Baseline Assessment – Stream Attributes

Reach S-H13 (Pipeline Row) Perennial Spread I Pittsylvania County, Virginia

Data	Included
Photos	✓
SWVM Form	✓
FCI Calculator and HGM Form	N/A – Perennial stream (not shadeable, slope <4%)
RBP Physical Characteristics Form	✓
Water Quality Data	✓
RBP Habitat Form	✓
RBP Benthic Form	✓
Benthic Identification Sheet	✓
Wolman Pebble Count	✓
RiverMorph Data Sheet	✓
USM Form (Virginia Only)	✓
Longitudinal Profile and Cross Sections	✓

Spread I Stream S-H13 (Pipeline ROW) Pittsylvania County

Photo Type: LB US VIEW Location, Orientation, Photographer Initials: Downstream at S-H13 looking NE upstream, TC

Location, Orientation, Photographer Initials: Downstream at S-H13 looking NE upstream, TC

Spread I Stream S-H13 (Pipeline ROW) Pittsylvania County

Location, Orientation, Photographer Initials: Downstream at S-H13 looking S downstream, TC

Photo Type: LB CL
Location, Orientation, Photographer Initials: On thalweg at S-H13 pipe centerline looking NW at right streambank,
TC

Spread I Stream S-H13 (Pipeline ROW) Pittsylvania County

Location, Orientation, Photographer Initials: On thalweg at S-H13 pipe centerline looking SE at left streambank, TC

Location, Orientation, Photographer Initials: Upstream at S-H13 looking W downstream, TC

Spread I Stream S-H13 (Pipeline ROW) Pittsylvania County

Photo Type: RB DS VIEW Location, Orientation, Photographer Initials: Upstream at S-H13 looking SW downstream, TC

West Virginia Stream and Wetland Valuation Metric (SWVM) Version 2.1, September 2017

