Baseline Assessment – Stream Attributes

Reach S-H37 (Pipeline ROW) Ephemeral Spread I Franklin County, Virginia

Data	Included
Photos	✓
SWVM Form	✓
FCI Calculator and HGM Form	✓
RBP Physical Characteristics Form	✓
Water Quality Data	✓
RBP Habitat Form	✓
RBP Benthic Form	✓
Benthic Identification Sheet	N/A –No Riffles
Wolman Pebble Count	✓
RiverMorph Data Sheet	✓
USM Form (Virginia Only)	✓
Longitudinal Profile and Cross Sections	√

Spread I Stream S-H37 (Pipeline ROW) Franklin County

Photo Type: US VIEW Location, Orientation, Photographer Initials: Downstream at ROW/LOD looking N upstream, DW

Location, Orientation, Photographer Initials: Downstream at ROW/LOD looking S downstream, DW

Spread I Stream S-H37 (Pipeline ROW) Franklin County

Photo Type: LB CL Location, Orientation, Photographer Initials: On thalweg at pipe centerline looking W at right streambank, DW

Location, Orientation, Photographer Initials: On thalweg at pipe centerline looking E at left streambank, DW

Spread I Stream S-H37 (Pipeline ROW) Franklin County

Photo Type: US COND Location, Orientation, Photographer Initials: Upstream at ROW/LOD looking N upstream, DW

Photo Type: DS VIEW Location, Orientation, Photographer Initials: Upstream at ROW/LOD looking S downstream, DW

(v2.1, Sept 2015)		· · ·	Juntain V	энеу гіренне		cimal Degrees)	Lat.	36.366031	Lon.	-73.71745	WEATHER.		Sumiy	DATE.	August	t 26, 2021
IMPACT STREAM/SITE I (watershed size (acreage				S-H37;	10.45 ac			MITIGATION STREAM CLA: (watershed size {acre	SS./SITE ID AND eage), unaltered or impo					Comments:		
STREAM IMPACT LENGTH:	82	FORM (RESTORATION (Levels I-III)		OORDINATES: cimal Degrees)	Lat.		Lon.		PRECIPITATION PAST 48 HRS:		No	Mitigation Length:		
Column No. 1- Impact Existin	ng Condition (Del	bit)		Column No. 2- Mitigation Existing C	ondition - Base	eline (Credit)		Column No. 3- Mitigation Post Comple	Projected at Five etion (Credit)	Years	Column No. 4- Mitigation Proj Post Completion (ected at Ten Ye Credit)	ears	Column No. 5- Mitigation Project	ted at Maturity (C	Credit)
Stream Classification:	Ephe	meral		Stream Classification:				Stream Classification:		0	Stream Classification:		0	Stream Classification:		0
Percent Stream Channel S	Slope	6.94		Percent Stream Channel SI	оре			Percent Stream Channe	ol Slope	0	Percent Stream Channel SI	lope	0	Percent Stream Channel	Slope	0
HGM Score (attach	data forms):			HGM Score (attach	data forms):			HGM Score (atta	ach data forms):		HGM Score (attach d	ata forms):		HGM Score (attach	data forms):	
		Average				Average				Average			Average			Average
Hydrology Biogeochemical Cycling	0.62	0.43333333		Hydrology Biogeochemical Cycling		0		Hydrology Biogeochemical Cycling		0	Hydrology Biogeochemical Cycling		0	Hydrology Biogeochemical Cycling		0
Habitat PART I - Physical, Chemical an	0.28 d Biological Indic	cators		Habitat PART I - Physical, Chemical an	d Biological In	dicators		PART I - Physical, Chemical	al and Biological In	dicators	PART I - Physical, Chemical and	Biological Indi	icators	Habitat PART I - Physical, Chemical ar	d Biological Indir	cators
,,	Points Scale Range	Site Score		,,	Points Scale Range	Site Score		2,	Points Scale Range		, ,	Points Scale Range		, , , , , , , , , , , , , , , , , , , ,	Points Scale Range	1
PHYSICAL INDICATOR (Applies to all stream				PHYSICAL INDICATOR (Applies to all streams				PHYSICAL INDICATOR (Applies to all stre			PHYSICAL INDICATOR (Applies to all streams			PHYSICAL INDICATOR (Applies to all stream		
USEPA RBP (High Gradient Data Sheet)				USEPA RBP (Low Gradient Data Sheet)				USEPA RBP (High Gradient Data Shee	at)		USEPA RBP (High Gradient Data Sheet)			USEPA RBP (High Gradient Data Sheet)		
	0-20	0		Epifaunal Substrate/Available Cover	0-20			Epifaunal Substrate/Available Cover	0-20			0-20		Epifaunal Substrate/Available Cover	0-20	-
2. Embeddedness	0-20	4		2. Pool Substrate Characterization	0-20			2. Embeddedness	0-20		2. Embeddedness	0-20		2. Embeddedness	0-20	1
Velocity/ Depth Regime	0-20	0		3. Pool Variability	0-20			3. Velocity/ Depth Regime	0-20		Velocity/ Depth Regime	0-20		Velocity/ Depth Regime	0-20	
Sediment Deposition Channel Flow Status	0-20	0		Sediment Deposition Channel Flow Status	0-20			Sediment Deposition Channel Flow Status	0-20		Sediment Deposition Channel Flow Status	0-20		Sediment Deposition Channel Flow Status	0-20	
6 Channel Alteration	0-20 0-1	6		6 Channel Alteration	0-20 0-1			6 Channel Alteration	0-20 0-1		6 Channel Alteration	0-20 0-1		6 Channel Alteration	0-20 0-1	
7. Frequency of Riffles (or bends)	0-20	0		7. Channel Sinuosity	0-20			7. Frequency of Riffles (or bends)	0-20		7. Frequency of Riffles (or bends)	0-20		7. Frequency of Riffles (or bends)	0-20	
8. Bank Stability (LB & RB)	0-20	7		8. Bank Stability (LB & RB)	0-20			8. Bank Stability (LB & RB)	0-20		8. Bank Stability (LB & RB)	0-20		8. Bank Stability (LB & RB)	0-20	
Vegetative Protection (LB & RB)	0-20	6		9. Vegetative Protection (LB & RB)	0-20			9. Vegetative Protection (LB & RB)	0-20		Vegetative Protection (LB & RB)	0-20		Vegetative Protection (LB & RB)	0-20	
10. Riparian Vegetative Zone Width (LB & RB)	0-20	8		10. Riparian Vegetative Zone Width (LB & RB)	0-20			 Riparian Vegetative Zone Width (LB & RE 	3) 0-20		10. Riparian Vegetative Zone Width (LB & RB)	0-20		 Riparian Vegetative Zone Width (LB & RB) 		
Total RBP Score	Marginal	37		Total RBP Score	Poor	0		Total RBP Score	Poor	0	Total RBP Score	Poor	0	Total RBP Score	Poor	0
Sub-Total		0.30833333		Sub-Total		0		Sub-Total		0	Sub-Total		0	Sub-Total		0
CHEMICAL INDICATOR (Applies to Intermitt	ent and Perennial St	reams)		CHEMICAL INDICATOR (Applies to Intermitten	t and Perennial St	treams)		CHEMICAL INDICATOR (Applies to Intern	nittent and Perennial S	streams)	CHEMICAL INDICATOR (Applies to Intermitte	nt and Perennial S	Streams)	CHEMICAL INDICATOR (Applies to Intermit	ent and Perennial St	treams)
WVDEP Water Quality Indicators (Gener	al)			WVDEP Water Quality Indicators (General)			WVDEP Water Quality Indicators (Gen	eral)		WVDEP Water Quality Indicators (Genera	1)		WVDEP Water Quality Indicators (Gener	al)	
Specific Conductivity				Specific Conductivity				Specific Conductivity			Specific Conductivity			Specific Conductivity		
<=99 - 90 points	0-90	54.9			0-90				0-90			0-90			0-90	
nH				nH				pH			nH	_		nH		
	0-80	6.2			5-90 0-1				5-90 0-1			5-90 0-1			5-90 0-1	
6.0-8.0 = 80 points	0-60	6.2			5-90				5-90			5-90			5-90	
DO	_			DO				DO			DO	_		DO	_	
<5.0 = 10 points	10-30	0.93			10-30				10-30			10-30			10-30	
Sub-Total		0.9		Sub-Total		0		Sub-Total		0	Sub-Total		0	Sub-Total		0
BIOLOGICAL INDICATOR (Applies to Intern	nittent and Perennial	Streams)		BIOLOGICAL INDICATOR (Applies to Intermitt	ent and Perennial	Streams)		BIOLOGICAL INDICATOR (Applies to In	termittent and Peren	nial Streams)	BIOLOGICAL INDICATOR (Applies to Intern	nittent and Peren	nnial Streams)	BIOLOGICAL INDICATOR (Applies to Inter	mittent and Perenn	nial Streams)
WV Stream Condition Index (WVSCI)				WV Stream Condition Index (WVSCI)				WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)			WV Stream Condition Index (WVSCI)		
	0-100 0-1				0-100 0-1				0-100 0-1			0-100 0-1			0-100 0-1	1
Sub-Total		0		Sub-Total		0		Sub-Total		0	Sub-Total		0	Sub-Total		- 0
Out-Total				Oub-Total			J	Gub-10tal			Sub-10tai			Jour Total		
PART II - Index and	Unit Score			PART II - Index and	Unit Score			PART II - Index	and Unit Score		PART II - Index and U	Init Score		PART II - Index and	Unit Score	
Index	Linear Feet	Unit Score		Index	Linear Feet	Unit Score		Index	Linear Feet	Unit Score	Index	Linear Feet	Unit Score	Index	Linear Feet	Unit Score
0.519	82	42.5375		0	0	0		0	0	0	0	0	0	0	0	0
					1		J	L			L	1		L		

