Reach S-H42 (Timber Mat Crossing) Perennial Spread I Pittsylvania County, Virginia

Data	Included
Photos	√
SWVM Form	\checkmark
FCI Calculator and HGM Form	N/A – Perennial stream (not shadeable, slope
	>4%)
RBP Physical Characteristics Form	\checkmark
Water Quality Data	\checkmark
RBP Habitat Form	\checkmark
RBP Benthic Form	✓
Benthic Identification Sheet	\checkmark
Wolman Pebble Count	✓
RiverMorph Data Sheet	\checkmark
USM Form (Virginia Only)	✓
Longitudinal Profile and Cross Sections	\checkmark

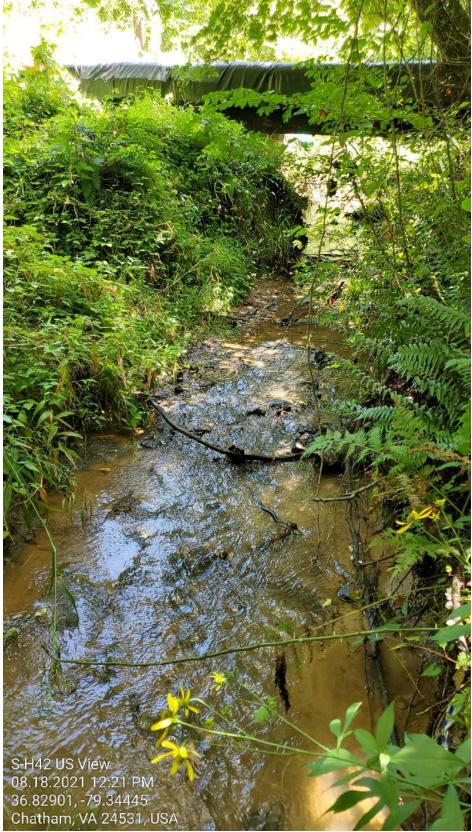


Photo Type: US VIEW Location, Orientation, Photographer Initials: Downstream at S-H42 looking SE upstream, DW

Photo Type: DS COND DS Location, Orientation, Photographer Initials: Downstream at S-H42 looking W downstream, DW

Photo Type: LB CL Location, Orientation, Photographer Initials: On thalweg at S-H42 pipe centerline looking S at right streambank, DW

Photo Type: RB CL Location, Orientation, Photographer Initials: On thalweg at S-H42 pipe centerline looking NE at left streambank, DW

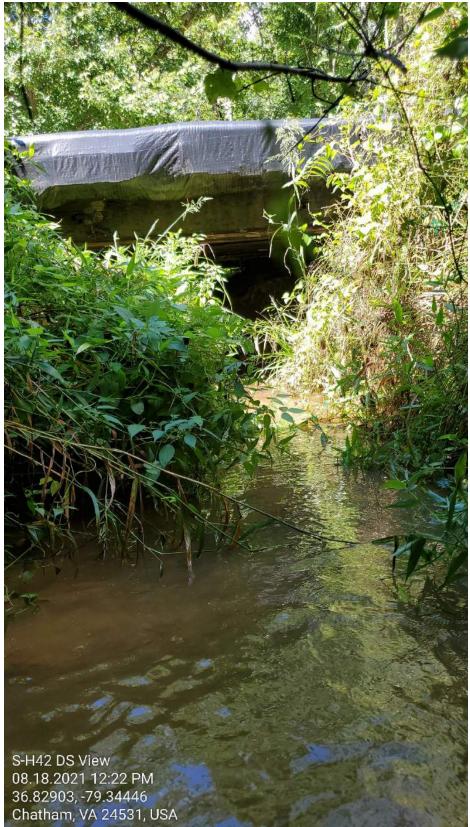


Photo Type: DS VIEW Location, Orientation, Photographer Initials: Upstream at S-H42 looking NW downstream, DW

USACE FILE NO./ Project Name: (v2.1, Sept 2015)			ſ	Mountair	n Valley Pipeline			COORDINATES: imal Degrees)
IMPACT STREAM/SITE ID (watershed size {acreage}					S-H42;	110.3 ac	;	
STREAM IMPACT LENGTH:	20	0	FORM MITIGA		RESTORATION (Levels I-III)			ORDINATES: imal Degrees)
Column No. 1- Impact Existing	g Conditi	on (Del	bit)		Column No. 2- Mitigation Existing C	ondition	- Base	line (Credit)
Stream Classification:		Pere	nnial		Stream Classification:			
Percent Stream Channel SI	оре		2.06		Percent Stream Channel Slope			
HGM Score (attach d	ata form	s):			HGM Score (attach	data forr	ns):	
			Average					Average
Hydrology			•		Hydrology			
Biogeochemical Cycling			0		Biogeochemical Cycling			0
Habitat					Habitat			
PART I - Physical, Chemical and	Biologica	al Indic	ators		PART I - Physical, Chemical and	d Biologi	cal Ind	icators
	Points Scale	Range	Site Score			Points Scale	Range	Site Score
PHYSICAL INDICATOR (Applies to all streams	s classificat	ions)			PHYSICAL INDICATOR (Applies to all streams	classificatio	ons)	
USEPA RBP (High Gradient Data Sheet)					USEPA RBP (Low Gradient Data Sheet)			
1. Epifaunal Substrate/Available Cover	0-20		12		1. Epifaunal Substrate/Available Cover	0-20		
2. Embeddedness	0-20		18		2. Pool Substrate Characterization	0-20]	
3. Velocity/ Depth Regime	0-20		8		3. Pool Variability	0-20		
4. Sediment Deposition	0-20	-	19	-	4. Sediment Deposition	0-20	-	
5. Channel Flow Status	0-20	0-1	20		5. Channel Flow Status	0-20	0-1	
6. Channel Alteration	0-20	-	<u>20</u> 9	-	6. Channel Alteration	0-20	-	
7. Frequency of Riffles (or bends) 8. Bank Stability (LB & RB)	0-20	-	20		7. Channel Sinuosity 8. Bank Stability (LB & RB)	0-20	-	
9. Vegetative Protection (LB & RB)	0-20		16		9. Vegetative Protection (LB & RB)	0-20	-	
10. Riparian Vegetative Zone Width (LB & RB)	0-20		18		10. Riparian Vegetative Zone Width (LB & RB)	0-20	1	
Total RBP Score	Subop	timal	160		Total RBP Score	Po	or	0
Sub-Total			0.8		Sub-Total			0
CHEMICAL INDICATOR (Applies to Intermitter	nt and Pere	nnial Str	eams)		CHEMICAL INDICATOR (Applies to Intermittent	and Peren	nnial Stre	eams)
WVDEP Water Quality Indicators (General	i)				WVDEP Water Quality Indicators (General)			
Specific Conductivity	T	-			Specific Conductivity	T		
<=99 - 90 points	0-90		40.3			0-90		
рН			80		рН			0
6.0.8.0 = 80 points	0-80	0-1	7.07			5-90	0-1	
6.0-8.0 = 80 points					DO			
	10-30		7.58			10-30	1	
>5.0 = 30 points	10-30					10-30		
Sub-Total BIOLOGICAL INDICATOR (Applies to Intermit	tent and Pe	erennial	1 Streams)		Sub-Total BIOLOGICAL INDICATOR (Applies to Intermitte	ent and Per	rennial S	0 Streams)
WV Stream Condition Index (WVSCI)					WV Stream Condition Index (WVSCI)			
	0-100	0-1	72.8			0-100	0-1	
Good								
Sub-Total			0.728		Sub-Total			0
				_				
PART II - Index and L	Init Score)			PART II - Index and	Unit Scor	re	