USACE FILE NO./ Project Name: (v2.1, Sept 2015)		Mountain	Valley Pipeline	IMPACT COORDINATES: (in Decimal Degrees)	Lat.	36.925105	Lon.	-79.51735	WEATHER:	WEATHER: 100% Cloud Cover		October 12, 2021
IMPACT STREAM/SITE (watershed size {acreage	ID AND SITE DESc ge}, unaltered or impairm		S-H13; 19	74.14 ac		MITIGATION STREAM CLASS (watershed size {acrea					Comments:	
STREAM IMPACT LENGTH:	77	FORM OF MITIGATION:	RESTORATION (Levels I-III)	MIT COORDINATES: (in Decimal Degrees)	Lat.		Lon.		PRECIPITATION PAST 48 HRS:	No	Mitigation Length:	
Column No. 1- Impact Exist	ting Condition (Debi	it)	Column No. 2- Mitigation Existing Co	ndition - Baseline (Credit)	•	Column No. 3- Mitigation I Post Completi		ve Years	Column No. 4- Mitigation Project Post Completion (C		Column No. 5- Mitigation Project	ed at Maturity (Credit)
Stream Classification:	Peren	nnial	Stream Classification:			Stream Classification:		0	Stream Classification:	0	Stream Classification:	0
Percent Stream Channel	Slope	0.81	Percent Stream Channel Slop	e		Percent Stream Channel	Slope	0	Percent Stream Channel Slo	pe 0	Percent Stream Channel S	lope 0
HGM Score (attach	n data forms):		HGM Score (attach da	ata forms):		HGM Score (attac	h data forms):	HGM Score (attach dat	a forms):	HGM Score (attach d	ata forms):
		Average		Average				Average		Average		Average
Hydrology			Hydrology			Hydrology			Hydrology		Hydrology	
Biogeochemical Cycling		0	Biogeochemical Cycling	0		Biogeochemical Cycling		0	Biogeochemical Cycling	0	Biogeochemical Cycling	0
Habitat PART I - Physical, Chemical a	nd Biological Indica	ators	Habitat PART I - Physical, Chemical and	Biological Indicators		PART I - Physical, Chemical	and Biologica	Indicators	Habitat PART I - Physical, Chemical and B	iological Indicators	Habitat PART I - Physical, Chemical and	Biological Indicators
	Points Scale Range	Site Score		Points Scale Range Site Score			Points Scale F	ange Site Score		Points Scale Range Site Score		Points Scale Range Site Score
PHYSICAL INDICATOR (Applies to all stream	ams classifications)		PHYSICAL INDICATOR (Applies to all streams of	assifications)		PHYSICAL INDICATOR (Applies to all stream	ms classifications)	PHYSICAL INDICATOR (Applies to all streams of	classifications)	PHYSICAL INDICATOR (Applies to all streams	s classifications)
USEPA RBP (High Gradient Data Sheet	t)		USEPA RBP (Low Gradient Data Sheet)			USEPA RBP (High Gradient Data Sheet)			USEPA RBP (High Gradient Data Sheet)		USEPA RBP (High Gradient Data Sheet)	
Epifaunal Substrate/Available Cover	0-20	10	Epifaunal Substrate/Available Cover	0-20		Epifaunal Substrate/Available Cover	0-20		Epifaunal Substrate/Available Cover	0-20	Epifaunal Substrate/Available Cover	0-20
2. Embeddedness	0-20	9	Pool Substrate Characterization	0-20		2. Embeddedness	0-20		2. Embeddedness	0-20	2. Embeddedness	0-20
Velocity/ Depth Regime Sediment Deposition	0-20 0-20	45	Pool Variability Sediment Deposition	0-20		Velocity/ Depth Regime Sediment Deposition	0-20 0-20		Velocity/ Depth Regime Sediment Deposition	0-20	Velocity/ Depth Regime Sediment Deposition	0-20 0-20
Sediment Deposition Channel Flow Status	0-20	15 16	5. Channel Flow Status	0-20		5. Channel Flow Status	0-20		5. Channel Flow Status	0-20	5. Channel Flow Status	0-20
6. Channel Alteration	0-20 0-1	20	6. Channel Alteration	0-20 0-1		6. Channel Alteration	0-20	0-1	6. Channel Alteration	0-20 0-1	6. Channel Alteration	0-20 0-1
7. Frequency of Riffles (or bends)	0-20	15	7. Channel Sinuosity	0-20		7. Frequency of Riffles (or bends)	0-20		7. Frequency of Riffles (or bends)	0-20	7. Frequency of Riffles (or bends)	0-20
8. Bank Stability (LB & RB)	0-20	8	8. Bank Stability (LB & RB)	0-20		8. Bank Stability (LB & RB)	0-20		8. Bank Stability (LB & RB)	0-20	8. Bank Stability (LB & RB)	0-20
9. Vegetative Protection (LB & RB)	0-20	12	Vegetative Protection (LB & RB)	0-20		9. Vegetative Protection (LB & RB)	0-20		Vegetative Protection (LB & RB)	0-20	9. Vegetative Protection (LB & RB)	0-20
10. Riparian Vegetative Zone Width (LB & RB)	0-20	9	10. Riparian Vegetative Zone Width (LB & RB)	0-20		10. Riparian Vegetative Zone Width (LB & RB)	0-20		10. Riparian Vegetative Zone Width (LB & RB)	0-20	10. Riparian Vegetative Zone Width (LB & RB)	0-20
Total RBP Score	Suboptimal	122	Total RBP Score	Poor 0		Total RBP Score	Poor	0	Total RBP Score	Poor 0	Total RBP Score	Poor 0
Sub-Total CHEMICAL INDICATOR (Applies to Intermi	ittent and Perennial Stre	0.61 eams)	Sub-Total CHEMICAL INDICATOR (Applies to Intermittent a	nd Perennial Streams)		Sub-Total CHEMICAL INDICATOR (Applies to Intermit	ent and Perenni	al Streams)	Sub-Total CHEMICAL INDICATOR (Applies to Intermittent	and Perennial Streams)	Sub-Total CHEMICAL INDICATOR (Applies to Intermitte	nt and Perennial Streams)
WVDEP Water Quality Indicators (Gene		,	WVDEP Water Quality Indicators (General)	,		WVDEP Water Quality Indicators (Gener		,	WVDEP Water Quality Indicators (General)	,	WVDEP Water Quality Indicators (Genera	·
Specific Conductivity	0-90	76.4	Specific Conductivity	0-90		Specific Conductivity	0-90		Specific Conductivity	0-90	Specific Conductivity	0-90
<=99 - 90 points pH		10.1	рН			рН	- 55		pH		рН	
6.0-8.0 = 80 points	0-80	7.21	DO.	5-90		DO.	5-90	J- 1	DO.	5-90	DO.	5-90 0-1
>5.0 = 30 points	10-30	7.7		10-30			10-30			10-30	DO -	10-30
Sub-Total		1	Sub-Total	0		Sub-Total		0	Sub-Total	0	Sub-Total	0
BIOLOGICAL INDICATOR (Applies to Inter	rmittent and Perennial S	Streams)	BIOLOGICAL INDICATOR (Applies to Intermitter	nt and Perennial Streams)		BIOLOGICAL INDICATOR (Applies to Inte	rmittent and Pe	rennial Streams)	BIOLOGICAL INDICATOR (Applies to Intermit	ttent and Perennial Streams)	BIOLOGICAL INDICATOR (Applies to Intern	nittent and Perennial Streams)
WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)		WV Stream Condition Index (WVSCI)	
	0-100 0-1	65.9		0-100 0-1			0-100	0-1		0-100 0-1		0-100 0-1
Grey Zone Sub-Total		0.659	Sub-Total	0		Sub-Total		0	Sub-Total	0	Sub-Total	0
PART II - Index and	d Unit Score		PART II - Index and U	nit Score		PART II - Index a	nd Unit Score		PART II - Index and Un	it Score	PART II - Index and U	Jnit Score
Index	Linear Feet	Unit Score	Index	Linear Feet Unit Score		Index	Linear F	eet Unit Score	Index	Linear Feet Unit Score	Index	Linear Feet Unit Score
0.756	77	58.23766667	0	0 0		0	0	0	0	0 0	0	0 0

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

STREAM NAME S-H13		LOCATION Pittsylvania County						
	IVERMILE	STREAM CLASS Perennial						
LAT 36.925105 LO	ONG79.51735	RIVER BASIN Upper Roanoke						
STORET#		AGENCY VA DEQ						
INVESTIGATORS TC								
FORM COMPLETED BY	TC	DATE 10/12/2021 TIME 1050 AM	REASON FOR SURVEY	Baseline Assessment				
	<u> </u>							
WEATHER CONDITIONS	Now		Has there been a heavy rain Yes No	in the last 7 days?				
COMPITION.	storm	(heary main)	Air Temperature ^{23.3} C					
	showers	s (intermittent)	Other					
	100 % 17 %cl	loud cover / 100 %						
SITE LOCATION/MAP	Draw a map of the sit	te and indicate the areas sample	ed (or attach a photograph)					
		S-H1						
	Add Notes and a Site Sket							
	/ 0.5	7						
	LOD	40 D		L3P				
		10 9	X					
	1 7	17 3		*				
	12	1	150	35				
		/ ^	- led					
	3 +	HIGH	Bense	- 6				
	D 2 2) / []	1	4 8 M				
	= T &	2/2/3	1	SF A				
	lense to	3 / (3)		TE H				
	4		7	A.				
	k	Troded Ban		*				
		- (m) n-	- J	22				
	1	had the	~)	*				
			111111					
		Timber mat B	nidoc					
		I more						
			111111					
	100	7 0	197	097				
STREAM	Stream Subsystem Perennial Inte	<u>s</u>	Stream Type Coldwater Warmwate					
CHARACTERIZATION				_				
	Stream Origin Glacial	□Spring-fed	Catchment Area	_km²				
	Non-glacial montane Swamp and bog	Mixture of origins Other						