Version 10-20-17

			High-0				ms in Ap alculato		a		
	Team:	TT, Joe M,	Dan W	i ieiu i	Jala Sile	et and C	aicuiato		M Northing:	36.988031	
Pr	oject Name:			е			ı		TM Easting:		
	Location:	Franklin Co	unty					Sar	npling Date:	8/26/2021	
S	AR Number:	S-H37	Reach	Length (ft):	60	Stream Ty	/pe: Ephe	meral Stream			▼
	Top Strata:	Sh	rub/Herb Sti	ata	(determined	d from perce	ent calculate	d in V _{CCANOP}	_Y)		
Site	and Timing:	Project Site				•	Before Proje	ct			▼
Sample	Variables										
1	V _{CCANOPY}	equidistant	points along st one value	the stream. between 0	Measure of the Measur	nly if tree/sa	nopy. Meas apling cover rata choice.)	is at least 20			Not Used, <20%
	5	cent cover n	leasuremen	ts at each p	oint below.						I
2	V _{EMBED}	Average en	nbeddednes	s of the stre	am channel.	Measure a	t no fewer th	nan 30 rough	ılv equidistar	nt points	
	LINDED						oving it, det				2.1
		to the follow	ving table. It	the bed is a	an artificial s	urface, or co	fine sedime omposed of				
				osed of bed or gravel, co			of 5. es (rescaled	from Platts	, Megahan, a	and	Measure
		Minshall 19	83) Rating Des	ariation.							at least 30 points
		5	<5 percent	of surface c			ouried by fine				oo points
		3					or buried b				
		2	51 to 75 pe	rcent of surf	ace covered	l, surrounde	d, or buried	by fine sedir	nent		
	I ist the rati	1 ngs at each		t of surface	covered, su	rrounded, or	buried by fir	ne sediment	(or artificial	surface)	l
	3	3	2	3	2	2	2	2	1	2	1
	1	2	3	2	3	1	3	2	1	2	1
3	V _{SUBSTRATE}	Median stre						an 30 roughl	y equidistant	t points	2.95 in
		along the st cle size in inc o.0 in, sand	hes to the n		nch at each i			ould be cour	ted as 99 in	, asphalt or	2.00 111
	1.20	3.10	3.60	4.10	2.60	3.70	2.90	4.00	4.00	2.00]
	1.90	2.20	2.40	3.00	3.10	2.70	2.50	3.00	5.00	2.10	
4	V_{BERO}		al percentag	e will be cald	culated If bo	th banks are	al number of e eroded, to	tal erosion f	or the strear		23 %
			Left Bank:	0	ft		Right Bank:	0	ft		
Sample	Variables :	5-9 within t	he entire rip	oarian/buffe	r zone adja	cent to the	stream cha	nnel (25 fe	et from eacl	h bank).	
5	V_{LWD}	stream read	ch. Enter th	e number fro	om the entire		r and 36 incl uffer and with		, ·		0.0
		100 feet of	stream will b	e calculated		f downed wo	oodv stems:		0		
6	V_{TDBH}				if V _{CCANOPY}	tree/sapling	cover is at		-	t least 4	Not Used
		List the dbh	measurem	eter. Enter t ents of indivi			within the b	uffer on eacl	n side of the		Not Used
		stream belo	w: Left Side					Right Side			Ĩ
											l
											i
											Ī
											1
											l
7	V _{SNAG}						of stream. E	nter numbe	r of snags o	n each side	
		of the strea	m, and the a	amount per 1	100 feet will	be calculate	d.				0.0
			Left Side:	(0		Right Side:		0		
8	V_{SSD}	tree cover i	s <20%). E	nter number			s dbh) per 1 on each side				6.7
		100 ft of str	eam will be Left Side:		1		Right Side:		3		