Index	Linear Feet	Unit Score
0.843	20	16.8533333

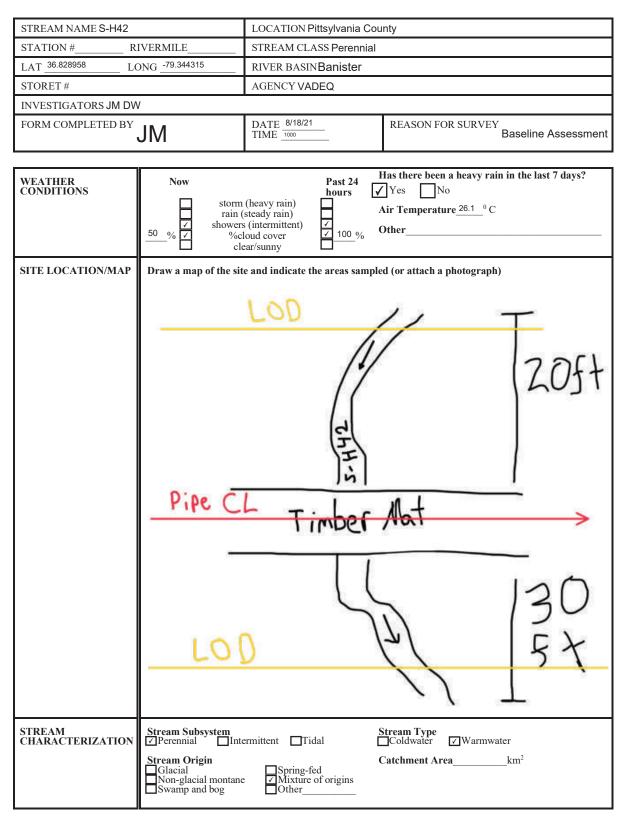
	36.828958	Lon.	-79.3443	5 WEATHER:			Sunny	DATE:	August	18 202
									August	10, 202
MI	ITIGATION STREAM CLASS. (watershed size {acreage			ION:				Comments:		
		Lon.		PRECIPITATION PAST 48 HRS:			Yes	Mitigation Length:		
		Lon.					103	Witigution Longth.		
	Column No. 3- Mitigation Pr Post Completio		Five Years	Column No. 4- Mitigation Pr Post Completion		en Yea	rs	Column No. 5- Mitigation Projected	d at Maturity (Credit)
Stream Cla	assification:		0	Stream Classification:		0		Stream Classification:		0
	Percent Stream Channel S	lope	0	Percent Stream Channel	Slope		0	Percent Stream Channel Sic	pe	
	HGM Score (attach	data forr	ns):	HGM Score (attach	data forms):		HGM Score (attach da	ta forms):	
			Average				Average			Av
Hydrology				Hydrology				Hydrology		
	emical Cycling		0	Biogeochemical Cycling			0	Biogeochemical Cycling		
Habitat				Habitat				Habitat		
	PART I - Physical, Chemical a	nd Biologi	cal Indicators	PART I - Physical, Chemical an	d Biological	Indica	itors	PART I - Physical, Chemical and E	iological Indic	ators
		Points Scale	Range Site Score		Points Scale	Range	Site Score		Points Scale Range	e Sit
PHYSICAL	. INDICATOR (Applies to all streams	s classificatio	ons)	PHYSICAL INDICATOR (Applies to all strea	ms classificatio	ons)		PHYSICAL INDICATOR (Applies to all streams of	lassifications)	
	P (High Gradient Data Sheet)			USEPA RBP (High Gradient Data Sheet)				USEPA RBP (High Gradient Data Sheet)		
1. Epifauna	I Substrate/Available Cover	0-20		1. Epifaunal Substrate/Available Cover	0-20			1. Epifaunal Substrate/Available Cover	0-20	
2. Embedde		0-20		2. Embeddedness	0-20			2. Embeddedness	0-20	
	Depth Regime	0-20		3. Velocity/ Depth Regime	0-20			3. Velocity/ Depth Regime 4. Sediment Deposition	0-20	
	t Deposition Flow Status	0-20		4. Sediment Deposition 5. Channel Flow Status	0-20			4. Sediment Deposition 5. Channel Flow Status	0-20	
6. Channel		0-20	0-1	6. Channel Alteration	0-20	0-1		6. Channel Alteration	0-20 0-1	
	cy of Riffles (or bends)	0-20		7. Frequency of Riffles (or bends)	0-20	ł		7. Frequency of Riffles (or bends)	0-20	
· · · · ·	ability (LB & RB)	0-20		8. Bank Stability (LB & RB)	0-20			8. Bank Stability (LB & RB)	0-20	
	ve Protection (LB & RB)	0-20		9. Vegetative Protection (LB & RB)	0-20			9. Vegetative Protection (LB & RB)	0-20	
10. Riparian	Vegetative Zone Width (LB & RB)	0-20		10. Riparian Vegetative Zone Width (LB & RB)	0-20			10. Riparian Vegetative Zone Width (LB & RB)	0-20	
Total RBP		Po		Total RBP Score	Poo	r	0	Total RBP Score	Poor	
Sub-Total			0	Sub-Total			0	Sub-Total		
CHEMICAL	- INDICATOR (Applies to Intermitter	nt and Peren	inial Streams)	CHEMICAL INDICATOR (Applies to Intermit	tent and Peren	nial Stre	eams)	CHEMICAL INDICATOR (Applies to Intermittent	and Perennial St	reams)
	ater Quality Indicators (Genera onductivity	I)		WVDEP Water Quality Indicators (Generols Specific Conductivity	ral)			WVDEP Water Quality Indicators (General) Specific Conductivity		
		0-90			0-90				0-90	
					0-00					
рН			0-1	рН		0-1		pH	0-1	
		5-90			5-90				5-90	
DO				DO				DO		
		10-30			10-30				10-30	
Sub-Total	AL INDICATOR (Applies to Intern	nittont and	Perennial Streams)	Sub-Total BIOLOGICAL INDICATOR (Applies to Inte	rmittont and	Porona	0	Sub-Total BIOLOGICAL INDICATOR (Applies to Intermit	ttent and Berer	nial Stree
		intent and			million and I	erenni				nai Stre
ww Stream	n Condition Index (WVSCI)	0-100	0-1	WV Stream Condition Index (WVSCI)	0-100	0-1		WV Stream Condition Index (WVSCI)	0-100 0-1	
		0.00				- '	0		0-1	
			0	Sub-Total			0	Sub-Total		
Sub-Total			I					•		
Sub-Total	PART II - Index and	1 Unit Corr		PART II - Index and	Unit Secre			PART II - Index and Un	it Score	