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

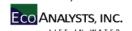
WATERSH FEATURES		Predom Fores Field Agric Resid	Pasture Industria	rcial al	Local Watershed NPS ☑ No evidence ☐ Son ☐ Obvious sources ☐ Local Watershed Erosi ☐ None ☐ Moderate	ne potential sources		
RIPARIAN VEGETAT (18 meter b	ION		e the dominant type and S unt species present		minant species present ☐ Grasses	rbaceous		
INSTREAM FEATURES		Estimat Samplin Area in Estimat	red Stream Depth Velocity m	m m² km² m	Canopy Cover Partly open □Part High Water Mark Proportion of Reach R Morphology Types Riffle 70 % Pool 30 9% Channelized □Yes Dam Present □Yes	_m epresented by Stream Run%		
LARGE WO	OODY		of LWD m	n²/km² (LWD / 1	reach area)			
AQUATIC VEGETAT		Indicate the dominant type and record the dominant species present Rooted emergent						
WATER Q	UALITY	Specific Dissolve pH 721 E Turbidi	rature 20.2 D 0 C Conductance 76.4 D ms/cm ed Oxygen 7.7 D mg/L ty N/A trument Used YSI			Chemical Other Globs Flecks		
SEDIMEN' SUBSTRAT		Odors Norm Chem Other Oils		Petroleum None	■ Relict shells Fooking at stones whice are the undersides blace.	□Sludge □Sawdust □Paper fiber □Sand □Relict shells □Other □Sand □Paper fiber □Sand		
INO	RGANIC SUBS		COMPONENTS 00%)		ORGANIC SUBSTRATE C (does not necessarily add			
Substrate Type	Diameto	er	% Composition in Sampling Reach	Substrate Type	Characteristic	% Composition in Sampling Area		
Bedrock Boulder	> 256 mm (10")		0	Detritus	sticks, wood, coarse plant materials (CPOM)	0		
Cobble	64-256 mm (2.5 2-64 mm (0.1"-2	"-10")	15 20	Muck-Mud	black, very fine organic (FPOM)	0		
Silt	0.06-2mm (gritty) 30 Marl 0.004-0.06 mm 10 < 0.004 mm (slick)				grey, shell fragments	0		

HABITAT ASSESSMENT FIELD DATA SHEET - HG - USE ON ALL STREAMS (FRONT)

STREAM NAME S-H13	LOCATION Pittsylvania County				
STATION # RIVERMILE	STREAM CLASS Perennial				
LAT <u>36.925105</u> LONG <u>-79.51735</u>	RIVER BASIN Upper Roanoke				
STORET#	AGENCY VA DEQ				
INVESTIGATORS TC					
FORM COMPLETED BY TC	DATE 10/12/2021 REASON FOR SURVEY TIME 1050 AM PM Baseline Assessment				

	Habitat	Condition Category										
	Parameter	Optimal	Suboptimal	Marginal	Poor							
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.							
	SCORE 10	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0							
ı sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.							
ted in	score 9	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0							
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).							
ıram	SCORE 8	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0							
P ₂	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.							
	SCORE 15	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0							
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.							
	SCORE 16	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0							

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)


	Habitat		Condition	ı Category	
	Parameter Parameter	Optimal	Suboptimal	Marginal	Poor
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
	SCORE 20	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
ling reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.
amp	SCORE 15	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing december and	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.
eva	SCORE 3	Left Bank 10 9	8 7 6	5 4 3	2 1 0
to be	SCORE 5	Right Bank 10 9	8 7 6	5 4 3	2 1 0
Parameters	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
	SCORE 5	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE 7	Right Bank 10 9	8 7 6	5 4 3	2 1 0
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.
	SCORE 4	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE 5	Right Bank 10 9	8 7 6	5 4 3	2 1 0