Aesculus flava Oxydendrum arboreum Alliaria petiolata Lotus corniculatus Asimina triloba Prunus serotina Alternanthera Lythrum salicaria Betula alleghaniensis Quercus alba Quercus alba Prunus serotina Alternanthera Lythrum salicaria Alternanthera Lythrum salicaria Prunus alicaria Paulownia tomentos Carya alba Quercus cocinea Aster tataricus Paulownia tomentos Carya glabra Quercus prinus Coronilla varia Pueraria montana Carya ovalis Quercus rubra Elaeagnus umbellata Rosa multiflora Carya ovalis Quercus velutina Lespedeza bicolor Sorghum halepense Coronus florida Sassafras albidum Lespedeza cuneata Verbena brasiliensis Fagus grandifolia Tilia americana Ligustrum obusidium Ligustrum obusidium Elastica Ligustrum sinense Ligustrum sinens	9	V _{SRICH}	1 in the talle									
Acer abcum					ex will be ca	alculated fror	n these dat	a.	-	0 (4 0)		
Assaulus flava Oryconorum aboreum Albaria jutinosish Loricera tatance Assaulus flava Oryconorum aboreum Allarian periodiata Lotius corniculatus Lotius corniculatus Assaulus articlea Parlumas sercina Allarian periodiata Lotius corniculatus Lotius corniculatus Assaulus articlea Oryconorum aboreum Allarian periodiata Lotius corniculatus Lotius corniculatus Assaulus articlea Lotius corniculatus Assaulus articlea Lotius corniculatus Lotius corniculatus Lotius corniculatus Parlumas articlea Assaulus articlea Parlumas articlea Parlumas articlea Carya alba Quercus introfearia Carya civala Pueraria mondana Carya ovala Quercus prinus Cornollia varia Pueraria mondana Carya ovala Quercus velutina Lespedeza bocoro Sorghum hatepenes Sorghum hatepenes Sorghum hatepenes Cornollia varia Prasunas americana Tisuga carandensis Ligustrum sinense Lespedeza curreata Verbena brasiliensis Prasunas americana Tisuga carandensis Ligustrum sinense Ligustr	_	A = = = = : h = : : -			Manadia			A:la-a4la			1	
Assaculus fleve Coydendrum exponeum Alliania petiolate Lotus comiculatus Astrina fillobe Purusa serichia Alternathirea Lotus comiculatus Astrina fillobe Purusa serichia Alternathirea Lotus comiculatus Astrina fillobe Lotus comiculatus Astrina fillobe A					•	•						
Asimina trilobe Prurus serotins Altermenthera Lythrum salicaria Debub altophanensis Quercus alba Philipserotes Altermenthera Lythrum salicaria Debub altophanensis Quercus alba Philipserotes Altermenthera Lythrum salicaria Philipserotes Altermenthera Philipserotes Phil				_			<u> </u>	•		_		
Betula alleghaniensis Quercus alba Philosopoidos Mocostegium viminaum Philosopoidos Mocostegium viminaum Philosopoidos Paulownia tomentos Detui fenta Quercus prinus Carryal varia Paulownia tomentos Carya galabra Quercus prinus Carryal varia Pueraria mortana Pueraria		Aesculus fl	ava		Oxydendrum	n arboreum		Alliaria petid	olata		Lotus cornic	culatus
Betula lerita Quercus coccinea Aster tataricus Paulownia tomentos Carya elba Quercus imbricaria Cerasium fortanum Polygonum cuspidatur Paulownia tomentos Carya elba Quercus imbricaria Cerasium fortanum Polygonum cuspidatur Paulownia tomentos Carya ovalia Quercus rubra Besagnus umbellas Rosa mutilifora Carya ovalia Quercus rubra Besagnus umbellas Rosa mutilifora Carya ovalia Quercus velutina Lespadeza bicolor Sorghum halepense Corrus Brindia Sassafras albitum Lespadeza bicolor Sorghum halepense Pagus grandfolia Titia americana Ligustrum sinense Ligustru		Asimina tril	oba		Prunus ser	otina					Lythrum sai	licaria
Carya alba Quercus imbricaria Cerastium fontanum Polygonum cuspidatum Carya glabra Quercus prinus Coronilla varia Puterara montana Carya gradura Puterara montana Quercus prinus Coronilla varia Puterara montana Puterara montana Quercus valutra Puterara montana Quercus valutra Puterara montana Quercus valutra Lespedeze bicolor Scriptum halepense Coronis fiorida Sessafica abbidum Lespedeze cureata Vertena brasiliensis Fagus grandifolia Tilia americana Ligustrum sinense Urusa mericana Puterara montana P		Betula alleg	haniensis		Quercus al	ba		philoxeroide	es	✓	Microstegium	vimineum
Carya griabra Quercus primus Coronilla varia Pueraria monitana Carya ovalis Quercus rubra Executor subrata Rosa multifros Rosa		Betula lenta	9		Quercus co	occinea		Aster tatario	cus		Paulownia t	omentosa
Carya ovalis Quercus rubra Elaesgrus umbaliata Rosa mutifilore Carya ovala Quercus velutina Lespedeza bicolor Sorghum halepense Corrus finide Sassafras albidum Lespedeza bicolor Sorghum halepense Carya finide Sassafras albidum Lespedeza bicolor Verbena brasiliensis Fagus grandfolia Tilia americana Ligustrum sinense Ligustrum s		Carya alba			Quercus im	nbricaria		Cerastium t	fontanum		Polygonum c	uspidatum
Carya ovalis		Carya glab	ra		Quercus pr	rinus		Coronilla va	aria		Pueraria mo	ontana
Carya ovata		Carya ovali	is		Quercus ru	ıbra		Elaeagnus ui	mbellata		Rosa multifi	lora
Comus floride				_	•		<u> </u>	l espedeza	bicolor	_		
Fagus grandifolia Tilla americana Ligustrum oblustolium Ligustrum sinense Li	_	•		_	•		<u> </u>	·		_	ŭ	,
Fraxinus americana Tsuga canadensis Ligustrum sinense							_	·		Ш	v Cr DCria Dr	2311011313
Lindoendron dulpifera Ulimus americana Magnolia acuminata							<u> </u>	-				
Aspecies in Group 1 1 Species in Group 2					-			Ligustrum s	sinense			
1 Species in Group 1 1 Species in Group 2			•	Ц	Ulmus ame	ericana						
ample Variables 10-11 within at least 8 subplots (40" x 40", or 1m x 1m) in the riparian/buffer zone within 25 feet from each ank. The four subplots should be placed roughly equidistantly along each side of the stream. 10 Verienus Average percent cover of leaves, sticks, or other organic material. Woody debris <4" diameter and <50" 1.67 %		Magnolia a	cuminata									
ample Variables 10-11 within at least 8 subplots (40" x 40", or 1m x 1m) in the riparian/buffer zone within 25 feet from each ank. The four subplots should be placed roughly equidistantly along each side of the stream. 10 Verienus Average percent cover of leaves, sticks, or other organic material. Woody debris <4" diameter and <50" 1.67 %			1	Species in	Group 1				1	Species in	Group 2	
10 V _{DETRITUS} Average percentage cover of herbaceous vegetation (measure only if true cover of ground covery expectation (measure only if true cover of ground covery expectation (measure only if true cover of ground covery expectation (measure only if true cover of ground covery expectation (measure only if true cover of ground covery expectation and 36" all Because there may be several layers of ground covery expetation percentages up through 200% are accepted. Enter the percent cover of ground vegetation at each subploit. Left Side			•						•		0.0up 2	
Average percent cover of leaves, sticks, or other organic material. Woody debris <4" diameter and <36" 1,67 %										one within 2	25 feet from	each
Left Side			•		_ ,					4" diameter	and <36"	
1		- DETRITOS	0 1			,			,			1.67 %
11 V _{HERB}				Left	Side			Right	Side] '	
Substitute Sub				1	2	0	0	2	5			
Substitute Sub												
ample Variable 12 within the entire catchment of the stream. 12 Vw_Luse		woody stems at least 4" dbh and 36" tall. Because there may be several layers of ground cover vegetate percentages up through 200% are accepted. Enter the percent cover of ground vegetation at each					r vegetation	92 %				
ample Variable 12 within the entire catchment of the stream. 12 Vw_LUSE	11										_	
12 VwLuse Weighted Average of Runoff Score for watershed: 0.99	11			Left	Side			Right	Side]	
Forest and native range (>75% ground cover) V 1 99 99 99	Sampl		subplot. 2 within the	100 entire cato	90 hment of the	100						
Open space (pasture, lawns, parks, etc.), grass cover > 75% V 0.3 1 100	Sampl		subplot. 2 within the	entire catc	90 chment of the	100 he stream.	ed:			Runoff	% in Catch-	Running
Variable Value VSI	Sampl	V _{WLUSE}	subplot. 2 within the Weighted A	entire cato verage of R	90 Chment of the Lunoff Score Use (Choose	100 he stream.	ed:		80	Score	ment	Running Percent (not >100
Variable Value VSI	Sampl	V _{WLUSE}	subplot. 2 within the Weighted A	entire cato verage of R	90 Chment of the Lunoff Score Use (Choose	100 he stream.	ed:		80	Score	ment	Running Percent (not >100
Variable Value VSI	Sampl	V _{WLUSE}	2 within the Weighted A	entire cato verage of R Land	90 chment of the tunoff Score Use (Choose	100 he stream. for watershe	ed:		80	Score 1	ment 99	Running Percent (not >100
Variable Value VSI	Sampl	V _{WLUSE}	2 within the Weighted A	entire cato verage of R Land	90 chment of the tunoff Score Use (Choose	100 he stream. for watershe	ed:		80	Score 1	ment 99	Running Percent (not >100
Variable Value VSI	Sampl	V _{WLUSE}	2 within the Weighted A	entire catcoverage of R Land	90 chment of the tunoff Score Use (Choose	100 he stream. for watershe	ed:		80	Score 1	ment 99	Running Percent (not >100
S-H37 Notes:	Sampl	V _{WLUSE}	2 within the Weighted A	entire catcoverage of R Land	90 chment of the tunoff Score Use (Choose	100 he stream. for watershe	ed:		80	Score 1	ment 99	Running Percent (not >100
S-H37 Variable Value VSI Vccanopy Vccanopy Vembed Vsubstrate Vsubstrate Vsubstrate Vsub Vs	Sampl	V _{WLUSE}	2 within the Weighted A	entire catcoverage of R Land	90 chment of the tunoff Score Use (Choose	100 he stream. for watershe	ed:		80 	Score 1	ment 99	Running Percent (not >100
