocks e	Door Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lost, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100 100% 100%	NOTES>> Assessment areas wi tempora CI= (Sum % RA * So Rt Bank CI > Lt Bank CI >	thin the ry ROW. pores*0.01)/2 0.85 0.85	
Riparian Buffers Scores Delineate ripa Determine sq low. Enter the % F Right Bank Left Bank INSTREAI InSTREAI Habitat/	Optimal Tree stratum (dbh > 3 inches) present, with > 60% free canopy cover. Wetlands located within the riparian areas. 1.5 arian areas along each stream bank uare footage for each by measuring Riparian Area and Score for each rip % Riparian Area> 100% Score > 0.85 % Riparian Area> 100% Score > 0.85 % Riparian Area> 100% Score > 0.85 % HABITAT: Varied substrate size	Con Subo High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Ca or estimating lenge arian category in carian category in category	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Con- gth and width. Ca the blocks below.	High Marginal: Non-maintained, dense herbaccous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85 dition Scores using alculators are prov	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory Low 0.75 g the descriptors. ided for you	High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure I of % F Blocks e blocks e lacking or are u elements are typic	Door Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100 100% 100% Setting a state of the sums restable. Habitat ally present in less	NOTES>> Assessment areas wi tempora CI= (Sum % RA * Sc Rt Bank CI > Lt Bank CI > Lt Bank CI >	thin the ry ROW. pores*0.01)/2 0.85 0.85	
Riparian Buffers Scores Delineate ripa Determine sq low. Enter the % F Right Bank Left Bank INSTREAI Instream Habitat/ Available	Optimal Tree stratum (dbh > 3 inches) present, with > 60% free canopy cover. Wetlands located within the riparian areas. 1.5 arian areas along each stream bank uare footage for each by measuring % Riparian Area and Score for each rip % Riparian Area> 100% Score > 0.85 MHABITAT: Varied substrate sizes, stable features. Optimal Habitat elements are typically present	Con Subo High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 into Condition Ca or estimating lenge arian category in carian category in category	ditional Cate ptimal Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 tegories and Cono gth and width. Cat the blocks below.	High Marginal: Non-maintained, dense herbaccous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85 dition Scores using alculators are prov	ginal Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory Low 0.75 g the descriptors. ided for you	High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure I of % F Blocks e blocks e lacking or are u elements are typic	Cor Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 the sums Riparian equal 100 100% 100% Series; shade; under conditions stable. Habitat	NOTES>> Assessment areas wi tempora CI= (Sum % RA * Sc Rt Bank CI > Lt Bank CI > Lt Bank CI >	ithin the ry ROW. cores*0.01)/2 0.85 0.85 ts; SAV;	

Reach R3-R4 File: C:\Users\dan.weidenhof\Documents\Documents\VA Stream Sampling\0 QAQC SUBMITTALS\QAQC working 1st submittal\Ready for Submittal\Needs Benthics\S-GH44_20210913KEH benthics & LP\9. S-GH44_USM_MVP_20210913KEH.xlsx


	St	ream In	npact A	ssessn	nent Fo	rm Pag	e 2			
Project #	Project Name (App	licant)	Locality	Cowardin Class.	HUC	Date	SAR # / Data Point	Impact / SAR length	Impact Factor	
22865.06		Mountain Valley Pipeline (Mountain Franklin Valley Pipeline, LLC) County		R3	03010101	44434	S-GH44	103	1	
I. CHANNE	LALTERATION: Stream cross	ings, riprap, concr	rete, gabions, or c	oncrete blocks, st	raightening of cha	annel, channelizat	ion, embankment	s, spoil piles, constri	ctions, livestock	
				al Category				NOTES>>		
	Negligible	Mi	nor		erate	Se	vere			
Channel Alteration	Channelization, dredging, alteration, or hardening absent. Stream has an unaltered pattern or has naturalized.	Less than 20% of the stream reach is disrupted by any of the channel alterations listed in the parameter guidelines.	the channel	of the channel	is disrupted by any of the channel alterations listed in the parameter guidelines. If stream has been channelized, normal stable stream meander pattern has not recovered	by any of the chan in the parameter of 80% of banks sh	of reach is disrupted nel alterations listed juidelines AND/OR nored with gabion, r cement.			CI
Scores	1.5	1.5 1.3 1.1 0.9 0.7		0	.5			1.30		
	REACH C	ONDITION I	INDEX and S	TREAM CO	NDITION UN		IIS REACH			
NOTE: The Cis and RCI should be rounded to 2 decimal places. The CR should be rounded to a whole number. THE REACH CONDITION INDEX (RCI) >>								1.15		
						RCI= (Sum of	all CI's)/5, exce	pt if stream is epl	nemeral RCI =	Riparian C
COMPENSATION REQUIREMENT (CR) >>									118	
CR = RCI X L _I X IF										

DESCRIBE PROPOSED IMPACT:

PROVIDED UNDER SEPARATE COVER

Reach R3-R4 File: C:\Users\dan.weidenhof\Documents\Documents\VA Stream Sampling\0 QAQC SUBMITTALS\QAQC working 1st submittal\Ready for Submittal\Needs Benthics\S-GH44_20210913KEH benthics & LP\9. S-GH44_USM_MVP_20210913KEH.xlsx

S-GH44 CROSS SECTION B (PIPE CL)									
CROSSING		POST-CROSSING							
		VERT.	HORZ.						
ASTING	ELEV	DIFF.	DIFF.						
98346.45	1015.46								
98349.79	1013.92								
98355.15	1014.20								
98358.49	1014.29								
98360.58	1015.82								