Total Score 122

BENTHIC MACROINVERTEBRATE FIELD DATA SHEET

STREAM NAME S-H	LOCATI	LOCATION Pittsylvania County															
STATION #	R	IVE	RMI	LE_		STREAM	STREAM CLASS Perennial										
LAT 36.925105	_ L	ONO	ੋ <u></u> 79	.51735	5	RIVER B	RIVER BASIN Upper Roanoke										
STORET#		AGENC	AGENCY VADEQ														
INVESTIGATORS E	S/NF	:				-]	LOT	NUMBER					
FORM COMPLETED) BY	N	F			DATE -	09/08/2021 12:30 pm]	REAS	SON FOR SURVEY B	aselin	ie A	sses	ssm	ent
HABITAT TYPES	II ⊻	Indicate the percentage of each habitat type present Cobble 30 % Snags % Vegetated Banks 10 % ✓ Sand 60 % Submerged Macrophytes % Other () %															
SAMPLE	G	ear	used	Г	D-fi	ame kick-net			Other								
COLLECTION												_					
	Н	ow v	vere	the	samp	oles collected?	✓ wadi	ng	_	l froi	m bar	ık 🔲 from boa	ıt				
	✓	Cob	ble 4			r of jabs/kicks tale Snags ophytes	ken in eac	Vege	bitat tated Other	Ban	e. ks	Sand)					
GENERAL COMMENTS	4	kic	cks	in	riff	e habitat											
COMMENTS																	
QUALITATIVE I Indicate estimated Dominant					0 = 2		served,		Mare		; = C	ommon, 3= Abuno		1	2	3	4
Filamentous Algae					0	1 2 3 4					rtebi	ates	0	1	2		4
Macrophytes					0	1 2 3 4		Fis	sh				0	1	2	3	4
	l abı	und	anc	e:	0 = org	Absent/Not Ob anisms), 3= Ab	undant ((>10	org	anis	sms)	rganisms), 2 = Coi , 4 = Dominant (>	50 or	gar	nism		
Porifera	0	1				Anisoptera	0	1				Chironomidae	0	1	2		4
Hydrozoa	0	1	2	3	4	Zygoptera	0	1	2	3	4	Ephemeroptera	0	1	2	3	4
Platyhelminthes	0	1	2	3	4	Hemiptera	0	1	2	3	4	Trichoptera	0	1	2	3	4
Turbellaria	0	1	2	3	4	Coleoptera	0	1	2	3	4	Other	0	1	2	3	4
Hirudinea	0	1	2	3	4	Lepidoptera	0	1	2	3	4						
Oligochaeta Isopoda	0	1	2	3	4	Sialidae Corydalidae	0	1	2 2	3	4						
Amphipoda	0	1	2	3	4	Tipulidae	0	1	2	3	4						
Decapoda Decapoda	0	1	2	3	4	Empididae	0	1	2	3	4						
Gastropoda	0	1	2	3	4	Simuliidae	0	1	2	3	4						
Bivalvia	0	1	2	3	4	Tabinidae	0	1	2	3	4						
			-	J	·	Culcidae	0	1	2	3	4						
								_	_		_			$\overline{}$	$\overline{}$	_	

Mountain Valley Pipeline Data are not adjusted for subsampling

	Sample ID Collection Date	S-H13 09-08-2021
ORDER GE	NUS/SPECIES	COUNT
Ephemeroptera Acentrella sp.		2
Ephemeroptera Baetis sp.		15
Ephemeroptera Labiobaetis s		1
Ephemeroptera Maccaffertium	n sp.	18
Ephemeroptera Plauditus sp.		1
Trichoptera Cheumatopsy		85
Trichoptera Hydropsyche	'	21
Odonata Calopterygida		1
Coleoptera Oulimnius sp.		3 7
Coleoptera Psephenus sp		
Megaloptera Corydalus sp.	•	4
Megaloptera Nigronia sp.	uth a alla dissa au	2
Diptera-Chironomidae Cricotopus/Oi Diptera-Chironomidae Polypedilum s	'	11
Diptera-Chironomidae Rheocricotop		1
·	'	4
Diptera-Chironomidae Rheotanytars Diptera-Chironomidae Tanytarsus sp		3
Diptera-Chironomidae Translatsus sp Diptera-Chironomidae Thienemannii		6
Diptera-Chironomidae Thierienfamilia Diptera Antocha sp.	iliyla gr. sp.	5
Diptera Africhopogon	en	2
Diptera Hemerodromi		2
Diptera Simulium sp.	а эр.	6
Annelida tubificoid Naio	didae w/o cap setae	1
Bivalvia Sphaeriidae		. 1
Gastropoda Ferrissia sp.		3
Gastropoda Pleuroceridae		1
Other Organisms Prostoma sp.		1

TOTAL 209

Mountain Valley Pipeline WV SCI Metrics

Sample ID Collection Date	
WVSCI Metric Values	
Total taxa	17
EPT taxa	3
% EPT	68.4
% Chironomidae	12.4
% 2 Dominant	63.2
HBI	4.95
WVSCI Metric Scores	
Total taxa	81.0
EPT taxa	23.1
% EPT	74.5
% Chironomidae	88.4
% 2 Dominant	57.6
HBI	71.2
WVSCI Metric Scores	
Total taxa	81.0
EPT taxa	23.1
% EPT	74.5
% Chironomidae	88.4
% 2 Dominant	57.6
HBI	71.2
WVSCI Total Score	65.9