S-H37 Variable Value VSI Vccanopy Vccanopy Vembed Vsubstrate Vsubstrate Vsubstrate Vsub Vs	Sampl	V _{WLUSE}	2 within the Weighted A	entire catcoverage of R Land	90 chment of the tunoff Score Use (Choose	100 he stream. for watershe	ed:		80 •	Score 1	ment 99	Running Percent (not >100
Variable Value VSI Vccanopy Not Used <20% Not Used V_EMBED 2.1 0.50 V_Substrate 2.95 in 1.00 V_BERO 23 % 0.95 V_LWD 0.0 0.00 V_TDBH Not Used Not Used V_SNAG 0.0 0.10 V_SSD 6.7 0.10 V_SRICH 0.00 0.00 V_DETRITUS 1.7 % 0.02 V_HERB 92 % 1.00	Sampl	V _{WLUSE}	2 within the Weighted A	entire catcoverage of R Land	90 chment of the tunoff Score Use (Choose	100 he stream. for watershe	ed:		**************************************	Score 1	ment 99	Running Percent (not >100
Variable Value VSI Vccanopy Not Used <20% Not Used V_EMBED 2.1 0.50 V_Substrate 2.95 in 1.00 V_BERO 23 % 0.95 V_LWD 0.0 0.00 V_TDBH Not Used Not Used V_SNAG 0.0 0.10 V_SSD 6.7 0.10 V_SRICH 0.00 0.00 V_DETRITUS 1.7 % 0.02 V_HERB 92 % 1.00	Sampl	V _{WLUSE}	2 within the Weighted A	entire catcoverage of R Land	90 chment of the tunoff Score Use (Choose	100 he stream. for watershe	ed:		**************************************	Score 1	ment 99	Running Percent (not >100
Vccanopy Not Used, <20% Not Used V_EMBED 2.1 0.50 V_SUBSTRATE 2.95 in 1.00 V_BERO 23 % 0.95 V_LWD 0.0 0.00 V_TDBH Not Used Not Used V_SNAG 0.0 0.10 V_SSD 6.7 0.10 V_SRICH 0.00 0.00 V_DETRITUS 1.7 % 0.02 V_HERB 92 % 1.00	Sampl	V _{WLUSE}	2 within the Weighted A	entire catcoverage of R Land	90 chment of the tunoff Score Use (Choose	100 he stream. for watershe	ed:		**************************************	Score 1	ment 99	Running Percent (not >100
Vccanopy Not Used, <20% Not Used V_EMBED 2.1 0.50 V_SUBSTRATE 2.95 in 1.00 V_BERO 23 % 0.95 V_LWD 0.0 0.00 V_TDBH Not Used Not Used V_SNAG 0.0 0.10 V_SSD 6.7 0.10 V_SRICH 0.00 0.00 V_DETRITUS 1.7 % 0.02 V_HERB 92 % 1.00	Sampl	Forest and n	2 within the Weighted A ative range (>	entire catcoverage of R Land	90 chment of the tunoff Score Use (Choose	100 he stream. for watershe	ed:	80	80 V	Score 1	ment 99	Running Percent (not >100
VEMBED 2.1 0.50 VSUBSTRATE 2.95 in 1.00 VBERO 23 % 0.95 VLWD 0.0 0.00 VTDBH Not Used Not Used VSNAG 0.0 0.10 VSSD 6.7 0.10 VSRICH 0.00 0.00 VDETRITUS 1.7 % 0.02 VHERB 92 % 1.00	3 ampl	Forest and n Open space	2 within the Weighted A ative range (> (pasture, lawn)	entire cato verage of R Land 75% ground s, parks, etc.),	90 chment of the tunoff Score Use (Choose	100 he stream. for watershe	ed:	80	80 V	Score 1	ment 99	Running Percent (not >100
V _{SUBSTRATE} 2.95 in 1.00 V _{BERO} 23 % 0.95 V _{LWD} 0.0 0.00 V _{TDBH} Not Used Not Used V _{SNAG} 0.0 0.10 V _{SSD} 6.7 0.10 V _{SRICH} 0.00 0.00 V _{DETRITUS} 1.7 % 0.02 V _{HERB} 92 % 1.00	12 V	Forest and n Open space	subplot. 2 within the Weighted A ative range (> (pasture, lawn)	tentire catcoverage of R Land 75% ground ss, parks, etc.),	90 chment of the tunoff Score Use (Choose	100 he stream. for watershe	ed:	80	80 V	Score 1	ment 99	Running Percent (not >100
V _{LWD} 23 % 0.95 V _{LWD} 0.0 0.00 V _{TDBH} Not Used Not Used V _{SNAG} 0.0 0.10 V _{SSD} 6.7 0.10 V _{SRICH} 0.00 0.00 V _{DETRITUS} 1.7 % 0.02 V _{HERB} 92 % 1.00	12 V	Forest and n Open space	2 within the Weighted A ative range (> (pasture, lawn)	tentire catcoverage of R Land 75% ground ss, parks, etc.),	90 chment of the tunoff Score Use (Choose	100 he stream. for watershe	ed:	80	80 V	Score 1	ment 99	Running Percent (not >100
V _{LWD} 23 % 0.95 V _{LWD} 0.0 0.00 V _{TDBH} Not Used Not Used V _{SNAG} 0.0 0.10 V _{SSD} 6.7 0.10 V _{SRICH} 0.00 0.00 V _{DETRITUS} 1.7 % 0.02 V _{HERB} 92 % 1.00	12 V	Forest and n Open space	subplot. 2 within the Weighted A ative range (> (pasture, lawn) S-H37 Value Not Used, <20%	tentire cato verage of R Land 75% ground is, parks, etc.)	90 chment of the tunoff Score Use (Choose	100 he stream. for watershe	ed:	80	80 V	Score 1	ment 99	Running Percent (not >100
V _{LWD} 0.0 0.00 V _{TDBH} Not Used Not Used V _{SNAG} 0.0 0.10 V _{SSD} 6.7 0.10 V _{SRICH} 0.00 0.00 V _{DETRITUS} 1.7 % 0.02 V _{HERB} 92 % 1.00	V V _C	Forest and n Open space Sariable CANOPY MBED	subplot. 2 within the Weighted A ative range (> (pasture, lawn) 3-H37 Value Not Used, <20% 2.1	verage of R Land 75% ground s, parks, etc.), VSI Not Used 0.50	90 chment of the tunoff Score Use (Choose	100 he stream. for watershe	ed:	80	80 V	Score 1	ment 99	Running Percent (not >100
V _{TDBH} Not Used Not Used V _{SNAG} 0.0 0.10 V _{SSD} 6.7 0.10 V _{SRICH} 0.00 0.00 V _{DETRITUS} 1.7 % 0.02 V _{HERB} 92 % 1.00	12 Voc Ve Vs	Forest and n Open space Gariable CANOPY MBED UBSTRATE	subplot. 2 within the Weighted A ative range (> (pasture, lawn 3-H37 Value Not Used, <20% 2.1 2.95 in	verage of R Land 75% ground is, parks, etc.), VSI Not Used 0.50 1.00	90 chment of the tunoff Score Use (Choose	100 he stream. for watershe	ed:	80	80 V	Score 1	ment 99	Running Percent (not >100
V _{SNAG} 0.0 0.10 V _{SSD} 6.7 0.10 V _{SRICH} 0.00 0.00 V _{DETRITUS} 1.7 % 0.02 V _{HERB} 92 % 1.00	VVc Vs Vb	Forest and n Open space Gariable CANOPY MBED UBSTRATE ERO	subplot. 2 within the Weighted A ative range (> (pasture, lawn) S-H37 Value Not Used, <20% 2.1 2.95 in 23 %	verage of R Land 75% ground s, parks, etc.), VSI Not Used 0.50 1.00 0.95	90 chment of the tunoff Score Use (Choose	100 he stream. for watershe	ed:	80	80 V	Score 1	ment 99	Running Percent (not >100
V _{SSD} 6.7 0.10 V _{SRICH} 0.00 0.00 V _{DETRITUS} 1.7 % 0.02 V _{HERB} 92 % 1.00	VVc VE VS VB	Forest and n Open space Gariable CANOPY MBED UBSTRATE ERO	subplot. 2 within the Weighted A ative range (> (pasture, lawn) S-H37 Value Not Used, <20% 2.1 2.95 in 23 %	verage of R Land 75% ground s, parks, etc.), VSI Not Used 0.50 1.00 0.95	90 chment of the tunoff Score Use (Choose	100 he stream. for watershe	ed:	80	80 V	Score 1	ment 99	Running Percent (not >100
V _{SSD} 6.7 0.10 V _{SRICH} 0.00 0.00 V _{DETRITUS} 1.7 % 0.02 V _{HERB} 92 % 1.00	VCVEVSVBVL	Forest and n Open space ariable CANOPY MBED UBSTRATE ERO	subplot. 2 within the Weighted A ative range (> (pasture, lawn) 3-H37 Value Not Used, <20% 2.1 2.95 in 23 % 0.0	verage of R Land 75% ground is, parks, etc.), VSI Not Used 0.50 1.00 0.95 0.00	90 chment of the tunoff Score Use (Choose	100 he stream. for watershe	ed:	80	80 V	Score 1	ment 99	Running Percent (not >100
Vsrich 0.00 0.00 Vbetritus 1.7 % 0.02 VHERB 92 % 1.00	VCVEVSVBVL	Forest and n Open space Gariable CANOPY MBED UBSTRATE ERO WD DBH	subplot. 2 within the Weighted A ative range (> (pasture, lawn) 3-H37 Value Not Used, <20% 2.1 2.95 in 23 % 0.0 Not Used	verage of R Land 75% ground s, parks, etc.), VSI Not Used 0.50 1.00 0.95 0.00 Not Used	90 chment of the tunoff Score Use (Choose	100 he stream. for watershe	ed:	80	80 V	Score 1	ment 99	Running Percent (not >100
VDETRITUS 1.7 % 0.02 VHERB 92 % 1.00	VVCVEVSVBVLVSVSVSVSVSVSVSVSVSVSVSVSVSVSVSVSVS	Forest and n Open space Sariable CANOPY MBED UBSTRATE ERO WD DBH NAG	subplot. 2 within the Weighted A ative range (> (pasture, lawn) S-H37 Value Not Used, <20% 2.1 2.95 in 23 % 0.0 Not Used 0.0	verage of R Land 75% ground s, parks, etc.), VSI Not Used 0.50 1.00 0.95 0.00 Not Used 0.10	90 chment of the tunoff Score Use (Choose	100 he stream. for watershe	ed:	80	80 V	Score 1	ment 99	Running Percent (not >100
V _{HERB} 92 % 1.00	VCVEVSVSVSVS	Forest and n Open space ariable CANOPY MBED UBSTRATE ERO WD DBH NAG SD	subplot. 2 within the Weighted A ative range (> (pasture, lawn) 3-H37 Value Not Used, <20% 2.1 2.95 in 23 % 0.0 Not Used 0.0 6.7	verage of R Land 75% ground s, parks, etc.), VSI Not Used 0.50 1.00 0.95 0.00 Not Used 0.10 0.10	90 chment of the tunoff Score Use (Choose	100 he stream. for watershe	ed:	80	80 V	Score 1	ment 99	Running Percent (not >100
	VCVEVSVSVSVS	Forest and n Open space Gariable CANOPY MBED UBSTRATE ERO WD DBH NAG SD RICH	subplot. 2 within the Weighted A ative range (> (pasture, lawn S-H37 Value Not Used, <20% 2.1 2.95 in 23 % 0.0 Not Used 0.0 6.7 0.00	VSI Not Used 0.10 0.10 0.00	90 chment of the tunoff Score Use (Choose	100 he stream. for watershe	ed:	80	80 V	Score 1	ment 99	Running Percent (not >100
V _{WLUSE} 0.99 1.00	V Vc Vs Vs Vs Vs Vs Vs	Forest and n Open space Gariable CANOPY MBED UBSTRATE ERO WD DBH NAG SD RICH ETRITUS	subplot. 2 within the Weighted A ative range (> (pasture, lawn S-H37 Value Not Used, <20% 2.1 2.95 in 23 % 0.0 Not Used 0.0 6.7 0.00	VSI Not Used 0.10 0.10 0.00	90 chment of the tunoff Score Use (Choose	100 he stream. for watershe	ed:	80	80 V	Score 1	ment 99	Running Percent (not >100
	V Vc Vs Vs Vs Vs Vs Vs	Forest and n Open space Gariable CANOPY MBED UBSTRATE ERO WD DBH NAG SD RICH ETRITUS	subplot. 2 within the Weighted A ative range (> (pasture, lawn) 3-H37 Value Not Used, <20% 2.1 2.95 in 23 % 0.0 Not Used 0.0 6.7 0.00 1.7 %	VSI Not Used 0.50 0.00 Not Used 0.10 0.10 0.00 0.02	90 chment of the tunoff Score Use (Choose	100 he stream. for watershe	ed:	80	80 V	Score 1	ment 99	Running Percent (not >100