Index	Linear Feet	Unit Score
0	0	0

Linear Feet Unit Score

0

0


Index

0

PART II - Index and Unit Score				
Index	Linear Feet	Unit Score		
0	0	0		

PART II - Index and Unit Score					
Index	Linear Feet	Unit Score			
0	0	0			

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

WATERSHED FEATURES RIPARIAN VEGETATION (18 meter buffer)	Predominant Surrounding Landuse ✓ Forest Commercial Field/Pasture Industrial Agricultural Other ■ Residential Other Indicate the dominant type and record the domin Indicate the dominant type and record the domin Trees ☑ Shrubs Dominant species present Red maple, Rubus sp.	Local Watershed NPS Pollution ☑ No evidence □ Some potential sources □ Obvious sources Local Watershed Erosion ☑ None □ Moderate □ Moderate □ Heavy
INSTREAM FEATURES	Estimated Reach Length 15.2 m Estimated Stream Width 1.2 m Sampling Reach Area 18.2 m² Area in km² (m²x1000) km² Estimated Stream Depth 0.1 m Surface Velocity (at thalweg) 0.3 m/sec	Canopy Cover □Partly shaded ☑ Shaded □ Partly open □Partly shaded ☑ Shaded High Water Mark 0.1 m Proportion of Reach Represented by Stream Morphology Types Riffle 55 % Run 35 % Pool 10 % % Channelized □Yes ☑ No Dam Present □Yes ☑ No
LARGE WOODY DEBRIS	LWD <u>1.6</u> m ² Density of LWDm ² /km ² (LWD/ read	ch area)
AQUATIC VEGETATION	Indicate the dominant type and record the domin Rooted emergent Floating Algae Dominant species present NA Portion of the reach with aquatic vegetation 5	nant species present ☐Rooted floating
WATER QUALITY	Temperature 23.4 D 0 C Specific Conductance 40.3 D ms/cm Dissolved Oxygen 7.58 D mg/L pH 7.07 D su Turbidity NA WQ Instrument Used YSI	Water Odors Normal/None Sewage Petroleum Chemical Fishy Other Water Surface Oils Globs Slick Sheen Other Turbidity (if not measured) Clear Slightly turbid Opaque Stained
SEDIMENT/ SUBSTRATE	Odors ✓Normal Chemical Other Oils ✓Absent Slight Moderate Profuse	Deposits □Sludge □Sawdust □Paper fiber □Sand □Relict shells □Other □ Hooking at stones which are not deeply embedded, are the undersides black in color? □ Yes ☑ No

INC	ORGANIC SUBSTRATE (should add up to			ORGANIC SUBSTRATE COMPONENTS (does not necessarily add up to 100%)			
Substrate Diameter % Type S		% Composition in Sampling Reach	Substrate Type	Characteristic % Compositio Sampling Ar			
Bedrock			Detritus	sticks, wood, coarse plant			
Boulder	> 256 mm (10")	5]	materials (CPOM)			
Cobble	64-256 mm (2.5"-10")	45	Muck-Mud	black, very fine organic			
Gravel	2-64 mm (0.1"-2.5")	35		(FPOM)			
Sand	0.06-2mm (gritty)	10	Marl	grey, shell fragments			
Silt	0.004-0.06 mm	5]				
Clay	< 0.004 mm (slick)						

HABITAT ASSESSMENT FIELD DATA SHEET - HG - USE ON ALL STREAMS (FRONT)