WVSCI Thresholds

Unimpaired = > 68.00 Gray Zone = 60.61 to 68.00 Impaired = <60.61

WOLMAN PEBBLE COUNT FORM

County: Pittslyvania Stream ID: S-H13

Stream Name: Harpen Creek

HUC Code: 03010101 Basin: Upper Roanoke

Survey Date: 10/12/2021 Surveyors: KB/TC Type: Representative

	-	PEBB	LE COUNT				
Inches	PARTICLE	Millimeters		Particle Count	Total #	Item %	% Cur
	Silt/Clay	< .062	S/C	÷	27	27.27	27.27
	Very Fine	.062125		‡	0	0.00	27.27
	Fine	.12525]	+	0	0.00	27.27
	Medium	.255	SAND	•	2	2.02	29.29
	Coarse	.50-1.0			0	0.00	29.29
.0408	Very Coarse	1.0-2]	+	14	14.14	43.43
.0816	Very Fine	2 -4		‡	0	0.00	43.43
.1622	Fine	4 -5.7]	÷	0	0.00	43.43
.2231	Fine	5.7 - 8	1	‡	0	0.00	43.43
.3144	Medium	8 -11.3	1	‡	2	2.02	45.45
.4463	Medium	11.3 - 16	GRAVEL	+	2	2.02	47.47
.6389	Coarse	16 -22.6	1	+	0	0.00	47.47
.89 - 1.26	Coarse	22.6 - 32	1	+	4	4.04	51.52
1.26 - 1.77	Vry Coarse	32 - 45	1	‡	7	7.07	58.59
1.77 -2.5	Vry Coarse	45 - 64	1	+	16	16.16	74.75
2.5 - 3.5	Small	64 - 90		+	9	9.09	83.84
3.5 - 5.0	Small	90 - 128	1	+	8	8.08	91.92
5.0 - 7.1	Large	128 - 180	COBBLE	+	4	4.04	95.96
7.1 - 10.1	Large	180 - 256	1	‡	1	1.01	96.97
10.1 - 14.3	Small	256 - 362		^	1	1.01	97.98
14.3 - 20	Small	362 - 512	1	+	2	2.02	100.0
20 - 40	Medium	512 - 1024	BOULDER	+	0	0.00	100.0
40 - 80	Large	1024 -2048	1	÷	0	0.00	100.0
80 - 160	Vry Large	2048 -4096	1	+	0	0.00	100.0
	Bedrock		BDRK	÷	0	0.00	100.0
			1	Totals:	99		

RIVERMORPH PARTICLE SUMMARY

River Name: Harpen Creek
Reach Name: S-H13
Sample Name: Representative
Survey Date: 10/12/2021

Size (mm)	TOT #	ITEM %	CUM %
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	28 0 0 2 0 14 0 0 0 0 2 2 2 0 4 7 16 9 8 4 1 1 2 0 0	28.00 0.00 0.00 2.00 0.00 14.00 0.00 0.00 2.00 2.00 2.00 2.00 4.00 7.00 16.00 9.00 8.00 4.00 1.00 1.00 2.00 0.00	28.00 28.00 30.00 30.00 44.00 44.00 44.00 46.00 48.00 52.00 59.00 75.00 84.00 92.00 96.00 97.00 98.00 100.00 100.00 100.00
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Cobble (%) Boulder (%) Bedrock (%)	0.04 1.36 27.3 90 167 511.99 28 16 31 22 3		

Total Particles = 100.

Stream Assessment Form (Form 1) Unified Stream Methodology for use in Virginia le channels classified as intermittent or perennial Cowardin **Impact** Impact Project # **Project Name (Applicant)** Locality HUC Date SAR# Class Length **Factor** Mountain Valley Pipeline (Mountain Pittslyvania 22865.07 R3 03010101 10/12/2021 S-H13 77 1 Valley Pipeline, LLC) SAR Length Name(s) of Evaluator(s) Stream Name and Information TC S-H13 77 1. Channel Condition: Assess the cross-section of the stream and prevailing condition (erosion, aggradation) Optimal Suboptimal Poor Severe Marginal Slightly incised, few areas of active Often incised, but less than Severe or Very little incision or active erosion; 80-Overwidened/incised. Vertically / Deeply incised (or excavated) 100% stable banks. Vegetative surface protection or natural rock, prominent (80-100%). AND/OR Stable point bars / sion or unprotected banks. Majority of banks are stable (60-80%). r. Banks more stable than Severe laterally unstable. Likely to wide vertical/lateral instability. Severe Majority of both banks are ne sion, flow contained within the bank Channel Vegetative protection or natural rock Erosion may be present on 40-60% of vertical. Erosion present on 60-80% of Streambed below average rooting depth Condition prominent (60-80%) AND/OR Depositional features contribute to both banks. Vegetative protection on 40-60% of banks. Streambanks may be bankfull benches are present. Access to their original floodplain or fully banks. Vegetative protection present on 20-40% of banks, and is insufficient majority of banks vertical/undercut. Vegetative protection present on less developed wide bankfull benches. Midstability. The bankfull and low flow vertical or undercut. AND/OR to prevent erosion. AND/OR 60-80% of than 20% of banks, is not preventing channel bars and transverse bars few. Transient sediment deposition covers less than 10% of bottom. 40-60% Sediment may be temporary transient, contribute instability. Deposition that contribute to stability, channels are well defined. Stream like as access to bankfull benches,or new the stream is covered by sediment. Sediment is temporary / transient in erosion. Obvious bank sloughing sent. Erosion/raw banks on 80-100% developed floodplains along nature, and contributing to instability AND/OR Aggrading channel. Greater portions of the reach. Transient liment covers 10-40% of the stream may be forming/present. AND/OR V-shaped channels have vegetative AND/OR V-shaped channels have vegetative protection is present on > than 80% of stream bed is covered by deposition, contributing to instability. bottom protection on > 40% of the banks and 40% of the banks and stable sedimen Multiple thread channels and/or depositional features which contribute deposition is absent subterranean flow to stability. CI 2.00 3 2.4 **Scores** NOTES>> 2. RIPARIAN BUFFERS: Assess both bank's 100 foot riparian areas along the entire SAR. (rough measurements of length & width may be acceptable) **Conditional Category** NOTES>> Optimal Suboptimal Marginal Poor Low Marginal: Non-maintained High Poor: Lawns High Suboptima Low Suboptimal Low Poor: High Marginal dense herbaceous maintained areas Riparian areas wit Riparian areas with regetation, ripariar areas lacking shrub Impervious surfaces, mine Non-maintained nurseries: no-till ree stratum (dbh ree stratum (dbh : ense herbaceou cropland; actively 3 inches) present, 3 inches) present Tree stratum (dbh > 3 inches) present vegetation with and tree stratum grazed pasture, spoil lands, Riparian with 30% to 60% with 30% to 60% hay production, onds, open wate If present, tree either a shrub laye or a tree layer (dbl parsely vegetated non-maintained with > 60% tree canopy cover. enuded surfaces tree canopy cover and containing bot tree canopy cover and a maintained **Buffers** Wetlands located within the riparian row crops, active areas. > 3 inches) area, recently feed lots, trails, or herbaceous and inderstory. Recer cutover (dense resent, with <30% stratum (dbh >3 seeded and other comparable shrub layers or a tree canopy cover. inches) present, with <30% tree stabilized, or othe conditions non-maintained vegetation). comparable understory. canopy cover with maintained condition. understory. High Low High Low High Low 1.5 0.5 Scores 1.2 1.1 0.85 0.75 0.6 1. Delineate riparian areas along each stream bank into Condition Categories and Condition Scores using the descriptors Ensure the sums Determine square footage for each by measuring or estimating length and width. Calculators are provided for you below of % Riparian Enter the % Riparian Area and Score for each riparian category in the blocks below Blocks equal 100 % Riparian Area> 75% 25% 100% Right Bank Score > 0.75 0.5 CI= (Sum % RA * Scores*0.01)/2 % Riparian Area> 50% 25% 25% 100% Rt Bank CI > CI Left Bank 0.67 Score > 0.6 0.65 3. INSTREAM HABITAT: Varied substrate sizes, water velocity and depths; woody and leafy debris; stable substrate; low embeddeness; shade; undercut banks; root mats; SAV; riffle/pool complexes, stable features **Conditional Category** NOTES>> Instream Optimal Suboptimal Marginal Poor Habitat/ Stable habitat elements are typically Habitat elements listed above are Available labitat elements are typically present resent in 30-50% of the reach and are resent in 10-30% of the reach and are lacking or are unstable. Habitat greater than 50% of the reach adequate for maintenance of adequate for maintenance of nents are typically present in less than 10% of the reach. Cover populations. populations Stream Gradient