Ver. 10-20-17

FCI Calculator for the High-Gradient Headwater Streams in Appalachia

To ensure accurate calculations, the <u>UPPERMOST STRATUM</u> of the plant community is determined based on the calculated value for V_{CCANOPY} (≥20% cover is required for tree/sapling strata). Go to the SAR Data Entry tab and enter site characteristics and data in the yellow cells. For information on determining how to split a project into SARs, see Chapter 5 of the Operational Draft Regional Guidebook for the Functional Assessment of High-Gradient Headwater Streams and Low-Gradient Perennial Streams in Appalachia (Environmental Laboratory U.S. Army Corps of Engineers 2017).

Project Name: Mountain Valley Pipeline

Location: Franklin County

Sampling Date: 8/26/2021 Project Site Before Project

Subclass for this SAR:

Ephemeral Stream

Uppermost stratum present at this SAR: SAR number: S-H37

Shrub/Herb Strata

Functional Results Summary:

Enter Results in Section A of the Mitigation Sufficiency Calculator

Function	Functional Capacity Index
Hydrology	0.62
Biogeochemical Cycling	0.40
Habitat	0.28

Variable Measure and Subindex Summary:

Variable	Name	Average Measure	Subindex
V _{CCANOPY}	Percent canpoy over channel.	Not Used, <20%	Not Used
V _{EMBED}	Average embeddedness of channel.	2.10	0.50
V _{SUBSTRATE}	Median stream channel substrate particle size.	2.95	1.00
V _{BERO}	Total percent of eroded stream channel bank.	23.33	0.95
V_{LWD}	Number of down woody stems per 100 feet of stream.	0.00	0.00
V _{TDBH}	Average dbh of trees.	Not Used	Not Used
V _{SNAG}	Number of snags per 100 feet of stream.	0.00	0.10
V _{SSD}	Number of saplings and shrubs per 100 feet of stream.	6.67	0.10
V _{SRICH}	Riparian vegetation species richness.	0.00	0.00
V _{DETRITUS}	Average percent cover of leaves, sticks, etc.	1.67	0.02
V _{HERB}	Average percent cover of herbaceous vegetation.	91.67	1.00
V _{WLUSE}	Weighted Average of Runoff Score for Catchment.	0.99	1.00

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

STREAM NAME	LOCATION		
STATION # RIVERMILE	STREAM CLASS		
LAT LONG	RIVER BASIN		
STORET#	AGENCY		
INVESTIGATORS			
FORM COMPLETED BY	DATE	REASON FOR SURVEY	

WEATHER CONDITIONS	rain (showers % %c.	Past 24 hours ((heavy rain) (steady rain) (steady rain) (loud cover ear/sunny	Has there been a heavy r Yes No Air Temperature0 Other	•
* LOCATION/MAP	NO W	He area san	npled (or attach a photography)	Pipe Soncious
	LOAT	> Timber	- Mat	ROAD
STREAM CHARACTERIZATION	Stream Subsystem	ermittent Tidal Spring-fed Mixture of origins Other	Stream Type Coldwater Warm Catchment Area	_

Notes:

Cattle have walked through the stream and it smells like sewage 80% channelized for cattle crossing and such

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

WATERS FEATURI		Fores Field/ Agric	Pasture Industria	rcial	Local Watershed NPS Pollution No evidence ☐ Some potential sources Obvious sources Local Watershed Erosion None Moderate Heavy	
RIPARIA VEGETA (18 meter	TION	Trees	SI SI	hrubs	Ominant species present Grasses Herbaceous	
INSTREA FEATURI		Estimat Estimat Samplin Area in Estimat	ed Reach Length ed Stream Width g Reach Area km² (m²x1000) ed Stream Depth Velocity m	m m m² km²	Canopy Cover Partly open Partly shaded Shaded High Water Markm Proportion of Reach Represented by Stream Morphology Types Riffle % Run% Pool% Channelized Yes No Dam Present Yes No	
LARGE V DEBRIS	VOODY		of LWDm	n ² /km ² (LWD/	reach area)	
AQUATION VEGETA		Roote Floati Domin a	e the dominant type and d emergent Re ng Algae At unt species present of the reach with aquat	ooted submerge tached Algae		
WATER (QUALITY	Specific Dissolve pH Turbidi	cature0 C Conductance ed Oxygen ty trument Used		Water Odors Normal/None Sewage Petroleum Chemical Fishy Other	
SEDIMENT/ SUBSTRATE		Odors Norm Chem Other Oils Abser			Relict shells Other	_
INC	ORGANIC SUBS		COMPONENTS 00%)		ORGANIC SUBSTRATE COMPONENTS (does not necessarily add up to 100%)	
Substrate Type	Diamete	er	% Composition in Sampling Reach	Substrate Type	Characteristic % Composition in Sampling Area	
Bedrock Boulder	> 256 mm (10")			Detritus	sticks, wood, coarse plant materials (CPOM)	
Cobble Gravel	64-256 mm (2.5 2-64 mm (0.1"-2			Muck-Mud	black, very fine organic (FPOM)	
Sand	0.06-2mm (gritt	y)		Marl	grey, shell fragments	

Silt

Clay

0.004-0.06 mm

< 0.004 mm (slick)

HABITAT ASSESSMENT FIELD DATA SHEET - HG - USE ON ALL STREAMS (FRONT)

STREAM NAME	LOCATION	
STATION # RIVERMILE	STREAM CLASS	
LAT LONG	RIVER BASIN	
STORET#	AGENCY	
INVESTIGATORS		
FORM COMPLETED BY	DATE AM PM	REASON FOR SURVEY