STREAM NAME S-H42	LOCATION Franklin County			
STATION # RIVERMILE	STREAM CLASS Perennial			
LAT <u>36.828958</u> LONG <u>-79.344315</u>	RIVER BASIN Banister			
STORET #	AGENCY VADEQ			
INVESTIGATORS JM, DW				
FORM COMPLETED BY JM	4000	on for survey l line Assessment		

	Habitat		Condition	Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are <u>not</u> new fall and <u>not</u> transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
	_{SCORE} 12	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
ı sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.
ted ir	score 18	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow- deep, slow-shallow, fast- deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast- shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).
ıram	_{SCORE} 8	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Pa	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
	_{score} 19	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
	_{score} 20	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

	Habitat		Condition	Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
	_{SCORE} 20	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
ıg reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.
amp	score 9	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30- 60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.
e ev	SCORE 10	Left Bank 10 9	8 7 6	5 4 3	2 1 0
to D	SCORE 10	Right Bank 10 9	8 7 6	5 4 3	2 1 0
Parameters	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well- represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
	SCORE 8	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE 8	Right Bank 10 9	8 7 6	5 4 3	2 1 0
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.
	SCORE 9	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE 9	Right Bank 10 9	8 7 6	5 4 3	2 1 0

Total Score 160

BENTHIC MACROINVERTEBRATE FIELD DATA SHEET

STREAM NAME S-H	42	LOCATION Pittsylvania Cou	nty						
STATION #	RIVERMILE	STREAM CLASS Perennial							
LAT <u>36.828993</u>	LONG79.344442	RIVER BASIN Banister							
STORET #		AGENCY VADEQ							
INVESTIGATORS T	C KB		LOT NUMBER						
FORM COMPLETED	^{BY} KB	DATE 10/21/2021 TIME	REASON FOR SURVEY Baseline Assessment						
HABITAT TYPES	Indicate the percentage of each habitat type present Cobble 50 % Snags % Submerged Macrophytes % Other (
SAMPLE COLLECTION	How were the samples coll <u>In</u> dicate the number <u>of</u> jat	Gear used D-frame kick-net Other How were the samples collected? Image: Collected in the sample is a collected in the sampl							
GENERAL COMMENTS	4 kicks were perf	ormed in cobbles.							

QUALITATIVE LISTING OF AQUATIC BIOTA

Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare, 2 = Common, 3= Abundant, 4 = Dominant

Periphyton	0	1	2	3	4	Slimes	0	1	2	3	4
Filamentous Algae	0	1	2	3	4	Macroinvertebrates	0	1	2	3	4
Macrophytes	0	1	2	3	4	Fish	0	1	2	3	4

FIELD OBSERVATIONS OF MACROBENTHOS

Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare (1-3 organisms), 2 = Common (3-9 organisms), 3= Abundant (>10 organisms), 4 = Dominant (>50 organisms)

Porifera	0	1	2	3	4	Anisoptera	0	1	2	3	4	Chironomidae	0	1	2	3	4
Hydrozoa	0	1	2	3	4	Zygoptera	0	1	2	3	4	Ephemeroptera	0	1	2	3	4
Platyhelminthes	0	1	2	3	4	Hemiptera	0	1	2	3	4	Trichoptera	0	1	2	3	4
Turbellaria	0	1	2	3	4	Coleoptera	0	1	2	3	4	Other	0	1	2	3	4
Hirudinea	0	1	2	3	4	Lepidoptera	0	1	2	3	4						
Oligochaeta	0	1	2	3	4	Sialidae	0	1	2	3	4						
Isopoda	0	1	2	3	4	Corydalidae	0	1	2	3	4						
Amphipoda	0	1	2	3	4	Tipulidae	0	1	2	3	4						
Decapoda	0	1	2	3	4	Empididae	0	1	2	3	4						
Gastropoda	0	1	2	3	4	Simuliidae	0	1	2	3	4						
Bivalvia	0	1	2	3	4	Tabinidae	0	1	2	3	4						
						Culcidae	0	1	2	3	4						

Dryoj Elr	nidae 1 nidae 50 alidae 3 xidae 2 pidae 8	4 6 5 1				Metrics and WVSCI Standardized	Scores	ORG ID REI	C2513
Chironor Coryda Di Dryoj Elr	nidae 50 alidae 3 xidae 2 pidae 8	6 5 1							
Chironor Coryda Di Dryoj Elr	nidae 50 alidae 3 xidae 2 pidae 8	5				Standardized			
Di Dryoj Elr	alidae 3 xidae 2 pidae 8	5							
Dryoj Elr	pidae 8			-		Score w BSV		Benthic Density	
Elr		E C		Metrics	BSV	1996-2001	# of grids Picked	6 Total # of grid	s 1
1		5	% 2 Dominant Taxa (Family)	55.40	37.3	71.13			
Empi	nidae 9	4	% Chironomidae	23.47	1.7	77.85			
	didae 1	6					Total IB	l Individuals 213	
Gompl		3	% EPT (Family)	60.09	89.3	67.29	# of Orga	nisms per Grid 35.50	
Heptager	and the second	4	HBI (Family)	4.63	2.61	72.61	Aiganisi	ns per Sq cm 0.3550	
Hydropsyc		5	# EPT Taxa (Family)	8	13	61.54			
Leptophlet		2	# Total Taxa (Family)	19	22	86.36	Urganis	ms per Sq m 3550.00	
Leuci		3							
1.5	rlidae 1	1		VSCI So BSV 199		72.80			
Philopotar	Constants to party and a state of the	3		B2A 133	6-2001				
Psepher	And the second sec	4	WVSCI Catego	ry l	Inimpair	ed-Good			
Ptilodacty		5		5.0	SCI Thr	and all a			
Taenioptery	gidae i ulidae 2	2				esholds = >68.00			
Tipt		3		Gray Zo		.61 to 68.00			

WOLMAN PEBBLE COUNT FORM

County:	Pittsylvania	Stream ID:	S-H42
Stream Name:	UNT to Little Cherrystone Creek		
HUC Code:	03010105	Basin:	Banister
Survey Date:	8/18/2021		
Surveyors:	JM DW		
Type:	Representative Bankfull		