0.9

0.5

High / Low

Scores

1.5

1.2

Stream Impact Assessment Form Page 2											
Project #	Project Name (App	licant)	Locality	Cowardin Class.	нис	Date	SAR#	Impact length	Impact Factor		
22865.07	Mountain Valley Pipeline Valley Pipeline, L	•	Pittslyvania	R3	03010101	10/12/2021	S-H13	77	1		
1. CHANNEL	. ALTERATION: Stream crossin	igs, riprap, concre	te, gabions, or con	crete blocks, strai	ghtening of chann	el, channelization,	embankments, s	poil piles, constriction	ons, livestock		
22865.07				al Category				NOTES>>			
	Negligible	Mi	Conditiona nor	Mode	erate	Sev		NOTES>>			
Channel Alteration		Less than 20% of the stream reach is disrupted by any of the channel alterations listed in the parameter guidelines.	20-40% of the stream reach is		60 - 80% of reach is disrupted by any of the channel	Greater than 80% of by any of the chann in the parameter greating 80% of banks should be supported by the state of the sta	ere f reach is disrupted el alterations listed uidelines AND/OR ored with gabion,				

REACH CONDITION INDEX and STREAM CONDITION UNITS FOR THIS REACH

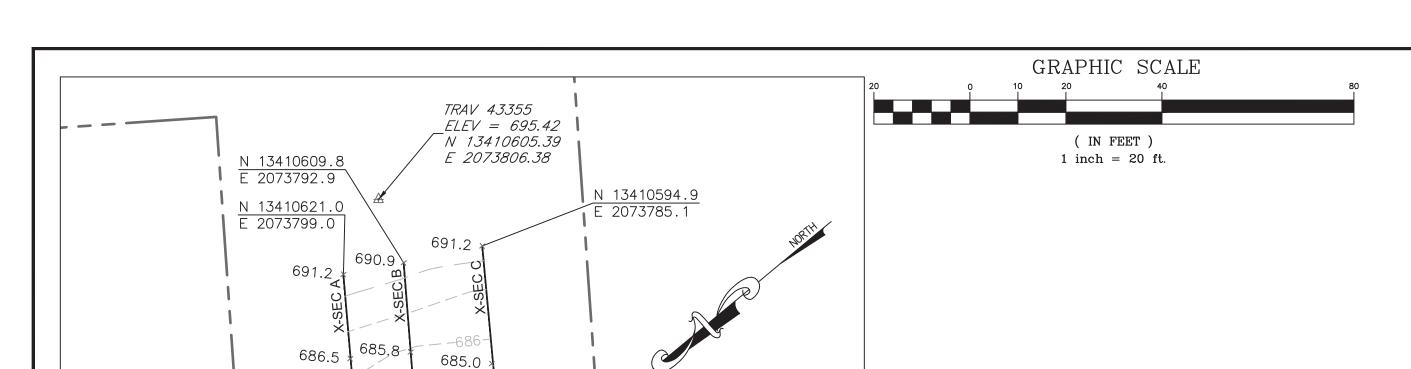
THE REACH CONDITION INDEX (RCI) >> 0.83

RCI= (Sum of all Cl's)/5, except if stream is ephemeral RCI = (Riparian Cl/2)

COMPENSATION REQUIREMENT (CR) >> 64

CR = RCI X L₁ X IF

INSERT PHOTOS:


(WSSI Photo Location L:\22000s\22800\22865.06\Admin\05-ENVR\Field Data\)

NOTE: The CIs and RCI should be rounded to 2 decimal places. The CR should be rounded to a whole number.