	Habitat		Condition	ı Category		
	Parameter	Optimal	Suboptimal	Marginal	Poor	
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.	
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
n sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0-25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.	
ted in	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/depth regime (usually slow-deep).	
ıram	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
Pa	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.	
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.	
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

	Habitat		Condition	n Category		
	Parameter	Optimal	Suboptimal	Marginal	Poor	
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.	
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
oling reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.	
samp	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.	
e eva	SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0	
to be	SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0	
Parameters	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.	
	SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0	
	SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0	
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.	
	SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0	
ĺ	SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0	

Total	Caare	
i otai	Score	

BENTHIC MACROINVERTEBRATE FIELD DATA SHEET

STREAM NAME	LOCATION	
STATION # RIVERMILE	STREAM CLASS	
LAT LONG	RIVER BASIN	
STORET#	AGENCY	
INVESTIGATORS		LOT NUMBER
FORM COMPLETED BY	DATETIME	REASON FOR SURVEY
HADITAT TYPES Indicate the percentage of	and habitat type present	

HABITAT TYPES	Indicate the percentage of each habitat type present Cobble% Snags% Vegetated Banks% Sand% Submerged Macrophytes% Other ()%
SAMPLE COLLECTION	Gear used D-frame kick-net Other How were the samples collected? wading from bank from boat
	Indicate the number of jabs/kicks taken in each habitat type. Cobble Snags Vegetated Banks Sand Submerged Macrophytes Other ()
GENERAL COMMENTS	

QUALITATIVE LISTING OF AQUATIC BIOTA

Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare, 2 = Common, 3 = Abundant, 4 = Dominant

Periphyton	0	1	2	3	4	Slimes	0	1	2	3	4
Filamentous Algae	0	1	2	3	4	Macroinvertebrates	0	1	2	3	4
Macrophytes	0	1	2	3	4	Fish	0	1	2	3	4

FIELD OBSERVATIONS OF MACROBENTHOS

Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare (1-3 organisms), 2 = Common (3-9 organisms), 3 = Abundant (>10 organisms), 4 = Dominant (>50 organisms)

Porifera	0	1	2	3	4	Anisoptera	0	1	2	3	4	Chironomidae	0	1	2	3	4
Hydrozoa	0	1	2	3	4	Zygoptera	0	1	2	3	4	Ephemeroptera	0	1	2	3	4
Platyhelminthes	0	1	2	3	4	Hemiptera	0	1	2	3	4	Trichoptera	0	1	2	3	4
Turbellaria	0	1	2	3	4	Coleoptera	0	1	2	3	4	Other	0	1	2	3	4
Hirudinea	0	1	2	3	4	Lepidoptera	0	1	2	3	4						
Oligochaeta	0	1	2	3	4	Sialidae	0	1	2	3	4						
Isopoda	0	1	2	3	4	Corydalidae	0	1	2	3	4						
Amphipoda	0	1	2	3	4	Tipulidae	0	1	2	3	4						
Decapoda	0	1	2	3	4	Empididae	0	1	2	3	4						
Gastropoda	0	1	2	3	4	Simuliidae	0	1	2	3	4						
Bivalvia	0	1	2	3	4	Tabinidae	0	1	2	3	4						
						Culcidae	0	1	2	3	4						

WOLMAN PEBBLE COUNT FORM

County: Franklin County Stream ID: S-H37

Stream Name: UNT to Jacks Creek

HUC Code: 03010101 Basin: Upper Roanoke

Survey Date: 8/26/2021 Surveyors: Joe M, Dan W Type: Representative

			LE COUNT				
Inches	PARTICLE	Millimeters		Particle Count	Total #	Item %	% Cun
	Silt/Clay	< .062	S/C	-	60	60.00	60.00
	Very Fine	.062125		-	0	0.00	60.00
	Fine	.12525		-	0	0.00	60.00
	Medium	.255	SAND	•	0	0.00	60.00
	Coarse	.50-1.0	1	•	0	0.00	60.00
.0408	Very Coarse	1.0-2		-	0	0.00	60.00
.0816	Very Fine	2 -4		-	0	0.00	60.00
.1622	Fine	4 -5.7		-	0	0.00	60.00
.2231	Fine	5.7 - 8		-	0	0.00	60.00
.3144	Medium	8 -11.3	1	-	0	0.00	60.00
.4463	Medium	11.3 - 16	GRAVEL	-	0	0.00	60.00
.6389	Coarse	16 -22.6			3	3.00	63.00
.89 - 1.26	Coarse	22.6 - 32			3	3.00	66.00
1.26 - 1.77	Vry Coarse	32 - 45			5	5.00	71.00
1.77 -2.5	Vry Coarse	45 - 64	1	-	7	7.00	78.00
2.5 - 3.5	Small	64 - 90			10	10.00	88.00
3.5 - 5.0	Small	90 - 128	1		7	7.00	95.00
5.0 - 7.1	Large	128 - 180	COBBLE	-	5	5.00	100.00
7.1 - 10.1	Large	180 - 256	1		0	0.00	100.00
10.1 - 14.3	Small	256 - 362			0	0.00	100.00
14.3 - 20	Small	362 - 512	1	-	0	0.00	100.00
20 - 40	Medium	512 - 1024	BOULDER	-	0	0.00	100.00
40 - 80	Large	1024 -2048	1		0	0.00	100.00
80 - 160	Vry Large	2048 -4096	1		0	0.00	100.00
	Bedrock		BDRK		0	0.00	100.00
				Totals:	100		

RIVERMORPH PARTICLE SUMMARY

River Name: UNT to Jacks Creek Reach Name: S-H37 Sample Name: Representative 08/26/2021

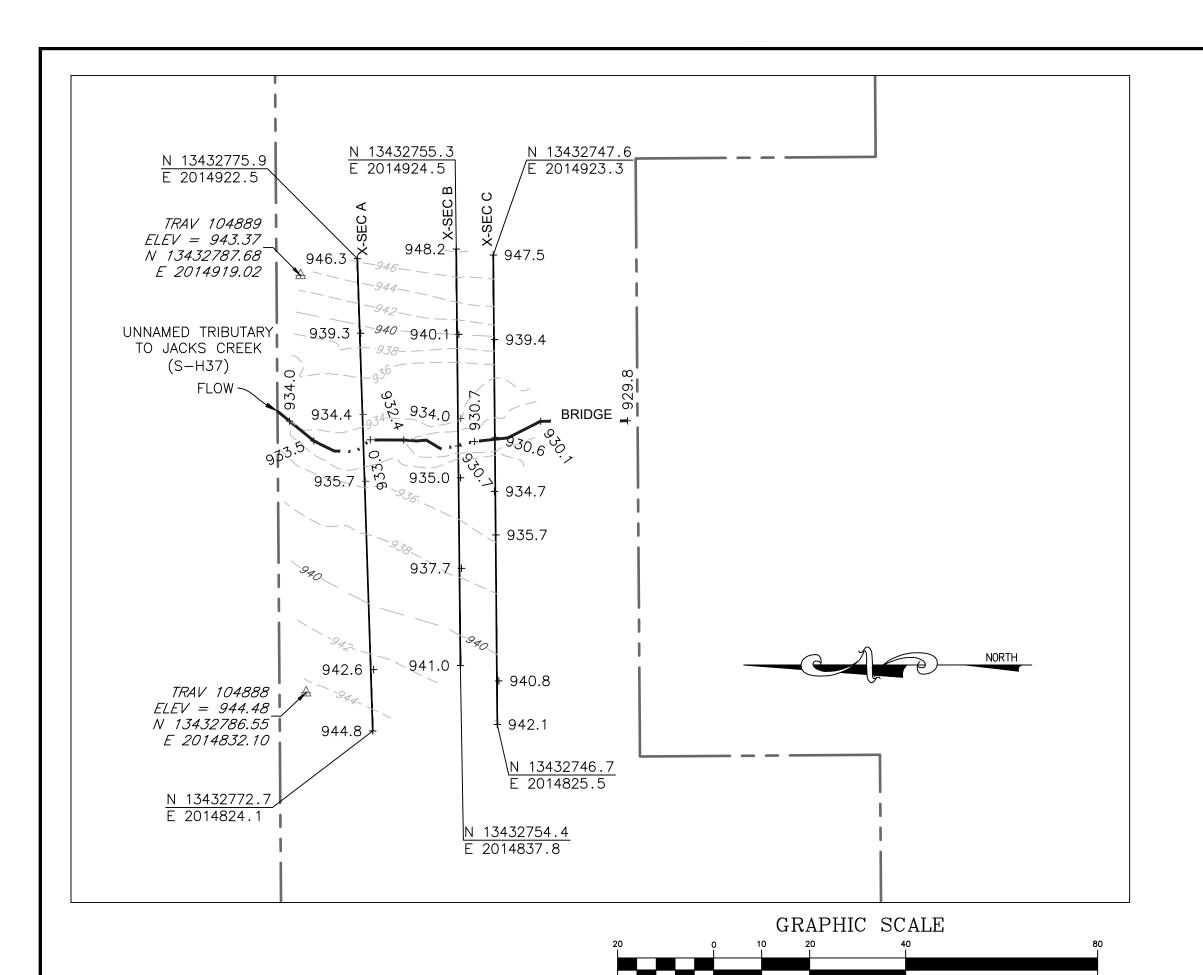
Size (mm)	TOT #	ITEM %	CUM %
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 5 0 0 0 0	60.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.00 3.00 5.00 7.00 10.00 7.00 5.00 0.00 0.00 0.00	60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 63.00 66.00 71.00 78.00 88.00 95.00 100.00 100.00 100.00 100.00 100.00
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Cobble (%) Boulder (%) Bedrock (%)	0.02 0.04 0.05 79.6 128 180 60 0 18 22 0		