			LE COUNT				
Inches	PARTICLE	Millimeters		Particle Count	Total #	Item %	% Cum
	Silt/Clay	< .062	S/C	* *	4	4.00	4.00
	Very Fine	.062125		* *	1	1.00	5.00
	Fine	.12525	1	*		0.00	5.00
	Medium	.255	S A N D	▲ ▼	1	1.00	6.00
	Coarse	.50-1.0	1	▲ ▼	2	2.00	8.00
.0408	Very Coarse	1.0-2		▲ ▼	3	3.00	11.00
.0816	Very Fine	2 -4		▲ ▼	7	7.00	18.00
.1622	Fine	4 -5.7		▲ ▼	5	5.00	23.00
.2231	Fine	5.7 - 8		▲ ▼	2	2.00	25.00
.3144	Medium	8 -11.3		▲ ▼	3	3.00	28.00
.4463	Medium	11.3 - 16	G R A V E L	▲ ▼	3	3.00	31.00
.6389	Coarse	16 -22.6		▲ ▼	4	4.00	35.00
.89 - 1.26	Coarse	22.6 - 32		▲ ▼	18	18.00	53.00
1.26 - 1.77	Vry Coarse	32 - 45		▲ ▼	20	20.00	73.00
1.77 -2.5	Vry Coarse	45 - 64		▲ ▼	12	12.00	85.00
2.5 - 3.5	Small	64 - 90		▲ ▼	6	6.00	91.00
3.5 - 5.0	Small	90 - 128		▲ ▼	2	2.00	93.00
5.0 - 7.1	Large	128 - 180	COBBLE	▲ ▼		0.00	93.00
7.1 - 10.1	Large	180 - 256		▲ ▼		0.00	93.00
10.1 - 14.3	Small	256 - 362		▲ ▼		0.00	93.00
14.3 - 20	Small	362 - 512		▲ ▼		0.00	93.00
20 - 40	Medium	512 - 1024	BOULDER	 ▼		0.00	93.00
40 - 80	Large	1024 -2048	1	▲		0.00	93.00
80 - 160	Vry Large	2048 -4096	1	▲ ▼	7	7.00	100.00
	Bedrock		BDRK	▲ ▼		0.00	100.00
				Totals:	100		
	Total Tally:						

River Name: Reach Name: Sample Name: Survey Date:	S-H42 Representativ	-	ne Creek	
Size (mm)	TOT #	ITEM %	CUM %	
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	4 1 0 1 2 3 7 5 2 3 3 4 18 20 12 6 2 0 0 0 0 0 0 0 0 7	$\begin{array}{c} 4.00\\ 1.00\\ 0.00\\ 1.00\\ 2.00\\ 3.00\\ 7.00\\ 5.00\\ 2.00\\ 3.00\\ 3.00\\ 4.00\\ 18.00\\ 20.00\\ 12.00\\ 6.00\\ 2.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 7.00\\ \end{array}$	5.00 5.00 6.00 8.00 11.00 18.00 23.00 25.00 28.00 31.00 35.00 53.00 73.00 93.00	
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Gravel (%) Boulder (%) Bedrock (%)	3.43 22.6 30.43 62.42 Bedrock Bedrock 4 7 74 8 0 7			

Total Particles = 100.

		F	For use in wadea	ble channels cla	ssified as interm	littent or perenni	al			
Project #	Project Name (App		Locality	Cowardin Class.	HUC	Date	SAR #	Impact Length	Impact Factor	
22865.06	Mountain Valley Pipeline Valley Pipeline, L		Pittsylvania	R4	03010105	8/18/21	S-H42	20	1	
Nam	e(s) of Evaluator(s)	Stream Name	and Informa	tion				SAR Length		
	JM DW	UNT to Little	Cherrystone	Creek				91		
. Channel C	Condition: Assess the cross-section	on of the stream an	nd prevailing cond	lition (erosion, agg	radation)					
	Optimal	Subop		Conditional Catego	^{ry} ginal		oor	Sev		
Channel Condition	Very little incision or active erosion; 80- 100% stable banks. Vegetative surface protection or natural rock, prominent (80-100%). AND/OR Stable point bars / bankfull benches are present. Access to their original floodplain or fully developed wide bankfull benches. Mid- channel bars and transverse bars few. Transient sediment deposition covers less than 10% of bottom.	erosion or unprotect of banks are sta Vegetative protection prominent (60-8 Depositional feature	ed banks. Majority able (60-80%). on or natural rock 80%) AND/OR tres contribute to kfull and low flow fined. Stream likely ill benches,or newly dplains along each. Transient -40% of the stream	40-60% of banks. So vertical or unde 40-60% Sediment r transient, contri Deposition that cor may be forming/pr shaped channels	able than Severe or rer bank slopes. esent on 40-60% of ative protection on treambanks may be ercut. AND/OR may be temporary / bute instability. ntribute to stability, esent. AND/OR V- have vegetative % of the banks and es which contribute	laterally unstab further. Majority of vertical. Erosion p banks. Vegetativ on 20-40% of bank to prevent erosion. the stream is cov Sediment is tem nature, and contr AND/OR V-sha vegetative protect 40% of the banks		majority of banks vertical/undercut. Vegetative protection present on less		CI
			4		y -		1.6			3.00