DESCRIBE PROPOSED IMPACT:

PROVIDED UNDER SEPARATE COVER

683.8

682.2

683.6

684.1

~ W−H5 ~

684.8

685.3

680.2

692.5

695.4

698.0

E 2073615.5

684.5

685.2

₹684.7

683.2

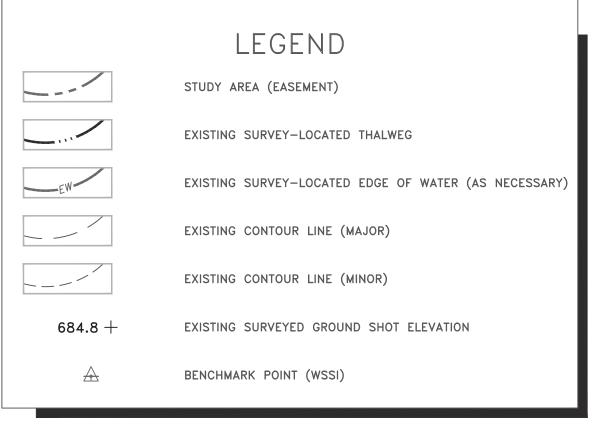
684.5

684.3

685.5

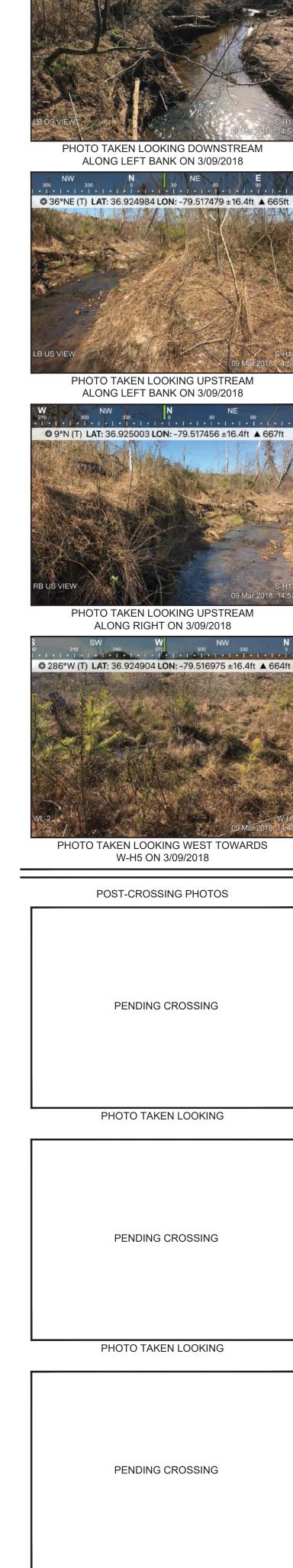
682.9

684.8


694.4 \$695.2

697.9

N 13410744.9 E 2073620.1


HARPEN CREEK

(S-H13)

- 1. This map has been oriented to NAD 1983 UTM ZONE 17N, and vertically to The North American Vertical Datum of 1988 (NAVD 88), using a Real Time Network (RTN) GPS. Field locations were completed on November 2, 2018.
- 2. Monumentation, including traverse stations and fly points, shown on this drawing should be used to orient any future boundary, topographic, or location survey.
- 3. Easement lines shown on plan view were provided by Mountain Valley Pipeline (MVP).
- 4. WSSI Contour Interval = 2.0'. Contours within the channel were interpolated using stream channel breaklines (i.e. top of slopes, toe of slopes, thalweg) and cross-sectional points. Contours outside the channel were interpolated using cross-sectional spot shots.
- 5. All section views shown are left to right facing downstream.
- 6. Cross-section B shot at location of pipe centerline (based on best professional judgement).

PRE-CROSSING PHOTOS

2

290.