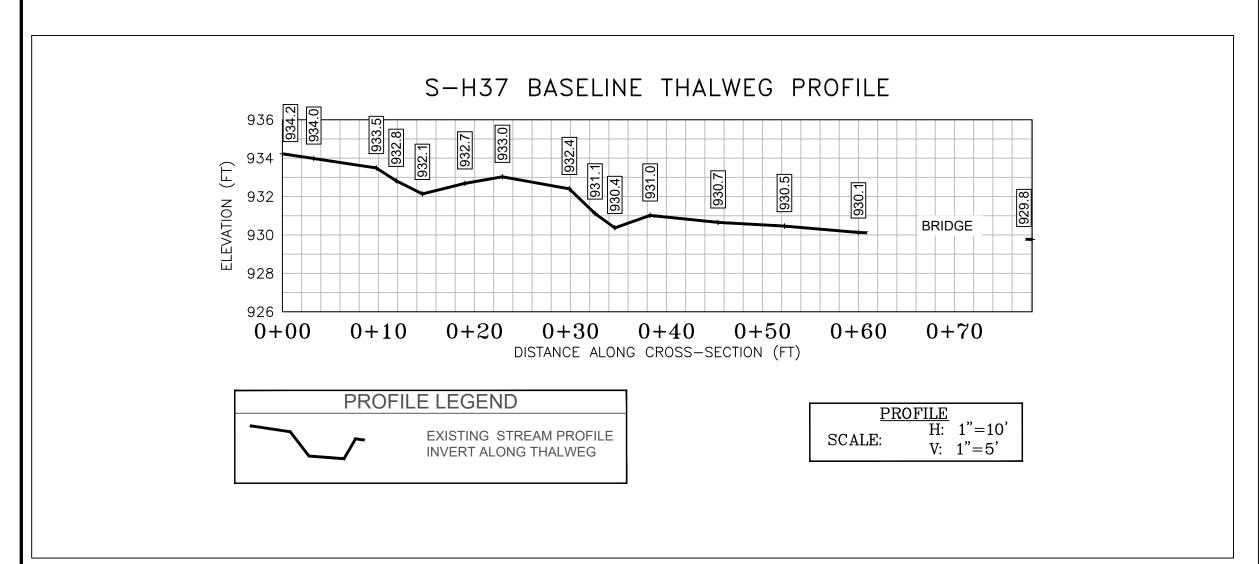
Total Particles = 100.

Ephemeral Stream Assessment Form (Form 1a) Unified Stream Methodology for use in Virginia For use in ephemeral streams Cowardin Impact Project # **Project Name** HUC SAR# Locality Date Class length **Factor** Mountain Valley Pipeline (Mountain Franklin 22865.06 03010101 8/26/2021 R6 S-H37 82 1 Valley Pipeline, LLC) County Name(s) of Evaluator(s) Stream Name and Information SAR Length JM, DW UNT to Jacks Creek; Spread I 82 2. RIPARIAN BUFFERS: Assess both bank's 100 foot riparian areas along the entire SAR. (rough measurements of length & width may be acceptable) **Conditional Category** NOTES>> Marginal Optimal Suboptimal Poor Low Marginal: High Poor: Lawns Non-maintained mowed, and High Suboptimal Low Suboptimal High Marginal: maintained areas Low Poor: dense herbaceou Riparian areas with Riparian areas with Non-maintained egetation, riparia nurseries; no-till cropland; actively Impervious surfaces, mine ree stratum (dbh : 3 inches) present ee stratum (dbh > ense herbaceo reas lacking shru and tree stratum, 3 inches) present Tree stratum (dbh > 3 inches) present spoil lands, vegetation with grazed pasture Riparian with 30% to 60% with >30% tree hay production, onds, open wate If present, tree with > 60% tree canopy cover and an non-maintained understory. Wetlands ther a shrub lay parsely vegetate non-maintained denuded surface nopy cover and maintained tree canopy cover and containing both or a tree layer (dbl > 3 inches) row crops, active feed lots, trails, or **Buffers** area, recently nderstory. Recer cutover (dense vegetation). herbaceous and present, with <30% stratum (dbh >3 seeded and other comparable shrub lavers or a tree canopy cover inches) present with <30% tree stabilized, or othe comparable conditions. understory. canopy cover with maintained understory. condition. High Low High High Low Low Condition 1.5 1.2 1.1 0.85 0.75 0.6 0.5 Scores 1. Delineate riparian areas along each stream bank into Condition Categories and Condition Scores using the descriptors. Ensure the sums 2. Determine square footage for each by measuring or estimating length and width. Calculators are provided for you below of % Riparian Enter the % Riparian Area and Score for each riparian category in the blocks below Blocks equal 100 20% 80% 100% % Riparian Area> Right Bank 0.6 0.5 Score > CI= (Sum % RA * Scores*0.01)/2 30% 70% 100% CI % Riparian Area> Rt Bank CI > 0.52 Left Bank 0.75 0.5 Lt Bank CI > 0.58 0.55 REACH CONDITION INDEX and STREAM CONDITION UNITS FOR THIS REACH

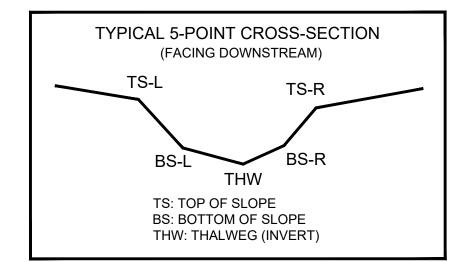
THE REACH CONDITION INDEX (RCI) >> RCI= (Riparian CI)/2

COMPENSATION REQUIREMENT (CR) >> 23


0.28


CR = RCI X LF X IF

INSERT PHOTOS:


NOTE: The CIs and RCI should be rounded to 2 decimal places. The CR should be rounded to a whole number.

CL STAKEOUT POINTS: S-H37 CROSS SECTION B (PIPE CL)										
	PF		POST-CI	ROSSING						
DT LOC	NODTHING	FASTING		VERT.	HORZ.					
PT. LOC.	NORTHING	EASTING	ELEV	DIFF.	DIFF.					
TS-L	13432754.33	2014889.22	934.04							
BS-L	13432754.79	2014886.01	931.28							
THW	13432754.78	2014883.49	930.74							
BS-R	13432754.92	2014882.77	930.81							
TS-R	13432754.55	2014880.87	934.12							

(IN FEET)

1 inch = 20 ft.