NOTES>>

RIPARIAN BUFFERS: Assess both bank's 100 foot riparian areas along the entire SAR. (rough measurements of length & width may be acceptable) 12. NOTES>> **Conditional Category Suboptimal** Optimal Marginal Poor Low Marginal: High Poor: Lawns, Non-maintained, mowed, and High Suboptimal: Low Suboptimal: dense herbaceous High Marginal: maintained areas, Low Poor: Riparian areas with Riparian areas with Non-maintained, vegetation, riparian nurseries; no-till Impervious tree stratum (dbh > tree stratum (dbh > areas lacking shrub dense herbaceous cropland; actively surfaces, mine 3 inches) present, 3 inches) present, Tree stratum (dbh > 3 inches) present, vegetation with and tree stratum, grazed pasture, spoil lands, Riparian with 30% to 60% with 30% to 60% with > 60% tree canopy cover. either a shrub layer denuded surfaces, hay production, sparsely vegetated tree canopy cover tree canopy cover **Buffers** Wetlands located within the riparian or a tree layer (dbh ponds, open water. non-maintained row crops, active and containing both and a maintained > 3 inches) If present, tree area, recently feed lots, trails, or areas. herbaceous and understory. Recen other comparable present, with <30% stratum (dbh >3 seeded and shrub layers or a cutover (dense tree canopy cover. inches) present, stabilized, or other conditions. non-maintained vegetation). with <30% tree comparable understory. canopy cover with condition. maintained understory. High High High Low Low Low 1.5 1.2 1.1 0.6 0.5 0.85 0.75 Scores . Delineate riparian areas along each stream bank into Condition Categories and Condition Scores using the descriptors. Ensure the sums 2. Determine square footage for each by measuring or estimating length and width. Calculators are provided for you below. of % Riparian 3. Enter the % Riparian Area and Score for each riparian category in the blocks below. Blocks equal 100 100% 100% % Riparian Area> **Right Bank** 1.2 Score > CI= (Sum % RA * Scores*0.01)/2 100% 100% CI % Riparian Area> 1.20 Rt Bank CI > Left Bank 1.2 Lt Bank CI > 1.20 1.20 Score > 3. INSTREAM HABITAT: Varied substrate sizes, water velocity and depths; woody and leafy debris; stable substrate; low embededness; shade; undercut banks; root mats; SAV; riffle/pool complexes, stable features. NOTES>> **Conditional Category** Marginal **Optimal Suboptimal** Poor Instream

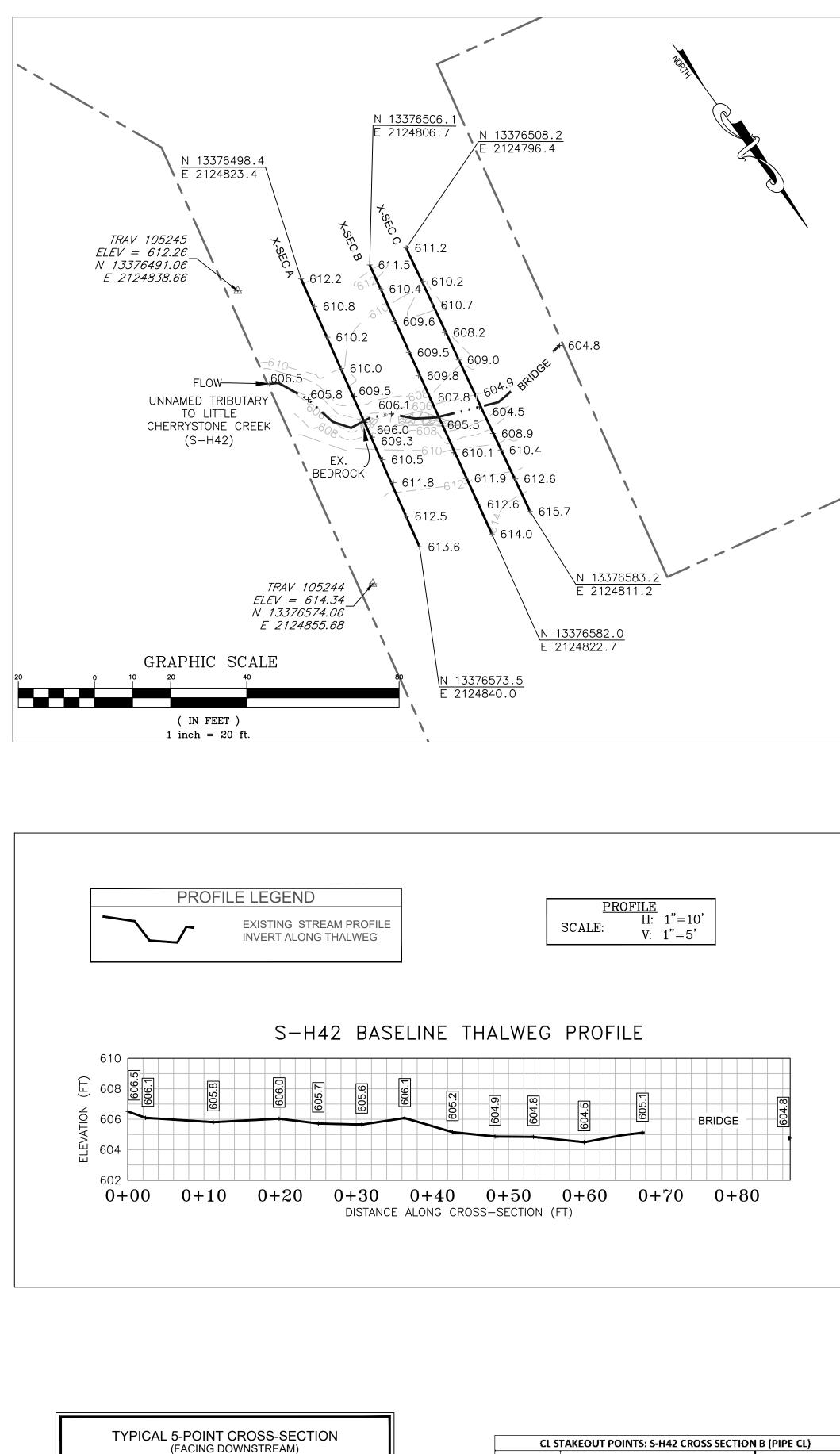
Scores	1.5	1.2	0.9	0.5	High / Low	1.20
					Stream Gradient	CI
Cover	greater than 60% of the reach.	populations.	populations.	than 10% of the reach.		
Cover	greater than 50% of the reach.	adequate for maintenance of	adequate for maintenance of	elements are typically present in less		
Available	Habitat elements are typically present in		, , , , , , , , , , , , , , , , , , ,			
Habitat/		Stable habitat elements are typically	Stable habitat elements are typically	Habitat elements listed above are		