'-H5

Spirit Pit

Horizontal Datum: NAD 1983 UTM ZONE

SIH

Sheet #

1 of 1

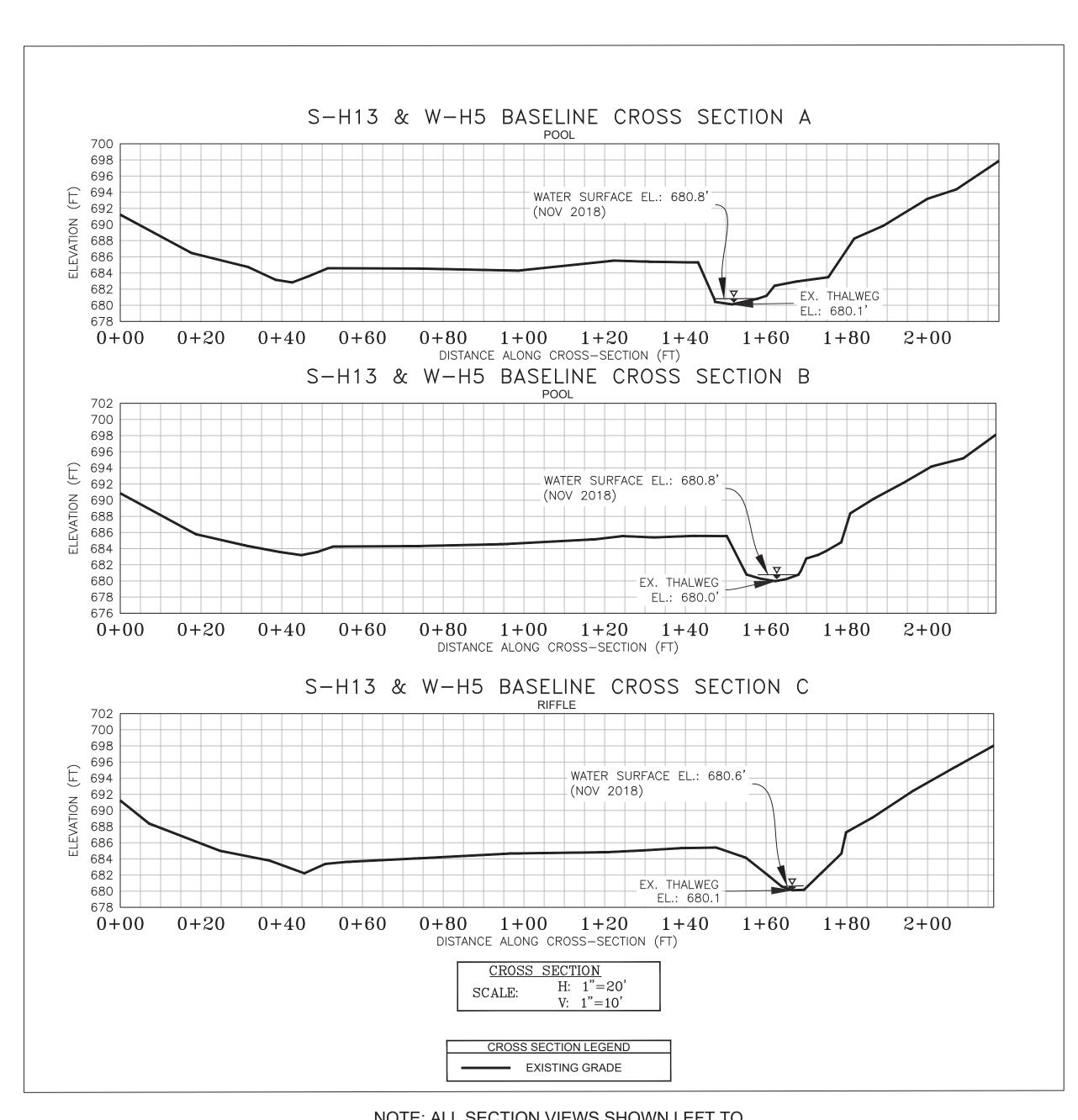
Approved

PFS

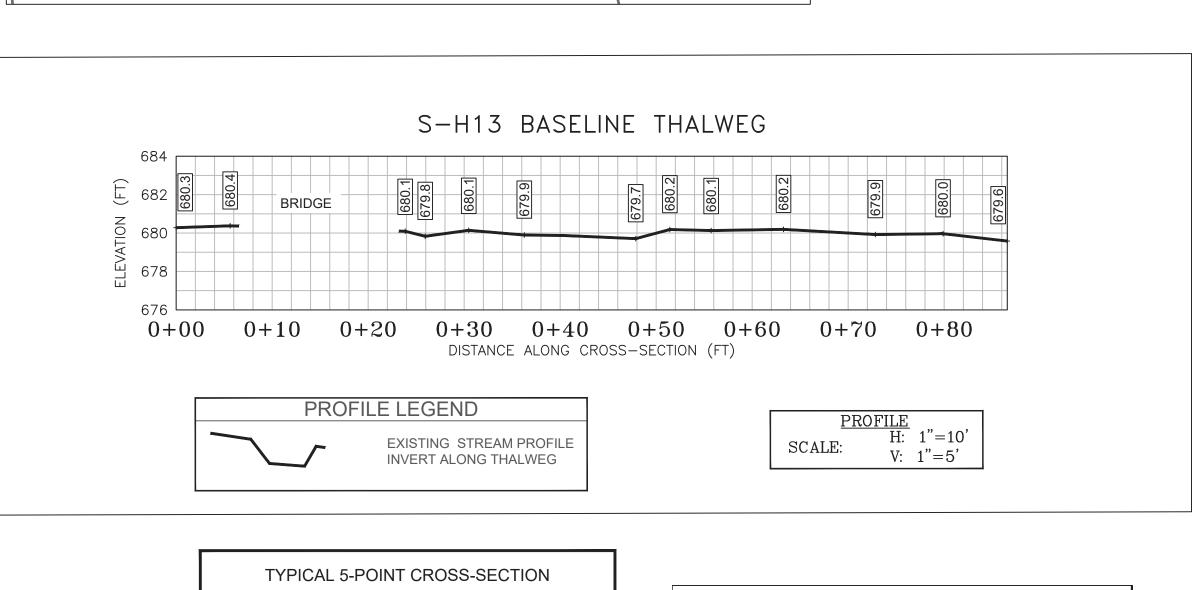
Vertical Datum: NAVD 88

Boundary and Topo Source:

WSSI 2' C.I. Topo


Computer File Name:

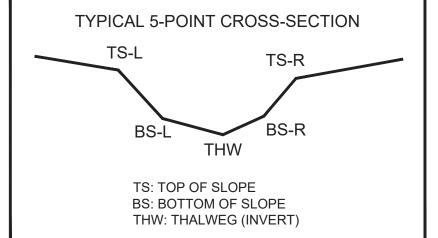
2865_03 S-I MP 279-291 Sheets.dwg


:\Survey\22000s\22800\22865.03\Spread I Work Dwgs

EJC

PHOTO TAKEN LOOKING

NOTE: ALL SECTION VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.


TRAV 43357

_*ELEV* = 699.54

N 13410704.68

E 2073593.94

N 13410717.0 E 2073606.5

CL STAKEOUT POINTS: S-H13 CROSS SECTION B (PIPE CL)									
	PR	POST-CROSSING							
DT LOC	NORTHING	EASTING	ELEV	VERT.	HORZ.				
PT. LOC.	NORTHING	EASTING	ELEV	DIFF.	DIFF.				
TS-L	13410713.60	2073644.81	688.37						
BS-L	13410706.13	2073654.58	681.20						
THW	13410702.67	2073659.85	679.97						
BS-R	13410698.29	2073665.49	680.79						
TS-R	13410695.79	2073669.64	685.55						