LEGEND STUDY AREA (EASEMENT) EXISTING SURVEY-LOCATED THALWEG EXISTING SURVEY-LOCATED EDGE OF WATER (AS NECESSARY) EXISTING CONTOUR LINE (MAJOR) EXISTING CONTOUR LINE (MINOR)

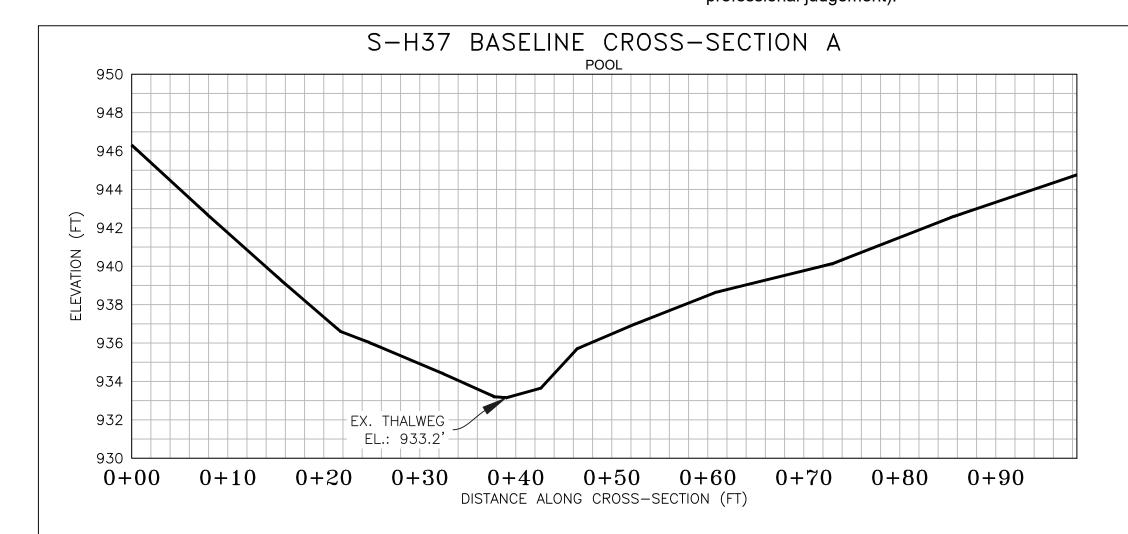
EXISTING SURVEYED GROUND SHOT ELEVATION

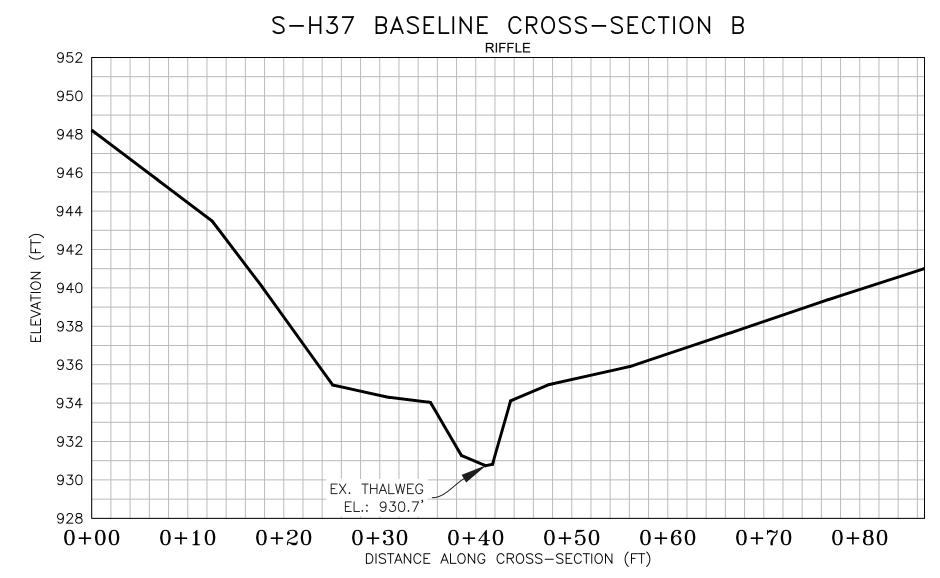
BENCHMARK POINT (WSSI)

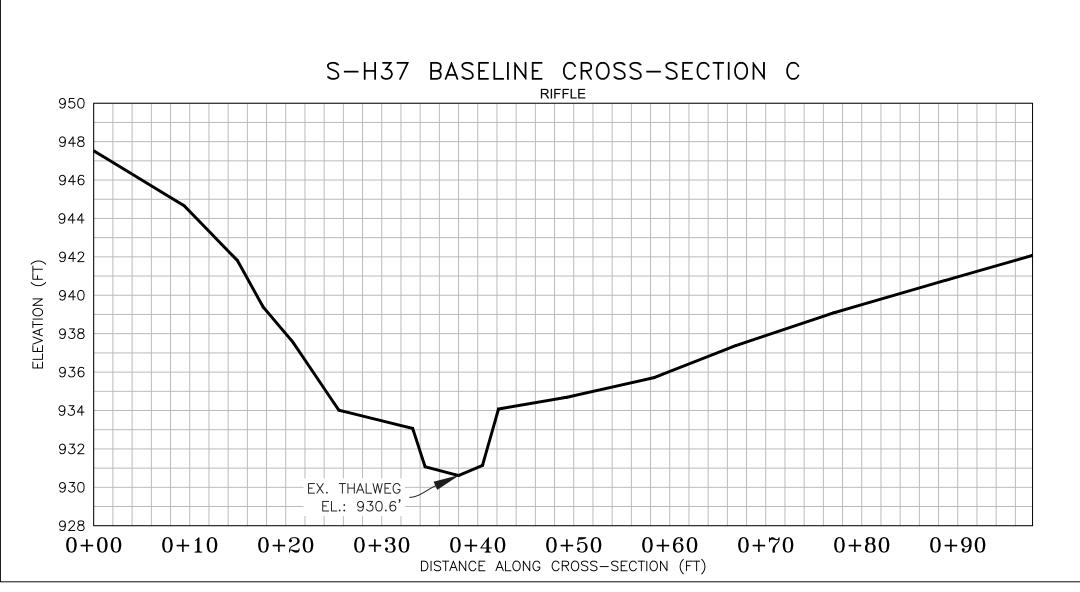
935.7 **+**

1. This map has been oriented to NAD 1983 UTM ZONE 17N, and vertically to The North American Vertical Datum of 1988 (NAVD 88), using a Real Time Network (RTN) GPS. Field locations were completed on December 3, 2018.

SURVEY NOTES:


2. Monumentation, including traverse stations and fly points, shown on this drawing should be used to orient any future boundary, topographic, or


3. Easement lines shown on plan view were provided by Mountain Valley Pipeline (MVP).


4. WSSI Contour Interval = 2.0'. Contours within the channel were interpolated using stream channel breaklines (i.e. top of slopes, toe of slopes, thalweg) and cross-sectional points. Contours outside the channel were interpolated using cross-sectional spot shots.

5. All section views shown are left to right facing downstream.

6. Cross-section B shot at location of pipe centerline (based on best professional judgement).

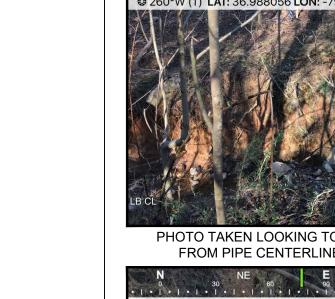


PHOTO TAKEN LOOKING TOWARD LEFT BANK FROM PIPE CENTERLINE ON 03/31/2018

PRE-CROSSING PHOTOS

③ 355°N (T) **LAT**: 36.987957 **LON**: -79.717430 ±16.4ft ▲ 947ft

BANK FROM PIPE CENTERLINE ON 03/31/2018

PENDING CROSSING

POST-CROSSING PHOTOS

NOTE: ALL SECTION VIEWS SHOWN LEFT TO

CROSS SECTION

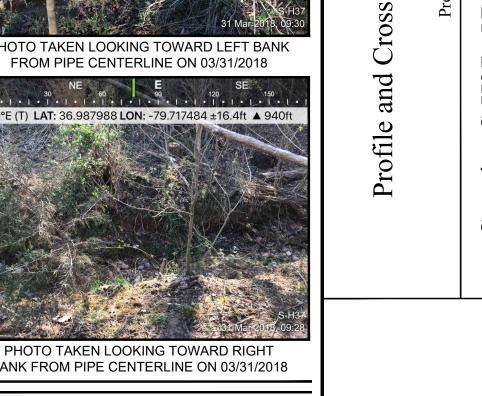
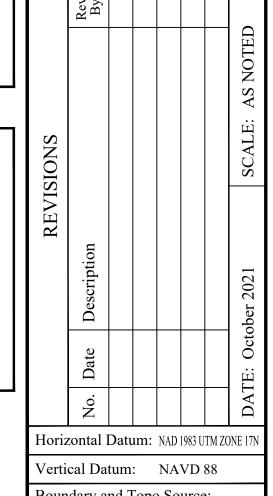



PHOTO TAKEN LOOKING

PENDING CROSSING

PHOTO TAKEN LOOKING

 $\mathcal{C}_{\mathcal{I}}$

Boundary and Topo Source: WSSI 2' C.I. Topo

Approved EJC MGE NAS Sheet # 1 of 1

Computer File Name: Survey\22000s\22800\22865.03\Spread I Work Dwgs 2865_03 S-I MP 268-278 Sheets.dwg

H: 1"=10' SCALE: CROSS SECTION LEGEND EXISTING GRADE

RIGHT FACING DOWNSTREAM.