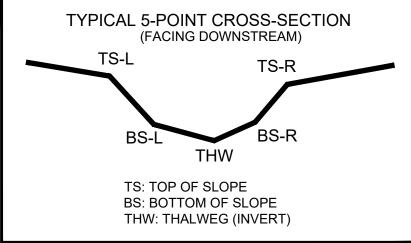
Reach R3-R4

File: C:\Users\emily.foster\Tetra Tech, Inc\MVP Stream & Wetland Assessment - General\01. Virginia Field Data Management\05. 2_QAQC (working files)\Submitted Oct. 20\S-H42_NO BENTHIC ID\9. S-H42_USM_MVP_20211007KEH.xlsx

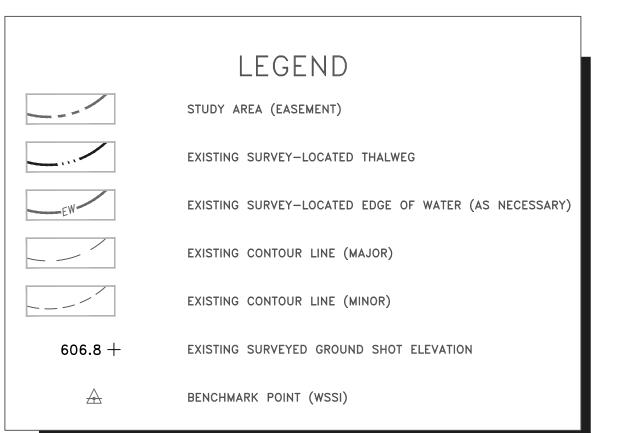
	S	tream Ir	npact A	ssessn	nent For	rm Page	e 2			
Project #	Project Name (App	licant)	Locality	Cowardin Class.	HUC	Date	SAR #	Impact Length	Impact Factor	
22865.06	Mountain Valley Pipeline Valley Pipeline, L	•	Pittsylvania	R4	03010105	8/18/21	S-H42	20	1	
4. CHANNEL	ALTERATION: Stream crossin	igs, riprap, concret	e, gabions, or con	icrete blocks, strai	ghtening of chann	el, channelization,	, embankments, s	poil piles, constrictio	ons, livestock	
				al Category				NOTES>>		
	Negligible	Mir	nor		erate	Sev	/ere	-		
Channel Alteration	Channelization, dredging, alteration, or hardening absent. Stream has an unaltered pattern or has naturalized.	Less than 20% of the stream reach is disrupted by any of the channel alterations listed in the parameter guidelines.	the channel	is disrupted by any of the channel alterations listed in the parameter guidelines. If	60 - 80% of reach is disrupted by any of the channel alterations listed in the parameter guidelines. If stream has been channelized, normal stable stream meander pattern has not recovered.					CI
Scores	1.5	1.3	1.1	0.9	0.7	0	.5			1.50
	REACH	CONDITION	INDEX and S	STREAM CO	NDITION UN	ITS FOR THI	S REACH			
<i>IOTE:</i> The CIs a	nd RCI should be rounded to 2 deci	mal places. The CF	R should be round	ed to a whole nun	nber.		THE REAC	H CONDITION IN	DEX (RCI) >>	1.38
						RCI= (Sum of	f all Cl's)/5, exc	ept if stream is ep	hemeral RCI = (F	Riparian CI/2
							COMPENS	ATION REQUIRE	MENT (CR) >>	28
							CR = R	CI X L _I X IF		

INSERT PHOTOS:




CAPTION. Assessment is limited to areas within the temporary ROW.

DESCRIBE PROPOSED IMPACT:

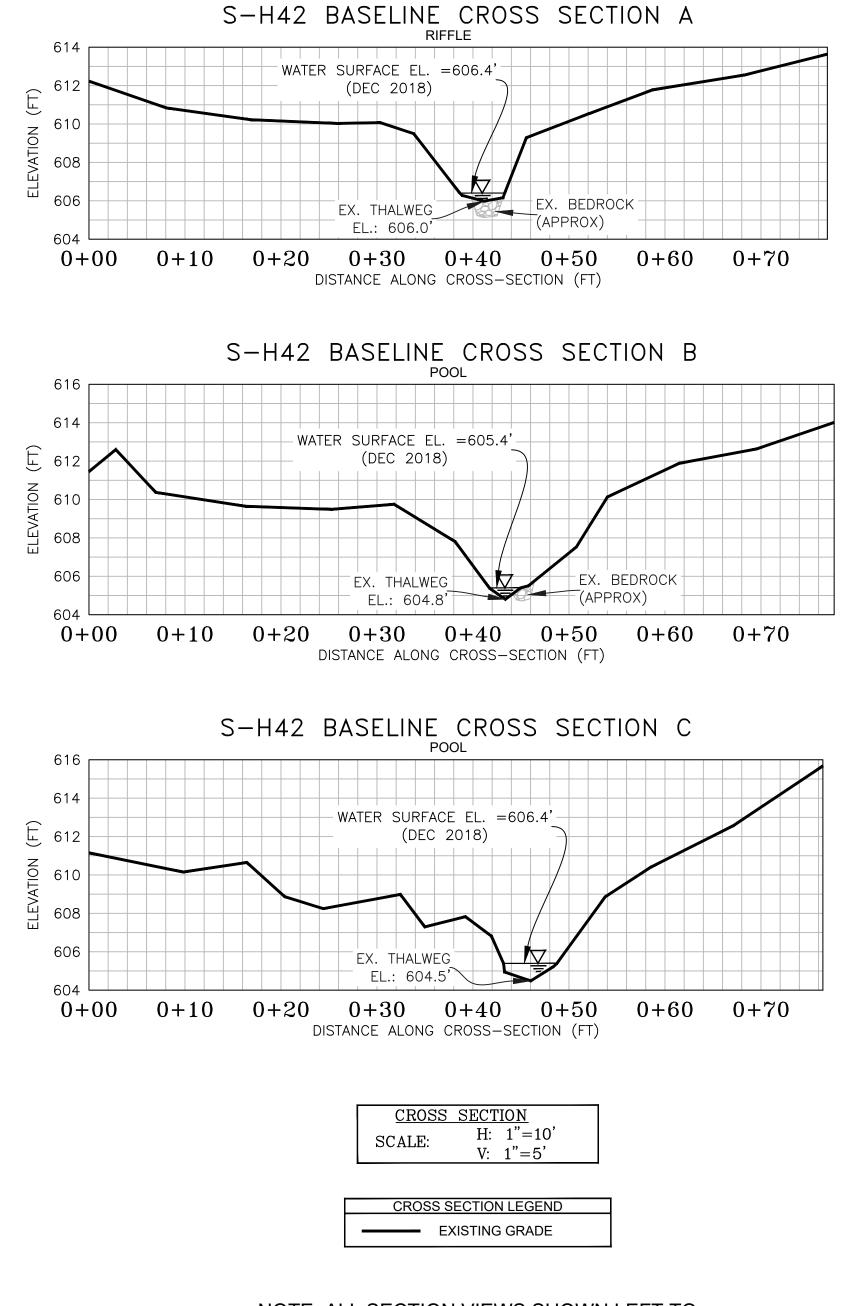

PROVIDED UNDER SEPARATE COVER

Reach R3-R4 File: C:\Users\emily.foster\Tetra Tech, Inc\MVP Stream & Wetland Assessment - General\01. Virginia Field Data Management\05. 2_QAQC (working files)\Submitted Oct. 20\S-H42_NO BENTHIC ID\9. S-H42_USM_MVP_20211007KEH.xlsx

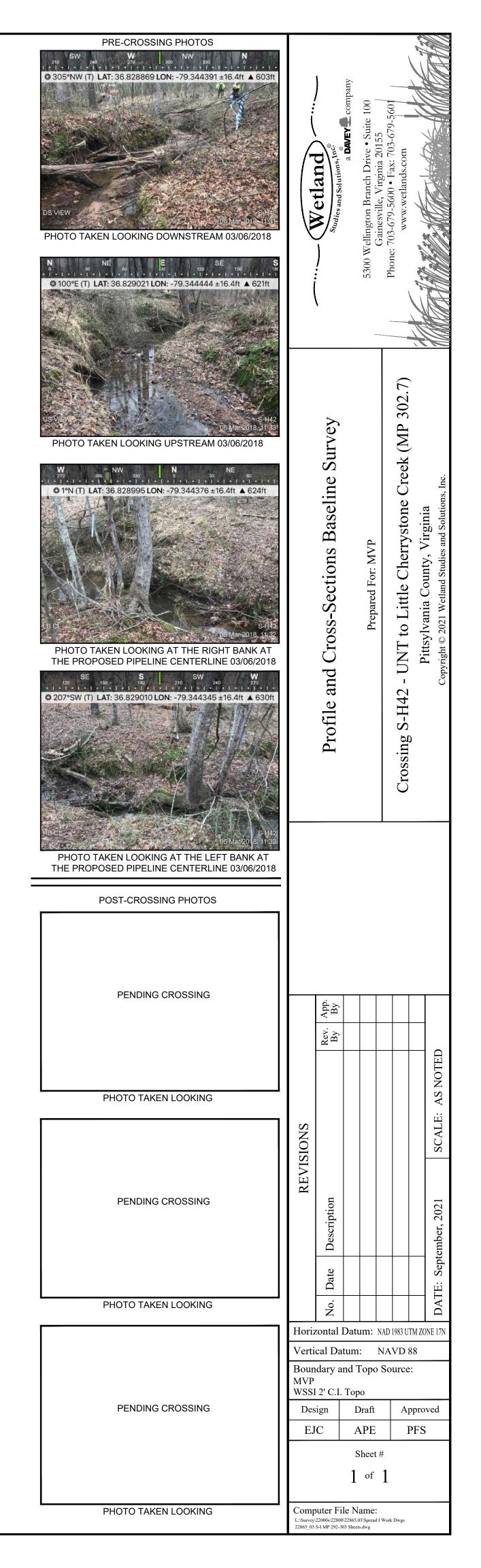
CL S	CL STAKEOUT POINTS: S-H42 CROSS SECTION B (PIPE CL)												
	PR	E-CROSSING		POST-C	ROSSING								
PT. LOC.	NORTHING	EASTING	ELEV	VERT.	HORZ.								
P1. LOC.	NORTHING	EASTING	ELEV	DIFF.	DIFF.								
TS-L	13376543.41	2124814.69	607.80										
BS-L	13376546.73	2124816.13	604.80										
THW	13376548.38	2124816.36	604.80										
BS-R	13376550.71	2124816.98	605.50										
TS-R	13376558.88	2124818.21	610.14										

SURVEY NOTES:

1. This map has been oriented to NAD 1983 UTM ZONE 17N, and vertically to The North American Vertical Datum of 1988 (NAVD 88), using a Real Time Network (RTN) GPS. Field locations were completed on December 6, 2018.


2. Monumentation, including traverse stations and fly points, shown on this drawing should be used to orient any future boundary, topographic, or location survey.

3. Easement lines shown on plan view were provided by Mountain Valley Pipeline (MVP).


4. WSSI Contour Interval = 2.0'. Contours within the channel were interpolated using stream channel breaklines (i.e. top of slopes, toe of slopes, thalweg) and cross-sectional points. Contours outside the channel were interpolated using cross-sectional spot shots.

5. All section views shown are left to right facing downstream.

6. Cross-section B shot at location of pipe centerline (based on best professional judgement).

NOTE: ALL SECTION VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM.

